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Isomorphism classes and automorphisms

of finite Hopf algebras of type 4,

Nicolas Andruskiewitsch and Hans-Jiirgen Schneider

1. Introduction

In [2] we classified a large class of finite-dimensional pointed Hopf algebras
up to isomorphism. However the following problem was left open for Hopf
algebras of type A, D or Eg, that is whose Cartan matrix is connected and
allows a non-trivial automorphism of the corresponding Dynkin diagram. In
this case we described the isomorphisms between two such Hopf algebras
with the same Cartan matrix only implicitly. The problem is whether it is
possible to compute the isomorphisms in terms of the defining families of
parameters.

In the present paper we solve this problem for type A. To our surprise
there are closed formulas for these isomorphisms. They are based on an
action of the non-trivial automorphism ¢ of the Dynkin diagram on the
parameter spaces of the Hopf algebras of type A.

The Hopf algebras u(D, ) of type A, can be defined as follows. For
more details and references to the literature we refer to our survey paper [1].
Let n > 2 and (a;j)1<; j<n the Cartan matrix of type A, in the form

2, if i = 7,
(11) Q5 = —1, if |Z —]’ = 1,

0, if |i — 5] > 1.
Let I" be a finite abelian group, g; € ' and x; characters of I' for all 1 < i < n.
Define ¢;; = x;(¢:),1 <4,j < n. Then

D = D(T, (gi)1<i<n, (Xi)1<i<n, (@ij)1<i,j<n)
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is a datum of Cartan type if there is a root of unity ¢ of order N > 1 in k
such that

(1.2) gii = q for all 1 <i <n, and
71 . . .
qg ', ifli—j]=1,
(13) 4y {1, if i — j| > 1.

For simplicity we assume that N is odd. The case when N is even could
be treated in the same way.

Let ®* be the positive roots of the root system of type A, and let k%"
be the set of all families 1 = (j1;5)1<i<j<n+1 of scalars in k. A family of root
vector parameters for D is a family p € k%" satisfying the following two
conditions.

(Rl) Hiz = 0 for all 1 S 1< j S n+1 with (gigiJrl N 'gjfl)N =1.
(R2) py=0forall 1 <i<j<n+1with (xixiz1---xj-1)" # 1.

In (2.9) we associate to any family u € k2" satisfying (R2) a family
(uij (1) )1<i<j<nt1 of elements in the group algebra k[I']. If u satisfies (R2)
we can always normalize it such that p becomes a family of root vector pa-
rameters without changing the elements w;;(x). This normalization process
is discussed in Lemma 2.2. The Hopf algebra u(D, ) is generated as an
algebra by the group I', that is, by generators of I' satisfying the relations
of the group, and z1, ..., x,, with the relations:

(Action of the group) gr:9~" = xi(g)z;, for all i, and all g € T,

(Serre relations) ad.(z;)' "% (z;) = 0, for all i # j,
N

(Root vector relations) ;= uij(p), forall 1 <i<j<n+1.

The coalgebra structure is given by
Alr) =g, Qi+, 01, A(g)=g®g, forall1 <i<f,geTl.
The Serre relations are the deformed Serre relations where
(ade(wi)) (), -~ - 5,) = @ity - Tj = Gigy = Qiga gy -+ 5,00, 8 2 1,

is the braided adjoint action. The root vectors z;; are iterated braided
commutators. They are defined in (2.3).

The non-trivial automorphism of the Dynkin diagram of A, is the per-
mutation o € S, defined by o(i) = n —i+ 1 for all 1 < ¢ < n. For each
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D we have an action of o on the parameter spaces by an explicitly defined
morphism of affine algebraic varieties

oP kT = kY p (0D (1) 1<ici<ntt-

The polynomials o} (1) of degree j — i are defined in (4.4). By Theorem

2 they define an isomorphism of affine algebraic varieties between the sub-
spaces of all elements of k®" satisfying (R2) for D resp. for D’. Here

D7 = D(T, (go(i))1izns (Xo(i)1i<n, (aij)1<ij<n).
In Corollary 4.4 we show
u(D?, 0" (1) = u(D, )

for all ;o € k®" satisfying (R2).

Our main result is Theorem 5.1, where we compute all Hopf algebra iso-
morphisms between two Hopf algebras (D', i) and u(D, i) of type A,,. The
polynomials 05 play an important role in this theorem. The first essential
steps in the proof of Theorem 5.1 is Theorem 3.1, where we compute the
basis representation of the N-th powers of the “reverse root vectors” in the
usual PBW-basis formed by the root vectors. The second essential step is
Theorem 4.3, where we prove that the images of the N-th powers of the
reverse root vectors in u(D, i) are the elements u) (o7 ().

The authors thank the referee for helpful remarks.

2. Finite Hopf algebras of type A,

2.1. Diagrams of type A,, root vectors, and reverse root vectors

Let n > 2 and (a;j)1<ij<n the Cartan matrix of type A, in the form (1.1).
Let Z[I] be the free abelian group with basis aq, ..., a,. The Weyl group
W of (aj;;) is the subgroup of Aut(Z[I]) generated by the simple reflections
$1,..., 8y defined by s;(c;) = a; —a;jcy for all 1 <4, j < n. The root system
® of (a;;) is defined by ® = U, W («;). It has the basis oy, ..., a,, and the
positive roots with respect to this basis are the elements

j—1
aij:Zal,1§i<j§n+1.

=1

Let wg be the longest element in W. We choose the reduced representation

wo = 8152"'Sn8182"'SnflslsZ"'8n72'"Sl
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n(n+1) . . .
—5— The corresponding convex ordering of the positive

of wy of length p =
roots
Br=8i - si_ (ag), 1 <1 <p,

is the lexicographic ordering, that is,
Qg <oz < -0 < Qppp1 < Q23 < O0gpq1 <o < Opptl-
Let I" be a finite abelian group,

D =D(I, (gi)1<i<n, (Xi)1<i<n, (@i5)1<i.j<n)

a Cartan datum and define ¢;; = x;(g:),1 < 4,5 < n. Then the Cartan
condition g;;q;; = ¢, 1 < i,j < n, is equivalent to the following: There is
a root of unity ¢ of order N > 1 in k such that (1.2) and (1.3) hold.

For simplicity we assume that N is odd; as we said, this is not essential
and the case when N is even could be treated in the same way.

Let V € LYD with basis z; € VXi,1<i<n;thatisg-z; = Xi(g)x; for
all g € T', and §(z;) = g; ® ;. Then

R=R(D) = k{zy,...,z, | ade(z;)' " (z;) =0, V1 <i,5 < n,i # j)

is a Hopf algebra in the braided category LYD. For z,y € R we define the
braided commutator

[z, yle = 2y — pe(z @ y),
where ¢ denotes the braiding and p the multiplication map of R. As in [,
(6-7) and (6-8)] we define root vectors z;;,1 < i < j < n+1, in R inductively
by

(21) Tii+1 = T4 for all 1 < 1 < n,

(22) Tij = [$i,i+17$i+1,j]c forall 1 <i< j <n-+ 1,] —1 > 1.
Then

(2.3) Tij =[x, i) for all 1 <i <l <j<n+1,

and the root vectors x;; in the lexicographic order define a PBW-basis of R
[1, Theorem (6.13)].

In addition we define inductively reverse root vectors xj,1 < i < j <
n+1,in R by

(24) Tit1: = T4 for all 1 S ) S n,
(25) T = [xj,jflawjfl,i]c forall 1 <i< ji<n+1,5—1>1.
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Again it follows that

(2.6) xj; = [z, xul forall 1 <i<l<j<n+L1l

Thus for all 1 < 7 < j < n+ 1, z;; is any bracketing of the elements
Zi, Tit1, .- .,Tj—1 in this order, and z;; is any bracketing of the reverse se-
quence Tj—1,Tj—2, - .-, Li.

2.2. Root vector parameters and normalization

For any positive root we define elements in the group and characters of the
group by

(2.7) 9ij = HglaXij: Hxl,1§i<j§n+1.

i<l<j i<l<j

A family of root vector parameters for D is a family p = (1tij)1<i<j<n+1 Of
scalars yi;; € k satisfying the following two conditions.

(R1) py=0foralll<i<j<n+1withg) =1
(R2) py;=0foralll <i<j<n+1withx,] #1.

Forall1<i<j<n+1let
[’L]:{(Zlv7Zr)|r2272221<22<<@T:J}

We denote the set of all families 1 = (f1;;)1<i<j<nt1 Of elements in k by k2T
For any 1 € k®" we define for all 1 <i < j < n+ 1 scalars

(28) [L(il, c. 7ir) = Wiyig "t Hip_qiy for all (7:1, Ce ,ir) € [ija

and elements in the group algebra

(2.9) ufi(w) = > (g= DNy, i) (=gl ).
(‘1,...72‘7-)612']'
Thus
UZ(M) = 155 (1 — 95}[
+ > (= DN D plin, i) (1 — g,

1<p<j (il,...,ir EL;p

We will write (1) = ul () when D is fixed. Recall that ¢ = x;(g;)
for all 1 < i < n also depends on D. It is easy to see that the family
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(wij (1) )1<i<j<n+1 of elements in the group algebra can inductively be defined
by

(2.10)  wii(p) = pig (1= gy) + > (g = DN piptus(u), 1 < i < j <m+1.
1<p<jJ

This definition agrees with the inductive definition in [1, Theorem 6.18] when

u is a family of root vector parameters for D. There we defined

N(N-1)

Cl=1—q¢"xulgy) 2 i<k<l<y,

wii(i) = pig (1= gl) + > CL pipuy(p), 1 < i< j <m+1.
1<p<j

Since N is odd it follows from (R2) that CY,u = (¢ — 1) g for all i < k <
[ < j. Thus both definitions do agree.

Lemma 2.1. Let p € k®".

1. Suppose v satisfies (R2). Then

(R3)  wj(u) =0 foralll1 <i<j<n+1 withxﬁ}f%l.

2. Suppose p satisfies (R1) and (R3). Then p satisfies (R2), that is, p
s a family of root vector parameters for D.

PRrooF: This follows by induction on j —1 from (2.10) since for all i < p < j
the inequality x;} # 1 implies that x; # 1 or x,; # 1. O

By [1, Theorem 6.18] the families (u;;(¢t))1<i<j<n+1 are exactly the solu-
tions of the equations

(2.11) Alu) = ui; @1+ gl @uig+ Y (q— 1) Nugpgp) @ uy

1<p<J

in k[I'] @ k[I'] for all 1 <7 < j <n+ 1. This characterization of the w;;(1)
is used to prove the next lemma. It shows how to “normalize” an arbitrary
sequence p so that (R1) is satisfied.

Lemma 2.2. Let p € k2" Then there is exactly one family 1/ € k2
satisfying (R1) such that

(2.12) wij(p) = ug (1) for alll <i<j<n+1.

If u satisfies (R2) then u' is a family of root vector parameters for D.
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PROOF: Let u;; = w;;(p) for all 1 <4 < j <n+ 1. We define the elements
pi; by induction on j —i. Let j =14 + 1. Let

Iul ) Mg+, if gzzYi—i-l ;é 17
jitl = )
’ 0, it gﬁﬂ =1.

Then (2.12) for (i,i + 1) holds since w;;41(p) = piis1 (1 — gi541)-

Let k£ > 1. Suppose we have already defined p;; whenever j —i <k —1
such that (2.12) holds if j —¢ < k—1. Let 1 <i < j <n+ 1 and assume
that j —i = k. If g = 1, then we define yj; = 0. If g # 1, we define
pi; € k to be the unique scalar satisfying

(2.13) wy = py(L—gi) + D (6= DN iy,

1<p<j

The existence of the scalar y;; follows from the argument in the induction
step of the proof of [1, Theorem 6.18].

Thus we have shown the existence of the family p/. Uniqueness follows
easily by induction on j — i from (2.10).

Suppose that p satisfies (R2). Then pu satisfies (R3) by Lemma 2.1 (1),
and p satisfies (R2) by Lemma 2.1 (2). O

For any € k®* we define

where y' is the family constructed from g in Lemma 2.2. We call vP () the
normalization of p.

The elements pf; = v (j1) can be computed inductively. Let 1 < i < j <
n + 1 and assume that g;; # 1. Then we have wu;(u) = u;; (). We replace
w;j(p) and w;;(p') by the right hand sides of (2.9) and collect all terms with
coefficient (1 — g;y). This gives the equality

(2'15) Hij + Z Z (q - 1)N(T71)/L<i17 s 7ir)upj
1<P<J (i1,eers Z'r)elip
g =1
=ug+ Y > a= DN i)y,

1<p<j (il 7777 Z'T)elip
gN:l
ip

where 1/'(iy, ... ,4,) is defined in (2.8) for p/. Thus pj; is a function of u

and p,,b —a < j —i. In particular, we see that 1/5 is a polynomial in the
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variables (y;;) with coefficients in Z[g]. The polynomial 7 depends on D,
more precisely on ¢ = x;(g;) and on the numbers

1 if gN £ 1
Ay = 4 ?gf;g% Y b—a<j—i
0, iftgy=1.
For example assume that g/, # 1. Then
o = if gV #1,
MR e+ i+ 104+ 2),  if gV =1,

2.3. The Hopf algebras u(D, 1) and isomorphisms

As in [1, 2| we define for any family of root vector parameters p for D a
finite-dimensional Hopf algebra by

(216)  u(D,u) = ROD)HAIT/ (@ — uiylp) [ 1< i< j<n+1).

We can extend this definition to all u € k®" satisfying (R2) since by Lemma
2.2 then vP(p) is a family of root vector parameters, and u;;(p) = u;; (vP (1))
forall 1 < i < 7 < n+ 1. By [1, Theorem 6.25] a finite-dimensional
pointed Hopf algebra A is of the form A = u(D, u) if and only if gr(A) =
u(D,0)#k[I'], where gr(A) is the graded Hopf algebra associated to the
coradical filtration of A.

Let p € S,, be a diagram automorphism of (a;;), that is,

aij = p)p() for all 1 <2, 5 < n.
Then p = id or p = o, where
(2.17) oi)=n—i+1foralll <i<n.
As in [2, Theorem 7.5] let
D’ = DT, (¢ )1<i<n, (XF)1<i<n, (@ij)1<ij<n)

be the Cartan datum with ¢f = g,4), X! = X, for all 1 < i < n. Let
VP € LYD with basis 2 € (V?)g“) for all 1 < i < n. Then

FP:R(D’) = R(D), af — x, forall 1 <i<n,

defines an isomorphism of braided Hopf algebras in gyD. Forall 1 <i <
j <n+ 1, we denote the root vector of a;; in R(D”) by x7;.
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Let D' = D(I”, (¢)1<i<n, (X})1<i<n, (@ij)1<i j<n) be another Cartan datum
with finite abelian group IV and the same Cartan matrix of type A, as D.
Let ¢ : IV — T be a group isomorphism, p € S,, a diagram automorphism of
(a;;) and s = (s;)1<i<n a family of non-zero elements in k. Let

(2.18) sy= [ siforalll<i<j<n+1.
i<I<j
Let 7 : R(D)#k[I'] — u(D, u) be the canonical projection.

The triple (@, p, (s;)) is called an isomorphism from (D', i) to (D, p) if
the following conditions are satisfied:

(2.19) ©(91) = o) Xi = Xp(iyp for all 1 <i < n.

(2.20) gp(ug(u/)) = sim(FP(af)Y) forall 1 <i<j<n+1.

Let Isom(D', i), (D, i) be the set of all isomorphisms from (D', 1’) to (D, ).
For Hopf algebras A’, A we denote by Isom(A’, A) the set of all Hopf algebra
isomorphisms from A’ to A. Then

Theorem 2.3. [2, Theorem 7.2] The map
Isom((D', i), (D, 1)) — Isom(u(D’, 1), u(D, u))

given by (¢, p,(s;)) — F, where F(x}) = s;x,0) and F(g") = @(g') for all
1<i<0and g €1, is bijective.

The main result in this paper is the explicit computation of the set
Isom((D', 1'), (D, it)). In Section 3 we first compute the elements F7(x%)N

]
in terms suitable for our purpose. The next lemma shows that these elements

are reverse root vectors. This lemma also allows to derive (2.6) from (2.3).

Lemma 2.4. Foralll1 <i<j<n+1,
Fg(xfj) = Tp—i+2,n—j+2-

Proor: This follows by induction on j — ¢. Suppose that j =4+ 1. Then
vy = and F7(28) = To(i) = Tn_it1 = Tn_it2njt2-
If j —i > 2, then

Fg(xgg) = FU([@’?:I?HJ]C")
= [To@), F7(@7115)]c
= [In—i—l—ly xn_i+17n_j+2]c (by iIldU_CtiOIl)

= Tn—it2,n—j+2 (by (2.5)).
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3. The reverse root vectors

In the next theorem we compute the basis representation of the N-th powers
of the reverse root vectors in the standard PBW-basis.

As in the last section we fix a diagram D of Cartan type A, and let
R=R(D). Forall 1 <i<j<n+1 we define

1<k<l<j

(32) T(’il, ce ,ir) = TiviaTigiz * " Tip_1ir> for all (il, Ce ,ir> c Il]
Note that 7;; = [],;; X3 (9). We write 7,7 instead of 7;; if we want to
emphasize the datum D.

Theorem 3.1. Assume that 1 < i < j <n+1. For all (iy,...,i,) € I;;
define

t(ib s 7ir‘) = (_1)j*i*7“+1(q - 1)N(T72)T(i17 s 77;7“)777—”7'
Then

(3.3) o = t(iy, ... ,ir)xf\fingis . '%]'Y,m‘

The proof of Theorem 3.1 will be done after Lemma 3.8.

To compute the coefficients ¢(i1, . . ., i,) we first change the notation using
characteristic functions. We can assume that j —2 > ¢ since z;41,; = x;. For
natural numbers k <[ let [k,{] ={k,k+1,...,1}.

Let E;; be the set of all functions e : [i, j — 2] — N with values in {0, 1}.
We consider the bijection

Q: Iij — Ez‘j
given for all (iy,...,4,) € I; and | € [i,5 — 2] by

1, ifle{in—1,... i — 1},

0, otherwise.

Q@la?%‘)(l) = {
For any e € E;; define
le] =#{l|i<1<j—2e() =0}
If e =Q(iy, ... %) then
(3.4) le|l=j—i—r+1

The constant function in E;; with value 1 resp. 0 will be denoted by (1)
resp. (0). Thus (1) = Q(i,i+ 1,...,7) and (0) = Q(4, j).
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For e, f € E;; we write e < fif forall i <[ < j—2/e(l) = 0 implies
f{) =0.
Lemma 3.2. Let 1 <i<j<n+1,j—1>2 and f € E;;,(1) # f. Then

(35) > (-pk=o,

e€lb;j,e<f

(3.6) | > (-1 =0

PRrROOF: Since f # (1) we can choose an index [ with f([) = 0. Then
{e € E;; | e < f} is the disjoint union of elements e with e(l) = 0 and with
e(l) =1, and (3.5) is obvious. To prove (3.6) we consider the case of (3.5)
with f = (0). Then ZeeEij(—l)k| =0, and (3.6) follows from the bijection
Q2 and (3.4). O

For all e = Q(iy,...,i,) € Ej; let

- Nle N-1
Te = (¢ = DY (i Tigsy -+ Ti i) 2
N+1
_ le] .—1 N(j—i—1)_ "2
te = (_1> Te (q - 1) Tij )
N_ ,N N N
Te = TijigTigiz " Li,_yi,-

Note that t. = t(iq,...,4,) if e = Q(i1,...,4,). This follows from the defini-
tions using (3.4). Hence (3.3) in Theorem 3.1 can be restated as

(3.7) l‘é\; = Z tox.
6€E¢j

The idea of the proof of Theorem 3.1 is to project R onto skew-polynomial
rings ., one for each e € E;;. Before we begin the proof we establish some
technical results on these projections.

Definition 3.3. For any e € E;;, let R, be the algebra generated by x;,
Tit1, - -, Tj—1 with relations

(3.8) L1141 — QT =0, ife(l) =1, <1 < j -2,
(39) L4121 — 141,101 X141 = 0, if e(l) = O,Z S [ S j - 2,
(310) Ikl’l—qkll‘ll’k:o, if 4 S k?,l S]—l,“{?—” 22

Lemma 3.4. For any f € E;;, the natural projection

z, fi<li<j—1,

. 1 <1 <n,
0, otherwise ,

7TfZR—>Rf,7Tf(ZL‘l) :{
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1s a well-defined algebra map, and for all i <u < v < j,v —u > 2,

(3.11) Tr(xu) =0, if f(I) =1 for someu <l <l+2<w,
(3.12) Tf(zp) =0, if f(I) =0 for some u <l <142 <w.

PrOOF: The Serre relations can be reformulated according to the following
identities

(3.13) —qrr10ade (1) (2111) = w2, Tle — Qo [T, 2 e,

3.14) —quirad.(v1)? (21) = 22, e — o, T e,

in the free algebra k(xi,...,z,) for all 1 <[ < n — 1. Hence both Serre
relations ad.(z;)?(2;11) = 0 and ad.(x;41)*(2;) = 0 hold in Ry for all i <1 <
j — 1, since [z, 2141]. = 0 by (3.8) if f(I) =1, and [z;41, 7). = 0 by (3.9) if
f(l) = 0. Thus 7y is well-defined.

To prove (3.11) note that by (2.3)

[Tty Trgs2]es fu<l<l+2=nv,
Ty = .
[Tut, (T2, Tivowlee, Hu<li<l+2<uw,

and that m¢(x;;12) = 0 by definition of 7;. In the same way (3.12) follows
from (2.6). O

We note the following obvious rule in skew polynomial rings.
Lemma 3.5. Let zq,...,x,, be elements in an algebra such that
Ty = puxrx; for all k <,

where py € k for all k < 1. Then for any natural number N,

N(N-1)

(21 )Y = lekiz NEERT A
k<l
OJ
Lemma 3.6. Let f € Ej; andt < k <1 < j with k <1 —2. Suppose that
f(Ey=f(k+1)=---=f(1—-2)=0. Then
No1
Wf(xﬁ) =(q— 1)N(lik71)7'k12 xivx]kvﬂ SRR AT
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Proor: We first prove by induction on [ — k that

(3.15) Wf($k0 22(1 —>q_1y_k_1$k$k+1"'lq_y
Suppose that [ = k 4+ 2. Then
T(Thp42) = ThThs1 — Qo 1Tk+1Tk

= TpTh1 — Qo k1 Qh+1,kThTht1 (by (3.9) and f(k) = 0)
= (1= ¢ " apzrn (by (1.3)).

This proves (3.15) for | — k = 2.
For the induction step let [ — k& > 2. We obtain by induction

7Tf($1cz) = [$k,$k+1,z]0
= [p, (1 —¢7")'"

=(1- q71)sz72<xkxk+1 R A

-2
T+1Tk42 '335—1]c

— Qkk+19kk+2 " " Gk 1-1Tk4+1Tk42 " ° 'xz—ﬂk)'

Since Ty 1Tgqo - Tj_ 1Tk = Qi—1kq1—2k * Qe 1,k TTt1 " T in Rf by
f(k) =0, (3.9) and (3.10), and

-1
Qi k+19k k+2 * * * Qk1-191—-1,k91—-2,k * * " Gk+1,k = 4

by (1.3), equation (3.15) for k, [ follows.

Since f(k) = f(k+1)=--- = f(l—2) =0, (3.9) and (3.10) imply by
Lemma 3.5 that
N(N-1)
(TpTpgr -+ xlfl)N = H Qup’ kaxl]cVH T xlj\il'
k<p<v<l

~—

Hence Lemma 3.6 follows from (3.15) by taking N-th powers. Note that

(1—q¢HY¥ = (¢g— 1)V since ¢V = 1.

O

Lemma 3.7. Lete, f € E;j. Then

Ny — {Tevaxﬁl-uxév_l, ife < f,

0, otherwise.
PROOF: Let e = Q(iy,...,4,). Suppose that e £ f, that is f(I) = 1 and
e(l) =0 for some i <1< j—2 Thenl+1¢ {iy,...,i.}, since e(l) = 0.
Hence there is an index s with iy < [ < [+ 2 < 4. Since f(I) = 1, it
follows by (3.11) that (2, ,,,,) =0, and thus 7z (z)) = 0.
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Now assume e < f. Since 7 is an algebra map, it is enough to show for
all 1 < s < r that

o N1
(316)  mplap,,,) = (¢ D)V el el

Note that by (3.4) 37 j(is41 —is—1)=j—i—7r+1=|el.

s=1
If is + 1 =4isqq, then z;_; ., = x;, and (3.16) is obvious.

If is < ig11 —2, then e(l) = 0 for all iy, <[ < ig 1 — 2 by definition of the
function Q. Hence f(I) =0 for all iy <[ <ig — 2 since e < f, and (3.16)
follows from Lemma 3.6. [J

Lemma 3.8.
71'(1)(1‘%) = t(l)vaxﬁl . xév_l

ProoOF: We first prove by induction on 5 — ¢ that
(3.17) my(wj0) = (g =177 ( H QZk> TiTig1 e Tjo1.
i<k<l<j
Suppose that 7 =i+ 2. Then
(318) Lit1T; = q;iilxixiﬂ in R(l)
Hence
7T(1)<x1'+2,i) = Tip1T; — Git1,i0iTi41
= (qz_11+1 — Qit1,i) TiTig1
= (q = 1)Giy1,i77441 (since gi41¢i41,, = ¢~ by (1.3)).
For the induction step let j —¢ > 2. Then by induction
Ty (i) = [Tj-1, 21l

= [:z:j_l, (q— 1)j_i_2< H Cﬂk) TiZit1 " '$j—2]c
i<k<l<j—1

=(q— 1)]'72'72( H QZk> (Tjo 1T -+ Tjp
i<k<l<j—1

— Q111 Qo1 j-2TiTig1 t TjoTj 1),

Since in R(l)

_ -1
(3.19) Tj1Tj-2 = Gj_gj 1Tj-2Tj-1

= Gj-1,j—29Tj-2Tj-1,
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and hence

Lj—1TiTit1 -+ Tj—2 = 5-1455—1,i4+1 " §5j—1,j—2qTiTit1 " Lj—1,

it follows that

j—2
Ty (i) = (g — 1)777? H Qik H%’—Lk(q — i - w50

1<k<l<j—1

j—i—1
=(¢—1) I ez
i<k<l<j

This finishes the proof of (3.17).
By (3.8), (3.10) and Lemma 3.5

N(N 1)
N NO=D (-1 N_N N
(i1 xj1)" = ¢ =iy | | Qi Li Tigqt  Tjq-

i<k<l<j

Hence Lemma 3.8 follows from (3.17) by taking N-th powers. Note that
N(N 1)

q = 1 since N is odd by assumption. [

We now prove Theorem 3.1.

PROOF: Since the root vectors z;; in the lexicographic order define a PBW-
basis of R, there are uniquely determined coefficients t. € k,e € E;;, with

(3.20) vy =t

eeEij

cf. [2, Th. 2.6 (2)]- and compare with [1, Lemma 6.9]. By (3.7) we have to
show that t, =t for all e € Ei;.

To prove that ?(1) = t(1), we apply (1) to both sides of (3.20). For all
(1) # e € E;; we see from Lemma 3.7 that (1 )(xN) = 0, since e £ (1)
Hence m(1)(3 . cp,, teal) = tyaNal, - 2, and £ = t) by Lemma 3.8.

Let (1) # f € Ej;. Thenf()—Oforsomez<l<]—2and7rf(xﬂ)—0
by (3.12). Hence applying m; to both sides of (3.20) and using Lemma 3.7

we obtain 0 = Zegt Tl - xﬁv 1, hence
(3.21) > tere=0.

e<f

Note that by definition

tr = (—1)|f‘7f_1t(1) for all f € E;;.
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To finish the proof of the theorem we therefore show by induction on |f|
that
(3.22) tiry = (=1)Vltgy for all f € Ej;.

Suppose that |f| = 0. Then f = (1). Since tn) = t) and 74y = 1, (3.22)
follows for f = (1).

For the induction step we note that |e| < |f| for all e < f,e # f. Hence
we get by induction from (3.21) for all f # (1)

(3.23) ’tvaf = — Z teTe = — Z (_1)|e‘t(1)'
e<fe#f e<fe#f

By (3.5) Yo ;(=1)FFl = 0 for f # (1), and (3.22) follows from (3.23). O
By the same proof and (3.15), (3.17) but without taking N-th powers we
get the basis representation of x;;.

Theorem 3.9. Assume that 1 <i < j<n+1. Then
Tji = (—Q)j_i_l( 11 qlk> o =) P m
i<k<l<j (415e-sir ) EL5

O

4. The action of the diagram automorphism on root
vector parameters

As in Section 2 let

D =D(T, (gi)1<i<n, (Xi)1<i<n, (@i5)1<i.j<n)

be a datum with finite abelian group I' and Cartan matrix (1.1) of Type A,,.
Recall that o denotes the non-trivial diagram automorphism of (a;;) given
by (2.17). In this section we will construct for each 1 € k*" satisfying (R2)
a family 0P () € k*" satisfying (R2) such that the isomorphism

Fo44id : R(D°)#k[T] — R(D)#k[T)

induces an isomorphism u(D?, 0P (1)) — u(D, ). We begin with a technical
lemma to simplify the constants 7(iy,...,%,) in Theorem 3.1 when they
appear as factors of certain root vector parameters.

Lemma 4.1. Let 1 < 1< j <n+ 1,([1,...7lm) € [ij7<k17---7k7‘) € [1m-
Let o be a family of root vector parameters for D. Then

,U(ll, N ,lm)Ti]’ = ,u(ll, Ce >lm)7—(lklalk27 Ce 7lkr)-



ISOMORPHISM CLASSES OF TYPE A4, 17

PROOF: The lemma is trivial if one of the factors ju,;,,, of u(ly, ... 1y) is
zero. Assume that py,, , # 0 for all 1 < k < m. Then (xi,,,)" =1 for all
1 <k <m. In particular (Xlkllks>N =1 for all 2 < s < r. Therefore

Tij = H Oxa)™ (a0)

i<l<j

= H (Xlkll)N<gl) H (szlz)N(gz)"' H (szll)(gz)
lk1<l<lk2 lk2§l<lk3 lkr_1Sl<lkT

= Tty Ty e = T(lkas Uy -+ I ),

since (Xlkll)N = (Xlkllks)N(Xlksl)N = (xg, )Y forall 2 < s <randl, <I. O

We also need the following identity in group algebras.

Lemma 4.2. Let G be a group, m > 2 and hg elements in G for all 1 <
s<t<m. Assume

hyshssi1 = hysi1 forall1 <r <2,1<s<m.

Then
Z <_1)T<]‘ - hkr—lk'r)
(kl ..... k‘r)ellm
= ) (=)= hgperr) o (L= Py k1)
(k‘l ..... kr)ehm
PROOF: Let
Sm = Z (_1)7"(1 - hk1,k1+1) T (1 - hkr—17kr—l+1)'

(k1yekr)Elm

The Lemma is true for m = 2. We show by induction on m > 2 that
(4.1) Sm = hom — hyp if m > 2.
This holds for m = 3 since

S3 = —(1—=hia)(1 — hoz) + 1 — h1p = (1 — h12)hog = hoz — hy3.

The induction step follows from

Smir = > (U= hggan) - (U= hiy 1)

(k1o kr)EIL my1
k-—_1=m

+ D ()= Argprr) - (U= Ty 1)

— _Sm(l - hm,m—l—l) + Sm

= Smhm,erl .
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On the other hand if m > 2 then

> (=)A= hyn,)
(k‘l,...,kr)eflm
=l—hmt Y > U= hy)

1<p<m (kl,...,kr)Gllm
r—1=PpP

k
SR DD SRSl
1<p<m (ki,....kr)ELp
=1—him — (1 — hay) by (3.6)
= h2m - h‘lm'

O
We introduce the notation

Zzn—i+2f0ralllgi§n+1
for the non-trivial diagram automorphism of A, ;. Note that the map
(4.2) L= Iy, (in, i) = (i, i),
is bijective for all 1 <17 < j <n+ 1. Recall that

D7 = D(I, (97 )1<i<ns (X] )1<i<n, (@ij)1<ij<n),

where g7 = go(i), X{ = Xo@) for all 1 <4 < n. Then

(4.3) gfj:Hgf’:gﬁ,foralllgi<j§n+1,
i<I<j

since ¢7; = 979711+ 95-1 = Yn—i+19n—i * ** Gn—j+2 = gj;- For all p € k2" and
all 1 <7< j <n+1 we define

(44 R = Y (= DY (),
(ila---yir)elij

D(M) = (Jz‘?(ﬂ))lﬁi<j§n+l-

g

Here Ty = % and ¢ depend on D, or more precisely on the braiding
matrix (g;;) of D. Note that ¢ = x;(¢;) = x7(¢7) for all 1 <i <n.

We will see in the next theorem that o” defines an isomorphism of affine
algebraic varieties between the subspaces of all elements of k%" satisfying
(R2) for D resp. for D7.

By abuse of notation we will denote the images of the reverse root vectors
in the quotient Hopf algebras u(D, i) again by zj;.
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Theorem 4.3. Let i € k®' satisfying (R2) for D. Then
1wl (0P (p) = (75)N forall1 <i<j<n+1.
2. The family oP(u) satisfies (R2) for D° and o (aP () = p.

PrROOF: (1) Let 1 <i<j <n+ 1. We write

=P (p).

We first compute u) (1'). By (2.9) and (4.3),

ul (W)= Y (= DN, i) (= (g7 )Y,

By (4.4) we can write for all 1 <i <4, 1 <4, <j

[y, g, = (=1 e — Z (g —D)NEDpe 1.
(GRS Us)€Liy_y i
Hence we obtain
UEG(/L,) _ Z (q_ 1)N(T—2)(_1)j—i+1"—17_({;"”’7’;;)

(4.5) X ( (¢ = DN (i, B)

On the other hand by Theorem 3.1

(ZL‘Z;)N = Z t(ir, Ce ,il)uﬁ 1:1 cee uz~2 i

19
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By (2.9) and (4.2) we have for all 1 <i <4, 1 <4y <

u';t it 1 Z (C] - 1)N(St_2)ﬂ(l§t7 s JD(l - (glé ZE)N)

(lﬁr--»lét)eht,l‘,it

Again we get a large sum of products as before:

CHAE D DI N

(i1,eesir) €D

(4.6) x ST (a—NEIpu, . R)

(l%,...,l§2)€hli2

<[ (@-)VeDua,. )

(Ul VEL, i
X (1 — (93 f;)N> (1 - (ggg)N> :

The point of the proof is to change the order of the summation indices.
We have to sum over all sequences

(lf,...,li,...,l{,...,l;r) el
with If = iy,02, =iy =13,...,l; = i,, where each sequence has
m=Sy+ -+ 8 —1r+2
elements. Equivalently we can start with an arbitrary sequence
(L, ..., L) € 1,
then take all subsequences (lg,, ..., ), (ki,...,k.) € I m, of

(L, ..., 1y) and define (i1, ... i) € I; by i, = I, for all p,
1 < p <r. Thus the right hand side of (4.5) becomes

wn Y Y g

(I1,enlm)€ELj (k1yeskr)EDIm

il )Tl By ) (= (g ™),
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and the right hand side of (4.6) becomes

(48 > Yo a= DNl W by D)

)N)"'(l_(gz,;;llE)N>‘

Both expressions (4.7) and (4.8) can be simplified. By Lemma 4.1 we can
write in (4.7)

s TP s by s i) = il )55

Similarly by Lemma 4.1 and since N is odd we have in (4.8)

ﬂ(le te Jz)t(zl;:a lkr—l? s :ZI;I)

~ ~ o —~ —~ _1 N+t
= Ly - ) (=1 g = DN D (- z,ﬁ)—¥rﬁ2
~ ~ o _N—-1 N+1
= (i, L) (=1 (g = DV 2
_ M(l;z, o 721)(_1)]'47#1((] _ 1>N(r72)7_}}

After this simplification we finally obtain

(4.9) ufy (W) = (=17 s Y (0= DY Pl D)

(410) ()" = (=) Y (@ =DV Pl D)

(I1,eslm) €L

Z (=1)"(1 - <glkr_1+1 lk:l)N) (1= (911511 [I:l)N)a

and (1) follows from Lemma 4.2 with

hst:(glzfs)Nforalllgs<t§m

and for each sequence (ly,...,1y).
(2) To prove that ' satisfies (R2) for D7 let x;; # 1. Then x57 # 1.
Hence for all (i1, ...,4,) € I;; we have X; =, # 1 for some 1 < s <r. Thus

,U(ZNT,,Z:) =0, and u;j =0 by (4.4).
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The proof of the equality 0" (6P (u)) = p is similar to the proof of (1).
Let 1 <i < j <n+ 1. By definition

o5 (6P(w) =77 (=17 Y (e = DN, ).

ji
Forall1 < <141 <1 < j we have

IU’IN = <_1)itiit_l+17—it71h Z (q - 1)N(St72)/ﬁ<liv BRI lf%)

it Tt—1
t
(ll ..... lgt)elit_l’it

DCF
ij

o (P() =75 Y (a=DY" Pl ) Y (L)

(l1 ,,,,, lm)EIi]' (kl ..... kr)eflm
= T%OTZ‘]'[I,Z‘]‘ (by (36))

As before for u;; (1) we now obtain

This proves the claim since

= I 6@ = TI Gualge)™= T x"(9)

G<i<k<i 1<k<I<j i<k<l<j
hence

= ] e = [ xelg)¥™ =1
i<k<l<j 1<k<l<j

0
Corollary 4.4. Let pn € k*" satisfying (R2). Then the map
u(D?, 0" () — u(D, p)

gwen by x7 — To4),9 — g,1 <@ < n,g € L', is an isomorphism of Hopf
algebras.

PrROOF: Let s; = 1 for all 1 < ¢ < n. Then the triple (idr, o, (s;)) is an
isomorphism from (D?,0P(u)) to (D, 1) by Theorem 4.3 and Lemma 2.4.
Hence the claim follows from Theorem 2.3. [J
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5. Hopf algebra isomorphisms

In this section let

D =D(I', (g:)1<i<n, (Xi)1<i<n, (@i)1<i5<n);
D' =D(I", (9;)1<in, (Xi)1<i<n, (@i)1<ij<n)
be data with finite abelian groups I' and I and the same Cartan matrix (1.1)
of Type A,. As before ¢ denotes the non-trivial diagram automorphism of
(a;;) given by (2.17).
For s = (5;)1<i<n € k™ and p € k®" we define

sV = (s )1<i<n
$ = (Sijphij)1<i<j<n+1-

Recall that

Sij = Hslfora111§i<j§n+1.

i<i<j

Then

(5.1) wij(s - p) = sjju(p) forall 1 <i<j<n+1
since s;; = Sy +* - Si,_yi, for all (i1,...,14,) € L;;.

An isomorphism of data of Cartan type from D’ to D is a group isomor-
phism ¢ : IV — T satisfying

(5.2) o(g)) = gi, X, = yip for all 1 < i < n.

We write ¢ : D' = D if ¢ is an isomorphism from D’ to D.
Note that (5.2) implies for all 1 <i4,j <n+ 1 that
Xj(g) = x;(gi), forall 1 <i,5 <n+1,
©(gi;) = gij forall 1 <i < j <n+1.

Hence for all i/ € k®"

(5.3) gp(ug(u')) =up() foralll<i<j<n+1.

Let k% = k \ {0} denote the multiplicative group of k. In part (b) of (II)
below, recall the definition of v” in (2.14).
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Theorem 5.1. Let p and i’ be families of root vector parameters for D and
D'. Then the Hopf algebra isomorphisms w(D', 1') — u(D, n) are given by

(I) 2 sy, g— @(g), 1 <i<n,gel’ where
(a) ¢: D' = D, and
(b) s = (s;) € (K*)" such that ' = s~ - pu,

(b) s = (s;) € ()" such that ' = s - vP" (aP(p)).

ProOOF: By Theorem 2.3 the isomorphisms u(D’, i) — u(D, ) are given
by z; = 8i%,6),9 — ¢(g),1 < i < n,g € I, where ¢ : I — T' is an
isomorphism of groups, p =1id or p =0, and s = (s;) € (k)" such that

(5.4) P(95) = 90> Xi = Xptop for all 1 < i < n.
24 N N . )

(5.5) o(ug; (1) = siym(FP(af;)") forall 1 <i < j <n+ 1,
We have to show that (5.4) and (5.5) are equivalent to (I)(a) and (b) if
p =1id, and to (II)(a) and (b) if p = 0.

By definition (5.4) coincides with (I)(a) if p = id and with (II)(a) if
p=o.

Let p = id and assume (I)(a). Then the left hand side of (5.5) is
cp(ug(u’)) = ul (i) by (5.3). For the right hand side of (5.5) we obtain

sim(F(xf)") = sijuii(n)

=uB(s" ) (by (5.1))

Hence (I)(b) and (5.5) are equivalent by the uniqueness in Lemma 2.2.
Let p = o and assume (II)(a). Let 1 <i < j <n+ 1. Again it follows

from (5.3) applied to D’ = D7 that gp(ug(,u’)) = up (). We have shown
in Lemma 2.4 and Theorem 4.3 that

m(F7(2)™) = uf} (07 ().
Hence

sV (F7(@f)) = s¥ul’ (o ()
u [oa
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Again it follows that (II)(b) and (5.5) are equivalent. [J

We know from Theorem 4.3 that vP(u) satisfies (R2) for D°. If we as-
sume (II)(a), then P (u) also satisfies (R2) for D’. Hence the normalization
vP7 (0P (1)) is a family of root vector parameters for D and D’. In general
oP(u) is not a family of root vector parameters for D° since (R1) is not
necessarily satisfied, and we have to pass to the normalization.

For example

0-?3(,“) = _Tn—l,n+1(ﬂn—1,n+1 + (q - 1)Mn—1,nﬂn,n+1);

and if (97,3)" = g} 1,11 = 1, then pin_1 541 = 0, DUt fin_1 nfinns1 can be

non-zero if g~ | # 1,9 # 1 and xY , = 1,xYY = 1. As a realization of this
situation take n = 2 and let I' & Z/(N?) x Z/(N) with generators g of order

N? and h of order N. Let ¢ € k be a root of 1 of order N and g = (2. Define
g1, g2 and characters y1, x2 by

g1 = gh, g2 = 971h7X1(9) =Cxalh) =Cxelg) = C727X2(h) =1
Then x1(g91) = ¢ = x2(92), x1(92)x2(91) = ¢!, and
g =gV £ 1LY =gV A1V =x =1, and g% = gV gy = 1.

Note that (R1) is trivially satisfied if g;j # 1 forall 1 <4 <j <n+ 1.
The next corollary follows immediately from Theorem 5.1.

Corollary 5.2. Let u, i’ be families of root vector parameters for D. Then
the following are equivalent:

1. u(D, 1) = u(D, p).
2. There is a family s € (k*)™ such that

;L sNp, if D2 D°,
sV oor sV -vP (0P (), if DXDC.

O

Corollary 5.3. Suppose there are 1 < 1 < j < n+1,7 —i > 2, such
that gf}] # 1 and gV # 1,xN =1 for all i <1 < j. Then the number of
isomorphism classes of Hopf algebras of the form u(D, p) is infinite.

PrOOF: By our assumption on D we can consider families of root vector
parameters p, ' with g1 = iy, = 1for all i <1 < j, and with arbitrary
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elements 5, pi; € k. If w(D', p') = u(D, p), then by Corollary 5.2 for all
1 <1 < 7 we have

W = S7 HL+1s if D% D,
L S) 41 OF S} flo) o()+1, if D= D7,

hence s = 1. Thus sf}f = 1, and again by Corollary 5.2 it follows that

;o ,uij, lf D % DG,
P97 g or VB (6P (), i D =D,

Therefore, we obtain infinitely many isomorphism classes of Hopf algebras
u(D,p). O

Theorem 5.1 gives the following description of the group of all Hopf
algebra automorphisms of u(D, p).

Corollary 5.4. Let p be a family of root vector parameters for D. Then
Hopfaut(u(D, u)) is isomorphic to the subgroup of Aut(T") x (k™)™ consisting
of all pairs (p,s), € Aut(l'),s € (k*)", where

go:DiD,u:3N~u, or

p:D =D p=s" v (o ().
U

We note the following special case.

Corollary 5.5. Let p be a family of root vector parameters for D. Then the
group of all Hopf algebra automorphisms of u(D, p) is finite if p; 41 # 0 for
alll <1 <n. O
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