On finite-dimensional pointed Hopf algebras over simple groups

> Nicolás Andruskiewitsch

Universidad de Córdoba, Argentina

VII workshop in Lie theory and its appplications
Córdoba, November 30th, 2009.

Joint work with

Fernando Fantino, Matías Graña and Leandro Vendramin

Plan of the talk.

I. The problem.

II. Main results.
III. The schemes of the proofs.

References:

Finite-dimensional pointed Hopf algebras with alternating groups are trivial. (N. A., F. Fantino, M. Graña, L. Vendramin). arXiv:00812.4628v4. 26 pages. Submitted.

Pointed Hopf algebras over the sporadic simple groups. (N. A., F. Fantino, M. Graña, L. Vendramin). In preparation.
I. The problem. \mathbb{C} alg. closed field char. 0

Definition. (H, m, Δ), Hopf algebra:

- (H, m) alg. with unit 1 ,
- $\Delta: H \rightarrow H \otimes H$ morphism of algebras (coproduct),
- Δ coasociative with counit ε,
- $\exists \mathcal{S}: H \rightarrow H$ "antipode" s. t.

$$
m(\mathcal{S} \otimes \mathrm{id}) \Delta=\mathrm{id}_{H}=m(\mathrm{id} \otimes \mathcal{S}) \Delta
$$

Examples.

- Γ group, $\mathbb{C} \Gamma=$ group algebra $=$ vector space with basis e_{g} $(g \in \Gamma)$ and product $e_{g} e_{h}=e_{g h}$.

It becames a Hopf algebra with coproduct $\Delta\left(e_{g}\right)=e_{g} \otimes e_{g}$ and antipode $\mathcal{S}\left(e_{g}\right)=e_{g}^{-1}$

- \mathfrak{g} Lie algebra, $U(\mathfrak{g})=$ universal algebra enveloping of \mathfrak{g}

It becames a Hopf algebra with coproduct $\Delta(x)=x \otimes 1+1 \otimes x$ and antipode $\mathcal{S}(x)=-x, x \in \mathfrak{g}$

Suppose now that the group Γ acts on a Lie algebra \mathfrak{g} by Lie algebra automorphisms.

Let $U(\mathfrak{g}) \# \mathbb{C} \Gamma=U(\mathfrak{g}) \otimes \mathbb{C} \Gamma$ as vector space, with tensor product comultiplication and semi-direct product multiplication. This is a Hopf algebra.

Theorem. (Cartier, Kostant, Milnor-Moore).

If H is a cocommutative Hopf algebra, $H \simeq U(\mathfrak{g}) \# \mathbb{C} \Gamma$.

Definition. A Hopf algebra H is pointed if any irreducible comodule ($=$ representation of the dual Hopf algebra) has dimension 1.

For any Hopf algebra H,

$$
G(H)=\{g \in H-0: \Delta(g)=g \otimes g\}
$$

is a group. Then 'pointed' means $\mathbb{C} G(H) \simeq$ the coradical of H.

- $H=U(\mathfrak{g}) \# \mathbb{C} \Gamma$ is pointed with $G(H) \simeq \Gamma$; in particular, the group algebra $\mathbb{C} \Gamma$ is pointed;
- the quantum groups of Drinfeld-Jimbo and the finite-dimensional variations of Lusztig are pointed.
\mathfrak{g} simple Lie algebra, Cartan matrix $\left(a_{i j}\right)_{1 \leq i, j \leq \theta}$;
q root of 1 , order N
finite quantum group $u_{q}(\mathfrak{g})=\mathbb{C}\left\langle k_{1}, \ldots, k_{\theta}, e_{1}, \ldots, e_{\theta}, f_{1}, \ldots, f_{\theta}\right\rangle$ relations:

$$
\begin{aligned}
& k_{i} k_{j}=k_{j} k_{i}, \quad k_{i}^{N}=1, \\
& k_{i} e_{j} k_{i}^{-1}=q^{d_{i} a_{i j}} e_{j}, \quad k_{i} f_{j} k_{i}^{-1}=q^{-d_{i} a_{i j}} f_{j}, \\
& \operatorname{ad}_{c}\left(e_{i}\right)^{1-a_{i j}}\left(e_{j}\right)=0, \quad i \neq j \\
& \operatorname{ad}_{c}\left(f_{i}\right)^{1-a_{i j}}\left(f_{j}\right)=0, \quad i \neq j \\
& e_{i} f_{j}-q^{-d_{i} a_{i j} f_{j} e_{i}=\delta_{i j}\left(1-k_{i}^{2}\right), i<j, i \nsim j} \\
& e_{\alpha}^{N}=0, \quad f_{\alpha}^{N}=0, \\
& \Delta(g)=g \otimes g, \Delta\left(x_{i}\right)=g_{i} \otimes x_{i}+x_{i} \otimes 1
\end{aligned}
$$

$u_{q}(\mathfrak{g})$ is a pointed Hopf algebra, dim. $N^{\operatorname{dim} \mathfrak{g}}$. Here $\operatorname{ad}_{c}\left(x_{i}\right)\left(x_{j}\right)=$ $x_{i} x_{j}-q_{i j} x_{j} x_{i}$.

An important part of the classification of all finite-dimensional Hopf algebras over \mathbb{C} is the following.

Problem I. Classify all finite-dimensional pointed Hopf algebras.

Approach group-by-group. For a given finite group Γ, classify all fin.-dim. pointed Hopf algebras H such that $G(H) \simeq \Gamma$.

- If Γ is abelian and the prime divisors of Γ are >5, then the classification is known. N. A. and H.-J. Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. Math., to appear.

The outcome is that all are variations of the Lusztig's small quantum groups. For small prime divisors, variations of small quantum supergroups appear.

In this talk we shall consider Γ simple.
A landmark in mathematics is the classification of finite simple groups: any finite simple group is isomorphic to one of

- a cyclic group \mathbb{Z}_{p}, of prime order p;
- an alternating group $\mathbb{A}_{n}, n \geq 5$;
- a finite group of Lie type;
- a sporadic group - there are 27 of them (including the Tits group); the most prominent is the Monster.
II. Main results.

We shall say that a finite group Γ collapses if for any fin.-dim. pointed Hopf algebra H, with $G(H) \simeq \Gamma$, then $H \simeq \mathbb{C} \Gamma$.

Theorem I. If Γ is either

- the alternating group $\mathbb{A}_{n}, n \geq 5$;
- or else a sporadic simple group, different from the Fischer group $F i_{22}$, the Baby Monster B, or the Monster M;
then Γ collapses.

Comments.

The groups $F i_{22}, B$ and M do not admit so far any fin.-dim. pointed Hopf algebra (except the group algebra) but the computations are very hard.

We are working in the same problem for finite groups of Lie type.

The proof lies on reductions to questions on conjugacy classes; then these questions are checked (for sporadic groups) using GAP.

In order to state our other main results, and also to explain these reductions, we need to present the notion of Nichols algebra.

Nichols algebras.

Suppose that the group Γ acts linearly on a vector space V, hence on the free Lie algebra $L(V)$ by Lie algebra automorphisms. Since $U(L(V)) \simeq T(V)$, we have the Hopf algebra $T(V) \# \mathbb{C} \Gamma$.

Variation.

What else is needed to have Hopf algebra $T(V) \# \mathbb{C} \Gamma=T(V) \otimes \mathbb{C} \Gamma$ as vector space, but with semi-direct product comultiplication and semi-direct product multiplication?

Definition. A Yetter-Drinfeld module over Γ is a vector space V provided with

- a linear action of Γ,
- a Γ-grading $V=\oplus_{g \in \Gamma} V_{g}$,
such that $h \cdot V_{g}=V_{h g h^{-1}}$, for all $g, h \in \Gamma$.
Then $T(V) \# \mathbb{C} \Gamma=T(V) \otimes \mathbb{C} \Gamma$ as vector space, but with semidirect product comultiplication and semi-direct product multiplication is a Hopf algebra.

Here $\Delta(v)=v \otimes 1+g \otimes v, g \in \Gamma, v \in V_{g}$.

If V is a Yetter-Drinfeld module over Γ, then $H=T(V) \# \mathbb{C} \Gamma$ is pointed with $G(H) \simeq \Gamma$.

Fact. There exists a homogeneous ideal $\mathcal{J}=\oplus_{n \geq 2} \mathcal{J}^{n}$ of $T(V)$ such that

- the quotient $T(V) \# \mathbb{C} \Gamma / \mathcal{J} \# \mathbb{C} \Gamma$ is a Hopf algebra,
- \mathcal{J} is maximal with respect to this property.

The Nichols algebra is $\mathfrak{B}(V)=T(V) / \mathcal{J}$.
If Γ is finite and $\operatorname{dim} \mathfrak{B}(V)<\infty$, then

$$
T(V) \# \mathbb{C} \Gamma / \mathcal{J} \# \mathbb{C} \Gamma \simeq \mathfrak{B}(V) \# \mathbb{C} \Gamma
$$

is a fin.-dim. pointed Hopf algebra over Γ.

Conversely, if H is a fin.-dim. pointed Hopf algebra over a finite group Γ, then there exists a Yetter-Drinfeld module V canonically attached to $H \mathrm{~s} . \mathrm{t}$. $\operatorname{dim} \mathfrak{B}(V)<\infty$.

Problem II. For a given finite group Γ, classify all YetterDrinfeld modules V s. t. $\operatorname{dim} \mathfrak{B}(V)<\infty$.

Since any Yetter-Drinfeld module is semisimple, the question splits into two cases:
(i) V irreducible,
(ii) V direct sum of (at least 2) irreducibles.

It turns out that irreducible Yetter-Drinfeld modules are parameterized by pairs (\mathcal{O}, ρ), where

- \mathcal{O} a conjugacy class of G,
- ρ an irreducible repr. of the centralizer $C_{G}(\sigma)$ of $\sigma \in \mathcal{O}$ fixed.

If $M(\mathcal{O}, \rho)$ denotes the irreducible Yetter-Drinfeld module corresponding to a pair (\mathcal{O}, ρ) and V is the vector space affording the representation ρ, then $M(\mathcal{O}, \rho) \simeq \operatorname{Ind}_{C_{G}(\sigma)}^{G} \rho$ with the grading given by the identification $\operatorname{Ind}_{C_{G}(\sigma)}^{G} \rho=\mathbb{C} G \otimes_{C_{G}(\sigma)} V \simeq \mathbb{C O} \otimes_{\mathbb{C}} V$.

The Nichols algebra of $M(\mathcal{O}, \rho)$ is denoted $\mathfrak{B}(\mathcal{O}, \rho)$.
Problem II bis. For a given finite group Γ, find all (\mathcal{O}, ρ) s. t. $\operatorname{dim} \mathfrak{B}(\mathcal{O}, \rho)<\infty$.

Warning. Nichols algebras are very difficult to compute; it is not known if the ideal of relations is finitely-generated or not; in all known cases it is, but the degrees of the defining relations can be arbitrarily high.

Theorem II. Let $m \geq 5$. Let $\sigma \in \mathbb{S}_{m}$ be of type ($1^{n_{1}}, 2^{n_{2}}, \ldots, m^{n_{m}}$), \mathcal{O} the conjugacy class of σ; let $\rho \in \widehat{C_{\mathbb{S}_{m}}(\sigma)}$. If $\operatorname{dim} \mathfrak{B}(\mathcal{O}, \rho)<\infty$, then the type of σ and ρ are in the following list:

- $\left(1^{n_{1}}, 2\right), \rho_{1}=\operatorname{sgn}$ or $\epsilon, \rho_{2}=\operatorname{sgn}$.
- $(2,3)$ in $\mathbb{S}_{5}, \rho_{2}=\operatorname{sgn}, \rho_{3}=\overrightarrow{\chi 0}$.
- $\left(2^{3}\right)$ in $\mathbb{S}_{6}, \rho_{2}=\overrightarrow{\chi_{1}} \otimes \epsilon$ or $\overrightarrow{\chi 1} \otimes \operatorname{sgn}$.

Actually, the orbit of type $\left(1^{4}, 2\right)$ in \mathbb{S}_{6} is isomorphic to that of type $\left(2^{3}\right)$, because of the outer automorphism of \mathbb{S}_{6}.

The Nichols algebras corresponding to types ($1^{n_{1}}, 2$), and these representations, were considered by Fomin and Kirillov in relation with the quantum cohomology of the flag variety. They can not be treated by our methods.

Example: $\mathcal{O}=$ transpositions in $G=\mathbb{S}_{n}$,
$s=(12), \rho=\mathrm{sgn}$

\mathbf{n}	rk	Relations	$\operatorname{dim} \mathfrak{B}(V)$	top
3	3	5 relations in degree 2	$12=3.2^{2}$	$4=2^{2}$
4	6	16 relations in degree 2	576	12
5	10	45 relations in degree 2	8294400	40

$\mathbb{S}_{3}, \mathbb{S}_{4}:$ A. Milinski \& H. Schneider, Contemp. Math. 267 (2000), 215-236. S. Fomin \& K. Kirillov, Progr. Math. 172, Birkhauser, (1999), pp. 146-182. \mathbb{S}_{5} : [FK], plus web page of M. Graña. http://mate.dm.uba.ar/~matiasg/ $\mathbb{S}_{n}, n \geq 6$: open!

It is convenient to restate Problem II in terms of racks and cocycles.

For this, recall first that a braided vector space is a pair (V, c), where V is a vector space and $c \in \mathrm{GL}(V \otimes V)$ is a solution of the braid equation:

$$
(c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id})=(\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c)
$$

Any super vector space $V=V_{0} \oplus V_{1}$ is braided: $c(v \otimes w)=(-1)^{|v||w|} w \otimes v$, for $v, w \in V$.

Any Yetter-Drinfeld module V is naturally a braided vector space:

$$
c(v \otimes w)=g \cdot w \otimes v, \quad v \in V_{g},(g \in G), w \in V
$$

If V is a Yetter-Drinfeld module, then the Nichols algebra $\mathfrak{B}(V)$ depends only on the braiding c.

This leads us to the consideration of a class of braided vector spaces where the study of the corresponding Nichols algebras is performed in a unified way.

Definition. A rack is a pair (X, \triangleright) where X is a non-empty set and $\triangleright: X \times X \rightarrow X$ is an operation such that

- the map $\varphi_{x}=x \triangleright _$is invertible for any $x \in X$,
- $x \triangleright(y \triangleright z)=(x \triangleright y) \triangleright(x \triangleright z)$ for all $x, y, z \in X$.

Examples and basic notions.

- A group Γ is a rack with $x \triangleright y=x y x^{-1}, x, y \in \Gamma$. If $X \subset G$ is stable under conjugation by G, that is a union of conjugacy classes, then it is a subrack of G.
- A rack X is abelian iff $x \triangleright y=y, x, y \in \Gamma$.
- A rack X is decomposable iff there exist disjoint subracks $X_{1}, X_{2} \subset X$ s. t. $X_{i} \triangleright X_{j}=X_{j}, 1 \leq i, j \leq 2$ and $X=X_{1} \amalg X_{2}$. Otherwise, X is indecomposable.
- A rack X is simple iff card $X>1$ and for any surjective morphism of racks $\pi: X \rightarrow Y$, either π is a bijection or card $Y=1$.

Cocycles. Let X be a rack, $n \in \mathbb{N}$. A map $q: X \times X \rightarrow \mathrm{GL}(n, \mathbb{C})$ is a principal 2-cocycle of degree n if

$$
q_{x, y \triangleright z} q_{y, z}=q_{x \triangleright y, x \triangleright z} q_{x, z},
$$

for all $x, y, z \in X$.

Here is an equivalent formulation: let $V=\mathbb{C} X \otimes \mathbb{C}^{n}$ and consider the linear isomorphism $c^{q}: V \otimes V \rightarrow V \otimes V$,

$$
c^{q}\left(e_{x} v \otimes e_{y} w\right)=e_{x \triangleright y} q_{x, y}(w) \otimes e_{x} v,
$$

$x \in X, y \in X, v \in \mathbb{C}^{n}, w \in \mathbb{C}^{n}$. Then q is a 2 -cocycle iff c^{q} is a solution of the braid equation.

If this is the case, then the Nichols algebra of $\left(V, c^{q}\right)$ is denoted $\mathfrak{B}(X, q)$.

Define g_{x} by $g_{x}\left(e_{y} w\right)=e_{x \triangleright y} q_{x, y}(w), x \in X, y \in X, v \in \mathbb{C}^{n}$.

Fact. Let X be an indecomposable finite rack and q a 2-cocycle as above. If $\Gamma \subset \mathrm{GL}(V)$ is the subgroup generated by $\left(g_{x}\right)_{x \in X}$, then V is a Yetter-Drinfeld module over Γ. If the image of q generates a finite subgroup, then Γ is finite.

Conversely, if Γ is finite and $V=M(\mathcal{O}, \rho)$ is a Yetter-Drinfeld module over Γ with the rack \mathcal{O} indecomposable, then there exists a principal 2-cocycle q such that V is given as above and the braiding $c \in \operatorname{Aut}(V \otimes V)$ as Y.-D. module coincides with c^{q}.

There is a version of this result for decomposable in terms of non-principal 2-cocycles.

We can now reformulate Problem II in an approach rack-byrack.

Problem III. For a given finite rack X, classify all cocycles q s.
t. $\operatorname{dim} \mathfrak{B}(X, q)<\infty$.

If X is abelian, the classification is known:
I. Heckenberger, Classification of arithmetic root systems, Adv. Math. 220 (2009) 59-124.

We are mainly interested in indecomposable racks.

It is natural to consider the class of finite simple racks; actually, the classification of these is known. In particular,

- Non-trivial conjugacy classes of a finite simple group are simple.
- The conjugacy class \mathcal{O} of $\sigma \in \mathbb{S}_{m}-\mathbb{A}_{m}, m \geq 5$, is simple.

We shall say that a finite simple rack X collapses if for any cocycle $q, \operatorname{dim} \mathfrak{B}(X, q)=\infty$.

Let $\sigma \in \mathbb{S}_{m}$ be of type ($\left.1^{n_{1}}, 2^{n_{2}}, \ldots, m^{n_{m}}\right)$ and let

$$
\mathcal{O}= \begin{cases}(a) \text { the conjugacy class of } \sigma \text { in } \mathbb{S}_{m}, & \text { if } \sigma \notin \mathbb{A}_{m}, \\ (b) \text { the conjugacy class of } \sigma \text { in } \mathbb{A}_{m}, & \text { if } \sigma \in \mathbb{A}_{m}\end{cases}
$$

Theorem III. If the type of σ is not in the list below, then \mathcal{O} collapses.
(a) $(2,3) ;\left(2^{3}\right) ;\left(1^{n}, 2\right)$.
(b) $\left(3^{2}\right) ;\left(2^{2}, 3\right) ;\left(1^{n}, 3\right) ;\left(2^{4}\right) ;\left(1^{2}, 2^{2}\right) ;\left(1,2^{2}\right)$.
(b) (open) ($1, m-1$), if $m-1$ is prime; (m), if m is prime.

Theorem IV. If G is a sporadic simple group and \mathcal{O} is a nontrivial conjugacy class of G NOT listed in the Tables below, then \mathcal{O} collapses.

G	\# Classes	Classes
M_{11}	10	$8 \mathrm{~A}, 8 \mathrm{~B}, 11 \mathrm{~A}, 11 \mathrm{~B}$
M_{12}	15	$11 \mathrm{~A}, 11 \mathrm{~B}$
M_{22}	12	$11 \mathrm{~A}, 11 \mathrm{~B}$
M_{23}	17	$23 \mathrm{~A}, 23 \mathrm{~B}$
M_{24}	26	$23 \mathrm{~A}, 23 \mathrm{~B}$
J_{2}	21	$2 \mathrm{~A}, 3 \mathrm{~A}$
$S u z$	43	3 A
$H S$	24	$11 \mathrm{~A}, 11 \mathrm{~B}$
$M c L$	24	$11 \mathrm{~A}, 11 \mathrm{~B}$
$C o_{3}$	42	$23 \mathrm{~A}, 23 \mathrm{~B}$
$C o_{2}$	60	$2 \mathrm{~A}, 23 \mathrm{~A}, 23 \mathrm{~B}$

G	\# Classes	Classes
$C o_{1}$	101	3A, 23A, 23B
J_{1}	15	15A, 15B, 19A, 19B, 19C
$O^{\prime} N$	30	$31 \mathrm{~A}, 31 \mathrm{~B}$
J_{3}	21	5A, 5B, 19A, 19B
$R u$	36	$29 \mathrm{~A}, 29 \mathrm{~B}$
$H e$	33	all collapse
$F i_{22}$	65	2A, 22A, 22B
$F i_{23}$	98	2A, 23A, 23B
$H N$	54	all collapse
$T h$	48	31A, 31B
T	22	2 A

G, \#	Classes
Ly, 53	33A, 33B, 37A, 37B, 67A, 67B, 67C
$J_{4}, 62$	29A, 37A, 37B, 37C, 43A, 43B, 43C
$F i_{24}^{\prime}, 108$	23A, 23B, 27A, 27B, 27C,
	29A, 29B, 33A, 33B, 39C, 39D
$B, 184$	2A, 2C, 16C, 16D, 32A, 32B, 32C, 32D,
	34A, 46A, 46B, 47A, 47B
M, 194	29A, 32A, 32B, 41A, 46A, 46B, 46C, 46D,
	47A, 47B, 59A, 59B, 68A, 69A, 69B,
	71A, 71B, 87A, 87B, 92A, 92B, 94A, 94B

III. The schemes of the proofs.

A basic property of Nichols algebras says that, if W is a braided subspace of a braided vector space V, then $\mathfrak{B}(W) \hookrightarrow \mathfrak{B}(V)$.

For instance, consider a simple $V=M(\mathcal{O}, \rho)-\operatorname{say} \operatorname{dim} \rho=1$ for simplicity. If X is a proper subrack of \mathcal{O}, then $M(\mathcal{O}, \rho)$ has a braided subspace of the form $W=\left(\mathbb{C} X, c^{q}\right)$, which is clearly not a Yetter-Drinfeld submodule but can be realized as a YetterDrinfeld module over smaller groups, that could be reducible if X is decomposable. If we know that $\operatorname{dim} \mathfrak{B}(X, q)=\infty$, say because we have enough information on one of these smaller groups, then $\operatorname{dim} \mathfrak{B}(\mathcal{O}, \rho)=\infty$ too.

Proofs of Theorems III and IV.

It is based on the following result, a consequence of a Theorem by Heckenberger and Schneider, in turn proved with a technique developed by N. A., Heckenberger and Schneider.

We say that a rack X is of type D if there exists a decomposable subrack $Y=R \amalg S$ of X such that

$$
r \triangleright(s \triangleright(r \triangleright s)) \neq s, \quad \text { for some } r \in R, s \in S
$$

Theorem. If X is a finite rack of type D , then X collapses.

Remark. If $Z \rightarrow X$ is a surjective morphism of finite racks and X is of type D , then Z is of type D , hence it collapses. This justifies the consideration of finite simple racks, in particular of conjugacy classes in finite simple groups.

Proofs of Theorems I and II.

Assume Theorems III and IV.
Consider the remaining $M(\mathcal{O}, \rho)$; look at the abelian subracks of \mathcal{O} and apply Heckenberger's result.

Examples. Say \mathcal{O} real if $x \in \mathcal{O} \Longrightarrow x^{-1} \in \mathcal{O}$. If x is not an involution, then $\left\{x, x^{-1}\right\}$ is an abelian subrack with 2 elements.

Fact. If \mathcal{O} is a real conjugacy class of elements with odd order, then $\operatorname{dim} \mathfrak{B}(\mathcal{O}, \rho)=\infty$.

For instance, all remaining orbits in the case of the Janko group J_{4} are real.

Example: $\quad G=\mathbb{Z}_{n} \rtimes\langle T\rangle, \rho=$ sgn.

$n=\mathbf{r k}$	Relations	$\operatorname{dim} \mathfrak{B}(V)$	top
3	5 relations in degree 2	$12=3.2^{2}$	$4=2^{2}$
5	10 relations in degree 2 1 relation in degree 4	$1280=5.4^{4}$	$16=4^{2}$
7	21 relations in degree 2 1 relation in degree 6	$326592=7.6^{6}$	$36=6^{2}$

A few more examples: M. Graña, J. Algebra 231 (2000), pp. 235-257.
N. A. and M. Graña, Adv. in Math. 178, 177-243 (2003).

Finite simple racks have been classified in [N. A. and M. Graña, Adv. in Math. 178, 177-243 (2003)], see also [Joyce, JPAA]:

- $|X|=p$ a prime, $X \simeq \mathbb{F}_{p}$ a permutation rack: $x \triangleright y=y+1$.
- $|X|=p^{t}, p$ a prime, $t \in \mathbb{N}, X \simeq\left(\mathbb{F}_{p}{ }^{t}, T\right)$ is an affine crossed set where T is the companion matrix of a monic irreducible polynomial of degree t, different from X and $X-1$.
- Otherwise, there exist a non-abelian simple group $L, t \in \mathbb{N}$ and $x \in \operatorname{Aut}\left(L^{t}\right)$, where x acts by $x \cdot\left(l_{1}, \ldots, l_{t}\right)=\left(\theta\left(l_{t}\right), l_{1}, \ldots, l_{t-1}\right)$ for some $\theta \in \operatorname{Aut}(L)$, such that $X=\mathcal{O}_{x}(n)$ is an orbit of the action Δ_{x} of L^{t} on itself; L and t are unique, and x only depends on its conjugacy class in Out $\left(L^{t}\right)$. Here, the action \rightharpoonup_{x} is given by $p \rightharpoonup_{x} n=p n\left(x \cdot p^{-1}\right)$.

