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I. The problem. C alg. closed field char. 0

Definition. (H, m,∆), Hopf algebra:

• (H, m) alg. with unit 1,

• ∆ : H → H⊗H morphism of algebras (coproduct),

• ∆ coasociative with counit ε,

• ∃S : H → H ”antipode” s. t.

m(S⊗ id)∆ = idH = m(id⊗S)∆.
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Examples.

• Γ group, CΓ = group algebra = vector space with basis eg

(g ∈ Γ ) and product egeh = egh.

It becames a Hopf algebra with coproduct ∆(eg) = eg ⊗ eg and
antipode S(eg) = e−1

g

• g Lie algebra, U(g) = universal algebra enveloping of g

It becames a Hopf algebra with coproduct ∆(x) = x⊗1+1⊗ x

and antipode S(x) = −x, x ∈ g
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Suppose now that the group Γ acts on a Lie algebra g by Lie

algebra automorphisms.

Let U(g)#CΓ = U(g)⊗CΓ as vector space, with tensor prod-

uct comultiplication and semi-direct product multiplication.

This is a Hopf algebra.

Theorem. (Cartier, Kostant, Milnor-Moore).

If H is a cocommutative Hopf algebra, H ' U(g)#CΓ .
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Definition. A Hopf algebra H is pointed if any irreducible co-

module (= representation of the dual Hopf algebra) has dimen-

sion 1.

For any Hopf algebra H,

G(H) = {g ∈ H − 0 : ∆(g) = g⊗g}
is a group. Then ‘pointed’ means CG(H) ' the coradical of H.

• H = U(g)#CΓ is pointed with G(H) ' Γ ; in particular, the

group algebra CΓ is pointed;

• the quantum groups of Drinfeld-Jimbo and the finite-dimensio-

nal variations of Lusztig are pointed.
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g simple Lie algebra, Cartan matrix (aij)1≤i,j≤θ;
q root of 1, order N

finite quantum group uq(g) = C〈k1, . . . , kθ, e1, . . . , eθ, f1, . . . , fθ〉
relations:

kikj = kjki, kN
i = 1,

kiejk
−1
i = qdiaijej, kifjk

−1
i = q−diaijfj,

adc(ei)
1−aij(ej) = 0, i 6= j

adc(fi)
1−aij(fj) = 0, i 6= j

eifj − q−diaijfjei = δij(1− k2
i ), i < j, i � j

eN
α = 0, fN

α = 0,

∆(g) = g⊗g,∆(xi) = gi⊗xi + xi⊗1.

uq(g) is a pointed Hopf algebra, dim. Ndim g. Here adc(xi)(xj) =
xixj − qijxjxi.
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An important part of the classification of all finite-dimensional

Hopf algebras over C is the following.

Problem I. Classify all finite-dimensional pointed Hopf algebras.

Approach group-by-group. For a given finite group Γ , classify

all fin.-dim. pointed Hopf algebras H such that G(H) ' Γ .

• If Γ is abelian and the prime divisors of Γ are > 5, then the

classification is known. N. A. and H.-J. Schneider, On the classification

of finite-dimensional pointed Hopf algebras, Ann. Math., to appear.

The outcome is that all are variations of the Lusztig’s small

quantum groups. For small prime divisors, variations of small

quantum supergroups appear.

8



In this talk we shall consider Γ simple.

A landmark in mathematics is the classification of finite simple
groups: any finite simple group is isomorphic to one of

• a cyclic group Zp, of prime order p;

• an alternating group An, n ≥ 5;

• a finite group of Lie type;

• a sporadic group – there are 27 of them (including the Tits
group); the most prominent is the Monster.
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II. Main results.

We shall say that a finite group Γ collapses if for any fin.-dim.

pointed Hopf algebra H, with G(H) ' Γ , then H ' CΓ .

Theorem I. If Γ is either

• the alternating group An, n ≥ 5;

• or else a sporadic simple group, different from the Fischer

group Fi22, the Baby Monster B, or the Monster M ;

then Γ collapses.
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Comments.

The groups Fi22, B and M do not admit so far any fin.-dim.

pointed Hopf algebra (except the group algebra) but the com-

putations are very hard.

We are working in the same problem for finite groups of Lie type.

The proof lies on reductions to questions on conjugacy classes;

then these questions are checked (for sporadic groups) using

GAP.

In order to state our other main results, and also to explain these

reductions, we need to present the notion of Nichols algebra.
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Nichols algebras.

Suppose that the group Γ acts linearly on a vector space V ,

hence on the free Lie algebra L(V ) by Lie algebra automorphisms.

Since U(L(V )) ' T (V ), we have the Hopf algebra T (V )#CΓ .

Variation.

What else is needed to have Hopf algebra T (V )#CΓ = T (V )⊗CΓ

as vector space, but with semi-direct product comultiplication

and semi-direct product multiplication?
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Definition. A Yetter-Drinfeld module over Γ is a vector space

V provided with

• a linear action of Γ ,

• a Γ -grading V = ⊕g∈ΓVg,

such that h · Vg = Vhgh−1, for all g, h ∈ Γ .

Then T (V )#CΓ = T (V )⊗CΓ as vector space, but with semi-

direct product comultiplication and semi-direct product mul-

tiplication is a Hopf algebra.

Here ∆(v) = v⊗1 + g⊗v, g ∈ Γ , v ∈ Vg.
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If V is a Yetter-Drinfeld module over Γ , then H = T (V )#CΓ is

pointed with G(H) ' Γ .

Fact. There exists a homogeneous ideal J = ⊕n≥2J n of T (V )

such that

• the quotient T (V )#CΓ/J#CΓ is a Hopf algebra,

• J is maximal with respect to this property.

The Nichols algebra is B(V ) = T (V )/J .

If Γ is finite and dimB(V ) < ∞, then

T (V )#CΓ/J#CΓ ' B(V )#CΓ

is a fin.-dim. pointed Hopf algebra over Γ .
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Conversely, if H is a fin.-dim. pointed Hopf algebra over a finite

group Γ , then there exists a Yetter-Drinfeld module V canonically

attached to H s. t. dimB(V ) < ∞.

Problem II. For a given finite group Γ , classify all Yetter-

Drinfeld modules V s. t. dimB(V ) < ∞.

Since any Yetter-Drinfeld module is semisimple, the question

splits into two cases:

(i) V irreducible,

(ii) V direct sum of (at least 2) irreducibles.
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It turns out that irreducible Yetter-Drinfeld modules are param-

eterized by pairs (O, ρ), where

• O a conjugacy class of G,

• ρ an irreducible repr. of the centralizer CG(σ) of σ ∈ O fixed.

If M(O, ρ) denotes the irreducible Yetter-Drinfeld module cor-

responding to a pair (O, ρ) and V is the vector space affording

the representation ρ, then M(O, ρ) ' IndG
CG(σ) ρ with the grading

given by the identification IndG
CG(σ) ρ = CG⊗CG(σ) V ' CO ⊗C V .
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The Nichols algebra of M(O, ρ) is denoted B(O, ρ).

Problem II bis. For a given finite group Γ , find all (O, ρ) s. t.

dimB(O, ρ) < ∞.

Warning. Nichols algebras are very difficult to compute; it is

not known if the ideal of relations is finitely-generated or not;

in all known cases it is, but the degrees of the defining relations

can be arbitrarily high.
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Theorem II. Let m ≥ 5. Let σ ∈ Sm be of type (1n1,2n2, . . . , mnm),

O the conjugacy class of σ; let ρ ∈ ĈSm
(σ). If dimB(O, ρ) < ∞,

then the type of σ and ρ are in the following list:

• (1n1,2), ρ1 = sgn or ε, ρ2 = sgn.

• (2,3) in S5, ρ2 = sgn, ρ3 = −→χ0.

• (23) in S6, ρ2 = −→χ1 ⊗ ε or −→χ1 ⊗ sgn.

Actually, the orbit of type (14,2) in S6 is isomorphic to that of

type (23), because of the outer automorphism of S6.

The Nichols algebras corresponding to types (1n1,2), and these

representations, were considered by Fomin and Kirillov in relation

with the quantum cohomology of the flag variety. They can not

be treated by our methods.
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Example: O = transpositions in G = Sn,

s = (12), ρ = sgn

n rk Relations dim B(V ) top

3 3 5 relations in degree 2 12 = 3.22 4 = 22

4 6 16 relations in degree 2 576 12

5 10 45 relations in degree 2 8294400 40

S3, S4: A. Milinski & H. Schneider, Contemp. Math. 267 (2000), 215–236.

S. Fomin & K. Kirillov, Progr. Math. 172, Birkhauser, (1999), pp. 146–182.

S5: [FK], plus web page of M. Graña. http://mate.dm.uba.ar/~matiasg/

Sn, n ≥ 6: open!
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It is convenient to restate Problem II in terms of racks and co-

cycles.

For this, recall first that a braided vector space is a pair (V, c),

where V is a vector space and c ∈ GL(V ⊗V ) is a solution of the

braid equation:

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

Any super vector space V = V0 ⊕ V1 is braided:

c(v ⊗ w) = (−1)|v||w|w ⊗ v, for v, w ∈ V .

Any Yetter-Drinfeld module V is naturally a braided vector space:

c(v ⊗ w) = g · w ⊗ v, v ∈ Vg, (g ∈ G), w ∈ V.
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If V is a Yetter-Drinfeld module, then the Nichols algebra B(V )
depends only on the braiding c.

This leads us to the consideration of a class of braided vector
spaces where the study of the corresponding Nichols algebras is
performed in a unified way.

Definition. A rack is a pair (X, .) where X is a non-empty set
and . : X ×X → X is an operation such that

• the map ϕx = x . is invertible for any x ∈ X,
• x . (y . z) = (x . y) . (x . z) for all x, y, z ∈ X.
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Examples and basic notions.

• A group Γ is a rack with x . y = xyx−1, x, y ∈ Γ . If X ⊂ G

is stable under conjugation by G, that is a union of conjugacy

classes, then it is a subrack of G.

• A rack X is abelian iff x . y = y, x, y ∈ Γ .

• A rack X is decomposable iff there exist disjoint subracks

X1, X2 ⊂ X s. t. Xi . Xj = Xj, 1 ≤ i, j ≤ 2 and X = X1
∐

X2.

Otherwise, X is indecomposable.

• A rack X is simple iff cardX > 1 and for any surjective mor-

phism of racks π : X → Y , either π is a bijection or cardY = 1.
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Cocycles. Let X be a rack, n ∈ N. A map q : X ×X → GL(n,C)

is a principal 2-cocycle of degree n if

qx,y.zqy,z = qx.y,x.zqx,z,

for all x, y, z ∈ X.

Here is an equivalent formulation: let V = CX⊗Cn and consider

the linear isomorphism cq : V ⊗ V → V ⊗ V ,

cq(exv ⊗ eyw) = ex.yqx,y(w)⊗ exv,

x ∈ X, y ∈ X, v ∈ Cn, w ∈ Cn. Then q is a 2-cocycle iff cq is a

solution of the braid equation.

If this is the case, then the Nichols algebra of (V, cq) is denoted

B(X, q).
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Define gx by gx(eyw) = ex.yqx,y(w), x ∈ X, y ∈ X, v ∈ Cn.

Fact. Let X be an indecomposable finite rack and q a 2-cocycle

as above. If Γ ⊂ GL(V ) is the subgroup generated by (gx)x∈X,

then V is a Yetter-Drinfeld module over Γ . If the image of q

generates a finite subgroup, then Γ is finite.

Conversely, if Γ is finite and V = M(O, ρ) is a Yetter-Drinfeld

module over Γ with the rack O indecomposable, then there exists

a principal 2-cocycle q such that V is given as above and the

braiding c ∈ Aut(V ⊗ V ) as Y.-D. module coincides with cq.

There is a version of this result for decomposable in terms of

non-principal 2-cocycles.
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We can now reformulate Problem II in an approach rack-by-

rack.

Problem III. For a given finite rack X, classify all cocycles q s.

t. dimB(X, q) < ∞.

If X is abelian, the classification is known:

I. Heckenberger, Classification of arithmetic root systems,

Adv. Math. 220 (2009) 59–124.

We are mainly interested in indecomposable racks.
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It is natural to consider the class of finite simple racks; actually,

the classification of these is known. In particular,

• Non-trivial conjugacy classes of a finite simple group are simple.

• The conjugacy class O of σ ∈ Sm − Am, m ≥ 5, is simple.

We shall say that a finite simple rack X collapses if for any

cocycle q, dimB(X, q) = ∞.
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Let σ ∈ Sm be of type (1n1,2n2, . . . , mnm) and let

O =




(a) the conjugacy class of σ in Sm, if σ /∈ Am,

(b) the conjugacy class of σ in Am, if σ ∈ Am.

Theorem III. If the type of σ is not in the list below, then O
collapses.

(a) (2,3); (23); (1n,2).

(b) (32); (22,3); (1n,3); (24); (12,22); (1,22).

(b) (open) (1, m− 1), if m− 1 is prime; (m), if m is prime.
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Theorem IV. If G is a sporadic simple group and O is a non-

trivial conjugacy class of G NOT listed in the Tables below,

then O collapses.

G # Classes Classes
M11 10 8A, 8B, 11A, 11B
M12 15 11A, 11B
M22 12 11A, 11B
M23 17 23A, 23B
M24 26 23A, 23B
J2 21 2A, 3A

Suz 43 3A
HS 24 11A, 11B
McL 24 11A, 11B
Co3 42 23A, 23B
Co2 60 2A, 23A, 23B
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G # Classes Classes
Co1 101 3A, 23A, 23B
J1 15 15A, 15B, 19A, 19B, 19C

O′N 30 31A, 31B
J3 21 5A, 5B, 19A, 19B
Ru 36 29A, 29B
He 33 all collapse

Fi22 65 2A, 22A, 22B
Fi23 98 2A, 23A, 23B
HN 54 all collapse
Th 48 31A, 31B
T 22 2A
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G, # Classes
Ly, 53 33A, 33B, 37A, 37B, 67A, 67B, 67C
J4, 62 29A, 37A, 37B, 37C, 43A, 43B, 43C

Fi′24, 108 23A, 23B, 27A, 27B, 27C,
29A, 29B, 33A, 33B, 39C, 39D

B, 184 2A, 2C, 16C, 16D, 32A, 32B, 32C, 32D,
34A, 46A, 46B, 47A, 47B

M , 194 29A, 32A, 32B, 41A, 46A, 46B, 46C, 46D,
47A, 47B, 59A, 59B, 68A, 69A, 69B,

71A, 71B, 87A, 87B, 92A, 92B, 94A, 94B
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III. The schemes of the proofs.

A basic property of Nichols algebras says that, if W is a braided
subspace of a braided vector space V , then B(W ) ↪→ B(V ).

For instance, consider a simple V = M(O, ρ) – say dim ρ = 1
for simplicity. If X is a proper subrack of O, then M(O, ρ) has
a braided subspace of the form W = (CX, cq), which is clearly
not a Yetter-Drinfeld submodule but can be realized as a Yetter-
Drinfeld module over smaller groups, that could be reducible if X
is decomposable. If we know that dimB(X, q) = ∞, say because
we have enough information on one of these smaller groups, then
dimB(O, ρ) = ∞ too.
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Proofs of Theorems III and IV.

It is based on the following result, a consequence of a Theorem

by Heckenberger and Schneider, in turn proved with a technique

developed by N. A., Heckenberger and Schneider.

We say that a rack X is of type D if there exists a decomposable

subrack Y = R
∐

S of X such that

r . (s . (r . s)) 6= s, for some r ∈ R, s ∈ S.

Theorem. If X is a finite rack of type D, then X collapses.
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Remark. If Z → X is a surjective morphism of finite racks and

X is of type D, then Z is of type D, hence it collapses. This

justifies the consideration of finite simple racks, in particular of

conjugacy classes in finite simple groups.
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Proofs of Theorems I and II.

Assume Theorems III and IV.

Consider the remaining M(O, ρ); look at the abelian subracks of

O and apply Heckenberger’s result.

Examples. Say O real if x ∈ O =⇒ x−1 ∈ O. If x is not an

involution, then {x, x−1} is an abelian subrack with 2 elements.

Fact. If O is a real conjugacy class of elements with odd order,

then dimB(O, ρ) = ∞.

For instance, all remaining orbits in the case of the Janko group

J4 are real.
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Example: G = Zn o 〈T 〉, ρ = sgn.

n =rk Relations dim B(V ) top

3 5 relations in degree 2 12 = 3.22 4 = 22

5
10 relations in degree 2
1 relation in degree 4 1280 = 5.44 16 = 42

7
21 relations in degree 2
1 relation in degree 6 326592 = 7.66 36 = 62

A few more examples: M. Graña, J. Algebra 231 (2000), pp. 235-257.

N. A. and M. Graña, Adv. in Math. 178, 177–243 (2003).
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Finite simple racks have been classified in [N. A. and M. Graña, Adv.

in Math. 178, 177–243 (2003)], see also [Joyce, JPAA]:

• |X| = p a prime, X ' Fp a permutation rack: x . y = y + 1.

• |X| = pt, p a prime, t ∈ N, X ' (Fp
t, T ) is an affine crossed set

where T is the companion matrix of a monic irreducible polyno-

mial of degree t, different from X and X − 1.

• Otherwise, there exist a non-abelian simple group L, t ∈ N and

x ∈ Aut(Lt), where x acts by x ·(l1, . . . , lt) = (θ(lt), l1, . . . , lt−1) for

some θ ∈ Aut(L), such that X = Ox(n) is an orbit of the action

⇀x of Lt on itself; L and t are unique, and x only depends on

its conjugacy class in Out(Lt). Here, the action ⇀x is given by

p ⇀x n = p n (x · p−1).
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