IRREDUCIBLE REPRESENTATIONS OF LIFTINGS OF QUANTUM PLANES

N. ANDRUSKIEWITSCH
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba CIEM - CONICET
(5000) Ciudad Universitaria, Córdoba, Argentina
andrus@mate.uncor.edu
MARGARET BEATTIE
Department of Mathematics and Computer Science
Mount Allison University,
Sackville, NB, Canada E4L 1E6
mbeattie@mta.ca

In this note, the irreducible representations of a lifting of a quantum plane are determined.

1. Introduction

In [5, 1] , the structure of the coradicals of the duals of liftings of some quantum linear spaces was studied, and several examples were explicitly constructed. In this note, we describe the irreducible representations for any lifting of a quantum plane. If A is the lifting of a quantum linear plane, then the approach in $[5,1]$ was via the coradical of A^{*}. The coalgebra $A^{*}=C$ was written as a direct sum of certain sub-coalgebras $C(\eta)$ with $\eta \in \hat{\Gamma}$ and the coradicals of the $C(\eta)$ were determined. Here we write the lifting A as a product of algebras $A(\xi), \xi \in \hat{\Gamma}$, and determine irreducible representations of each of six possible types of algebra $A(\xi)$ that can arise.

Notation

Let k be an algebraically closed field of characteristic 0 . If G is a finite group then ${ }_{G}^{G} \mathcal{Y} D={ }_{k[G]}^{k[G]} \mathcal{Y} D$ will denote the category of Yetter-Drinfel'd modules over the group algebra $k[G]$.

Throughout, we let Γ be a finite abelian group and let $\hat{\Gamma}$ denote the
group of characters of Γ. For $V \in_{\Gamma}^{\Gamma} \mathcal{Y} D, g \in \Gamma, \chi \in \hat{\Gamma}$, we write V_{g}^{χ} for the set of $v \in V$ with the action of Γ on v given by $h \rightarrow v=\chi(h) v$ and the coaction by $\delta(v)=g \otimes v$. Since Γ is an abelian group, $V=\oplus_{g \in \Gamma, \chi \in \widehat{\Gamma}} V_{g}^{\chi}[2$, Section 2].

The coradical of a coalgebra C is denoted C_{0}.
If v is a complex number and a is a non-negative integer, then we set as usual

$$
(0)_{v}=0, \quad(a)_{v}=1+v+\ldots v^{a-1}=1+v(a-1)_{v}=(a-1)_{v}+v^{a-1}
$$

2. Preliminaries

Let A be a finite-dimensional pointed Hopf algebra; let V be the infinitesimal braiding of A [2]. Recall that $V \in_{G(A)}^{G(A)} \mathcal{Y} D$ is the Yetter-Drinfeld module of right coinvariant elements in the $k G(A)$-Hopf module A_{1} / A_{0}.

Let Λ be a subgroup of $G(A)$ central in A. For $\xi \in \widehat{\Lambda}$, let

$$
e_{\xi}=|\Lambda|^{-1} \sum_{g \in \Lambda} \xi^{-1}(g) g
$$

denote the minimal idempotent corresponding to ξ. If also $\eta \in \widehat{\Lambda}$ then

$$
\begin{equation*}
e_{\eta} \leftharpoonup \xi=\left\langle\xi, e_{\eta,(1)}\right\rangle e_{\eta,(2)}=e_{\xi^{-1} \eta} . \tag{1}
\end{equation*}
$$

Clearly, $A e_{\xi}$ is a two-sided ideal of A and $A=\oplus_{\xi \in \widehat{\Lambda}} A e_{\xi}$. Furthermore, let $J_{\xi}=\oplus_{\xi \neq \zeta \in \hat{\Lambda}} A e_{\zeta}$ and let $A(\xi):=A / J_{\xi}$; we have an isomorphism of algebras $A \simeq \prod_{\xi \in \widehat{\Lambda}} A(\xi)$. Hence, we have an isomorphism of coalgebras $C:=A^{*} \simeq \oplus_{\xi \in \hat{\Lambda}} C(\xi)$ where $C(\xi):=A(\xi)^{*}=J_{\xi}^{\perp}$. Clearly, $C(\epsilon)$ is a Hopf subalgebra of C; it is dual to the quotient Hopf algebra $A / J_{\epsilon}=A / A k[\Lambda]^{+}$. It turns out that a useful approach to the description of the coalgebra structure of C is via the coalgebras $C(\xi)$ for a well-chosen subgroup Λ. Indeed, $C_{0}:=\oplus_{\xi \in \widehat{\Lambda}} C(\xi)_{0}$ by [9, 9.0.1].

Assume that $\xi \in \widehat{\Lambda}$ is the restriction of $\widetilde{\xi} \in G(A)$. Then $\widetilde{\xi} C(\zeta)=C(\xi \zeta)$ for any $\zeta \in \widehat{\Lambda}$. Indeed, $\widetilde{\xi} C(\zeta) \subset\left(A e_{\eta}\right)^{\perp}$ for any $\eta \in \widehat{\Lambda}, \eta \neq \xi \zeta$, by (1); thus $\widetilde{\xi} C(\zeta)=J_{\bar{\xi} \zeta}^{\perp}$.

Let us consider the following hypotheses.
(a) The group $\Gamma:=G(A)$ is abelian. Then there exists a basis $v_{1}, \ldots v_{\theta}$ of V with $v_{i} \in V_{g_{i}}^{\chi_{i}}$ for all i. Let $r_{i}>1$ be the order of $\chi_{i}\left(g_{i}\right)$.
(b) V is a quantum linear space; that is, $\chi_{i}\left(g_{j}\right) \chi_{j}\left(g_{i}\right)=1$ for $i \neq j$.

Furthermore, assuming (a) and (b), we choose the subgroup Λ of Γ as follows:
(c) $\Lambda=\left\{g \in \Gamma: \chi_{i}(g)=1\right.$ for $\left.1 \leq i \leq \theta\right\}$.

Note that by the definition in (c), Λ is central in A, and if $\chi_{j}^{r_{j}}=\epsilon$ or if $\chi_{i} \chi_{j}=\epsilon$ for all $i \neq j$, then

$$
\begin{equation*}
g_{j}^{r_{j}} \in \Lambda \text { and } \chi_{j} \in \widehat{\Gamma / \Lambda} \tag{2}
\end{equation*}
$$

Also since the sequence $1 \rightarrow \widehat{\Gamma / \Lambda} \rightarrow \widehat{\Gamma} \rightarrow \widehat{\Lambda} \rightarrow \underset{\sim}{1}$ is exact, we can always choose a preimage $\widetilde{\xi}$ in $\widehat{\Gamma}$ of $\xi \in \widehat{\Lambda}$; then $C(\xi)=\widetilde{\xi} C(\epsilon)$.

Proposition 2.1. Let A be a finite-dimensional pointed Hopf algebra; let V be the infinitesimal braiding of A. Assume (a) and (b) above, i.e. A is a lifting of a quantum linear space with abelian group of grouplikes. Then A is generated by the grouplike elements $h \in \Gamma$ and by $\left(1, g_{i}\right)$-primitives $x_{i}, 1 \leq i \leq \theta$ with defining relations

$$
\begin{aligned}
h x_{i} & =\chi_{i}(h) x_{i} h \\
x_{i}^{r_{i}} & =\alpha_{i i}\left(g_{i}^{r_{i}}-1\right) \\
x_{i} x_{j} & =\chi_{j}\left(g_{i}\right) x_{j} x_{i}+\alpha_{i j}\left(g_{i} g_{j}-1\right)
\end{aligned}
$$

for all $h \in \Gamma, 1 \leq i \leq \theta$. We have $\operatorname{dim} A=|\Gamma| r_{1} \ldots r_{\theta}$.
We may assume $\alpha_{i i} \in\{0,1\}$ and then we must have that

$$
\begin{aligned}
& \alpha_{i i}=0 \text { if } g_{i}^{r_{i}}=1 \text { or } \chi_{i}^{r_{i}} \neq \epsilon \\
& \alpha_{i j}=0 \text { if } g_{i} g_{j}=1 \text { or } \chi_{i} \chi_{j} \neq \epsilon
\end{aligned}
$$

Note that $\alpha_{j i}=-\chi_{j}\left(g_{i}\right)^{-1} \alpha_{i j}=-\chi_{i}\left(g_{j}\right) \alpha_{i j}$. Thus the lifting A is described by the lifting matrix $\mathcal{A}=\left(\alpha_{i j}\right)$ with 0 's or 1 's on the diagonal and with $\alpha_{j i}=-\chi_{i}\left(g_{j}\right) \alpha_{i j}$ for $i \neq j$.

Proof. By the same argument as in [4], A is generated by group-like and skew-primitive elements. See [3] for the rest of the proof. These liftings were independently constructed in [6] by iterated Ore extensions.

In the rest of the paper we assume that A is a lifting of a quantum linear space with notation as in Proposition 2.1.

Since Γ is finite abelian, there exist elements h_{1}, \ldots, h_{t} in Γ, and nonnegative integers $a_{1}, \ldots, a_{t}, b_{1}, \ldots, b_{t}$ with $a_{u}=\operatorname{ord} h_{u}, \Gamma=\left\langle h_{1}\right\rangle \oplus \cdots \oplus\left\langle h_{t}\right\rangle$ and $\Lambda=\left\langle h_{1}^{b_{1}}\right\rangle \oplus \cdots \oplus\left\langle h_{t}^{b_{t}}\right\rangle$.

Let $\xi \in \widehat{\Lambda}$; the algebra $A(\xi)$ is then generated by $x_{i}, 1 \leq i \leq \theta, h_{u}$, $1 \leq u \leq t$, and relations

$$
\begin{aligned}
h_{u} h_{\ell} & =h_{\ell} h_{u}, \quad h_{u}^{b_{u}}=\xi\left(h_{u}^{b_{u}}\right), \quad h_{u} x_{i}=\chi_{i}\left(h_{u}\right) x_{i} h_{u} \\
x_{i}^{r_{i}} & =\alpha_{i i}\left(g_{i}^{r_{i}}-1\right), \quad x_{i} x_{j}=\chi_{j}\left(g_{i}\right) x_{j} x_{i}+\alpha_{i j}\left(g_{i} g_{j}-1\right),
\end{aligned}
$$

$1 \leq u, \ell \leq t, 1 \leq i \leq \theta$. Let V be any finite-dimensional $A(\xi)$-module; we denote the action of the elements x_{i}, h_{u} on V by the same letters. Thus V is a Γ-module, since $A(\xi)$ is a quotient of A; and

$$
V=\oplus_{\eta \in F(\xi)} V^{\eta}
$$

where

$$
\begin{equation*}
F(\xi)=\left\{\eta \in \widehat{\Gamma}:\left.\eta\right|_{\Lambda}=\xi\right\}=\widetilde{\xi} \widehat{\Gamma / \Lambda} \tag{3}
\end{equation*}
$$

see above. We have $\operatorname{dim} A(\xi)=\frac{|\Gamma| r_{1} \ldots r_{\theta}}{|\Lambda|}$.
The case when the rank $\theta=1$ is known $[8,5]$. We shall investigate the case $\theta=2$ in the next Section. Consider the condition
(d) The rank $\theta>2$ and ord $r_{i}>2,1 \leq i \leq \theta$.

We say that $i, j \in I:=\{1, \ldots, \theta\}$ are linked [4] if $\alpha_{i j} \neq 0$. By (d), if i is linked to j and k then $j=k$ [4]. Thus I is a disjoint union of the set of vertices which are linked, which has even cardinal, and the rest. Roughly speaking, the representation theory of $A(\xi)$ looks like the "tensor product" of representation theories of similar algebras with rank $\theta=1$ or 2 .

3. The rank 2 case

In this section we assume that $\theta=2$ and write $x=x_{1}, y=x_{2}, r=r_{1}$, $s=r_{2}$. The lifting matrix of A has the form $\mathcal{A}=\left[\begin{array}{cc}\alpha_{11} & \nu \\ -\chi_{2}\left(g_{1}\right) \nu & \alpha_{22}\end{array}\right]$.

Let $\xi \in \widehat{\Lambda}$; we shall determine the irreducible representations of the algebra $A(\xi)$ generated by $x, y, h_{u}, 1 \leq u \leq t$, and relations

$$
\begin{align*}
h_{u} h_{\ell} & =h_{\ell} h_{u}, \quad h_{u}^{b_{u}}=\xi\left(h_{u}^{b_{u}}\right) ; \tag{4}\\
h_{u} x & =\chi_{1}\left(h_{u}\right) x h_{u} ; \tag{5}\\
h_{u} y & =\chi_{2}\left(h_{u}\right) y h_{u} ; \tag{6}\\
x^{r} & =\alpha_{11}\left(g_{1}^{r}-1\right) ; \text { we denote } \alpha_{11}\left(\xi\left(g_{1}^{r}\right)-1\right)=\alpha ; \tag{7}\\
y^{s} & =\alpha_{22}\left(g_{2}^{s}-1\right) ; \text { we denote } \alpha_{22}\left(\xi\left(g_{2}^{s}\right)-1\right)=\beta ; \tag{8}\\
x y & =\chi_{2}\left(g_{1}\right) y x+\nu\left(g_{1} g_{2}-1\right) . \tag{9}
\end{align*}
$$

We have $\operatorname{dim} A(\xi)=\frac{|\Gamma| r s}{|\Lambda|}$.
Let $q=\chi_{1}\left(g_{1}\right)$. If $\chi_{1} \chi_{2}=\epsilon$, then $q=\chi_{2}\left(g_{1}\right)^{-1}=\chi_{1}\left(g_{2}\right)=\chi_{2}\left(g_{2}\right)^{-1}$ (hence $r=s)$, and relation (9) becomes $y x=q\left(x y-\nu\left(g_{1} g_{2}-1\right)\right)$.

We distinguish six cases; up to change of variables, these six cases cover all possibilities for $A(\xi)$.
(I) $\alpha=\beta=0, \nu=0$.
(II) $\alpha=1, \beta=0, \nu=0$. Necessarily, $\chi_{1}^{r}=\epsilon$ and $g_{1}^{r} \neq 1$.
(III) $\alpha=\beta=1, \nu=0$. Necessarily, $\chi_{1}^{r}=\chi_{2}^{s}=\epsilon, g_{1}^{r} \neq 1$ and $g_{2}^{s} \neq 1$.
(IV) $\alpha=\beta=0, \nu=1$. Necessarily, $\chi_{1} \chi_{2}=\epsilon$ and $g_{1} g_{2} \neq 1$.
(V) $\alpha=1, \beta=0, \nu=1$. Necessarily, $\chi_{1}^{r}=\epsilon$ and $g_{1}^{r} \neq 1 ; \chi_{1} \chi_{2}=\epsilon$ and $g_{1} g_{2} \neq 1$.
(VI) $\alpha=\beta=1, \nu \neq 0$. Necessarily, $\chi_{1}^{r}=\chi_{2}^{s}=\epsilon, g_{1}^{r} \neq 1, g_{2}^{s} \neq 1$; $\chi_{1} \chi_{2}=\epsilon$ and $g_{1} g_{2} \neq 1$.

Now we examine each of the 6 cases listed above.
Case (I) Here the lifting is trivial. In this case we have the following well-known theorem.

Theorem 3.1. The irreducible representations of $A(\xi)$ have dimension one and are parametrized by $\widehat{\Gamma / \Lambda}$. Indeed, $A(\xi) \simeq \mathcal{B}(V) \# k[\Gamma] /(\mathcal{B}(V) \# k[\Gamma]) e_{\xi}$.

Case (II) Here $\alpha=1$ and $\beta=\nu=0$. Thus $\chi_{1}^{r}=\epsilon$ and since $q=\chi_{1}\left(g_{1}\right)$ is a primitive r-th root of unity, r is the order of χ_{1}.

It is now convenient to consider the algebra $B(\xi)$ presented by generators $x, h_{u}, 1 \leq u \leq t$, and relations

$$
\begin{aligned}
h_{u} h_{\ell} & =h_{\ell} h_{u}, & h_{u}^{b_{u}} & =\xi\left(h_{u}^{b_{u}}\right), \\
h_{u} x & =\chi_{1}\left(h_{u}\right) x h_{u}, & x^{r} & =1 .
\end{aligned}
$$

The representation theory of $B(\xi)$ is well-known; we include it for completeness. (For example, see [10], [8].)

Lemma 3.2. Let $\eta \in F(\xi)$. Let $W(\eta)$ be a vector space with a basis f_{i}, $0 \leq i \leq r-1$, with subscripts $i \in \mathbb{Z} / r$. There is a representation of $B(\xi)$ on $W(\eta)$ defined by the following rules:

$$
x . f_{i}=f_{i+1}, \quad h_{u} \cdot f_{i}=\left(\chi_{1}^{i} \eta\right)\left(h_{u}\right) f_{i}, \quad 1 \leq u \leq t
$$

where $\quad i \in \mathbb{Z} / r$ means that $x . f_{r-1}=f_{0}$. Furthermore, $W(\eta)$ is irreducible; all irreducibles are of this kind; $W(\eta) \simeq W\left(\eta^{\prime}\right)$ if and only if $\eta=\eta^{\prime} \chi_{1}^{m}$ for some m; and $B(\xi)$ is semisimple.

Proof. It is straightforward to verify that $W(\eta)$ is a representation of $B(\xi)$. We see that $W(\eta)$ is irreducible because the f_{i} 's belong to different isotypical components for Γ.

Let V be an irreducible representation of $A(\xi)$. Since $V=\oplus_{\eta \in F(\xi)} V^{\eta}$, we can choose $v \in V^{\eta}-0$ for some $\eta \in \widehat{\Gamma}$. Let t be the order of x in V; clearly $x^{i} . v \in V^{\chi_{1}^{i} \eta}-0,0 \leq i \leq t$; and $x^{t} . v=v$. Then $r|t| r$, thus $t=r$ and $V \simeq W(\eta)$. If $\phi: W(\eta) \rightarrow W\left(\eta^{\prime}\right)$ is an isomorphism of $B(\xi)$-modules, then $\phi\left(f_{0}\right) \in k f_{m}^{\prime}$; thus $\eta=\eta^{\prime} \chi_{1}^{m}$. Conversely, assume that $\eta=\eta^{\prime} \chi_{1}^{m}$ and define $\phi: W(\eta) \rightarrow W\left(\eta^{\prime}\right)$ by $\phi\left(f_{i}\right)=f_{m+i}^{\prime} ; \phi$ is an isomorphism of $B(\xi)$-modules. Finally, $\operatorname{dim} B(\xi) \leq|\Gamma / \Lambda| r$ by the defining relations, but the dimension of the quotient of $B(\xi)$ by its Jacobson radical is $\geq|\Gamma / \Lambda| r$ by what we have already proved; thus $B(\xi)$ is semisimple.

Theorem 3.3. Let $A(\xi)$ be such that $\alpha=1, \beta=\nu=0$. Let $\pi: A(\xi) \rightarrow$ $B(\xi)$ be the algebra map sending y to 0 . Then any irreducible representation of $A(\xi)$ factorizes through π. In particular, all irreducible representations of $A(\xi)$ are described by Lemma 3.2.

Proof. Let V be an irreducible representation of $A(\xi)$. Since $0 \neq \operatorname{ker} y$ is stable under the action of Γ and x, we see that y acts as 0 on V.

Case (III) Here $\alpha=\beta=1$ and $\nu=0$. Let $w:=\chi_{2}\left(g_{1}\right)$. Since $\alpha=\beta=1$, as noted in previous cases, we have that χ_{1} has order r and χ_{2} has order s. Thus $w^{r}=w^{s}=1$.

Theorem 3.4. $A(\xi)$ is semisimple.
Proof. There exists a unique algebra automorphism Y of $B(\xi)$ such that $Y\left(h_{u}\right)=\chi_{2}\left(h_{u}\right)^{-1} h_{u}, 1 \leq u \leq t$, and $Y(x)=w^{-1} x$; clearly $Y^{s}=\mathrm{id}$. It is well-known that the smash product $B(\xi) \# k Y$ is semisimple, see [7]. But $B(\xi) \# k Y$ is isomorphic as an algebra to $A(\xi)$, say by dimension counting.

The explicit description of all simple $A(\xi)$-modules can be obtained by means of Clifford theory, see [7].

Case (IV) In the next three cases, we have $\nu \neq 0$ so that $\chi_{1} \chi_{2}=\epsilon$ and so $r=s$. For all of the remaining cases, we will want to define a set of scalars c_{i} by the following recursive definition.

Assume that $\chi_{1} \chi_{2}=\epsilon$. Fix $c=c_{0}$ and for $\eta \in F(\xi)$ and $i>0$, define

$$
\begin{equation*}
c_{i}=q\left(c_{i-1}-\nu \eta \chi_{1}^{i-1}\left(g_{1} g_{2}-1\right)\right)=q\left(c_{i-1}+\nu-\nu q^{2(i-1)} \eta\left(g_{1} g_{2}\right)\right) . \tag{10}
\end{equation*}
$$

The second equality follows from the fact that $q=\chi_{1}\left(g_{1}\right)=\chi_{1}\left(g_{2}\right)$. A simple induction shows that for $i>0$, we have

$$
\begin{equation*}
c_{i}=q^{i} c+q(i)_{q} \nu\left(1-q^{i-1} \eta\left(g_{1} g_{2}\right)\right) . \tag{11}
\end{equation*}
$$

Thus if q is a primitive r-th root of unity, if $i \equiv k \bmod r$, then $c_{i}=c_{k}$.

In this case, $\alpha=\beta=0$ and $\nu=1$. Here, the representation theory is similar to that of a Frobenius-Lusztig kernel of type $\mathfrak{s l}(2)$.

Theorem 3.5. Let $\eta \in F(\xi)$ as defined in (3). Let $\left(c_{i}\right)_{i \geq 0}$ be scalars defined recursively by (10) with $c_{0}=0$.

Let N be the least positive integer such that $c_{N}=0$. Note that since $(r)_{q}=0$, then $N \leq r$. Let $L(\eta)$ be a vector space with a basis $\left(v_{i}\right)_{0 \leq i \leq N-1}$; set $v_{-1}=v_{N}=0$ in $L(\eta)$. Then there exists a representation of $A(\xi)$ on $L(\eta)$ given by

$$
\begin{equation*}
h_{u} \cdot v_{i}=\eta \chi_{1}^{i}\left(h_{u}\right) v_{i}, \quad 1 \leq u \leq t, \quad y \cdot v_{i}=c_{i} v_{i-1}, \quad x \cdot v_{i}=v_{i+1} \tag{12}
\end{equation*}
$$

Furthermore, $L(\eta)$ is irreducible. Also any irreducible $A(\xi)$-module is isomorphic to $L(\eta)$ for some η; and $L(\eta)$ is isomorphic to $L\left(\eta^{\prime}\right)$ only when $\eta=\eta^{\prime}$.

Proof. The verification that (12) defines a representation of $A(\xi)$ is straightforward. The fact that $y \cdot v_{0}=0=x \cdot v_{N-1}$ ensures that relations (7) and (8) hold while (10) guarantees that relation (9) is respected. We leave the reader to check the details and to check that $A(\xi)$ is irreducible.

Let $\rho: A(\xi) \rightarrow$ End V be an irreducible representation. Since ker $y \neq 0$ and is Γ-stable, there exists $v \in \operatorname{ker} y-0, v \in V^{\eta}$ for some $\eta \in F(\xi)$. Set $v_{0}=v, v_{i}=x^{i} . v, i>0 ; v_{i} \in V^{\eta \chi_{1}^{i}}$ for all i. It follows from the fact that relation (9) must be respected and from a simple induction that for $i>0$, we have $y \cdot v_{i}=d_{i} v_{i-1}$, where the d_{i} 's satisfy the recursive relation (10).

Now, $v_{0}, v_{1} \ldots v_{m-1}$ generate a submodule of V where $v_{m}=x^{m} . v_{0}=0$ and $m \leq r$. If $m>N$, then v_{m-1}, \ldots, v_{N} is a submodule of V. Thus $m=N$ and since $d_{i}=c_{i}, i \geq 0$, then V coincides with the submodule generated by the v_{i} 's, $i \geq 0$ which is isomorphic to $L(\eta)$.

Finally, $L(\eta)$ is presented as $A(\xi)$-module by generator v_{0} with relations $h_{u}\left(v_{0}\right)=\eta\left(h_{u}\right) v_{0}, 1 \leq u \leq t, y \cdot v_{0}=0, x^{N} \cdot v_{0}=0$. Thus, $L(\eta) \simeq L\left(\eta^{\prime}\right)$ implies $\eta=\eta^{\prime}$.

Case (V) In this case, we have $\alpha=\nu=1$ and $\beta=0$.
Theorem 3.6. Let $\eta \in F(\xi)$. Let $W(\eta)$ be the $B(\xi)$-module defined in Lemma 3.2 with basis f_{0}, \ldots, f_{r-1} with subscripts taken modulo r. Set $c_{i}=0$ for $i=0$ and define scalars $\left(c_{i}\right)_{0<i \leq r}$ recursively by (10). Define an operator y on $W(\eta)$ by $y \cdot f_{i}=c_{i} f_{i-1}$. Then this defines a representation of $A(\xi)$ and we denote this $A(\xi)$-module by $L(\eta)$. Then $L(\eta)$ is irreducible; all irreducibles are of this kind; If $L(\eta) \simeq L\left(\eta^{\prime}\right)$ then $\eta=\eta^{\prime} \chi_{1}^{m}$ for some m.

Proof. As usual, the verification that $L(\eta)$ is an irreducible representation is straightforward. Recall from (11) that it makes sense to compute subscripts modulo r.

Next, let V be an irreducible $A(\xi)$-module. Then there exists $\eta \in F(\xi)$ and $v \neq 0$ such that $v \in \operatorname{ker} y \cap V^{\eta}$. Set $f_{0}=v, f_{i}=x^{i} v$. Arguing as in Lemma 3.2 we see that the f_{i} 's span a $B(\xi)$-submodule U isomorphic to $W(\xi)$. Relation (9) implies the description of the action of y on U by $y . f_{i}=\alpha_{i} f_{i-1}$, where the α_{i} 's are defined by (10). Hence $V=U \simeq L(\xi)$.

Case (VI) In this case, $\alpha=\beta=1$ and $\nu \neq 0$.
Theorem 3.7. Let $\eta \in F(\xi)$. Let $W(\eta)$ be the $B(\xi)$-module defined in Lemma 3.2. Set $c_{0}=c \neq 0$ and define a family of scalars $\left(c_{i}\right)_{0 \leq i \leq r-1}$ inductively by (10). Define an operator y on $W(\eta)$ by $y . f_{i}=c_{i} f_{i-1}$.
(i). This defines a representation of $A(\xi)$ if and only if c is a solution of the equation

$$
\begin{equation*}
c_{0} c_{1} \ldots c_{r-1}=1 \tag{13}
\end{equation*}
$$

If this is the case, we denote this $A(\xi)$-module by $L(\eta, c)$. Furthermore, $L(\eta, c)$ is irreducible.
(ii). If $L(\eta, c) \simeq L\left(\eta^{\prime}, c^{\prime}\right)$ if and only if $\eta=\eta^{\prime} \chi_{1}^{m}$ for some m, and $c=c_{m}^{\prime}$.
(iii). Assume that the equation (13), a polynomial in c, has simple roots. Then all irreducibles are of this kind and $A(\xi)$ is semisimple.

Proof. (i). We have to check the relations (6), (8) and (9). Here (6) is clear and (8) is equivalent to (13). We evaluate both sides of (9) on f_{i}; if $0 \leq i<r-1$ the equality follows from the defining condition (10); otherwise it follows from (11). The irreducibility is clear.
(ii). Left to the reader.
(iii). In general, the dimension of the semisimple quotient of $A(\xi)$ corresponding to all the representations of the type $L(\eta, c)$ is $\frac{|\Gamma| \#\{\text { solutions of }(13)\} r^{2}}{|\Lambda| r}$, and this equals $\operatorname{dim} A(\xi)$ if and only if the equation (13), a polynomial in c, has simple roots.

4. CONCLUSIONS

Let A be a lifting of a quantum plane. Then $A \simeq \prod_{\xi \in \widehat{\Lambda}} A(\xi)$; hence the irreducible representations of A are the union of the irreducible representations of $A(\xi), \xi \in \widehat{\Lambda}$. We have determined the last ones in Section 3, up to a finite number of exceptions in Case (VI). As a consequence, we can also determine the coradical of the dual Hopf algebra $C=A^{*}$.

Acknowledgments

The first author thanks Sonia Natale for conversations on Case (III). He also thanks Vlado Dobrev, Toshko Popov and all the local organizers of the V. International Workshop LIE THEORY AND ITS APPLICATIONS IN PHYSICS for the beautiful organization.

The work of N. A. was partially supported by CONICET, Agencia Córdoba Ciencia, ANPCyT and Secyt (UNC).

The work of M. B. was partially supported by NSERC Grant 9137.

References

1. N. Andruskiewitsch and M. Beattie, The coradical of the dual of a lifting of a quantum plane, preprint (2003), to appear in "Hopf algebras: Proceedings from an International Conference Held at DePaul University", M. Dekker.
2. N. Andruskiewitsch and H.-J. Schneider, Pointed Hopf algebras, in "Recent developments in Hopf algebra theory", eds. S. Montgomery and H.-J. Schneider, MSRI Publications 43, Cambridge Univ. Press, 1-68 (2002).
3. N. Andruskiewitsch and H.-J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order p^{3}, J. Algebra 209, 659 (1998).
4. N. Andruskiewitsch and H.-J. Schneider, Finite quantum groups over abelian groups of prime exponent, Ann. Sci. Ec. Norm. Super. 35, 1 (2002).
5. M. Beattie, Duals of pointed Hopf algebras, J. Algebra 262, 54 (2003).
6. M. Beattie, S. Dăscălescu, L. Grünenfelder, Constructing pointed Hopf algebras by Ore extensions, J. Algebra 225, 743 (2000).
7. S. Montgomery and S. Witherspoon, Irreducible representations of crossed products, J. Pure Appl. Algebra 129, 315 (1998).
8. D. E. Radford, On the coradical of a finite-dimensional Hopf algebra, Proc. Amer. Math. Soc. 53, 8 (1975).
9. M.E. Sweedler, Hopf algebras, New York: W.A. Benjamin, 336 p. (1969).
10. Shilin Yang, Representations of simple pointed Hopf algebras, J. Algebra and its Applications, to appear.
