COMPACT INVOLUTIONS OF SEMISIMPLE QUANTUM GROUPS *) **)

NICOLÁS ANDRUSKIEWITSCH[†])

FaMAF, Medina Allende y Haya de la Torre, 5000 Ciudad Universitaria, Cordóba, Argentina

Received 30 August 1994

It is proved that a complex cosemisimple Hopf algebra has at most one compact involution modulo automorphisms.

Contents

	Introduction	963
1	Killing forms on cosemisimple Hopf algebras	963
2	Killing forms and *-Hopf algebras	968
	References	972

Introduction

Let H be a complex cosemisimple Hopf algebra, that is, any finite dimensional H-comodule is completely reducible, or equivalently H is completely reducible as comodule via the comultiplication (see 1.3 (c) in [1]). We prove that two compact involutions of H [2] are necessarily conjugated by a Hopf algebra automorphism. This extends a well-known theorem of Cartan to the quantum case. Using results from [3], this was proved recently for finite Hopf algebras [4]. Since then, the author noticed however the paper [5] which contains a weak form of those results from [3] and enables him to extend the theorem to the infinite case. The second part of the proof is a variation of Mostow's proof of the above mentioned Cartan's theorem — see p. 182 in [6]. In the first section of this paper, we recall some results on cosemisimple Hopf algebras (some of them go back to [7]) and give a formula (1.8) for the Killing form — an invariant bilinear form on H arising from (a choice of) the integral and normalized by a further invariant condition. In the second, we prove the theorem. For this, we use an invariant sesquilinear form on H also derived from the integral, first considered in [8].

1 Killing forms on cosemisimple Hopf algebras

We shall work over an arbitrary field K in this section. The notation for Hopf algebras is standard: Δ , S, ε , denote respectively the comultiplication, the antipode, the counit; we use Sweedler [9] notation but drop the summatory.

**) Partially supported by CONICET, CONICOR and FaMAF (República Argentina).

^{*)} Presented at the 3rd Colloquium "Quantum Groups and Physics", Prague, 23-25 June 1994.

[†]) E-mail: andrus@mpim-bonn.mpg.de, andrus%mafcor@uunet.uu.net

1.1. Let *H* be a Hopf algebra. Recall that for a finite dimensional right comodule $c: V \to V \otimes H$, its left and right duals ${}^{d}c$ and c^{d} are the right *H*-comodule structures on V^* defined as follows. Let $(h_i)_{i \in I}$ be a basis of *H*. Then $c(v) = \sum_i T_i(v) \otimes h_i$, with $T_i \in \text{End } V$, $T_i = 0$ for all but a finite number of *i*. Define

$${}^{d}c(\alpha) = \sum_{i}{}^{t}T_{i}(\alpha)\otimes \mathcal{S}^{-1}(h_{i}), \quad c^{d}(\alpha) = \sum_{i}{}^{t}T_{i}(\alpha)\otimes \mathcal{S}(h_{i}),$$

for $\alpha \in V^*$. ${}^{d}V$, V^{d} denote V^* considered as *H*-comodule via, respectively, ${}^{d}c$, c^{d} . In the category of finite dimensional right comodules, the functors $V \mapsto {}^{d}V$ and $V \mapsto V^{d}$ are inverse to each other; therefore, the following are equivalent:

(a)
$$V \simeq (V^d)^d$$
; (b) $V \simeq {}^d({}^dV)$; (c) $V^d \simeq {}^dV$.

1.2. H^* has an algebra structure provided by the transposes of the multiplication and the counit. Any (left or right) *H*-comodule is then a (right or left) *H*^{*}-module; such *H*^{*}-modules are called rational. For example, *H* is an *H*^{*}-bimodule via

$$x \rightarrow h = h_{(1)}\langle x, h_{(2)} \rangle, \quad h \leftarrow x = \langle x, h_{(1)} \rangle h_{(2)}; \qquad h \in H, x \in H^*.$$

This correspondence is in fact an isomorphism between the categories of H-comodules and rational H^* -comodules. By psychological reasons, it is often helpful to state properties in terms of H^* -actions. By abuse of notation, we write $S: H^* \to H^*$ for the transpose of the antipode and $\varepsilon: H^* \to \mathbb{K}$ for evaluation in 1. The representations ρ^d and ${}^d\rho$ can be defined for any representation ρ of H^* ; for rational ones, they agree with those derived from the previous c^d , dc .

1.3. Define ψ^V : $(\operatorname{End} V)^* \to H$ by $\psi^V(\alpha) = \sum_i \langle \alpha, T_i \rangle h_i$. Then ψ^V is a morphism of coalgebras. Furthermore, it is injective if V is irreducible, and the simple subcoalgebras of H are exactly the $\operatorname{Im} \psi^V$ for V irreducible [1]. Thus, if H is cosemisimple,

$$H = \oplus_{V \in \widehat{H}} \operatorname{Im} \psi^V,$$

where \hat{H} denotes the set of isomorphism classes of irreducible H comodules. (We often confuse a class with a representant). Im ψ^V is the isotypic component of H, for the coaction given by the multiplication, of type V. We shall denote it alternatively as H_c or H_{ρ} ; ρ will be then the representation of H^* derived from the coaction c. We shall also identify \hat{H} with the set of isomorphism classes of irreducible rational H^* -modules.

Given a finite dimensional representation $\rho : H^* \to \operatorname{End} U$, let $\phi^U : U^* \otimes U \to H^{**}$ be the "matrix coefficient" map defined, for $v \in U$, $\alpha \in U^*$, by $\langle \phi^U_{\alpha \otimes v}, x \rangle = \langle \alpha, \rho(x)v \rangle$. Modulo the usual identifications $(\operatorname{End} U)^* \simeq \operatorname{End} U$ (provided by the trace) and $\operatorname{End} U \simeq U^* \otimes U$, it coincides with the usual transpose map ${}^t \rho : (\operatorname{End} U)^* \to H^{**}$:

$${}^t
ho(T) = \phi^U_{\alpha\otimes v}, \quad \text{if} \quad T\in \operatorname{End} U, \quad T(u) = \langle \alpha, u \rangle v.$$

Note that ${}^{t}\mathcal{S}(\phi_{\alpha\otimes v}^{V}) = \phi_{v\otimes\alpha}^{U^{d}}$. Let $\Theta : H \to H^{**}$ be the natural injection; then $\Theta\psi^{V} = \phi^{V}$ (V is an H-comodule and hence a rational H^{*} -module). Θ is a morphism of H^{*} -bimodules.

1.4. Let $d: W \to W \otimes H$ be another finite dimensional right comodule structure; then $V \otimes W$ also is an *H*-comodule whose coaction we shall denote $c \otimes d$. Let $S_j \in \operatorname{End} W$ be, similarly as above, such that $d(w) = \sum S_j(w) \otimes h_j$. Define a comodule structure on $\operatorname{Hom}(V, W)$ by $A \mapsto \sum_{i,j} S_j \circ A \circ T_i \otimes h_j S(h_i)$. The natural isomorphism between $\operatorname{Hom}(V, W)$ and $W \otimes V^*$ is in fact an *H*-comodule isomorphism between $\operatorname{Hom}(V, W)$ and $W \otimes V^*$. The isotypic component of trivial type of $\operatorname{Hom}(V, W)$ with respect to the adjoint action is exactly the space of *H*comodule maps. Therefore, if *W* and *V* are irreducible, the multiplicity of the trivial representation in $W \otimes V^d$ is 1 (resp., 0) if *W* and *V* are (resp., are not) isomorphic. In other words, $W \otimes V$ contains the trivial representation if and only if $W \simeq {}^dV$.

1.5. Recall that a linear functional $\int : H \to \mathbb{K}$ is a right integral if

$$\langle f, h \rangle 1 = \langle f, h_{(1)} \rangle h_{(2)}, \quad \text{forall } h \in H.$$
 (1.1)

It is equivalent to provide [10]

- (a) A right integral \int .
- (b) A bilinear form $((|)): H \times H \to \mathbb{K}$ satisfying

$$((uv|w)) = ((u|vw)),$$
 (1.2)

$$((x \to v|w)) = ((v|\mathcal{S}x \to w)), \tag{1.3}$$

for all $u, v, w \in H$, $x \in H^*$.

Explicitly, $\langle f, v \rangle = ((v|1)), ((u|v)) = \langle f, uv \rangle$. In general, if (|) is a bilinear form which satisfies (1.3), then $A \in H^*$ given by $\langle A, v \rangle = (v|1)$ is a right integral; (1.2) is a "normalization" condition which ensures the bijectivity of the correspondence. Indeed, if (|) satisfies (1.3) then ((u|v)) = (uv|1) also does, and in addition satisfies (1.2).

Now let $M, N \subseteq H$ be submodules for \rightarrow and let $\theta : M \rightarrow N^d$ be given by $\langle \theta(m), n \rangle = ((m|n)); \theta$ is a morphism of A-modules by (1.3). Therefore if M and N are both irreducible, θ is either 0 or an isomorphism. Taking $M = \mathbb{K}1 = H_{\varepsilon}$, the trivial submodule of H, we conclude that $\langle \int, v \rangle = 0$ for all $v \in N$, for all irreducible, non-trivial, N.

Now assume that H is cosemisimple. For $a \in H$, write $a = \sum_{\rho \in \widehat{H}} a_{\rho}$, with $a_{\rho} \in H_{\rho}$. By abuse of notation, we shall write a_{ε} .1 instead of a_{ε} with $a_{\varepsilon} \in \mathbb{K}$. Then

$$\langle f, h \rangle = a_{\varepsilon} \langle f, 1 \rangle.$$
 (1.4)

Conversely, the linear map defined by (1.4) and an arbitrary value of $\langle f, 1 \rangle$ is a right integral, because H_{ρ} is a subcoalgebra of H. It follows that, for H cosemisimple,

the space of right integrals is one-dimensional. Interchanging right by left and viceversa, one sees that any left integral also is expressed by (1.4); hence H is unimodular. In particular, by the "dual hand" version of the equivalence above, ((|)) also satisfies

$$((v \leftarrow \mathcal{S}x|w)) = ((v|w \leftarrow x)). \tag{1.5}$$

Finally, if H is an arbitrary Hopf algebra admitting a right integral such that $\langle f, 1 \rangle \neq 0$ then H is cosemisimple. See [7], where the formula (1.4) appears for the first time.

Lemma 1.6. Let H, H' be Hopf algebras, let $T : H' \to H$ be an isomorphism of coalgebras such that T(1) = 1 and let \int be a right integral for H. Then $\int \circ T$ is a right integral for H'. In particular, $\int \circ S$ is a left integral for H. If H is cosemisimple, T is an automorphism of Hopf algebras of H and \int is normalized by (f, 1) = 1, then ((Tu|Tv)) = ((u|v)), for all $u, v \in H$.

Proof. Straightforward.

1.7. Let H be a cosemisimple Hopf algebra as above.

Theorem (Thm. 3.3 in [5]). For each simple subcoalgebra C of H. $S^2C = C$.

Corollary. For any irreducible H-comodule c, c^{dd} is isomorphic to c.

Proof. Let V be the space of c. Then $S^2(\phi_{\alpha\otimes v}^V) = \phi_{\alpha\otimes v}^{V^{dd}} \in H_c \cap H_{c^{dd}}$ (modulo identification by Θ). Thus $H_c = H_{c^{dd}}$ and hence $c \simeq c^{dd}$. \Box

As observed in [5], the proof of this theorem implies that ((|)) is non-degenerate. This fact will also follow from formula (1.8) below.

1.8. We still assume that H is cosemisimple and normalize $\int by \langle f, 1 \rangle = 1$. The corresponding ((|)) will be named the Killing form of H. We shall give a formula for it in the spirit of [3]. Let $a = \sum_{c \in \widehat{H}} a_c$, $b = \sum_{c \in \widehat{H}} b_c \in H$. Then

$$((a|b)) = \sum_{c \in \widehat{H}} ((a_{c^d}|b_c)).$$

So we need only to precise $((|)) : H_{c^d} \otimes H_c \to \mathbb{K}$, for $c : V \to V \otimes H$ irreducible. Recall that we have identified $H_c \simeq (\text{End } V)^*$ with End V via the trace map. Fix $\mathcal{M} \in \operatorname{Aut} V$ such that

$$\sum_{i} T_{i} \mathcal{M} \otimes h_{i} = \sum_{i} \mathcal{M} T_{i} \otimes \mathcal{S}^{2}(h_{i}).$$
(1.6)

Let $\rho: H^* \to \text{End } V$ be the representation corresponding to c. Then (1.6) means that $\mathcal{M}\rho(\mathcal{S}^2 x) = \rho(x)\mathcal{M}$, for all $x \in H^*$. Let $S \in \text{End}(V^d)$, $T \in \text{End} V$ and define

$$B_{\varepsilon}(S,T) = \operatorname{Tr}({}^{t}ST\mathcal{M}).$$
(1.7)

Then

$$B_c(x \to S, T) = \operatorname{Tr} \left({}^t(\rho^d(x)S)T\mathcal{M} \right) = \operatorname{Tr} \left({}^tS^t(\rho^d(x))T\mathcal{M} \right) =$$

= Tr $\left({}^tS\rho(\mathcal{S}x)T\mathcal{M} \right) = B_c(S, \mathcal{S}x \to T).$

On the other hand,

$$B_{c}(S \leftarrow Sx, T) = \operatorname{Tr} \left({}^{t}(S\rho^{d}(Sx))T\mathcal{M} \right) = \operatorname{Tr} \left({}^{t}(\rho^{d}(Sx)){}^{t}ST\mathcal{M} \right) =$$

= Tr $\left({}^{t}ST\mathcal{M}^{t}(\rho^{d}(Sx)) \right) = \operatorname{Tr} \left({}^{t}ST\mathcal{M}\rho(S^{2}x) \right) =$
= Tr $\left({}^{t}ST\rho(x)\mathcal{M} \right) = B_{c}(S, T \leftarrow x).$

As End V is irreducible as H^* -bimodule, there is only one bilinear form satisfying (1.3) and (1.5), up to scalars. Therefore,

$$((a_{c^d}|b_c)) = C_c B_c(S,T) = C_c \operatorname{Tr}({}^t ST\mathcal{M}),$$

for some scalar C_c , where $S \in \text{End}(V^d)$ corresponds to a_{c^d} , and T to b_c . Next we compute C_c . The preceding $B_c(,)$ depends on \mathcal{M} and hence is also defined up to a scalar; what we need, therefore, is to take $C_c = 1$ and adjust \mathcal{M} .

So let a_{ρ^d} , b_{ρ} , S and T be as above. We wish to compute $((a_{\rho^d}|b_{\rho})) = ((a_{\rho^d}b_{\rho}|1))$ = d_{ε} , if $a_{\rho^d}b_{\rho} = \sum_{\tau \in \widehat{H}} d_{\tau}$, with $d_{\tau} \in H_{\tau}$ and $d_{\varepsilon}.1$, $d_{\varepsilon} \in \mathbb{K}$, instead of d_{ε} . We compute $a_{\rho^d}b_{\rho}$ (compare with [11]). $V^d \otimes V$ decomposes as direct sum of irreducible A-submodules: $V^d \otimes V = \bigoplus_{\tau \in J} U_{\tau}$. Let $\iota_{\tau} : U_{\tau} \to V^d \otimes V$ be the inclusion and $\pi_{\tau} : V^d \otimes V \to U_{\tau}$, the projection with respect to this direct sum. Let $R_{\tau\mu} = \pi_{\mu}(S \otimes T)\iota_{\tau} \in \operatorname{Hom}(U_{\tau}, U_{\mu})$. Then $S \otimes T = \sum_{\tau,\mu} \iota_{\mu}R_{\tau\mu}\pi_{\tau}$; that is, $(R_{\tau\mu})$ is the "partition" of $S \otimes T$ in blocks with respect to the decomposition above, and d_{ε} corresponds to $R_{\varepsilon\varepsilon}$. We already know that $(V^d \otimes V)_{\varepsilon}$ is one dimensional. A generator is $Z = \sum_{1 \leq h \leq n} \alpha_h \otimes \mathcal{M}v_h$, where (v_h) is a basis of V and (α_h) is the dual basis. Indeed,

$$(c^{d} \otimes c)(Z) = \sum_{1 \leq h \leq n, i, j \in I} {}^{t}T_{j}(\alpha_{h}) \otimes T_{i}(\mathcal{M}v_{h}) \otimes \mathcal{S}(h_{j})h_{i}$$

$$= \sum_{1 \leq h, k \leq n, i, j \in I} \langle v_{k}, {}^{t}T_{j}(\alpha_{h}) \rangle \alpha_{k} \otimes T_{i}(\mathcal{M}v_{h}) \otimes \mathcal{S}(h_{j})h_{i}$$

$$= \sum_{1 \leq k \leq n, i, j \in I} \alpha_{k} \otimes T_{i}(\mathcal{M}T_{j}v_{k}) \otimes \mathcal{S}(h_{j})h_{i}$$

$$= \sum_{1 \leq k \leq n, i, j \in I} \alpha_{k} \otimes T_{i}T_{j}\mathcal{M}(v_{k}) \otimes \mathcal{S}^{-1}(h_{j})h_{i} = Z \otimes 1.$$

Now the projector $\pi_{\varepsilon}: V^d \otimes V \to \mathbb{K}Z$ must be of the form $\pi_{\varepsilon}(P) = \langle \Omega, P \rangle Z$, for $P \in V^d \otimes V$, with $\Omega \in (V^d \otimes V)^*$. Let $\Omega = \sum_{1 \leq i \leq n} v_i \otimes \alpha_i$ (with the usual vector space identification of $(V^d \otimes V)^*$ with $V \otimes V^d$) and write tentatively π for $P \mapsto \langle \Omega, P \rangle Z$. Then $c_{\operatorname{Hom}(V^d \otimes V, \mathbb{K}Z)}(\pi) = \sum_{i,j \in I} \operatorname{id} \circ \pi \circ ({}^tT_i \otimes T_j) \otimes S(S(h_i)h_j)$. Evaluating in $\beta \otimes w$ the first factor, we get

$$\begin{split} \sum_{i,j\in I} \langle \Omega, {}^tT_i(\beta)\otimes T_j(w)\rangle &Z \otimes \mathcal{S}\left(\mathcal{S}(h_i)h_j\right) \\ &= \sum_{\substack{1 \leq k \leq n \\ i,j \in I}} \langle v_k, {}^tT_i(\beta)\rangle \langle \alpha_k, T_j(w)\rangle &Z \otimes \mathcal{S}\left(\mathcal{S}(h_i)h_j\right) = \end{split}$$

$$= \sum_{i,j \in I} \langle \beta, T_i T_j(w) \rangle Z \otimes S(S(h_i)h_j)$$
$$= \sum_{i \in I} \langle \beta, T_i(w) \rangle Z \otimes S(S(h_{i(1)})h_{i(2)})$$
$$= \langle \beta, w \rangle Z \otimes 1 = \langle \Omega, \beta \otimes w \rangle Z \otimes 1;$$

that is, π is invariant, and nonzero. As some multiple of it is a projector, $\pi(Z) = \langle \Omega, Z \rangle Z = \operatorname{Tr} Z \neq 0$. Therefore, we can normalize \mathcal{M} , as promised, by $\operatorname{Tr} \mathcal{M} = 1$. We can now write π_{ε} instead of π . But $d_{\varepsilon}Z = \pi_{\varepsilon}((S \otimes T)Z) = \langle \Omega, (S \otimes T)Z \rangle Z$ and hence

$$d_{\epsilon} = \langle \Omega, (S \otimes T)Z \rangle = \left\langle \sum_{i} v_{i} \otimes \alpha_{i}, \sum_{j} S \alpha_{j} \otimes T \mathcal{M} v_{j} \right\rangle$$
$$= \sum_{i,j} \langle \alpha_{i}, T \mathcal{M} v_{j} \rangle \langle \alpha_{j}, {}^{t}S v_{i} \rangle = \operatorname{Tr}({}^{t}S T \mathcal{M}).$$

We have proved

$$((a_{\rho^d}|b_{\rho})) = \operatorname{Tr}({}^t ST\mathcal{M}), \qquad (1.8)$$

where a_{ρ^d} corresponds to $S \in \text{End}(V^d)$, b_{ρ} to T and $\mathcal{M} \in \text{End} V$ satisfies (1.6) and $\text{Tr } \mathcal{M} = 1$.

1.10. Is the Killing form symmetric? We compute $((b_{\rho}|a_{\rho^d})) = ((b_{\tau^d}|a_{\tau}))$, for $\tau = \rho^d$. Note that (1.6) is equivalent to

$$({}^{t}\mathcal{M})^{-1}\rho^{d}(\mathcal{S}^{2}x) = \rho^{d}(x)({}^{t}\mathcal{M})^{-1}, \quad \text{for all } x \in H^{*}.$$

Also, if b_{ρ} corresponds to $T \in \text{End } V$ then it corresponds to $\mathcal{M}^{-1}T\mathcal{M} \in \text{End } V^{dd}$. Let $\mu = (\text{Tr}(M^{-1}))^{-1}$. Applying (1.8) to ρ^d we get

$$((b_{\rho}|a_{\rho^d})) = \mu \operatorname{Tr} \left({}^{t} (\mathcal{M}^{-1}T\mathcal{M}) S({}^{t}\mathcal{M})^{-1} \right) =$$

= $\mu \operatorname{Tr} \left({}^{t}T({}^{t}\mathcal{M})^{-1}S \right) = \mu \operatorname{Tr} \left({}^{t}S\mathcal{M}^{-1}T \right)$

Thus the Killing form is symmetric if and only if $\mathcal{M} = (\dim V)^{-1} \mathrm{id}_V$ for all irreducible V, if and only if $\mathcal{S}^2 = \mathrm{id}$. Indeed, $\mathcal{S}^2 b_{\rho}$ corresponds to $\mathcal{M}T\mathcal{M}^{-1} \in \mathrm{End}\,V$.

2 Killing forms and *-Hopf algebras

We assume in this section that $\mathbb{K} = \mathbb{C}$. We suppose further that H is a *-Hopf algebra, i.e., it is a *-algebra and the comultiplication is a morphism of *-algebras; H^* is then considered as *-algebra by $\langle x^*, v \rangle = \overline{\langle x, \mathcal{S}(v)^* \rangle}$. It is known that $(\mathcal{S}x)^* = \mathcal{S}^{-1}(x^*)$. For convenience, we shall denote $\mathcal{T}(x) = (\mathcal{S}x)^* = \mathcal{S}^{-1}(x^*)$.

Lemma 2.1. (i) The following data are equivalent:

(a) A right integral $\int : H \to \mathbb{C}$.

Compact involutions of semisimple quantum groups

- (b) A bilinear form ((|)) satisfying (1.2), (1.3).
- (c) A sesquilinear form $(|)_{\ell}$ satisfying

$$(uv|w)_{\ell} = (v|u^*w)_{\ell}, \qquad (2.1)$$

$$(x \to v | w)_{\ell} = (v | x^* \to w)_{\ell}.$$

$$(2.2)$$

- (ii) Also, the following are equivalent:
- (d) A left integral $\int : H \to \mathbb{C}$.
- (e) A bilinear form $((|))_r$ satisfying (1.2), (1.6).
- (f) A sesquilinear form (|), satisfying

$$(uv|w)_r = (u|v^*w)_r (2.3)$$

$$(v \leftarrow x|w)_r = (v|w \leftarrow x^*)_r.$$
(2.4)

Proof. We have already discussed the equivalence between (a) and (b), resp. (d) and (e). The correspondence between (b) and (c), resp. (e) and (f), is given by

$$(v|w)_{\ell} = ((w^*|v)), \quad \text{resp.} \quad (v|w)_r = ((v^*|w))_r, \quad (2.5)$$

and correspondingly, $((v|w)) = (w|v^*)_{\ell}$, $((v|w))_r = (v^*|w)_r$. For the proof, we need the formulas

$$(x \rightarrow v)^* = (Sx)^* \rightarrow v^*, \qquad (v \leftarrow x)^* = v^* \leftarrow (Sx)^*.$$

Thus $(v|x^* \rightarrow w)_{\ell} = (((x^* \rightarrow w)^*|v)) = ((\mathcal{S}^{-1}x \rightarrow w^*|v)) = ((w^*|x \rightarrow v)) = (x \rightarrow v|w)_{\ell}$, and the rest is similar.

2.2. Let \int be a right integral and let Λ be defined by $\langle \Lambda, h \rangle = \overline{\langle \int, h^* \rangle}$. Then Λ is also a right integral:

$$\langle \Lambda, h_{(1)} \rangle h_{(2)} = \overline{\langle f, h_{(1)}^* \rangle} h_{(2)} = (\langle f, h_{(1)}^* \rangle h_{(2)}^*)^* = (\langle f, h^* \rangle 1)^* = \langle \Lambda, h \rangle 1.$$

Assume now that H is cosemisimple. We shall normalize, in what follows, \int by $\langle \int, 1 \rangle = 1$. Then, by the uniqueness of the right integral, $\int = \Lambda$. It follows that the corresponding sesquilinear form (|)_t is Hermitian:

$$(v|w)_{\ell} = \langle f, w^*v \rangle = \langle \Lambda, w^*v \rangle = \overline{\langle f, (w^*v)^* \rangle} = \overline{(w|v)_{\ell}}.$$

Remark. These facts were essentially first observed by Majid [8].

2.3. A *-representation of H^* is a representation $\rho : H^* \to \text{End } V$ together with a non-degenerate sesquilinear form (|) such that $(\rho(x)v|w) = (v|\rho(x^*)w)$, for all $x \in H^*$, $v, w \in V$. Such form shall be called invariant. We consider in the following only finite dimensional rational representations. A representation is a

-representation if and only if there exists a sesquilinear isomorphism $J: V \to V^d$ such that $J(\rho(x)w) = \rho^d(\mathcal{T}x)J(w)$. Explicitly, $\langle Jw, v \rangle = (v|w)$. If $T \in \text{End } V$, define as usual $T^ \in \text{End } V$ by $(Tv|w) = (v|T^*w)$, or equivalently by $T^* = J^{-1t}TJ$.

Let V be a right H-comodule and let T_i as in 1.1. Let $\mathfrak{S} = \sum_i T_i \otimes h_i$; it follows easily from the comodule axioms that \mathfrak{S} is inversible and $\mathfrak{S}^{-1} = \sum_i T_i \otimes \mathcal{S}(h_i)$, in the algebra End $V \otimes H$. The last is a *-algebra once a non-degenerate sesquilinear form is chosen. It can be shown that the corresponding rational representation of H^* is a *-representation if and only if $\mathfrak{S}^{-1} = \mathfrak{S}^*$: hence the present definition agrees with that of [2].

Let V be a *-representation. Let $(J^{-1})^{\dagger}: V^* \to V$ be given by $\langle \mu, (J^{-1})^{\dagger} \alpha \rangle = \overline{\langle \alpha, J^{-1} \mu \rangle}$. Then the * in H of the matrix coefficients is given (modulo Θ) by [11], p. 306

$$\phi_{\alpha\otimes\nu}^{V}{}^* = \phi_{(J^{-1})\dagger_{\alpha\otimes J\nu}}^{V^d}.$$
(2.6)

Equivalently, if $T \in \text{End } V$ corresponds to $w \in H$, then w^* corresponds to

$$JTJ^{-1} \in \operatorname{End} V^d \,. \tag{2.7}$$

Here one uses that $\operatorname{Tr}(JAJ^{-1}) = \overline{\operatorname{Tr} A}$, for $A \in \operatorname{End} V$.

If (|) is an invariant form, then $(|)_{opp}$, given by $(v|w)_{opp} = \overline{(w|v)}$, also is. Assume that V is irreducible. Then invariant forms are unique up to multiplication of a scalar; in particular $(|)_{opp} = \lambda(|)$ for some scalar λ . Applying this twice, we see that $\lambda\overline{\lambda} = 1$. Multiplying (|) by a suitable scalar, we can assume that $\lambda = 1$, i.e., that (|) is Hermitian.

Let V be a *-representation, with invariant form (|), and let $\mathcal{M} \in \operatorname{Aut} V$ satisfying (1.6). Let (|)_d be the form on V^d defined by $(\mu|\eta)_d = (\mathcal{M}^{-1}J^{-1}\eta|J^{-1}\mu)$; it is also invariant. If V is irreducible, then V^d also is; assuming this, we shall normalize first (|) to get an Hermitian form, and second \mathcal{M} , to get an Hermitian form on V^d . In such case, $\mathcal{M} = \mathcal{M}^*$, i.e., \mathcal{M} is self-adjoint. Now asume in addition that (|) is an inner product. Then (|)_d also is, if and only if \mathcal{M} is positive definite; in such case, $\operatorname{Tr} \mathcal{M} > 0$. Conversely, if V^d admits an invariant inner product, then some multiple of \mathcal{M} is positive definite.

A representation is not always a *-representation. For example, let H^* be the group algebra of an abelian finite group with the involution $(\sum_{g \in G} \lambda_g e_g)^* = \sum_{g \in G} \overline{\lambda_g} e_g$. Let χ be a one-dimensional representation of G which is not real; this admits no sesquilinear invariant form.

2.4. Now we are ready to state the key point of the proof of the main result. We first recall a definition [2].

Definition. We shall say that H is a compact quantum group if any rational, finite dimensional, representation of H^* carries an invariant inner product.

By a standard argument, if H is compact, then is cosemisimple. It is known (see e.g. [12], [13]) that completions of compact quantum groups as in the preceding definition with respect to a suitable norm give rise to compact quantum groups as

in [2]; the preceding notion corresponds to that of "algebras of regular functions" in Woronowicz definition [2].

Proposition. H is a compact quantum group if and only if the hermitian form $(|)_{\ell}$ is positive defined.

Proof. If $(|)_{\ell}$ is positive defined then any H^* -submodule of H (for \rightarrow) carries an invariant inner product and H is a compact quantum group. Conversely, assume that H is a compact quantum group. Let $v \in H_{\rho}$, $w \in H_{\tau}$; then $w^* \in H_{\tau^d}$ by (2.6), and $(v|w)_{\ell} = 0$ if ρ and τ are not isomorphic, by (2.5). So assume that $\rho = \tau$ and let $S, T \in \text{End } V$ correspond to v, w, respectively. By (1.7) and (2.7), we have

$$(v|w)_{\ell} = ((w^*|v)) = \operatorname{Tr} \left({}^{t} (JTJ^{-1})S\mathcal{M} \right) = \operatorname{Tr} \left({}^{t}\mathcal{M}^{t}SJTJ^{-1} \right)$$

= Tr $\left(J\mathcal{M}S^*TJ^{-1} \right) = \operatorname{Tr} \left(\mathcal{M}S^*T \right) = \operatorname{Tr} \left(T^*S\mathcal{M} \right)$

(This formula also implies that $(|)_{\ell}$ is Hermitian). Thus $(v|v)_{\ell} = \text{Tr}(S^*S\mathcal{M}) > 0$ if $S \neq 0$, because \mathcal{M} , normalized by $\text{Tr} \mathcal{M} = 1$, is positive definite. \Box

2.5. The preceding Proposition enables us to adapt Mostow's proof of Cartan's theorem of the uniqueness of compact involutions (see Ch. II, Thm. 7.1 in [6]) to our setting. See also Proposition 2 in [4].

Proposition. Let H be a compact quantum group with respect to * and let $x \mapsto x^{\#}$ be another structure of *-Hopf algebra on H. Then there exists a Hopf algebra automorphism T of H such that # and $T * T^{-1}$ commute.

Proof. Let N be given by $N(u) = (u^*)^{\#}$; this is a Hopf algebra automorphism and any finite dimensional submodule of H is contained in some finite dimensional submodule W such that N(W) = W. By Proposition 2.4, the Hermitian form $(|)_{\ell}$ (defined with respect to *) is positive definite. From Lemma 1.7, we deduce that N is self-adjoint with respect to $(|)_{\ell}$. Then the Hopf algebra automorphism $P = N^2$ is diagonalizable with positive eigenvalues; let $(X_i)_{i \in I}$ be a basis of H such that $PX_i = \lambda_i X_i$. For each $s \in \mathbb{R}$, one has a well-defined linear automorphism P^s of H. We claim that P^s is also a Hopf algebra automorphism. Let c_{ij}^k be constants such that $\Delta(X_k) = \sum_{i,j} c_{ij}^k X_i \otimes X_j$, for all k. Hence

$$\lambda_i \lambda_j c_{ij}^k = \lambda_k c_{ij}^k$$

for all i, j, k and a fortiori $\lambda_i^s \lambda_j^s c_{ij}^k = \lambda_k^s c_{ij}^k$, that is, P^s preserves the comultiplication. With similar arguments, one shows that P^s is a morphism of Hopf algebras. Now $T = P^{1/4}$ does the job, cf. p. 183 in [6].

Theorem 2.6. Let H be a compact quantum group with respect to * and also with respect to #. Then there exists a Hopf algebra automorphism T such such that *T = T#.

Proof. Taking into account that H_{ρ} is *- and #-stable, the proof in [6], p. 184, (see also [4]) can be adapted here.

The final writing of this paper was done at the University of Poitiers. I thank the kind hospitality of Thierry Levasseur and the Department of Mathematics.

References

- [1] Green J. A.: J. Algebra 41 (1976) 137.
- [2] Woronowicz S. L.: Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613.
- [3] Larson R. G. and Radford D. E.: Amer. J. Math. 110 (1988) 187.
- [4] Andruskiewitsch N.: Compact involutions of finite quantum groups. Preprint, March 1994.
- [5] Larson R. G.: J. Algebra 17 (1971) 352.
- [6] Helgason S.: Differential geometry, Lie groups and symmetric spaces. Academic Press, New York-San Francisco-London, 1978.
- [7] Sweedler M.: Ann. Math. 89 (1969) 323.
- [8] Majid S.: Int. J. Mod. Phys. A 8 (1993) 4521.
- [9] Sweedler M.: Hopf algebras. Benjamin, New York, 1969.
- [10] Larson R.G. and Sweedler M.: Amer. J. Math. 91 (1969) 75.
- [11] Andruskiewitsch N.: Bull. Soc. Math. Fr. 120 (1992) 297.
- [12] Guichardet A.: Introduction aux groupes quantiques (point de vue formelle). Preprint Ecole Polytechnique, August 1993.
- [13] Dijkhuizen M. and Koornwinder T.: CQG algebras: a direct algebraic approach to compact quantum groups. Lett. Math. Phys. (to appear).