COMPACT INVOLUTIONS OF SEMISIMPLE QUANTUM GROUPS $\left.{ }^{*}\right)^{* *}$)

Nicolás Andruskiewitsch ${ }^{\dagger}$)
FaMAF, Medina Allende y Haya de la Torre, 5000 Ciudad Universitaria, Cordóba, Argentina

Received 30 August 1994

Abstract

It is proved that a complex cosemisimple Hopf algebra has at most one compact involution modulo automorphisms.

\section*{Contents} \qquadIntroduction963 1 Killing forms on cosemisimple Hopf algebras 963 2 Killing forms and *-Hopf algebras 968 References 972

Introduction

Let H be a complex cosemisimple Hopf algebra, that is, any finite dimensional H-comodule is completely reducible, or equivalently H is completely reducible as comodule via the comultiplication (see 1.3 (c) in [1]). We prove that two compact involutions of H [2] are necessarily conjugated by a Hopf algebra automorphism. This extends a well-known theorem of Cartan to the quantum case. Using results from [3], this was proved recently for finite Hopf algebras [4]. Since then, the author noticed however the paper [5] which contains a weak form of those results from [3] and enables him to extend the theorem to the infinite case. The second part of the proof is a variation of Mostow's proof of the above mentioned Cartan's theorem - see p. 182 in [6]. In the first section of this paper, we recall some results on cosemisimple Hopf algebras (some of them go back to [7]) and give a formula (1.8) for the Killing form - an invariant bilinear form on H arising from (a choice of) the integral and normalized by a further invariant condition. In the second, we prove the theorem. For this, we use an invariant sesquilinear form on H also derived from the integral, first considered in [8].

1 Killing forms on cosemisimple Hopf algebras

We shall work over an arbitrary field \mathbb{K} in this section. The notation for Hopf algebras is standard: $\Delta, \mathcal{S}, \varepsilon$, denote respectively the comultiplication, the antipode, the counit; we use Sweedler [9] notation but drop the summatory.

[^0]1.1. Let H be a Hopf algebra. Recall that for a finite dimensional right comodule $c: V \rightarrow V \otimes H$, its left and right duals ${ }^{d} c$ and c^{d} are the right H-comodule structures on V^{*} defined as follows. Let $\left(h_{i}\right)_{i \in I}$ be a basis of H. Then $c(v)=\sum_{i} T_{i}(v) \otimes h_{i}$, with $T_{i} \in \operatorname{End} V, T_{i}=0$ for all but a finite number of i. Define
$$
{ }^{d} c(\alpha)=\sum_{i}{ }^{t} T_{i}(\alpha) \otimes \mathcal{S}^{-1}\left(h_{i}\right), \quad c^{d}(\alpha)=\sum_{i}{ }^{t} T_{i}(\alpha) \otimes \mathcal{S}\left(h_{i}\right)
$$
for $\alpha \in V^{*} .{ }^{d} V, V^{d}$ denote V^{*} considered as H-comodule via, respectively, ${ }^{d} c, c^{d}$. In the category of finite dimensional right comodules, the functors $V \mapsto{ }^{d} V$ and $V \mapsto V^{d}$ are inverse to each other; therefore, the following are equivalent:
(a) $V \simeq\left(V^{d}\right)^{d} ;$
(b) $V \simeq{ }^{d}\left({ }^{d} V\right) ;$
(c) $V^{d} \simeq{ }^{d} V$.
1.2. H^{*} has an algebra structure provided by the transposes of the multiplication and the counit. Any (left or right) H-comodule is then a (right or left) H^{*}-module; such H^{*}-modules are called rational. For example, H is an H^{*}-bimodule via
$$
x \rightarrow h=h_{(1)}\left\langle x, h_{(2)}\right\rangle, \quad h-x=\left\langle x, h_{(1)}\right\rangle h_{(2)} ; \quad h \in H, x \in H^{*} .
$$

This correspondence is in fact an isomorphism between the categories of H-comodules and rational H^{*}-comodules. By psychological reasons, it is often helpful to state properties in terms of H^{*}-actions. By abuse of notation, we write $\mathcal{S}: H^{*} \rightarrow H^{*}$ for the transpose of the antipode and $\varepsilon: H^{*} \rightarrow \mathbb{K}$ for evaluation in 1 . The representations ρ^{d} and ${ }^{d} \rho$ can be defined for any representation ρ of H^{*}; for rational ones, they agree with those derived from the previous $c^{d},{ }^{d} c$.
1.3. Define $\psi^{V}:(\text { End } V)^{*} \rightarrow H$ by $\psi^{V}(\alpha)=\sum_{i}\left\langle\alpha, T_{i}\right\rangle h_{i}$. Then ψ^{V} is a morphism of coalgebras. Furthermore, it is injective if V is irreducible, and the simple subcoalgebras of H are exactly the $\operatorname{Im} \psi^{V}$ for V irreducible [1]. Thus, if H is cosemisimple,

$$
H=\oplus_{V \in \widehat{H}} \operatorname{Im} \psi^{V}
$$

where \hat{H} denotes the set of isomorphism classes of irreducible H comodules. (We often confuse a class with a representant). $\operatorname{Im} \psi^{V}$ is the isotypic component of H, for the coaction given by the multiplication, of type V. We shall denote it alternatively as H_{c} or $H_{\rho} ; \rho$ will be then the representation of H^{*} derived from the coaction c. We shall also identify \widehat{H} with the set of isomorphism classes of irreducible rational H^{*}-modules.

Given a finite dimensional representation $\rho: H^{*} \rightarrow$ End U, let $\phi^{U}: U^{*} \otimes$ $U \rightarrow H^{* *}$ be the "matrix coefficient" map defined, for $v \in U, \alpha \in U^{*}$, by $\left\langle\phi_{\alpha \otimes v}^{U}, x\right\rangle=\langle\alpha, \rho(x) v\rangle$. Modulo the usual identifications (End U)* $\simeq \operatorname{End} U$ (provided by the trace) and End $U \simeq U^{*} \otimes U$, it coincides with the usual transpose map ${ }^{t} \rho:(\operatorname{End} U)^{*} \rightarrow H^{* *}:$

$$
{ }^{t} \rho(T)=\phi_{\alpha \otimes v}^{U}, \quad \text { if } \quad T \in \operatorname{End} U, \quad T(u)=\langle\alpha, u\rangle v
$$

Note that ${ }^{t} \mathcal{S}\left(\phi_{\alpha \otimes v}^{V}\right)=\phi_{v \otimes \alpha}^{U^{d}}$. Let $\Theta: H \rightarrow H^{* *}$ be the natural injection; then $\Theta \psi^{V}=\phi^{V}$ (V is an H-comodule and hence a rational H^{*}-module). Θ is a morphism of H^{*}-bimodules.
1.4. Let $d: W \rightarrow W \otimes H$ be another finite dimensional right comodule structure; then $V \otimes W$ also is an H-comodule whose coaction we shall denote $c \otimes d$. Let $S_{j} \in$ End W be, similarly as above, such that $d(w)=\sum S_{j}(w) \otimes h_{j}$. Define a comodule structure on $\operatorname{Hom}(V, W)$ by $A \mapsto \sum_{i, j} S_{j} \circ A \circ T_{i} \otimes h_{j} \mathcal{S}\left(h_{i}\right)$. The natural isomorphism between $\operatorname{Hom}(V, W)$ and $W \otimes V^{*}$ is in fact an H-comodule isomorphism between $\operatorname{Hom}(V, W)$ and $W \otimes V^{d}$. The isotypic component of trivial type of $\operatorname{Hom}(V, W)$ with respect to the adjoint action is exactly the space of H comodule maps. Therefore, if W and V are irreducible, the multiplicity of the trivial representation in $W \otimes V^{d}$ is 1 (resp., 0) if W and V are (resp., are not) isomorphic. In other words, $W \otimes V$ contains the trivial representation if and only if $W \simeq{ }^{d} V$.
1.5. Recall that a linear functional $\int: H \rightarrow \mathbb{K}$ is a right integral if

$$
\begin{equation*}
\left\langle\int, h\right\rangle 1=\left\langle\int, h_{(1)}\right\rangle h_{(2)}, \quad \text { forall } h \in H . \tag{1.1}
\end{equation*}
$$

It is equivalent to provide [10]
(a) A right integral \int.
(b) A bilinear form ((|)):H×H $\rightarrow \mathbb{K}$ satisfying

$$
\begin{align*}
((u v \mid w)) & =((u \mid v w)) \tag{1.2}\\
((x-v \mid w)) & =((v \mid \mathcal{S} x-w)) \tag{1.3}
\end{align*}
$$

for all $u, v, w \in H, x \in H^{*}$.
Explicitly, $\left\langle\int, v\right\rangle=((v \mid 1)),((u \mid v))=\left\langle\int, u v\right\rangle$. In general, if (\mid) is a bilinear form which satisfies (1.3), then $\Lambda \in H^{*}$ given by $\langle\Lambda, v\rangle=(v \mid 1)$ is a right integral; (1.2) is a "normalization" condition which ensures the bijectivity of the correspondence. Indeed, if (\mid) satisfies (1.3) then $((u \mid v))=(u v \mid 1)$ also does, and in addition satisfies (1.2).

Now let $M, N \subseteq H$ be submodules for - and let $\theta: M \rightarrow N^{d}$ be given by $\langle\theta(m), n\rangle=((m \mid n)) ; \theta$ is a morphism of A-modules by (1.3). Therefore if M and N are both irreducible, θ is either 0 or an isomorphism. Taking $M=\mathbb{K} 1=H_{\varepsilon}$, the trivial submodule of H, we conclude that $\left\langle\int, v\right\rangle=0$ for all $v \in N$, for all irreducible, non-trivial, N.

Now assume that H is cosemisimple. For $a \in H$, write $a=\sum_{\rho \in \hat{H}} a_{\rho}$, with $a_{\rho} \in H_{\rho}$. By abuse of notation, we shall write $a_{\varepsilon} .1$ instead of a_{ε} with $a_{\varepsilon} \in \mathbb{K}$. Then

$$
\begin{equation*}
\left\langle\int, h\right\rangle=a_{\varepsilon}\left\langle\int, 1\right\rangle \tag{1.4}
\end{equation*}
$$

Conversely, the linear map defined by (1.4) and an arbitrary value of $\left\langle\int, 1\right\rangle$ is a right integral, because H_{ρ} is a subcoalgebra of H. It follows that, for H cosemisimple,
the space of right integrals is one-dimensional. Interchanging right by left and viceversa, one sees that any left integral also is expressed by (1.4); hence H is unimodular. In particular, by the "dual hand" version of the equivalence above, ((|)) also satisfies

$$
\begin{equation*}
((v \leftharpoonup \mathcal{S} x \mid w))=((v \mid w-x)) \tag{1.5}
\end{equation*}
$$

Finally, if H is an arbitrary Hopf algebra admitting a right integral such that $\left\langle\int, 1\right\rangle \neq 0$ then H is cosemisimple. See [7], where the formula (1.4) appears for the first time.
Lemma 1.6. Let H, H^{\prime} be Hopf algebras, let $T: H^{\prime} \rightarrow H$ be an isomorphism of coalgebras such that $T(1)=1$ and let \int be a right integral for H. Then $\int \circ T$ is a right integral for H^{\prime}. In particular, $\int \circ \mathcal{S}$ is a left integral for H. If H is cosemisimple, T is an automorphism of Hopf algebras of H and \int is normalized by $\left\langle\int, 1\right\rangle=1$, then $((T u \mid T v))=((u \mid v))$, for all $u, v \in H$.
Proof. Straightforward.
1.7. Let H be a cosemisimple Hopf algebra as above.

Theorem (Thm. 3.3 in [5]). For each simple subcoalgebra C of $H, \mathcal{S}^{2} C=C$.
Corollary. For any irreducible H-comodule $c, c^{d d}$ is isomorphic to c.
Proof. Let V be the space of c. Then $\mathcal{S}^{2}\left(\phi_{\alpha \otimes v}^{V}\right)=\phi_{\alpha \otimes v}^{V^{d d}} \in H_{c} \cap H_{c^{d d}}$ (modulo identification by Θ). Thus $H_{c}=H_{c^{d d}}$ and hence $c \simeq c^{d d}$.

As observed in [5], the proof of this theorem implies that $((\mid))$ is non-degenerate. This fact will also follow from formula (1.8) below.
1.8. We still assume that H is cosemisimple and normalize \int by $\left\langle\int, 1\right\rangle=1$. The corresponding $((1))$ will be named the Killing form of H. We shall give a formula for it in the spirit of [3]. Let $a=\sum_{c \in \widehat{H}} a_{c}, b=\sum_{c \in \hat{H}} b_{c} \in H$. Then

$$
((a \mid b))=\sum_{c \in \widehat{H}}\left(\left(a_{c^{d}} \mid b_{c}\right)\right)
$$

So we need only to precise $((\mid)): H_{c^{d}} \otimes H_{c} \rightarrow \mathbb{K}$, for $c: V \rightarrow V \otimes H$ irreducible. Recall that we have identified $H_{c} \simeq(\text { End } V)^{*}$ with End V via the trace map. Fix $\mathcal{M} \in \operatorname{Aut} V$ such that

$$
\begin{equation*}
\sum_{i} T_{i} \mathcal{M} \otimes h_{i}=\sum_{i} \mathcal{M} T_{i} \otimes \mathcal{S}^{2}\left(h_{i}\right) \tag{1.6}
\end{equation*}
$$

Let $\rho: H^{*} \rightarrow$ End V be the representation corresponding to c. Then (1.6) means that $\mathcal{M} \rho\left(\mathcal{S}^{2} x\right)=\rho(x) \mathcal{M}$, for all $x \in H^{*}$. Let $S \in \operatorname{End}\left(V^{d}\right), T \in \operatorname{End} V$ and define

$$
\begin{equation*}
B_{c}(S, T)=\operatorname{Tr}\left({ }^{t} S T \mathcal{M}\right) \tag{1.7}
\end{equation*}
$$

Then

$$
\begin{aligned}
B_{c}(x-S, T) & =\operatorname{Tr}\left({ }^{t}\left(\rho^{d}(x) S\right) T \mathcal{M}\right)=\operatorname{Tr}\left({ }^{t} S^{t}\left(\rho^{d}(x)\right) T \mathcal{M}\right)= \\
& =\operatorname{Tr}\left({ }^{t} S \rho(S x) T \mathcal{M}\right)=B_{c}(S, S x-T)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
B_{c}(S \leftharpoonup \mathcal{S} x, T) & =\operatorname{Tr}\left({ }^{t}\left(S \rho^{d}(\mathcal{S} x)\right) T \mathcal{M}\right)=\operatorname{Tr}\left({ }^{t}\left(\rho^{d}(\mathcal{S} x)\right)^{t} S T \mathcal{M}\right)= \\
& =\operatorname{Tr}\left({ }^{t} S T \mathcal{M}^{t}\left(\rho^{d}(\mathcal{S} x)\right)\right)=\operatorname{Tr}\left({ }^{t} S T \mathcal{M} \rho\left(\mathcal{S}^{2} x\right)\right)= \\
& =\operatorname{Tr}\left({ }^{t} S T \rho(x) \mathcal{M}\right)=B_{c}(S, T \leftharpoonup x)
\end{aligned}
$$

As End V is irreducible as H^{*}-bimodule, there is only one bilinear form satisfying (1.3) and (1.5), up to scalars. Therefore,

$$
\left(\left(a_{c^{d}} \mid b_{c}\right)\right)=C_{c} B_{c}(S, T)=C_{c} \operatorname{Tr}\left({ }^{t} S T \mathcal{M}\right),
$$

for some scalar C_{c}, where $S \in \operatorname{End}\left(V^{d}\right)$ corresponds to $a_{c^{d}}$, and T to b_{c}. Next we compute C_{c}. The preceding $B_{c}($,) depends on \mathcal{M} and hence is also defined up to a scalar; what we need, therefore, is to take $C_{c}=1$ and adjust \mathcal{M}.

So let $a_{\rho^{d}}, b_{\rho}, S$ and T be as above. We wish to compute $\left(\left(a_{\rho^{d}} \mid b_{\rho}\right)\right)=\left(\left(a_{\rho^{d}} b_{\rho} \mid 1\right)\right)$ $=d_{\varepsilon}$, if $a_{\rho^{d}} b_{\rho}=\sum_{\tau \in \hat{H}} d_{\tau}$, with $d_{\tau} \in H_{\tau}$ and $d_{\varepsilon} .1, d_{\varepsilon} \in \mathbb{K}$, instead of d_{ε}. We compute $a_{\rho^{d}} b_{\rho}$ (compare with [11]). $V^{d} \otimes V$ decomposes as direct sum of irreducible A-submodules: $V^{d} \otimes V=\oplus_{\tau \in J} U_{\tau}$. Let $\iota_{\tau}: U_{\tau} \rightarrow V^{d} \otimes V$ be the inclusion and $\pi_{\tau}: V^{d} \otimes V \rightarrow U_{\tau}$, the projection with respect to this direct sum. Let $R_{\tau \mu}=\pi_{\mu}(S \otimes T) \iota_{\tau} \in \operatorname{Hom}\left(U_{\tau}, U_{\mu}\right)$. Then $S \otimes T=\sum_{\tau, \mu} \iota_{\mu} R_{\tau \mu} \pi_{\tau} ;$ that is, $\left(R_{\tau \mu}\right)$ is the "partition" of $S \otimes T$ in blocks with respect to the decomposition above, and d_{ε} corresponds to $R_{\varepsilon \varepsilon}$. We already know that $\left(V^{d} \otimes V\right)_{\varepsilon}$ is one dimensional. A generator is $Z=\sum_{1 \leq h \leq n} \alpha_{h} \otimes \mathcal{M} v_{h}$, where $\left(v_{h}\right)$ is a basis of V and $\left(\alpha_{h}\right)$ is the dual basis. Indeed,

$$
\begin{aligned}
\left(c^{d} \otimes c\right)(Z) & =\sum_{1 \leq h \leq n, i, j \in I}{ }^{t} T_{j}\left(\alpha_{h}\right) \otimes T_{i}\left(\mathcal{M} v_{h}\right) \otimes \mathcal{S}\left(h_{j}\right) h_{i} \\
& =\sum_{1 \leq h, k \leq n, i, j \in I}\left\langle v_{k},{ }^{t} T_{j}\left(\alpha_{h}\right)\right\rangle \alpha_{k} \otimes T_{i}\left(\mathcal{M} v_{h}\right) \otimes \mathcal{S}\left(h_{j}\right) h_{i} \\
& =\sum_{1 \leq k \leq n, i, j \in I} \alpha_{k} \otimes T_{i}\left(\mathcal{M} T_{j} v_{k}\right) \otimes \mathcal{S}\left(h_{j}\right) h_{i} \\
& =\sum_{1 \leq k \leq n, i, j \in I} \alpha_{k} \otimes T_{i} T_{j} \mathcal{M}\left(v_{k}\right) \otimes \mathcal{S}^{-1}\left(h_{j}\right) h_{i}=Z \otimes 1 .
\end{aligned}
$$

Now the projector $\pi_{\varepsilon}: V^{d} \otimes V \rightarrow \mathbb{K} Z$ must be of the form $\pi_{\varepsilon}(P)=\langle\Omega, P\rangle Z$, for $P \in V^{d} \otimes V$, with $\Omega \in\left(V^{d} \otimes V\right)^{*}$. Let $\Omega=\sum_{1 \leq i \leq n} v_{i} \otimes \alpha_{i}$ (with the usual vector space identification of $\left(V^{d} \otimes V\right)^{*}$ with $\left.V \otimes V^{\bar{d}}\right)$ and write tentatively π for $P \mapsto\langle\Omega, P\rangle Z$. Then $c_{\text {Hom }\left(V^{d} \otimes V, \mathbb{K}\right)}(\pi)=\sum_{i, j \in I}$ id $\circ \pi \circ\left({ }^{t} T_{i} \otimes T_{j}\right) \otimes \mathcal{S}\left(\mathcal{S}\left(h_{i}\right) h_{j}\right)$. Evaluating in $\beta \otimes w$ the first factor, we get

$$
\begin{aligned}
\sum_{i, j \in I}\left\langle\Omega,{ }^{t} T_{i}(\beta) \otimes T_{j}(w)\right\rangle Z & \otimes \mathcal{S}\left(\mathcal{S}\left(h_{i}\right) h_{j}\right) \\
& =\sum_{\substack{1 \leq k \leq n \\
i, j \in I}}\left\langle v_{k},{ }^{t} T_{i}(\beta)\right\rangle\left\langle\alpha_{k}, T_{j}(w)\right\rangle Z \otimes \mathcal{S}\left(\mathcal{S}\left(h_{i}\right) h_{j}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i, j \in I}\left\langle\beta, T_{i} T_{j}(w)\right\rangle Z \otimes \mathcal{S}\left(\mathcal{S}\left(h_{i}\right) h_{j}\right) \\
& =\sum_{i \in I}\left\langle\beta, T_{i}(w)\right\rangle Z \otimes \mathcal{S}\left(\mathcal{S}\left(h_{i(1)}\right) h_{i(2)}\right) \\
& =\langle\beta, w\rangle Z \otimes 1=\langle\Omega, \beta \otimes w\rangle Z \otimes 1 ;
\end{aligned}
$$

that is, π is invariant, and nonzero. As some multiple of it is a projector, $\pi(Z)=$ $\langle\Omega, Z\rangle Z=\operatorname{Tr} Z \neq 0$. Therefore, we can normalize \mathcal{M}, as promised, by $\operatorname{Tr} \mathcal{M}=1$. We can now write π_{ε} instead of π. But $d_{\varepsilon} Z=\pi_{\varepsilon}((S \otimes T) Z)=\langle\Omega,(S \otimes T) Z\rangle Z$ and hence

$$
\begin{aligned}
d_{\varepsilon}=\langle\Omega,(S \otimes T) Z\rangle & =\left\langle\sum_{i} v_{i} \otimes \alpha_{i}, \sum_{j} S \alpha_{j} \otimes T \mathcal{M} v_{j}\right\rangle \\
& =\sum_{i, j}\left\langle\alpha_{i}, T \mathcal{M} v_{j}\right\rangle\left\langle\alpha_{j},{ }^{t} S v_{i}\right\rangle=\operatorname{Tr}\left({ }^{t} S T \mathcal{M}\right)
\end{aligned}
$$

We have proved

$$
\begin{equation*}
\left(\left(a_{\rho^{d}} \mid b_{\rho}\right)\right)=\operatorname{Tr}\left({ }^{t} S T \mathcal{M}\right) \tag{1.8}
\end{equation*}
$$

where $a_{\rho^{d}}$ corresponds to $S \in \operatorname{End}\left(V^{d}\right), b_{\rho}$ to T and $\mathcal{M} \in \operatorname{End} V$ satisfies (1.6) and $\operatorname{Tr} \mathcal{M}=1$.
1.10. Is the Killing form symmetric? We compute $\left(\left(b_{\rho} \mid a_{\rho^{d}}\right)\right)=\left(\left(b_{\tau^{d}} \mid a_{\tau}\right)\right)$, for $\tau=\rho^{d}$. Note that (1.6) is equivalent to

$$
\left({ }^{t} \mathcal{M}\right)^{-1} \rho^{d}\left(\mathcal{S}^{2} x\right)=\rho^{d}(x)\left({ }^{t} \mathcal{M}\right)^{-1}, \quad \text { for all } x \in H^{*}
$$

Also, if b_{ρ} corresponds to $T \in \operatorname{End} V$ then it corresponds to $\mathcal{M}^{-1} T \mathcal{M} \in \operatorname{End} V^{d d}$. Let $\mu=\left(\operatorname{Tr}\left(M^{-1}\right)\right)^{-1}$. Applying (1.8) to ρ^{d} we get

$$
\begin{aligned}
\left(\left(b_{\rho} \mid a_{\rho^{d}}\right)\right) & =\mu \operatorname{Tr}\left({ }^{t}\left(\mathcal{M}^{-1} T \mathcal{M}\right) S\left({ }^{t} \mathcal{M}\right)^{-1}\right)= \\
& =\mu \operatorname{Tr}\left({ }^{t} T\left({ }^{t} \mathcal{M}\right)^{-1} S\right)=\mu \operatorname{Tr}\left({ }^{t} S \mathcal{M}^{-1} T\right)
\end{aligned}
$$

Thus the Killing form is symmetric if and only if $\mathcal{M}=(\operatorname{dim} V)^{-1} \mathrm{id}_{V}$ for all irreducible V, if and only if $\mathcal{S}^{2}=$ id. Indeed, $\mathcal{S}^{2} b_{\rho}$ corresponds to $\mathcal{M} T \mathcal{M}^{-1} \in$ End V.

2 Killing forms and *-Hopf algebras

We assume in this section that $\mathbb{K}=\mathbb{C}$. We suppose further that H is a ${ }^{*}$-Hopf algebra, i.e., it is a ${ }^{*}$-algebra and the comultiplication is a morphism of ${ }^{*}$-algebras; H^{*} is then considered as *-algebra by $\left\langle x^{*}, v\right\rangle=\overline{\left\langle x, \mathcal{S}(v)^{*}\right\rangle}$. It is known that $(\mathcal{S} x)^{*}=$ $\mathcal{S}^{-1}\left(x^{*}\right)$. For convenience, we shall denote $\mathcal{T}(x)=(\mathcal{S} x)^{*}=\mathcal{S}^{-1}\left(x^{*}\right)$.
Lemma 2.1. (i) The following data are equivalent.
(a) A right integral $\int: H \rightarrow \mathbb{C}$.
(b) A bilinear form ((1)) satisfying (1.2), (1.3).
(c) A sesquilinear form (|) ℓ satisfying

$$
\begin{align*}
(u v \mid w)_{\ell} & =\left(v \mid u^{*} w\right)_{\ell}, \tag{2.1}\\
(x-v \mid w)_{\ell} & =\left(v \mid x^{*}-w\right)_{\ell} . \tag{2.2}
\end{align*}
$$

(ii) Also, the following are equivalent:
(d) A left integral $\int: H \rightarrow \mathbb{C}$.
(e) A bilinear form $((\mid))_{r}$ satisfying (1.2), (1.6).
(f) A sesquilinear form (|)r satisfying

$$
\begin{align*}
(u v \mid w)_{r} & =\left(u \mid v^{*} w\right)_{r} \tag{2.3}\\
(v \leftharpoonup x \mid w)_{r} & =\left(v \mid w<x^{*}\right)_{r} . \tag{2.4}
\end{align*}
$$

Proof. We have already discussed the equivalence between (a) and (b), resp. (d) and (e). The correspondence between (b) and (c), resp. (e) and (f), is given by

$$
\begin{equation*}
(v \mid w)_{\ell}=\left(\left(w^{*} \mid v\right)\right), \quad \text { resp. } \quad(v \mid w)_{r}=\left(\left(v^{*} \mid w\right)\right)_{r} \tag{2.5}
\end{equation*}
$$

and correspondingly, $((v \mid w))=\left(w \mid v^{*}\right)_{\ell},((v \mid w))_{r}=\left(v^{*} \mid w\right)_{r}$. For the proof, we need the formulas

$$
(x-v)^{*}=(\mathcal{S} x)^{*} \rightharpoonup v^{*}, \quad(v \leftharpoonup x)^{*}=v^{*} \leftharpoonup(\mathcal{S} x)^{*} .
$$

Thus $\left(v \mid x^{*} \rightarrow w\right)_{\ell}=\left(\left(\left(x^{*} \rightharpoonup w\right)^{*} \mid v\right)\right)=\left(\left(\mathcal{S}^{-1} x \rightharpoonup w^{*} \mid v\right)\right)=\left(\left(w^{*} \mid x \rightarrow v\right)\right)=(x \rightharpoonup$ $v \mid w)_{\ell}$, and the rest is similar.
2.2. Let \int be a right integral and let Λ be defined by $\langle\Lambda, h\rangle=\overline{\left\langle\int, h^{*}\right\rangle}$. Then Λ is also a right integral:

$$
\left\langle\Lambda, h_{(1)}\right\rangle h_{(2)}=\overline{\left\langle\int, h_{(1)}{ }^{*}\right\rangle} h_{(2)}=\left(\left\langle\int, h_{(1)}{ }^{*}\right\rangle h_{(2)}{ }^{*}\right)^{*}=\left(\left\langle\int, h^{*}\right\rangle 1\right)^{*}=\langle\Lambda, h\rangle 1 .
$$

Assume now that H is cosemisimple. We shall normalize, in what follows, \int by $\left\langle\int, 1\right\rangle=1$. Then, by the uniqueness of the right integral, $\int=\Lambda$. It follows that the corresponding sesquilinear form $(\mid)_{\ell}$ is Hermitian:

$$
(v \mid w)_{\ell}=\left\langle\int, w^{*} v\right\rangle=\left\langle\Lambda, w^{*} v\right\rangle=\overline{\left\langle\int,\left(w^{*} v\right)^{*}\right\rangle}=\overline{(w \mid v)_{\ell}} .
$$

Remark. These facts were essentially first observed by Majid [8].
2.3. A *-representation of H^{*} is a representation $\rho: H^{*} \rightarrow$ End V together with a non-degenerate sesquilinear form (1) such that $(\rho(x) v \mid w)=\left(v \mid \rho\left(x^{*}\right) w\right)$, for all $x \in H^{*}, v, w \in V$. Such form shall be called invariant. We consider in the following only finite dimensional rational representations. A representation is a
-representation if and only if there exists a sesquilinear isomorphism $J: V \rightarrow V^{d}$ such that $J(\rho(x) w)=\rho^{d}(\mathcal{T} x) J(w)$. Explicitly, $\left.\langle J w, v\rangle=\langle v| w\right)$. If $T \in$ End V, define as usual $T^{} \in$ End V by $(T v \mid w)=\left(v \mid T^{*} w\right)$, or equivalently by $T^{*}=J^{-1 t} T J$.

Let V be a right H-comodule and let T_{i} as in 1.1. Let $\mathfrak{S}=\sum_{i} T_{i} \otimes h_{i}$; it follows easily from the comodule axioms that \mathfrak{S} is inversible and $\mathfrak{S}^{-1}=\sum_{i} T_{i} \otimes \mathcal{S}\left(h_{i}\right)$, in the algebra End $V \otimes H$. The last is a *-algebra once a non-degenerate sesquilinear form is chosen. It can be shown that the corresponding rational representation of H^{*} is a ${ }^{*}$-representation if and only if $\mathfrak{S}^{-1}=\mathfrak{S}^{*}$: hence the present definition agrees with that of [2].

Let V be a ${ }^{*}$-representation. Let $\left(J^{-1}\right)^{\dagger}: V^{*} \rightarrow V$ be given by $\left\langle\mu,\left(J^{-1}\right)^{\dagger} \alpha\right\rangle=\overline{\left\langle\alpha, J^{-1} \mu\right\rangle}$. Then the ${ }^{*}$ in H of the matrix coefficients is given (modulo Θ) by [11], p. 306

$$
\begin{equation*}
\phi_{\alpha \otimes v}^{V}{ }^{*}=\phi_{(J-1}^{)^{\dagger}}{ }_{\alpha \otimes J v}^{V^{d}} . \tag{2.6}
\end{equation*}
$$

Equivalently, if $T \in$ End V corresponds to $w \in H$, then w^{*} corresponds to

$$
\begin{equation*}
J T J^{-1} \in \operatorname{End} V^{d} \tag{2.7}
\end{equation*}
$$

Here one uses that $\operatorname{Tr}\left(J A J^{-1}\right)=\overline{\operatorname{Tr} A}$, for $A \in \operatorname{End} V$.
If (\mid) is an invariant form, then ($\mid)_{\text {opp }}$, given by $(v \mid w)_{\text {opp }}=\overline{(w \mid v)}$, also is. Assume that V is irreducible. Then invariant forms are unique up to multiplication of a scalar; in particular ($\mid)_{\text {opp }}=\lambda(\mid)$ for some scalar λ. Applying this twice, we see that $\lambda \bar{\lambda}=1$. Multiplying (\mid) by a suitable scalar, we can assume that $\lambda=1$, i.e., that (\mid) is Hermitian.

Let V be a ${ }^{*}$-representation, with invariant form (\mid), and let $\mathcal{M} \in$ Aut V satisfying (1.6). Let $(\mid)_{d}$ be the form on V^{d} defined by $(\mu \mid \eta)_{d}=\left(\mathcal{M}^{-1} J^{-1} \eta \mid J^{-1} \mu\right)$; it is also invariant. If V is irreducible, then V^{d} also is; assuming this, we shall normalize first (\mid) to get an Hermitian form, and second \mathcal{M}, to get an Hermitian form on V^{d}. In such case, $\mathcal{M}=\mathcal{M}^{*}$, i.e., \mathcal{M} is self-adjoint. Now asume in addition that (\mid) is an inner product. Then $(\mid)_{d}$ also is, if and only if \mathcal{M} is positive definite; in such case, $\operatorname{Tr} \mathcal{M}>0$. Conversely, if V^{d} admits an invariant inner product, then some multiple of \mathcal{M} is positive definite.

A representation is not always a ${ }^{*}$-representation. For example, let H^{*} be the group algebra of an abelian finite group with the involution $\left(\sum_{g \in G} \lambda_{g} e_{g}\right)^{*}=$ $\sum_{g \in G} \overline{\lambda_{g}} e_{g}$. Let χ be a one-dimensional representation of G which is not real; this admits no sesquilinear invariant form.
2.4. Now we are ready to state the key point of the proof of the main result. We first recall a definition [2].
Definition. We shall say that H is a compact quantum group if any rational, finite dimensional, representation of H^{*} carries an invariant inner product.

By a standard argument, if H is compact, then is cosemisimple. It is known (see e.g. [12], [13]) that completions of compact quantum groups as in the preceding definition with respect to a suitable norm give rise to compact quantum groups as
in [2]; the preceding notion corresponds to that of "algebras of regular functions" in Woronowicz definition [2].
Proposition. H is a compact quantum group if and only if the hermitian form $(\mid)_{\ell}$ is positive defined.
Proof. If ($\mid)_{\ell}$ is positive defined then any H^{*}-submodule of H (for -) carries an invariant inner product and H is a compact quantum group. Conversely, assume that H is a compact quantum group. Let $v \in H_{\rho}, w \in H_{\tau}$; then $w^{*} \in H_{\tau^{d}}$ by (2.6), and $(v \mid w)_{\ell}=0$ if ρ and τ are not isomorphic, by (2.5). So assume that $\rho=\tau$ and let $S, T \in$ End V correspond to v, w, respectively. By (1.7) and (2.7), we have

$$
\begin{aligned}
(v \mid w)_{\ell}=\left(\left(w^{*} \mid v\right)\right) & =\operatorname{Tr}\left({ }^{t}\left(J T J^{-1}\right) S \mathcal{M}\right)=\operatorname{Tr}\left({ }^{t} \mathcal{M}^{t} S J T J^{-1}\right) \\
& =\operatorname{Tr}\left(J \mathcal{M} S^{*} T J^{-1}\right)=\overline{\operatorname{Tr}\left(\mathcal{M} S^{*} T\right)}=\operatorname{Tr}\left(T^{*} S \mathcal{M}\right)
\end{aligned}
$$

(This formula also implies that $(\mid)_{\ell}$ is Hermitian). Thus $(v \mid v)_{\ell}=\operatorname{Tr}\left(S^{*} S \mathcal{M}\right)>0$ if $S \neq 0$, because \mathcal{M}, normalized by $\operatorname{Tr} \mathcal{M}=1$, is positive definite.
2.5. The preceding Proposition enables us to adapt Mostow's proof of Cartan's theorem of the uniqueness of compact involutions (see Ch. II, Thm. 7.1 in [6]) to our setting. See also Proposition 2 in [4].
Proposition. Let H be a compact quantum group with respect to ${ }^{*}$ and let $x \mapsto x^{\#}$ be another structure of *-Hopf algebra on H. Then there exists a Hopf algebra automorphism T of H such that $\#$ and $T * T^{-1}$ commute.
Proof. Let N be given by $N(u)=\left(u^{*}\right)^{\#}$; this is a Hopf algebra automorphism and any finite dimensional submodule of H is contained in some finite dimensional submodule W such that $N(W)=W$. By Proposition 2.4, the Hermitian form (| $)_{\ell}$ (defined with respect to ${ }^{*}$) is positive definite. From Lemma 1.7, we deduce that N is self-adjoint with respect to $(\mid)_{\ell}$. Then the Hopf algebra automorphism $P=N^{2}$ is diagonalizable with positive eigenvalues; let $\left(X_{i}\right)_{i \in I}$ be a basis of H such that $P X_{i}=\lambda_{i} X_{i}$. For each $s \in \mathbb{R}$, one has a well-defined linear automorphism P^{s} of H. We claim that P^{s} is also a Hopf algebra automorphism. Let $c_{i j}^{k}$ be constants such that $\Delta\left(X_{k}\right)=\sum_{i, j} c_{i j}^{k} X_{i} \otimes X_{j}$, for all k. Hence

$$
\lambda_{i} \lambda_{j} c_{i j}^{k}=\lambda_{k} c_{i j}^{k}
$$

for all i, j, k and a fortiori $\lambda_{i}^{s} \lambda_{j}^{s} c_{i j}^{k}=\lambda_{k}^{s} c_{i j}^{k}$, that is, P^{s} preserves the comultiplication. With similar arguments, one shows that P^{s} is a morphism of Hopf algebras. Now $T=P^{1 / 4}$ does the job, cf. p. 183 in [6].

Theorem 2.6. Let H be a compact quantum group with respect to * and also with respect to \#. Then there exists a Hopf algebra automorphism T such such that * $T=T$ \#.

Proof. Taking into account that H_{ρ} is ${ }^{*}$ - and \#-stable, the proof in [6], p. 184, (see also [4]) can be adapted here.

The final writing of this paper was done at the University of Poitiers. I thank the kind hospitality of Thierry Levasseur and the Department of Mathematics.

References

[1] Green J. A.: J. Algebra 41 (1976) 137.
[2] Woronowicz S. L.: Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987) 613.
[3] Larson R. G. and Radford D. E.: Amer. J. Math. 110 (1988) 187.
[4] Andruskiewitsch N.: Compact involutions of finite quantum groups. Preprint, March 1994.
[5] Larson R. G.: J. Algebra 17 (1971) 352.
[6] Helgason S.: Differential geometry, Lie groups and symmetric spaces. Academic Press, New York-San Francisco-London, 1978.
[7] Sweedler M.: Ann. Math. 89 (1969) 323.
[8] Majid S.: Int. J. Mod. Phys. A 8 (1993) 4521.
[9] Sweedler M.: Hopf algebras. Benjamin, New York, 1969.
[10] Larson R. G. and Sweedler M.: Amer. J. Math. 91 (1969) 75.
[11] Andruskiewitsch N.: Bull. Soc. Math. Fr. 120 (1992) 297.
[12] Guichardet A.: Introduction aux groupes quantiques (point de vue formelle). Preprint Ecole Polytechnique, August 1993.
[13] Dijkhuizen M. and Koornwinder T.: CQG algebras: a direct algebraic approach to compact quantum groups. Lett. Math. Phys. (to appear).

[^0]: *) Presented at the 3rd Colloquium "Quantum Groups and Physics", Prague, 23-25 June 1994
 **) Partially supported by CONICET, CONICOR and FaMAF (República Argentina).
 †) E-mail: andrus@mpim-bonn.mpg.de, andrus\%mafcor@uunet.uu.net

