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It is proved that a complex cosemisimple Hopf algebra has at most one compact invo- 
lution modulo automorphisms. 
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I n t r o d u c t i o n  

Let H be a complex cosemisimple IIopf algebra, that is, any finite dimensional 
H-comodule is completely reducible, or equivalently H is completely reducible as 
comodule via the comultiplication (see 1.3 (c) in [1]). We prove that  two compact 
involutions of H [2] are necessarily conjugated by a Hopf algebra automorphism. 
This extends a well-known theorem of Caftan to the quantum case. Using results 
from [3], this was proved recently for finite Hopf algebras [4]. Since then, the author 
noticed however the paper [5] which contains a weak form of those results from [3] 
and enables him to extend the theorem to the infinite case. The second part  of the 
proof is a variation of Mostow's proof of the above mentioned Cartan's  theorem 
- -  see p. 182 in [6]. In the first section of this paper, we recall some results on 
cosemisimple Hopf algebras (some of them go back to [7]) and give a formula (1.8) 
for the Killing form - -  an invariant bilinear form on H arising from (a choice of) the 
integral and normalized by a further invariant condition. In the second, we prove 
the theorem. For this, we use an invariant sesquilinear form on H also derived from 
the integral, first considered in [8]. 

1 Kil l ing forms on  cosemis imple  H o p f  algebras 

We shall work over an arbitrary field ]K in this section. The notat ion for Hopf al- 
gebras is standard: A, S, c, denote respectively the comultiplication, the antipode, 
the counit; we use Sweedler [9] notation but drop the summatory. 
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1.1. Let H be a Hopf Mgebra. Recall that  for a finite dimensional right comodule 
c : V ---* V |  its left and right duals dc and c a are the right H-comodule structures 
on V* defined as follows. Let (h i ) ie l  be a basis of H. Then c(v) = ~ i  Ti(v)  | hi, 
with ~ E End V, ~ = 0 for all but a finite number of i. Define 

= | 
i 

c % )  = | S(h,), 
i 

for a E V*. d v ,  V d denote V* considered as H-comodule via, respectively, ac, C d. 

In the category of finite dimensional right comodules, the functors V ~-~ d v  and 
V ~ V d are inverse to each other; therefore, the following are equivalent: 

(a) V_ (Vd)d; (b) (c) V d _dV. 

1.2. H* has an algebra structure provided by the transposes of the multiplication 
and the counit. Any (left or right) H-comodule is then a (right or left) H*-module; 
such H*-modules are called rational. For example, H is an H*-bimodule via 

x ~ h = h ( 1 ) ( x , h ( 2 ) ) ,  h ' - - x =  (x,h(o)h(2); h E H ,  x E H * .  

This correspondence is in fact an isomorphism between the categories of H-comodules 
and rational H*-comodules. By psychological reasons, it is often helpful to state 
properties in terms of H*-actions. By abuse of notation, we write S : H* ~ H* for 
the transpose of the antipode and c : H* --~]K for evaluation in 1. The represen- 
tations pa and dp c a n  be defined for any representation p of H*; for rational ones, 
they agree with those derived from the previous c d, tic. 

1.3. Define c v  : (EndY)* --~ H by cv(c~) = ~ i ( c ~ , T i ) h i .  Then c v  is a mor- 
phism of coalgebras. Furthermore, it is injective if V is irreducible, and the simple 
subcoalgebras of H are exactly the I m r  v for V irreducible [1]. Thus, if H is 
cosemisimple, 

H = @ v e ~ I m r  v, 

where /~ denotes the set of isomorphism classes of irreducible H comodules. (We 
often confuse a class with a representant). I m r  v is the isotypic component of 
H, for the coaction given by the multiplication, of type V. We shall denote it 
alternatively as Hc or Hp; p will be then the representation of H* derived from 
the coaction c. We shall also identify H with the set of isomorphism classes of 
irreducible rational H*-modules. 

Given a finite dimensional representation p : H* ~ End U, let cu  : U* | 
U --* H** be the "matrix coefficient" map defined, for v E U, a E U*, by 

u (r z) = (a, p(z)v). Modulo the usual identifications (End U)* ~_ End U (pro- 
vided by the trace) and End U _~ U* | U, it coincides with the usual transpose map 
~p : (End U)* --* H**: 

 p(T) v = r  if T E E n d U ,  T ( u ) = ( a , u ) v .  
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v u J H** Note that  ~S (r174 = r174 Let O : H --~ be the natural  injection; then 
8 r  = r  (V  is an H-comodule and hence a rational H*-module).  {9 is a mor- 
phism of H*-bimodules. 

1.4. Let d : W --* W | H be another finite dimensional right comodule structure; 
then V | W also is an H-comodule whose coaction we shall denote c | d. Let 
Sj E E n d W  be, similarly as above, such that  d(w) = ~ S j ( w ) |  hj. Define 
a comodule structure on Hom(V, W) by A ~ ~ i , j  Sj o A o T~ | h jS(h i ) .  The 
natural  isomorphism between Horn (V, W) and W | V* is in fact an H-comodule 
isomorphism between Hom (V, W) and W @ V d. The isotypic component of trivial 
type of Horn(V, W) with respect to the adjoint action is exactly the space of H- 
comodule maps. Therefore, if W and V are irreducible, the multiplicity of the 
trivial representation in W @ V d is 1 (resp., 0) if W and V are (resp., are not) 
isomorphic. In other words, W @ V contains the trivial representation if and only 
if W --~ dV. 

1.5. Recall that  a linear functional f : H ~ ]K is a right inlegral if 

(f ,  h)l  = (f ,  h(1))h(2), forallh E H. (1.1) 

It is equivalent to provide [10] 

(a) A right integral f .  

(b) A bilinear form (( [ ) )  : g x H --*IK satisfying 

= (1.2) 
( ( x  - vl )) = (( lSx - ( 1 . 3 )  

for all u , v , w  E H,  x E H*. 

Explicitly, ( f ,  v) = ((v[1)), ((ulv)) = ( f ,  uv). In general, if ( [ )  is a bilinear form 
which satisfies (1.3), then A E H* given by (A, v) = (v[1) is a right integral; (1.2) 
is a "normalization" condition which ensures the bijectivity of the correspondence. 
Indeed, i f ( [ )  satisfies (1.3) then ((u[v)) = (uv[ 1) also does, and in addition satisfies 
(1.2). 

Now let M, N C H be submodules for - -  and let 0 : M --* N d be given by 
(0(m), n) = ((rain)); ~ is a morphism of A-modules by (1.3). Therefore if M and 
N are both irreducible, 0 is either 0 or an isomorphism. Taking M = IK1 = H~, 
the trivial submodule of H, we conclude that  ( f , v )  = 0 for all v E N,  for all 
irreducible, non-trivial, N. 

Now assume that  H is cosemisimple. For a E H, write a = ~ p e H  ap, with 

ap E Hp. By abuse of notation, we shall write a~.l instead of ae with a~ E IK. Then 

(f ,  h) = a~(f, 1). (1.4) 

Conversely, the linear map defined by (1.4) and an arbitrary value of (f,  1) is a right 
integral, because Hp is a subcoalgebra of H.  It follows that,  for H cosemisimple, 
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the space of right integrals is one-dimensional. Interchanging right by left and 
viceversa, one sees that  any left integral also is expressed by (1.4); hence H is 
unimodular. In particular, by the "dual hand" version of the equivalence above, 
(([))  also satisfies 

( ( v  - = ((vl  - ( 1 . 5 )  

Finally, if H is an arbitrary Hopf algebra admitt ing a right integral such that 
(f, 1) ~ 0 then H is eosemisimple. See [7], where the formula (1.4) appears for the 
first time. 

L e m m a  1.6. Let H , H '  be Hopf algebras, let T : H' -~ H be an isomorphism 
of coalgebras such that T(1) = 1 and let f be a right integral for H. Then f oT 
is a right integral for H'. In particular, f o 8  is a left integral for H. I f  H is 
cosemisimple, T is an automorphism of Hopf algebras of H and f is normalized by 
(f, 1) = 1, then ((Tu]Tv)) = ((u[v)), for all u, v E H. 

Proof. Straightforward. [] 

1.7. Let H be a cosemisimple Hopf algebra as above. 

T h e o r e m  (Thm. 3.3 in [5]). For each simple subcoalgebra C of H, 82C = C. 

Coro l l a ry .  For any irreducible H-comodule c, C dd is isomorphic to c. 
V V dd Proof. Let V be the space of c. Then S ~ ( r  = r  E Hc N Hc~ (modulo 

identification by O). Thus Hc = Hc~ and hence c ~_ c dd.  [] 

As observed in [5], the proof of this theorem implies that  ((]))  is non-degenerate. 
This fact will also follow from formula (1.8) below. 

1.8. We still assume that  H is cosemisimple and normalize f by ( f ,  1) = 1. The 
corresponding ((I))  will be named the Killing form of H. We shall give a formula 
for it in the spirit of [3]. Let a = ~ r  ar b = ~ e ~  be E H. Then 

((lib)) = ~--~((ac, Ibm)). 

So we need only to precise (( ] ) ) :  Hr | He --*]K, for c :  Y -+ V @ g irreducible. 
Recall that  we have identified He ~- (End V)* with End V via the trace map. Fix 
M E Ant V such that  

| h, = | (1.6) 
i i 

Let p : H* -+ End V be the representation corresponding to c. Then (1.6) means 
that  .Mp(S2x) = p(x).Ad, for all x E H*. Let S E End (vd) ,  T E End V and define 

Be(S, T)  = Tr (*ST.M). (1.7) 

Then 

B~(x ~ S, T) = Tr ( t(pa(x)S)T.M) = Tr ( tSt(pd(x))T.M) = 

= Tr (tSp(Sx)TA,'l) = Br Sx  ---* T) .  
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On the other hand, 

B~(S ~ Sx, T) = W~ ( t ( S / ( S x ) ) T M )  = W~ ( ' ( / ( S x ) ) t S T M )  = 

= Tr ( ' S T M ' ( / ( S ~ ) ) )  = a~ ( 'STMp(S2~))  = 

= Tr ( 'STp(x)M) = Be(S, T - -  x).  

As End V is irreducible as H*-bimodule, there is only one bilinear form satisfying 
(1.3) and (1.5), up to scalars. Therefore, 

((at ,  Ibm)) = C~B~(S, T) = C~Tr (tSTA,4), 

for some scalar C~, where S E End (V  d) corresponds to ac~, and T to be. Next we 
compute Co. The preceding Be(, ) depends on A4 and hence is also defined up to 
a scalar; what we need, therefore, is to take Cc = 1 and adjust .M. 

So let a / ,  bp, S and T be as above. We wish to compute ( (a / [bp) )  = ((a/b;[1)) 
= dr, if a/bp = ~ T e ~  dr, with dT E H~ and de.l, dr ElK, instead of d~. We 

compute a~ bp (compare with [11]). vd| V decomposes as direct sum of irreducible 
A-submodules: V d | V = @re:Ur. Let tr : U~ --+ V a | V be the inclusion 
and Ir~ : v d |  V ~ U~, the projection with respect to this direct sum. Let 
RT u = ~ru(S | T)t~- E Hom(U~, Uu). Then S |  T = ~ ' , u  LuRru ~rT; that  is, (R~-u) 
is the "partition" of S @ T in blocks with respect to the decomposition above, and 
d~ corresponds to R~ .  We already know that (V a | V)~ is one dimensional. A 
generator is Z = ~ l < h < n  C~h | .MVh, where (Vh) is a basis of V and (~h) is the 
dual basis. Indeed, 

| c)(Z) = | | S(h )h, 
l<h<n,i , jEI 

= | | S(h )h  
l <h,k<n,i,jEI 

= Y~  ak | Ti(A,t~Vk) | ,S(hj)hi 
l<k<n,i , jEl  

= Z ak @ TiTjA4(vk) | S - ' (h j )h i  = Z | 1. 
l<k <n,i,j EI 

Now the projector ~r~ : V d | Y --+]KZ must be of the form ~r~(P) = (f2, P)Z,  for 
P G V a @ V ,  with f2 E (V d |  Let f2 = ~ l< i<nv i |  (with the usual 

vector space identification of (V d | V)* with V | V d) and write tentatively ~r for 
P ~ (f-2, P)Z.  Then Cnom(Va| ) : ~ i , j e i i d o r o ( t T  i | |  
Evaluating in/3 | w the first factor, we get 

(a, tT,(~) | Tj(w))Z | S(S(h,)h~) 
i , jEl  

= Z (vk,tTi(/3))(o~:,Tj(w))Z| 
~<k<_,~ 

i , j E I  
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= | S ( S ( h , ) h j )  
i,jEl 

: T,(w))Z | S 
iEI 

= (fl, w ) Z |  f l | 1 7 4  

that  is, ~r is invariant, and nonzero. As some multiple of it is a projector, 7r(Z) - 
(~2, Z ) Z  = T r Z  # O. Therefore, we can normalize A4, as promised, by Tr.s = 1. 
We can now write re instead of~r. But deZ = 1re((S| = (1-2, ( S |  and 
hence 

J 

i,j 

We have proved 
( (a / Ibp))  = Tr (tSTA/[), (1.8) 

where a /  corresponds to S E End (vd), bp to T and A4 E End V satisfies (1.6) and 
Tr?vf = 1. 

1.10. Is the Killing form symmetric? We compute ( (bp]a / ) )  = ((b~laT)) , for 
v = pd. Note that  (1.6) is equivalent to 

( ' M ) - l / ( S ~ x )  = / ( x )  (~M) -1, for all x 6 H*. 

Also, if bp corresponds to T E End V then it corresponds to A4-1TA4 E End V dd. 
Let # = (Tr ( M - i ) )  - i .  Applying (1.8) to pa we get 

((bplap,)) -- ~Tr ( t ( M - ~ T M ) S ( t M ) - I )  = 
: #Tr ( tT( t . s  = #Tr ( t s A 4 - i T ) ,  

Thus the Killing form is symmetric if and only if 2t4 = (dim V ) - l i d v  for all irre- 
ducible V, if and only if S 2 = id. Indeed, S2bp corresponds to A4TA4 -1 E End V. 

2 Ki l l ing  f o r m s  a n d  * - H o p f  a l g e b r a s  

We assume in this section that tK = C. We suppose further that  H is a *-Hopf 
algebra, i.e., it is a *-algebra and the comultiplication is a morphism of *-algebras; 
H* is then considered as *-algebra by (x*, v) = (x, S(v)*). It is known that (Sx)* = 
S - l ( x * ) .  For convenience, we shall denote T (x )  = (Sx)* = S - i ( x * ) .  

L e m m a  2.1. (i) The following data are equivalent: 

(a) A right integral f : H -+ C. 
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(b) A bilinearform ( ( ] ) )  satisfying (1.2), (1.3). 

(c) A sesquilinear form (I) l  satisfying 

( u v l ~ ) ~  -- ( v l u * ~ ) ~ ,  (2 .1)  

(x  - v l~ )~  = (~[x* - ~ ) ~ .  (2 .2)  

(ii) Also, the following are equivalent: 

(d) A left integral f :  H -+ C. 

(e) a bilinearform (( I))r satisfying (1.2), (1.6). 

(f) A sesquilinear form ( I ) ,  satisfying 

(uvlw)r = (ulv*w)r (2.3) 

(v ~ xlw)r = (vlw ~ x*)~. (2.4) 

Proof. We have already discussed the equivalence between (a) and (b), resp. (d) 
and (e). The correspondence between (b) and (c), resp. (e) and (f), is given by 

(vlwh -- ((w'Iv)), resp. (vlw)~ = ((v*l.:))~, (2.5) 

and correspondingly, ((vlw)) = (wlv*)t , ((v[w))~ = (v* IW)r. For the proof, we need 
the formulas 

(x  - ~)* = ( s x ) *  - v*, (v - x)* = ~* ~ ( s ~ ) * .  

T h u s  (vlx* - -  w)t = (((x* ~ w)*lv)) - -  ( ( s - i x  ~ w ' I v ) )  - -  ( ( w * [ x  ~ v ) )  - -  ( x  

v[w)t, and the rest is similar. [] 

2.2. Let f be a right integral and let A be defined by (A, h) = ( f ,  h*). Then A is 
also a right integral: 

(A, h(u)h(2 ) = (f, h(1)*)h(2) = ((f,  h(1)*)h(2)*)* = ((f, h*)l)* = (A, h ) l .  

Assume now that H is cosemisimple. We shall normalize, in what follows, f by 
(f ,  1) = 1. Then, by the uniqueness of the right integral, f = A. It follows that 
the corresponding sesquilinear form ( [)l is Hermitian: 

(vlw)l = (f, w'v)  = (A, w'v)  = (f, (w'v)*} = (wlv)l.  

Remark. These facts were essentially first observed by Majid [8]. 

2.3. A .-representation of H* is a representation p : H* ~ End V together with 
a non-degenerate sesquilinear form ( I )  such that (p(x)v]w) = (vlp(x*)w), for all 
x E H*, v ,w  E V. Such form shall be called invariant. We consider in the 
following only finite dimensional rational representations. A representation is a 
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*-representation if and only if there exists a sesquilinear isomorphism J : V ---* V d 
such that  J ( p ( x ) w )  = p d ( T x ) J ( w ) .  Explicitly, ( Jw ,  v) = (v[w). If T �9 End V, 
define as usual T* �9 End Y by (Tv[w)  = (v[T*w),  or equivalently by T* = J - I ~ T J .  

Let V be a right H-comodule and let ~ as in 1.1. Let G = ~ i  T/ |  hi; it follows 
easily from the comodule axioms that  ~ is inversible and 6 -1 = ~ T/ |  8(h~), in 
the algebra End V | H. The last is a *-algebra once a non-degenerate sesquilinear 
form is chosen. It can be shown that  the corresponding rational representation 
of H* is a *-representation if and only if 6 -1 = | hence the present definition 
agrees with that  of [2]. 

Let V be a *-representation. Let ( j - 1 ) t  : V* ~ V be given by 

(#, ( j - 1 ) j ' a )  = (c~, j - l p ) .  Then the * in H of the matr ix coefficients is given 
(modulo O) by [11], p. 306 

V * ~ (~V d 
ea| ( J - 1 ) i a |  " 

Equivalently, if T E End V corresponds to w E H, then w* corresponds to 

(2.6) 

J T J  -1 E End V d . (2.7) 

Here one uses that T r ( J A J  -1)  = T r A ,  for A E EndV.  
If ( [ )  is an invariant form, then (])opp, given by (v]W)opp = (w]v), also is. 

Assume that  V is irreducible. Then invariant forms are unique up to multiplication 
of a scalar; in particular ( ])opp = A(]) for some scalar A. Applying this twice, we 
see that  AA = 1. Multiplying ( [ )  by a suitable scalar, we can assume that  A = 1, 
i.e., that  ( [ )  is Hermitian. 

Let V be a *-representation, with invariant form (]) ,  and let .M E Aut V sat- 
isfying (1.6). Let ([)d be the form on Y d defined by (#[7/)d = (AzI-1J-I~/[J-I#) ;  
it is also invariant. If V is irreducible, then V d also is; assuming this, we shall 
normalize first ( [ )  to get an Hermitian form, and second .44, to get an Hermitian 
form on V d. In such case, .M -= A/I*, i.e., v~ is self-adjoint. Now asume in addition 
that  ( ] ) is an inner product. Then ( ] )d also is, if and only if Az( is positive definite; 
in such case, TrAz[ > 0. Conversely, if V d admits an invariant inner product, then 
some multiple of Az( is positive definite. 

A representation is not always a *-representation. For example, let H* be 
the group algebra of an abelian finite group with the involution ( ~ g e c  Ageg)* = 

~ g e a  $g%- Let X be a one-dimensional representation of G which is not real; this 
admits no sesquilinear invariant form. 

2.4. Now we are ready to state the key point of the proof of the main result. We 
first recall a definition [2]. 

D e f in i t i on .  We shall say that H is a compact quanlum group if any rational, finite 
dimensional, representation of H* carries an invariant inner product.  

By a standard argument, if H is compact, then is cosemisimple. It is known (see 
e.g. [12], [13]) that completions ~)f compact quantum groups as in the preceding 
definition with respect to a suitable norm give rise to compact quantum groups as 

970 Czech. J. Phys. 44 (1994) 



Compact involutions of semisimple quantum groups 

in [2]; the preceding notion corresponds to that of "algebras of regular functions" 
in Woronowicz definition [2]. 

P r o p o s i t i o n .  H is a compact quantum group if and only if  the hermitian form 
( I ) l  is positive defined. 

Proof. If (I)~ is positive defined then any H*-submodule of H (for --~) carries an 
invariant inner product and H is a compact quantum group. Conversely, assume 
that  H is a compact quantum group. Let v E Hp, w E Hr; then w* E Hrd by (2.6), 
and (v]w)t = 0 if p and r are not isomorphic, by (2.5). So assume that  p = r and 
let S, T ff End V correspond to v, w, respectively. By (1.7) and (2.7), we have 

(vlw)  = ( ( w * l v ) )  = Tr ( (JT -I)sA4) = Tr ('A4 SJTJ -1) 

= Tr (J./~4S*TJ -1) -- Tr (A4S*T)  -- Tr (T*SA4)  

(This formula also implies that ( [ ) / i s  Hermitian). Thus (v]v)l = Tr (S*SA4)  > 0 
if S # 0, because M ,  normalized by TrA4, = 1, is positive definite. [:] 

2.5. The preceding Proposition enables us to adapt Mostow's proof of Cartan's 
theorem of the uniqueness of compact involutions (see Ch. II, Thm. 7.1 in [6]) to 
our setting. See also Proposition 2 in [4]. 

P r o p o s i t i o n .  Let H be a compact quantum group with respect to * and let x ~-~ x # 
be another structure of *-Hopf algebra on H.  Then there exists a Hopf algebra 
automorphism T of H such that # and T . T -1 commute. 

Proof. Let N be given by N(u)  = (u*)#; this is a Hopf algebra automorphism 
and any finite dimensional submodule of H is contained in some finite dimensional 
submodule W such that N ( W )  = W.  By Proposition 2.4, the Hermitian form ( I)~ 
(defined with respect to *) is positive definite. From Lemma 1.7, we deduce that  N 
is self-adjoint with respect to ( I)t. Then the Hopf algebra automorphism P = N 2 
is diagonalizable with positive eigenvalues; let (Xi ) ie l  be a basis of H such that  
P X I  = AiXi. For each s E II~, one has a well-defined linear automorphism p8 of H. 
We claim that  P '  is also a Hopf algebra automorphism. Let c~j be constants such 
that A(Xk) = ~ i , j  e~jXi | X j ,  for all k. Hence 

= 

for all i, j ,  k and afort iori  ..i..jeij]8 An k : )t~ Ck"tS, that is, P" preserves the comultiplica- 
tion. With similar arguments, one shows that  P~ is a morphism of Hopf algebras. 
Now T = p1/4 does the job, cf. p. 183 in [6]. [] 

T h e o r e m  2.6. Let H be a compact quantum group with respect to * and also with 
respect to ~:. Then there exists a Hopf algebra aulomorphism T such such that 
�9 T = T # .  

Proof. Taking into account that Hp is *- and #-stable, the proof in [6], p. 184, (see 
also [4]) can be adapted here. [] 

The final writing of this paper was done at the University of Poitiers. I thank the kind 
hospitality of Thierry Levasseur and the Department of Mathematics. 
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