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To Antonio Paques.

Abstract. It is shown that the finite-dimensional simple representa-
tions of the super Jordan plane B are one-dimensional. The indecom-
posable representations of dimension 2 and 3 of B are classified. Two
families of indecomposable representations of B of arbitrary dimension
are presented.

1. Introduction

Nichols algebras are graded connected algebras with a comultiplication
in a braided sense. In particular, the Jordan plane and the super Jordan
plane are two Nichols algebras that play an important role in the clas-
sification of pointed Hopf algebras with finite Gelfand-Kirillov dimension
[AAH1, AAH2].

The Jordan plane was first defined in [G] and considered in many papers,
e.g. [AS], see also the references in [AAH2, I]. Its representation theory was
studied in [I].

The purpose of this note is to begin the study of the representation the-
ory of the super Jordan plane B: we classify the simple finite-dimensional
B-modules (all of dimension 1, Theorem 2.6) and the indecomposable B-
modules of dimension 2 (Theorem 3.2) and 3 (Theorem 3.11). We also
observe that one of the generators of B has at most two eigenvalues in ev-
ery indecomposable B-module (Theorem 2.11) and describe two families of
indecomposable modules in every dimension.

2. Basic facts

2.1. Notations and conventions. Fix an algebraically closed field k of
characteristic 0; all vector spaces, tensor products, Hom spaces, algebras are
over k. All algebras are associative and all modules are left, unless explicitly
stated. Let A be a k-algebra; then [ , ] denotes the Lie bracket given by the
commutator. As customary we use indistinctly the languages of modules
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and representations. Denote byAM the category of finite dimensional A-
modules. Given a k-vector space V , gl(V ) denotes the Lie algebra of all
linear operators on V . The Jacobson radical of an algebra A it will be
denoted by Jac A.

2.2. The Jordan plane. The Jordan plane is the free associative algebra
A in generators y1 and y2 subject to the quadratic relation

y1y2 − y2y1 − y2
2.

The algebra A is a Nichols algebra, GKdimA = 2 and {ya1yb2 : a, b ∈ N0} is
a basis of A. By Proposition 3.4 of [I], A is a Koszul algebra.

2.3. The super Jordan plane. Let x21 = x1x2 +x2x1 in the free associa-
tive algebra in generators x1 and x2. Let B be the algebra generated by x1

and x2 with defining relations

x2
1,(2.1)

x2x21 − x21x2 − x1x21.(2.2)

The algebra B (which is graded by deg x1 = deg x2 = 1) was introduced
in [AAH1, AAH2] and is called the super Jordan plane. Since B is not a
quadratic algebra, it follows that B is not Koszul; see e. g. § 2.1 of [PP].

Proposition 2.1. [AAH2] The algebra B is a Nichols algebra, GKdimB = 2
and {xa1xb21x

c
2 : a ∈ {0, 1}, b, c ∈ N0} is a basis of B. �

The following identities are valid in B:

x21x1 = x1x21,(2.3)

x2
2x1 = x1x

2
2 + x1x2x1,(2.4)

x21x
2
2 = (x2

2 − x21)x21.(2.5)

Indeed, in presence of (2.1), (2.2) is equivalent to (2.4).
By (2.5) and Proposition 2.1, the subalgebra of the super Jordan plane

B generated by x2
2 and x21, is isomorphic to the Jordan plane via y1 7→ x2

2

and y2 7→ x21.

It is convenient to introduce s = x21 and t = x2
2. By (2.5), st = ts − s2

and whence

[t, sn] = nsn+1, n ≥ 1; x1s = sx1; x2t = tx2; tx1 = x1(t+ s).(2.6)

Lemma 2.2. Given b, c ∈ N, we have that

xb21x
c
2
∗
= (x2 − bx1)xb21x

c−1
2 , x1x

b
21x

c
2
♥
= x1x2x

b
21x

c−1
2 .

Proof. We prove ∗ by induction. For b = c = 1, the relation is valid by (2.2).
Suppose that ∗ is valid for b− 1 > 0 and c = 1. Then

xb21x2 = xb−1
21 x21x2 = xb−1

21 (x2x21 − x1x21)

= (x2 − (b− 1)x1)xb−1
21 x21 − xb21x1 = (x2 − bx1)xb21.
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Fix b ∈ N and assume that the relation is true for c− 1, with c > 1. Thus

xb21x
c
2 = (xb21x

c−1
2 )x2 = (x2 − bx1)xb21x

c−2
2 x2 = (x2 − bx1)xb21x

c−1
2 .

The proof of ♥ is similar. �

The next result follows immediately from Proposition 2.1 and Lemma 2.2.

Proposition 2.3. The set {1, x1, x2, x1x2} generates B as a right A-module.
�

2.4. Simple modules. Let (V, ρ) be a finite-dimensional representation of
B; set X1 = ρ(x1), X2 = ρ(x2), S = ρ(s) and T = ρ(t) and

V0 = kerX1.

Then V0 is always 6= 0 and it is stable under S and T by (2.6). In fact, let
E12(n) ∈ gl(kn) (or E12 if n is clearly from de context) the matrix whose
the entry 1 × 2 is equal to 1 and all other entries are equal to 0. Then the
Jordan form of X1 consists of r blocks like E12(2) and s blocks of size 1 filled
by 0. Hence dimV = 2r + s; r = 0 ⇐⇒ V = V0.

Lemma 2.4. Assume the previous notations. Then:

(i) S and T have a simultaneous eigenvector in V0.
(ii) W = X2V0 ∩ V0 is a submodule of V .
(iii) U = X2V0 + V0 is a submodule of V .

Proof. (i): The subspace of gl(V ) generated by T and Sn, n ∈ N0, is a
solvable Lie subalgebra by (2.6); then Lie Theorem applies.

(ii): Clearly X1W ⊆ X1V0 = {0} ⊆ W . It remains to show that X2W ⊆
W . In fact, let w ∈ W , this is, w ∈ V0 and w = X2v for some v ∈ V0.
Clearly X2w ∈ X2V0. Moreover,

X1(X2w) = X1X
2
2v

(2.4)
= (X2

2X1 −X1X2X1)v = 0 =⇒ X2w ∈W.
(iii): Since B · V0 ⊆ X2V0 and B · (X2V0) ⊆ V0, the claim follows. �

Lemma 2.5. If V ∈ BM is simple, then V = V0.

Proof. Assume that V 6= V0. By Lemma 2.4 we have thatW = X2V0∩V0 = 0
and V = X2V0 +V0, so that V = X2V0⊕V0. By Lemma 2.4 (i), there exists
a simultaneous eigenvector v ∈ V0 of S and T , i.e. there exist α, τ ∈ k such
that Sv = αv, Tv = τv.

Now M = span{v,X2v} 6= 0 is a B-submodule of V and by simplicity
of V , M = V . By our assumption, X2v /∈ V0; hence Λ = {v,X2v} is a

basis of V . Note that [X1]Λ =

(
0 α
0 0

)
and [X2]Λ =

(
0 τ
1 0

)
. The relation

X2
2X1 = X1X

2
2 +X1X2X1 is satisfied if and only if τα = ατ +α2. Therefore

α = 0 and V = V0, a contradiction. �

Let A ∈ End(kn). Denote by knA the B-module defined by X1 = 0 and
X2 = A. Every B-module V with V = V0 is isomorphic to knA for some A.
If B ∈ End(km), then knA ' kmB iff n = m and A and B are similar matrices.
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Theorem 2.6. Every simple B-module is isomorphic to k1
a for a unique

a ∈ k.

Proof. This follows from Lemma 2.5 and the preceding considerations. �

Corollary 2.7. Let ρ : B → EndV a finite dimensional representation of B
and B = ρ(B). Then there exists an integer s such that B/JacB ' ks and
JacB = {x ∈ B : x is nilpotent}.

Proof. Since B/JacB is semisimple and k is algebraically closed, there are
positive integers n1, . . . , ns such that B/JacB = Mn1(k) × · · · ×Mns(k).
The composition

B
ρ // // B

π // // B/JacB
πj // // Mnj (k)

is a finite dimensional simple representation of B. Hence, by Theorem (2.6),
n1 = · · · = ns = 1. Thus, B/JacB ' ks. Let x ∈ B a nilpotent element.
Then π(x) is a nilpotent element of B/JacB. Since B/JacB is commutative,
we obtain that π(x) ∈ Jac (B/JacB) = {0}. Hence, x ∈ JacB. On the
other hand, B finite dimensional implies that JacB is a nilpotent ideal.
Consequently, JacB = {x ∈ B : x is nilpotent}. �

We also remark:

Proposition 2.8. If V is an indecomposable B-module with V = V0, then
there exist n ∈ N and λ ∈ k such that V is isomorphic to knA where A is the
Jordan block of size n with eigenvalue λ. �

If A is the Jordan block of size n with eigenvalue λ, then denote Aλ = knA.

2.5. Indecomposable modules. Throughout this subsection, V , X1, X2,
T and S are as in § 2.4. When V is indecomposable, we will prove that T has
a unique eigenvalue. In order to do this, the following relations are useful.

Lemma 2.9. Let λ ∈ k, z := t− λ id ∈ B and n ∈ N. Then

znx1
♣
= x1

n∑
j=0

n!

(n− j)!
sjzn−j , znx1x2

♦
= x1x2

n∑
j=0

n!

(n− j)!
sjzn−j .

Proof. We prove ♣ by induction on n; the proof of ♦ is similar. We will use
that x1zs

n = x1x
n
21z + nx1s

n+1, which can be verified easily. Note that

zx1 = x1z + x1x2x1 = x1z + x1s = x1(z + s),
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and whence the formula is true for n = 1. Denote ζn,j := n!
(n−j)! , 0 ≤ j ≤ n.

Consider n > 1 and assume that the formula is true for n− 1. Then

znx1 = (zx1)

n−1∑
j=0

ζn−1,js
jzn−1−j (2.2)

= (x1z + x1s)

n−1∑
j=0

ζn−1,js
jzn−1−j

=
n−1∑
j=0

ζn−1,j(x1zs
j)zn−1−j +

n−1∑
j=0

ζn−1,jx1s
j+1zn−1−j = x1

n∑
j=0

ζn,js
jzn−j .

�

Let λ be an eigenvalue of T . Denote by V T
λ the generalized eigenspace of

V associated to λ, i. e. V T
λ := ∪j≥0 ker (T − λ id)j

Lemma 2.10. V T
λ is a B-submodule of V , for all eigenvalue λ of T .

Proof. Clearly V T
λ = ker (T − λ id)r = ker

(
X2

2 − λ id
)r

, where r is the max-

imal size of λ-blocks in the Jordan normal form of T . Thus V T
λ is stable by

X2. It remains to show that it stable by X1. By Lemma 2.9, if u ∈ V T
λ then

(T − λ id)nX1u = X1

n∑
j=0

ζj,nS
j(T − λ id)n−ju.

By Lemma 2.1 of [I], S is nilpotent. Taking n big enough, it follows that
(T − λ id)nX1u = 0 and whence X1u ∈ V T

λ . �

Now Lemma 2.10 implies the next result.

Theorem 2.11. Let λ1, . . . , λt be the different eigenvalues of T . Then V
decomposes into the direct sum of the B-submodules V T

λi
.

In particular, if V is indecomposable then T has a unique eigenvalue.
Hence either X2 has a unique eigenvalue or else the eigenvalues of X2 are
λ and −λ, with λ ∈ k×. �

Given λ ∈ k, denote by BMλ the full subcategory of BM whose objects
are the B-modules V such that V = ker (T −λ id)m, for some m ∈ N0. With
this notation, the next result follows immediately from Theorem 2.11.

Corollary 2.12. BM'
∏
λ∈k BMλ. �

The next result will be useful in § 3.

Lemma 2.13. Let Λ = {v1, · · · , vn} be a basis of V such that [X1]Λ = E12

and W a one-dimensional B-submodule of V . Then:

(i) If L is a complement (as a B-module) of W in V then L ∩ V0 = 〈v1〉.
(ii) W = 〈v1〉 does not have a complement (as a B-submodule) in V .

Proof. (i): Assume that W = 〈w〉 and {u1, u2, · · · , un−1} is a basis of L.
Since W0 = W ∩ V0 6= 0, it follows that W ⊂ V0. Using that v2 is a
linear combination of w, u1, u2, · · · , un−1 we see that v1 = X1v2 ∈ L; hence
v1 ∈ V0 ∩ L.

(ii): It follows at once from (i). �



6 ANDRUSKIEWITSCH, BAGIO, DELLA FLORA, FLÔRES

3. Indecomposable representations of dimension 2 and 3

3.1. Dimension 2. In this subsection we describe all 2-dimensional inde-
composable representations of B. Fix (V, ρ) a 2-dimensional representation
of B.

Lemma 3.1. If V 6= V0 then V is indecomposable.

Proof. Suppose that V is decomposable, i.e. there are non-trivial submod-
ules U and W such that V = U⊕W . Then V0 = U0⊕W0 = U⊕W = V . �

Define representations of B on the vector space k2 given by X1 = E12 and
the following action of x2:

� X2 =

(
a b
0 a

)
, a, b ∈ k. This is denoted by Ua,b.

� X2 =

(
a 0
0 −a

)
, a ∈ k×. This is denoted by Va.

It is easy to check that these are indecomposable modules pairwise non-
isomorphic.

Theorem 3.2. Every 2-dimensional indecomposable representation of B is
isomorphic either to Ua,b, or to Va, or to k2

λ for unique a, b, λ ∈ k.

This confirms Theorem 2.11.

Proof. If V = V0, then Proposition 2.8 applies. Assume that V0 6= 0; then
there exists a basis Λ = {v1, v2} of V such that [X1]Λ = E12. Let [X2]Λ =(
a b
c d

)
. Then (2.4) is satisfied if and only if

c(a+ d) = 0 and d2 + c = a2.

Suppose that c 6= 0. Then by the first equation it follows that d = −a. Re-
placing in the second equation we have that c = 0, which is a contradiction.
Therefore c = 0 and consequently d = a or d = −a.

If d = a then V ' Ua,b. Assume that d = −a 6= 0 and take w1 = v1 and

w2 = −b
2a v1 + v2. Then Ω = {w1, w2} is a basis of V such that [X1]Ω = E12

and [X2]Ω =

(
a 0
0 −a

)
. Thus V ' Va. �

Corollary 3.3. If Ext1(k1
a, k1

b) 6= 0 then a = ±b. �

3.2. Dimension 3. Let V be a B-module of dimension 3 such that V 6= V0.
Throughout this subsection, Λ = {v1, v2, v3} denotes a basis of V such that
[X1]Λ = E12. We define four families of representations of B on the vector
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space V determined by the following action of [X2]Λ, for all a, b, c, d, e ∈ k:

Θ1 :

a b c

0 d e

0 a2−d2
e −d

 , e ∈ k×; Θ2 :

a b c

0 a 0

0 d e

 ;

Θ3 :

a b c2−a2
d

0 c 0

d e −a

 , d ∈ k×; Θ4 :

a b c

0 −a 0

0 d e

 , a ∈ k×.

Lemma 3.4. The families Θ1, Θ2, Θ3 and Θ4 contain all 3-dimensional
representations of B, up to isomorphism.

Proof. Let [X2]Λ =

α β γ
δ ε ζ
η θ ι

. Then (2.4) is valid if and only if


δ(α+ ε) = −ζη
ζ(ε+ ι) = −γδ
η(α+ ι) = −δθ
ε2 − α2 = −δ + γη − ζθ

(3.1)

Claim: If the system (3.1) has solution then δ = 0.

Assume that δ 6= 0. If ζ = 0 then γ = 0 and ε = −α. Thus, δ = 0 which is
a contradiction. If ζ 6= 0 then

γ =
−ζ(ε+ ι)

δ
, η =

−δ(α+ ε)

ζ
and θ =

(α+ ε)(α+ ι)

ζ
.

From the last equation of (3.1), δ = 0 which is again a contradiction.

Assume δ = 0. Thus ζη = 0. If ζ 6= 0 then η = 0, ι = −ε and θ = α2−ε2
ζ .

Hence V belongs to the family Θ1. When ζ = 0 and η 6= 0, it follows that

ι = −α and γ = ε2−α2

η . Thus, V belongs to the family Θ3. If ζ = 0 and

η = 0 then ε = |α|. In this case, V belongs to the families Θ2 or Θ4. �

Remark 3.5. Let L a B-submodule of V of dimension 2 such that L ∩ V0 is
one-dimensional. Fix L := L/(L ∩ V0) = 〈u〉. Since u /∈ V0, we can suppose
that u = αv1 + v2 + γv3 ∈ L, with α, γ ∈ k.

Proposition 3.6. Let V be a B-module. Then:

(i) the representations in the family Θ1 are always indecomposable;
(ii) a representation in the family Θ2 is indecomposable if and only if c 6= 0

and e = a or d 6= 0 and e = a;
(iii) the representations in the family Θ3 are always indecomposable;
(iv) a representation in the family Θ4 is indecomposable if and only if c 6= 0

and e = a or d 6= 0 and e = −a.

Proof. (i): The unique one-dimensional B-submodule of V is 〈v1〉 which does
not have complement by Lemma 2.13 (ii).
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(ii): Let V be a representation of B of the type Θ2. Suppose that W = 〈w〉
is a one-dimensional B-submodule of V . Since W ⊂ V0, see § 2.4, w =
αv1 + βv3, with α, β ∈ k. Note that X2w = γw, γ ∈ k, if and only if
β(γ − e) = 0 and α(γ − a) = βc. Consequently, the one-dimensional B-
submodules of V are:

� 〈v1〉, 〈v3〉, c = 0, e 6= a,
� 〈αv1 + βv3〉, c = 0, e = a,
� 〈v1〉, 〈v1 + e−a

c v3〉, c 6= 0, e 6= a
� 〈v1〉, c 6= 0, e = a.

Assume e 6= a. If c 6= 0, V = 〈v1 + e−a
c v3〉 ⊕ 〈v1, v1 + v2 + d

a−ev3〉. If c = 0,

V = 〈v3〉 ⊕ 〈v1, v1 + v2 + d
a−ev3〉. If c = d = 0, V = 〈v1, v2〉 ⊕ 〈v3〉. Hence,

V is decomposable.
Conversely, suppose e = a and c 6= 0. Then the unique one-dimensional
B-submodule of V is 〈v1〉 which does not have complement. Suppose that
e = a and d 6= 0. Assume that W is a one-dimensional B-submodule of
V which admits a complement L = 〈u1, u2〉. Then by Lemma 2.13 (ii),
v1 ∈ L ∩ V0. By Remark 3.5, L = 〈u〉 where u = αv1 + v2 + βv3. Thus
X2u = γu, γ ∈ k, if and only if γ = a and β(a − e) = d. Since d 6= 0 and
e = a then W does not have complement in V .

(iii): Suppose that W = 〈w〉 is a one-dimensional B-submodule of V
which admits a complement L. Then by Lemma 2.13 (ii), 〈v1〉 = L ∩ V0,
which is a contradiction because d 6= 0.

(iv): Analogous to item (ii). �

3.2.1. Isomorphism classes in Θ1. Assume V in the family Θ1. We distin-
guish: for all a, b, c, d, e ∈ k

� X2 =

a b c
0 d e

0 a2−d2
e −d

 , e ∈ k×. This is denoted by Ya,b,c,d,e.

� X2 =

a b 0
0 a 1
0 0 −a

. This is denoted by Ua,b.

By Proposition 3.6 (i), these representations are indecomposable. Note that
Ua,b = Ya,b,0,a,1.

Proposition 3.7. Every 3-dimensional indecomposable representation V of
B in Θ1 is isomorphic either to Ua,b, or to Ya,b,c,d,e. Moreover,

Ya,b,c,d,e ' Ya,b′,c′,d′,e′ if and only if (a− d′)ce
′ − c′e
e′

= e(b′ − b) + c(d′ − d).

In particular, Ua,b ' Ua,b′ if and only if b = b′.

Proof. Since 〈X2v1〉 = ImX1, we obtain that a is invariant. Consider the
indecomposable representation Ya,b′,c′,d′,e′ of B. If d′ = a, taking the basis

{v1,
c′

e′ v1 + v2,
1
e′ v3} we conclude that Ya,b′,c′,d′,e′ ' Ua,b

′
.
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Note that Ya,b,c,d,e and Ya,b′,c,d′,e′ are isomorphic if and only if there exists a
basis {w1, w2, w3} of V such that X1w1 = X1w3 = 0, X1w2 = w1, X2w1 =

aw1, X2w2 = b′w1 + d′w2 + a2−d′2
e′ w3 and X2w3 = c′w1 + e′w2 − d′w3.

Since 〈v1〉 = ImX1 and V0 has dimension 2, then we can consider w1 = v1,
w2 = λ1v1 + λ2v2 + λ3v3 and w3 = β1v1 + β3v3, λ1, λ2, λ3, β1, β3 ∈ k. Then,

Ya,b,c,d,e ' Ya,b′,c,d′,e′ if and only if (a−d′)ce
′ − c′e
e′

= e(b′−b)+c(d′−d). �

3.2.2. Isomorphism classes in Θ2. Consider V in the family Θ2 and the
following distinguish representations: for all a ∈ k

� X2 =

a 0 0
0 a 0
0 1 a

. This is denoted by Ra.

� X2 =

a 0 1
0 a 0
0 0 a

. This is denoted by Sa.

� X2 =

a 0 b
0 a 0
0 c a

 , b ∈ k× or c ∈ k×. This is denoted by Ta,b,c.

By Proposition 3.6 (ii), these are indecomposable representations. Notice
that Ra = Ta,0,1 and Sa = Ta,1,0.

Proposition 3.8. Every 3-dimensional indecomposable representation V of
B in Θ2 is isomorphic either to Ra, or to Sa or to Ta,b,c. Moreover, Ta,b,c
and Ta,b′,c′ are isomorphic if and only if bc = b′c′.

Proof. Let V ′ the representation of B given by

[X2]Λ =

a d′ b′

0 a 0
0 c′ a

 .

If b′ = 0, then by Proposition 3.6 (ii) we have that c′ 6= 0. In this case, taking
the basis {v1, v2, d

′v1 + c′v3} of V ′, we conclude that V ′ ' Ra. Similarly, if

c′ = 0 then b′ 6= 0. Taking the basis {v1, v2 − d′

b′ v3,
1
b′ v3} of V ′, we obtain

that V ′ ' Sa. If b, b′, c, c′ ∈ k×, taking the basis {v1, v2,
d′

c′ v1 +v3}, it follows
that V ′ ' Ta,b′,c′ .

Finally, notice that Ta,b,c ' Ta,b′,c′ if and only if there exists a basis
{w1, w2, w3} of k3 such that X1w1 = X1w3 = 0, X1w2 = w1, X2w1 = aw1,
X2w2 = aw2 + cw3 and X2w3 = bw1 + aw3. We can assume w1 = v1,
w2 = λ1v1 + λ2v2 + λ3v3 and w3 = β1v1 + β3v3, λ1, λ2, λ3, β1, β3 ∈ k . Note
that X2w2 = w1 if and only if λ2 = 1. Moreover, X2w2 = aw2 + cw3 and
X2w3 = bw1 + aw3 if and only if bc = b′c′. �

3.2.3. Isomorphism classes in Θ3. Consider V in the family Θ3 and the
following distinguished representations: for all a, b, c, d, e ∈ k
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� X2 =

a b c2−a2
d

0 c 0
d e −a

 , d ∈ k×. This is denoted by Wa,b,c,d,e.

� X2 =

a b 0
0 a 0
1 0 −a

. This is denoted by Ua,b.

By Proposition 3.6 (iii), these representations are indecomposable. Observe
that Ua,b =Wa,b,a,1,0.

Proposition 3.9. Every 3-dimensional indecomposable representation V of
B in Θ3 is isomorphic either to Ua,b, or to Wa,b,c,d,e. Moreover,

Wa,b,c,d,e ' Wa′,b′,c,d′,e′ if and only if
ae− bd− ce

d
=
a′e′ − b′d′ − ce′

d′
.

In particular, Ua,b ' Ua,b′ iff b = b′.

Proof. Since the characteristic polynomial of X2 is (t − c)2(t + c), c is an
invariant. Let the indecomposable representation Wa′,b′,c,d′,e′ of B. If c = a,
taking the basis {v1,− e

dv1 + v2, dv3} we conclude that Wa′,b′,c,d′,e′ ' Ua′,b′ .
Note thatWa,b,c,d,e ' Wa′,b′,c,d′,e′ if and only if there is a basis {w1, w2, w3} of
k3 such thatX1w1 = X1w3 = 0, X1w2 = w1, X2w1 = aw1, x2w2 = aw2+cw3

and X2w3 = bw1+aw3. We can assume w1 = v1, w2 = λ1v1+λ2v2+λ3v3 and
w3 = β1v1 +β3v3, where λ1, λ2, λ3, β1, β3 ∈ k. However X2w1 = a′w1 + d′w3

if and only if β1 = a−a′
d′ e β3 = d

d′ . With this choose of β1 and β3 we have

that X2w3 = c2−a′2
d′ w1 − a′w3. Finally, X2w2 = b1w1 + cw2 + e′w3 if and

only if ae−bd−ce
d = a′e′−b′d′−ce′

d′ . �

3.2.4. Isomorphism classes in Θ4. Consider V in Θ4 and the following dis-
tinguish representations: for all a ∈ k×

� X2 =

a 0 1
0 −a 0
0 0 a

. This is denoted by Va.

� X2 =

a 0 0
0 −a 0
0 1 −a

. This is denoted by Va.

By Proposition 3.6 (iv), these are indecomposable representations pairwise
non-isomorphic.

Proposition 3.10. Every 3-dimensional indecomposable representation V
of B in Θ4 is isomorphic either to Va or to Va for unique a ∈ k×.

Proof. Let V ′ be a 3-dimensional indecomposable representation of B such
that

[X2]Λ =

a b c
0 −a 0
0 d e

 , a ∈ k×.
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Since V ′ is indecomposable, by Proposition 3.6 (iv) we have that c 6= 0
and e = a or d 6= 0 and e = −a. If c 6= 0 and e = a, taking the basis
{v1,

cd−2ab
4a2

v1 + v2 − d
2av3, v1 + 1

cv3} of V ′, we obtain V ′ ' Va. If d 6= 0 and

e = −a, taking the basis {v1,−2ab+cd
4a2

v1 + v2,− dc
2av1 + dv3} of V ′, it follows

that V ′ ' Va. �

3.2.5. Classification of indecomposable 3-dimensional B-modules.

Theorem 3.11. Every 3-dimensional indecomposable B-module is isomor-
phic either to k3

λ for a unique λ, or else to a representation in one of the
families Θj, j = 1, 2, 3, 4, with the constraints described in Proposition 3.6.
The isomorphism classes are described in Propositions 3.7, 3.8, 3.9 and
3.10. �

Again, this agrees with Theorem 2.11.

Remark 3.12. It is straightforward to verify that two 3-dimensional indecom-
posable representations of B that belong to different families Θi, i = 1, 2, 3, 4,
are not isomorphic.

4. Families of indecomposable B-modules

Throughout this section (V, ρ) is an n-dimensional representation of B,
Λ = {v1, . . . , vn} is a basis of V , X1 = ρ(x1), X2 = ρ(x2) and [X1]Λ = E12.

4.1. The family Ua. Let a ∈ k. Consider the following action of X2 on V :

[X2]Λ =



a 0 0 0 . . . 0 0
0 a 0 0 . . . 0 0
0 1 a 0 . . . 0 0
0 0 1 a . . . 0 0
...

...
...

. . .
. . .

...
...

0 0 0 . . . 1 a 0
0 0 0 . . . 0 1 a


.

Clearly V with this action is a B-module which will be denoted by Ua.

Lemma 4.1. Let W be a proper B-submodule of Ua. Then:

(i) v2 /∈ W;
(ii) If v =

∑n
i=1 λivi ∈ W then λ2 = 0.

Proof. (i): Suppose v2 ∈ W. Then v1 = X1v2 ∈ W and X2v2 = av2 + v3 ∈
W. Hence v3 ∈ W. Again, X2v3 = av3 + v4 ∈ W and consequently v4 ∈ W.
With this procedure, we obtain that Λ ⊂ W. Thus, W = Ua and we have a
contradiction.

(ii): Assume λ2 6= 0 and fix w1 = λ−1
2 v. Thus w1 = α1v1 +v2 + . . .+αnvn,

where αi = λ−1
2 λi, for all 1 ≤ i ≤ n. Consider the following elements of V :

wj := vj+1 + α3vj+2 + . . .+ αn−j+1vn, for all 2 ≤ j ≤ n− 2.
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By a straightforward calculation, we obtain that X2wj = awj + wj+1, for
all 1 ≤ j ≤ n − 2. Thus, w1, . . . , wn−2 ∈ W and X2wn−2 = awn−2 + vn.
Therefore, vn ∈ W. But wn−2 = vn−1 + α3vn and whence vn−1 ∈ W. By
this procedure, it follows that v3, . . . , vn ∈ W. From v1 = X1w1 ∈ W, it
follows that v2 ∈ W which contradicts (i). �

Theorem 4.2. Ua is an indecomposable B-module, for all n ≥ 2.

Proof. Suppose Ua decomposable. LetW, W̃ be nontrivial B-submodules of

Ua such that Ua =W⊕W̃. Consider {w1, . . . , wr} and {wr+1, . . . , wn} basis

of W and W̃ respectively. By Lemma 4.1, wi = λi1v1 + λi3v3 + . . .+ λinvn,
for all 1 ≤ i ≤ n. Since v2 ∈ Ua, there exist α1, . . . , αn ∈ k such that
v2 = α1w1 + . . .+ αnwn, a contradiction. �

4.2. The family Va. Let a ∈ k×. Consider the following action of X2 on
V :

[X2]Λ =



a 0 0 0 . . . 0 0
0 −a 0 0 . . . 0 0
0 1 −a 0 . . . 0 0
0 0 1 −a . . . 0 0
...

...
...

. . .
. . .

...
...

0 0 0 . . . 1 −a 0
0 0 0 . . . 0 1 −a


.

Notice that V is a B-module which will be denoted by Va. Since a 6= 0,
Ua and Va are not isomorphic.

Theorem 4.3. Va is an indecomposable B-module, for all n ≥ 2.

Proof. Let W a proper B-submodule of Va. As in Lemma 4.1 (i), we can
show that v2 /∈ W. Let v ∈ W such that v =

∑n
i=1 λivi. Assume that λ2 6= 0

and consider u := λ−1
2 v ∈ W. Then v1 = X1u ∈ W. Take w1 := u−λ−1

2 λ1v1

and note that w1 = α2v2 + . . .+ αnvn, where αi = λ−1
2 λi, for all 2 ≤ i ≤ n.

Considering the following elements of V

wj := vj+1 + α3vj+2 + . . .+ αn−j+1vn, for all 2 ≤ j ≤ n− 2,

it follows X2wj = −awj + wj+1, for all 1 ≤ j ≤ n − 2. As in Lemma 4.1,
this implies that v2 ∈ W which is a contradiction. Thus, the result follows
as in Theorem 4.2. �
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