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DATANA FLORES

To Antonio Paques.

ABSTRACT. It is shown that the finite-dimensional simple representa-
tions of the super Jordan plane B are one-dimensional. The indecom-
posable representations of dimension 2 and 3 of B are classified. Two
families of indecomposable representations of B of arbitrary dimension
are presented.

1. INTRODUCTION

Nichols algebras are graded connected algebras with a comultiplication
in a braided sense. In particular, the Jordan plane and the super Jordan
plane are two Nichols algebras that play an important role in the clas-
sification of pointed Hopf algebras with finite Gelfand-Kirillov dimension
[AAH1, AAH2].

The Jordan plane was first defined in [G] and considered in many papers,
e.g. [AS], see also the references in [AAH2, I]. Its representation theory was
studied in [I].

The purpose of this note is to begin the study of the representation the-
ory of the super Jordan plane B: we classify the simple finite-dimensional
B-modules (all of dimension 1, Theorem 2.6) and the indecomposable B-
modules of dimension 2 (Theorem 3.2) and 3 (Theorem 3.11). We also
observe that one of the generators of B has at most two eigenvalues in ev-
ery indecomposable B-module (Theorem 2.11) and describe two families of
indecomposable modules in every dimension.

2. BASIC FACTS

2.1. Notations and conventions. Fix an algebraically closed field k of
characteristic 0; all vector spaces, tensor products, Hom spaces, algebras are
over k. All algebras are associative and all modules are left, unless explicitly
stated. Let A be a k-algebra; then [, | denotes the Lie bracket given by the
commutator. As customary we use indistinctly the languages of modules
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and representations. Denote by 4 M the category of finite dimensional A-
modules. Given a k-vector space V', gl(V) denotes the Lie algebra of all
linear operators on V. The Jacobson radical of an algebra A it will be
denoted by Jac A.

2.2. The Jordan plane. The Jordan plane is the free associative algebra
A in generators y; and yo subject to the quadratic relation

Y1y2 — Y291 — yg.
The algebra A is a Nichols algebra, GKdim A = 2 and {y¢y5 : a,b € No} is
a basis of A. By Proposition 3.4 of [I], A is a Koszul algebra.

2.3. The super Jordan plane. Let x91 = x129 + xox1 in the free associa-
tive algebra in generators z; and xo. Let B be the algebra generated by x;
and xo with defining relations

(2.1) zi,
(2.2) ToX21 — 21X — T1X21.-

The algebra B (which is graded by degz; = degzy = 1) was introduced
in [AAH1, AAH2] and is called the super Jordan plane. Since B is not a
quadratic algebra, it follows that B is not Koszul; see e. g. §2.1 of [PP].

Proposition 2.1. [AAH2| The algebra B is a Nichols algebra, GKdim B = 2

and {x$28,25 1 a € {0,1},b,c € Ny} is a basis of B. O
The following identities are valid in B:

(2.3) T21T1 = T1%21,

(2.4) x%azl = xla;% + 212971,

(2.5) 3:2150% = (:1;% — T91)x21.

Indeed, in presence of (2.1), (2.2) is equivalent to (2.4).

By (2.5) and Proposition 2.1, the subalgebra of the super Jordan plane
B generated by x3 and 1, is isomorphic to the Jordan plane via y; — 23
and yo — To1.

It is convenient to introduce s = 9, and t = x3. By (2.5), st = ts — s>

and whence
(2.6) [t,s"] = ns"tn>1, zs=sx1; xot =txe; tz = z1(t+ s).
Lemma 2.2. Given b,c € N, we have that
a5 = (29 — bay)ab a5t x5, x5 2 T19xd 5L
Proof. We prove * by induction. For b = ¢ = 1, the relation is valid by (2.2).
Suppose that * is valid for b —1 > 0 and ¢ = 1. Then
a:glxg = mgfla:glxg = :cgfl(xgxgl — T1221)

= (xa— (b— 1)3;1)1:3;1:521 — xglxl = (x9 — bxl)xgl.
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Fix b € N and assume that the relation is true for ¢ — 1, with ¢ > 1. Thus

ah 28 = (zhy2s ag = (z2 — bay)ab 2§ 2w = (22 — bay)abyag

The proof of © is similar. ([
The next result follows immediately from Proposition 2.1 and Lemma 2.2.

Proposition 2.3. The set {1, x1,x9,x122} generates B as a right A-module.
O

2.4. Simple modules. Let (V| p) be a finite-dimensional representation of
B; set X1 = p(x1), X2 = p(x2), S = p(s) and T = p(t) and

Vo = ker X;.

Then Vj is always # 0 and it is stable under S and 7" by (2.6). In fact, let
E1a(n) € gl(k™) (or Eiz if n is clearly from de context) the matrix whose
the entry 1 x 2 is equal to 1 and all other entries are equal to 0. Then the
Jordan form of X consists of r blocks like E12(2) and s blocks of size 1 filled
by 0. Hence dimV =2r+s;r=0 < V = 1}.

Lemma 2.4. Assume the previous notations. Then:

(i) S and T have a simultaneous eigenvector in V.
(il) W = XoVo NV is a submodule of V.
(iii) U = XoVy + W is a submodule of V.

Proof. (i): The subspace of gl(V) generated by T" and S™, n € INy, is a
solvable Lie subalgebra by (2.6); then Lie Theorem applies.

(ii): Clearly X;W C X 1V = {0} C W. It remains to show that XoW C
W. In fact, let w € W, this is, w € Vy and w = Xsv for some v € Vj.
Clearly Xow € X5V, Moreover,

X1 (Xow) = X1 X20 2 (X2X) - X1 XoX1)o = 0 — Xow € W.
(iii): Since B -V C XV and B - (X3V)) C Vj, the claim follows. O
Lemma 2.5. If V € gpM is simple, then V = Vj.

Proof. Assume that V # V. By Lemma 2.4 we have that W = XoVoNVp =0
and V = XoVj + Vp, so that V = XoVp @ V. By Lemma 2.4 (i), there exists
a simultaneous eigenvector v € Vj of S and 7', i.e. there exist a, 7 € k such
that Sv = av, Tv = Tv.

Now M = span{v, Xov} # 0 is a B-submodule of V" and by simplicity
of V, M = V. By our assumption, Xov ¢ Vp; hence A = {v, Xov} is a
basis of V. Note that [X;]y = (8 g) and [Xo]p = ((1] g) The relation
X%Xl = X1X22 + X1 X5 X is satisfied if and only if Tae = a7 +a?. Therefore
a =0 and V =V}, a contradiction. O

Let A € End(k™). Denote by k7 the B-module defined by X; = 0 and
Xo = A. Every B-module V with V' = Vj is isomorphic to k; for some A.
If B € End(k™), then k7 ~ k7} iff n = m and A and B are similar matrices.
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Theorem 2.6. Every simple B-module is isomorphic to k. for a unique
a € k.

Proof. This follows from Lemma 2.5 and the preceding considerations. [

Corollary 2.7. Let p: B — EndV a finite dimensional representation of B
and B = p(B). Then there exists an integer s such that B/Jac B ~k* and
Jac B = {x € B : z is nilpotent}.

Proof. Since B/Jac B is semisimple and k is algebraically closed, there are
positive integers ni,...,ns such that B/Jac B = My, (k) x --- x M, (k).
The composition

B’ B "> B/Jac B —= M, (k)

is a finite dimensional simple representation of B. Hence, by Theorem (2.6),
ny =---=mng = 1. Thus, B/Jac B ~ k®. Let x € B a nilpotent element.
Then 7(z) is a nilpotent element of B/Jac B. Since B/Jac B is commutative,
we obtain that w(z) € Jac(B/JacB) = {0}. Hence, x € Jac B. On the
other hand, B finite dimensional implies that Jac B is a nilpotent ideal.
Consequently, Jac B = {z € B : x is nilpotent}. O

We also remark:

Proposition 2.8. If V is an indecomposable B-module with V = Vj, then
there exist n € N and X € k such that V' is isomorphic to k'y where A is the
Jordan block of size n with eigenvalue \. ([

If Ais the Jordan block of size n with eigenvalue ), then denote Ay = k'}.
2.5. Indecomposable modules. Throughout this subsection, V', X, Xo,

T and S are as in §2.4. When V is indecomposable, we will prove that T" has
a unique eigenvalue. In order to do this, the following relations are useful.

Lemma 2.9. Let A€k, z:=t—Xid € B andn € N. Then

Z .7}1—%‘1 E s Z $1ZL‘2—$1ZL‘2 E

Proof. We prove & by induction on n; the proof of { is similar. We will use
that x12s" = z125,2 + nay s"*1 which can be verified easily. Note that

SJnJ SJTLJ'

281 = 12 + T12901 = 212 + 218 = 21(2 + 8),
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and whence the formula is true for n = 1. Denote ¢, ; := (n%']),, 0<j<n.
Consider n > 1 and assume that the formula is true for n — 1. Then

n—1 n—1

2"x1 = (z11) Z Cn,l,jsjz"_l_j 22) (12 + 7158) Z Cn,Ljsjz”_l_j
Jj=0 Jj=0
n—1 n—1 n
= Z Cn1,(w1287)2" 10 4 Z Cno1 ey s T2 =y Z Cn stz
Jj=0 Jj=0 Jj=0

O

Let A be an eigenvalue of T'. Denote by V/\T the generalized eigenspace of
V associated to A, i. e. Vi := U;>oker (T — Aid)’
Lemma 2.10. VAT is a B-submodule of V, for all eigenvalue A of T.
Proof. Clearly VI = ker (T — Xid)" = ker (X7 — Aid)", where r is the max-
imal size of A-blocks in the Jordan normal form of 7. Thus V)\T is stable by
X5. It remains to show that it stable by X;. By Lemma 2.9, if u € V):‘F then

n
(T — Xid)"Xqu = X1 > _ (S (T — Xid)" .
§=0
By Lemma 2.1 of [I], S is nilpotent. Taking n big enough, it follows that
(T — Aid)" X u = 0 and whence Xju € VI O
Now Lemma 2.10 implies the next result.

Theorem 2.11. Let Ay,..., )\t be the different eigenvalues of T. Then V
decomposes into the direct sum of the B-submodules Vf; .

In particular, if V' is indecomposable then T has a unique eigenvalue.
Hence either X9 has a unique eigenvalue or else the eigenvalues of Xo are

A and =\, with A € k™. O

Given A € k, denote by gM ) the full subcategory of s M whose objects
are the B-modules V such that V' = ker (T'— Aid)™, for some m € Ny. With
this notation, the next result follows immediately from Theorem 2.11.

Corollary 2.12. sM ~ [], ¢, 8BM. O
The next result will be useful in § 3.
Lemma 2.13. Let A = {vy, -+ ,v,} be a basis of V' such that [X1]n = E12
and W a one-dimensional B-submodule of V. Then:
(i) If L is a complement (as a B-module) of W in V then L NVy = (v1).
(ii) W = (v1) does not have a complement (as a B-submodule) in V.
Proof. (1): Assume that W = (w) and {ui,ug, -+ ,un—1} is a basis of L.
Since Wy = W N Vy # 0, it follows that W C Vy. Using that v is a
linear combination of w,uq,uo, - ,un,_1 We see that vy = Xqv9 € L; hence
v € VoN L.
(ii): It follows at once from (i). O
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3. INDECOMPOSABLE REPRESENTATIONS OF DIMENSION 2 AND 3

3.1. Dimension 2. In this subsection we describe all 2-dimensional inde-
composable representations of B. Fix (V| p) a 2-dimensional representation

of B.
Lemma 3.1. If V # Vj then V is indecomposable.

Proof. Suppose that V' is decomposable, i.e. there are non-trivial submod-
ules U and W such that V =U®W. Then Vy = UyeWoy=UpW =V. O

Define representations of B on the vector space k? given by X; = E15 and
the following action of xo:

o X9 = (8 2), a,b € k. This is denoted by U, .

o Xy = a 0 , a € k*. This is denoted by V,.
0 —a

It is easy to check that these are indecomposable modules pairwise non-
isomorphic.

Theorem 3.2. Every 2-dimensional indecomposable representation of B is
isomorphic either to Uy p, or to V,, or to ]ki for unique a,b, A € k.

This confirms Theorem 2.11.

Proof. If V=V, then Proposition 2.8 applies. Assume that V) # 0; then
there exists a basis A = {v1,v2} of V' such that [Xi]p = Ej2. Let [Xo|p =

(CCL Z) Then (2.4) is satisfied if and only if

cla+d)=0 and d? +c=d’

Suppose that ¢ # 0. Then by the first equation it follows that d = —a. Re-
placing in the second equation we have that ¢ = 0, which is a contradiction.
Therefore ¢ = 0 and consequently d = a or d = —a.

If d = a then V >~ U,p. Assume that d = —a # 0 and take w; = v and
Wy = g—é’vl + vy. Then Q = {w;,wy} is a basis of V' such that [X;]q = Ei2

and [Xo]o = (g _Oa> Thus V ~ V,. O
Corollary 3.3. If Ext!(k},k}) # 0 then a = +b. O

3.2. Dimension 3. Let V' be a B-module of dimension 3 such that V' # V4.
Throughout this subsection, A = {v1,v2,v3} denotes a basis of V such that
[X1]a = E12. We define four families of representations of B on the vector



REPRESENTATIONS OF THE SUPER JORDAN PLANE 7

space V determined by the following action of [X3]a, for all a,b, ¢, d, e € k:

a b c a b ¢
©,:10 d e |,eck; ©3:10 a 0];
0 = g 0 d e
a b 022“2 a b ¢
O3:10 c 0 , dek”™; O4: (0 —a 0], ack”.
d e —a 0 d e

Lemma 3.4. The families ©1, Oz, O3 and ©4 contain all 3-dimensional
representations of B, up to isomorphism.

o By
Proof. Let [Xao]a = |6 € (|. Then (2.4) is valid if and only if
n 0
da+e)=—(n
Cle41)=—vo
(3.1) n(a+1) = -6

Claim: If the system (3.1) has solution then § = 0.
Assume that § #0. If ( = 0 then v =0 and € = —a. Thus, § = 0 which is
a contradiction. If ¢ # 0 then

’YZ_C(;—H), 77:—5(02—1—6) and gz(a—i—e)c(oz—i—b)‘

From the last equation of (3.1), § = 0 which is again a contradiction.

Assume § = 0. Thus (n =10. If ( #0 then n =0, ¢t = —e and 0 = QQEEQ.

Hence V belongs to the family ©®;. When ¢ = 0 and n # 0, it follows that
2

t=—«aand v = # Thus, V belongs to the family ©3. If { = 0 and
n = 0 then € = |a|. In this case, V belongs to the families O or O4. O

Remark 3.5. Let L a §—Submodu1e of V of dimension 2 such that L NV is
one-dimensional. Fix L := L/(L N Vy) = (u). Since u ¢ Vj, we can suppose
that v = avy + vo + yv3 € L, with «, v € k.

Proposition 3.6. Let V be a B-module. Then:

(i) the representations in the family ©1 are always indecomposable;
(ii) a representation in the family ©2 is indecomposable if and only if ¢ # 0
ande=a ord#0 and e = a;
(iii) the representations in the family O3 are always indecomposable;
(iv) a representation in the family ©4 is indecomposable if and only if ¢ # 0
and e =a ord# 0 and e = —a.

Proof. (i): The unique one-dimensional B-submodule of V' is (v1) which does
not have complement by Lemma 2.13 (ii).
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(ii): Let V be a representation of B of the type ©2. Suppose that W = (w)
is a one-dimensional B-submodule of V. Since W C Vj, see §2.4, w =
avy + Pus, with o, 8 € k. Note that Xow = yw, v € k, if and only if
B(y —e) = 0 and a(y — a) = Be. Consequently, the one-dimensional 5-
submodules of V' are:
< <’L)1>, <7)3>, c=0,e#a,

o (avy + Puz), c=0, e = a,

o (v1), (v1 + %3), c#0,e#a

o (v1), c#0,e=a.

Assume e # a. If ¢ # 0, V = (v1 + “%v3) © (v1,v1 + v2 + afevg). If c=0,
V = (v3) @ (v1,v1 +v2 + £v3>. Ifc=d=0,V = (v1,v2) ® (v3). Hence,
V is decomposable.

Conversely, suppose ¢ = a and ¢ # 0. Then the unique one-dimensional
B-submodule of V' is (v1) which does not have complement. Suppose that
e = a and d # 0. Assume that W is a one-dimensional B-submodule of
V' which admits a complement L = (uj,us). Then by Lemma 2.13 (ii),
v1 € LN Vy. By Remark 3.5, L = (u) where u = avy + vo + Bvz. Thus
Xou = ~vu, v € k, if and only if vy = a and (a — e¢) = d. Since d # 0 and
e = a then W does not have complement in V.

(iii): Suppose that W = (w) is a one-dimensional B-submodule of V'
which admits a complement L. Then by Lemma 2.13 (ii), (v1) = LN Vp,
which is a contradiction because d # 0.

(iv): Analogous to item (ii). O

3.2.1. Isomorphism classes in ©1. Assume V in the family ©;. We distin-
guish: for all a,b,c,d,e € k

a b c
o Xo=10 d e |, eck*. This is denoted by YV, p.cde-
0 2= _g
e
a b 0
o Xo=1[0 @ 1 |. Thisis denoted by U*P.
0 0 —a

By Proposition 3.6 (i), these representations are indecomposable. Note that
U = Vap0,a,1-

Proposition 3.7. Every 3-dimensional indecomposable representation V' of
B in O is isomorphic either to U, or to Yabede Moreover,

: , ,ce — e , ,
Vabede = Vap o a e if and only if (a — d )T =e(' —b)+c(d —d).

In particular, U%® ~ UY if and only if b=V
Proof. Since (Xov1) = Im X3, we obtain that a is invariant. Consider the
indecomposable representation YV, o @ of B. If d = a, taking the basis
{v1, %Ul + v9, &1)3} we conclude that Vap o d el = uev',
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Note that YV, pc.a.e and YV, p ¢ a e are isomorphic if and only if there exists a

basis {wy,ws, w3} of V such that Xjwy = Xjws = 0, Xjws = wy, Xowy =
2 2
awy, Xows = bwy + dwy + & e,d ws and Xows = cwy + e'wy — d'ws.

Since (v1) = Im X; and Vj has dimension 2, then we can consider w; = vy,
wa = A1 + Ag2v2 + Azvz and w3 = B1v1 + B3v3, A1, A2, A3, 1, B3 € k. Then,
ce! —ce

Vapede == Vap cd e if and only if (a—d’)T =e(b/=b)+c(d —d). O

3.2.2. Isomorphism classes in Oy. Consider V in the family ©9 and the
following distinguish representations: for all a € k

a 0 0
o Xo= |0 a 0]. This is denoted by R,.
01 a
a 0 1
o Xo= |0 a 0]. This is denoted by S,.
0 0 a
a 0 b
o Xo=(0 a 0], bek™orcek. Thisis denoted by 7.
0 c a

By Proposition 3.6 (ii), these are indecomposable representations. Notice
that R, = Ta,0,1 and Sg = 74,10

Proposition 3.8. Fvery 3-dimensional indecomposable representation V' of
B in O3 is isomorphic either to R, or to S or to Tap.. Moreover, Typ .
and Top o are isomorphic if and only if bc = b'c.

Proof. Let V' the representation of B given by

a d b
Xoa={0 a 0
0 d a

If &’ = 0, then by Proposition 3.6 (ii) we have that ¢’ # 0. In this case, taking
the basis {v1,ve,d'v1 + vz} of V', we conclude that V’ ~ R,. Similarly, if
¢ = 0 then b/ # 0. Taking the basis {v1, vy — ‘If—,’z}g, %vg} of V', we obtain
that V' ~ S,. It bV, ¢, € k*, taking the basis {v1, ve, %’m +wv3}, it follows
that V' ~ 7:1,b’,c"

Finally, notice that 74 ~ Ty, if and only if there exists a basis
{w1,we, w3} of k3 such that Xjw; = Xqjws = 0, Xqwy = w, Xow; = aw,
Xows = awy + cws and Xows = bwy 4+ aws. We can assume w; = v,
we = Av1 + A2v2 + Agvg and w3 = Brv1 + B3vs, A1, A2, A3, 81,03 € k. Note
that Xowy = wy if and only if Ao = 1. Moreover, Xowy = aws + cws and
Xowsz = bwy + aws if and only if be = b/ O

3.2.3. Isomorphism classes in ©3. Consider V in the family ©3 and the
following distinguished representations: for all a,b,c,d, e € k
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o Xo=1|0 ¢ 0 , d € k*. This is denoted by Wy pcd.e-
d e —a
a b 0

© Xo=10 a 0 |]. Thisis denoted by Usp.
1 0 —a

By Proposition 3.6 (iii), these representations are indecomposable. Observe
that Z/la,b = Wa,b,a,l,O'

Proposition 3.9. Every 3-dimensional indecomposable representation V' of
B in ©3 is isomorphic either to Uy y, or to Wy pcde. Moreover,
e—bd—ce de —bd —ce

. L. a
Wa,b,c,d,e = Wa’,b’,c,d’,e’ @f and only @f d - d’

In particular, Uap ~ Uy iff b=1b".

Proof. Since the characteristic polynomial of X5 is (t — ¢)?(t + ¢), c is an
invariant. Let the indecomposable representation Wy py ¢ a7« of B. If ¢ = a,
taking the basis {v1, —v1 + v2,dvs} we conclude that Wy c.ar.er =~ Uyt .
Note that W, pc.d.e ~ War b c,d e if and only if there is a basis {w1, wa, w3} of
k3 such that Xjw; = Xjws = 0, Xjws = w1, Xowi = awq, Tows = aws+cws
and Xows = bwi+aws. We can assume w; = vq, we = A{v1+A2v2+A3v3 and
ws = Bv1 + P3vs, where A, Ao, A3, 81, B3 € k. However Xowq = a’wy + d'ws
if and only if 8 = a;—,al e B3 = %. With this choose of 51 and B3 we have

that Xows = 02;,“/2 w1 — a'wsz. Finally, Xows = bjwy + cws + €'ws if and

:r ae—bd—ce __ a’e’—b'd —ce’
only if y; = o . O

3.2.4. Isomorphism classes in ©4. Consider V in ©4 and the following dis-
tinguish representations: for all a € k*

a 0 1

o Xo=|0 —a 0]. Thisis denoted by V.
0 0 a
a 0 0

o Xo=|0 —a 0 |]. This is denoted by V,.
0 1 -—a

By Proposition 3.6 (iv), these are indecomposable representations pairwise
non-isomorphic.

Proposition 3.10. Fvery 3-dimensional indecomposable representation V
of B in ©y4 is isomorphic either to V* or to V, for unique a € k*.

Proof. Let V' be a 3-dimensional indecomposable representation of B such
that

[Xoa= [0 —a 0], ack”.
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Since V' is indecomposable, by Proposition 3.6 (iv) we have that ¢ # 0
and e =aord+# 0and e = —a. If ¢ # 0 and e = a, taking the basis
{vy, €d=2abyy 4 gy — %’Ug,’Ul + %03} of V', we obtain V' ~ V¢ If d # 0 and

4a?
e = —a, taking the basis {v1, —2“3;“1}1 + v, —g—gvl + dvz} of V', it follows
that V! ~V,. O

3.2.5. Classification of indecomposable 3-dimensional B-modules.

Theorem 3.11. Ewvery 3-dimensional indecomposable B-module is isomor-
phic either to ki for a unique X\, or else to a representation in one of the
families ©;, j = 1,2,3,4, with the constraints described in Proposition 3.6.
The isomorphism classes are described in Propositions 3.7, 3.8, 3.9 and
3.10. 0

Again, this agrees with Theorem 2.11.

Remark 3.12. Tt is straightforward to verify that two 3-dimensional indecom-
posable representations of B that belong to different families ©;, 7 = 1,2, 3, 4,
are not isomorphic.

4. FAMILIES OF INDECOMPOSABLE B-MODULES

Throughout this section (V,p) is an n-dimensional representation of B,
A =A{v1,...,u,} is a basis of V, X1 = p(z1), X2 = p(x2) and [X1]a = E1a.

4.1. The family U,. Let a € k. Consider the following action of X5 on V:

a 00 0 ... 00

0 a 0 O 00

0 1 a O 0 0

[Xa]a = 0 01 a 0 0
00 ... 1 a O

00 ... 0 1 a

Clearly V' with this action is a B-module which will be denoted by U,.

Lemma 4.1. Let W be a proper B-submodule of U,. Then:

(i) v2 ¢ W;

(i) Ifv=">" 1 \iv; € W then Xy = 0.
Proof. (i): Suppose vo € W. Then v; = Xjvy € W and Xove = avy + v3 €
W. Hence vs € W. Again, Xov3 = avz + v4 € W and consequently vy € W.
With this procedure, we obtain that A C W. Thus, W = U, and we have a
contradiction.

(ii): Assume A9 # 0 and fix wy = )\2_10. Thus w1 = a1v1+v9+...+a,vn,
where a; = A\ I\, for all 1 < i < n. Consider the following elements of V:

Wj 1= Vj41 + Q3042 + ...+ p_j41Vpn, forall 2 <5 <n—2.
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By a straightforward calculation, we obtain that Xow; = aw; 4+ wjy1, for
all 1 < j <n—2. Thus, wy,...,w,—92 € W and Xow,_ 9 = aw,_o + vy,.
Therefore, v, € W. But w,_2 = v,_1 + asv, and whence v,_1 € W. By
this procedure, it follows that vs,...,v, € W. From v; = Xjwi1 € W, it
follows that va € W which contradicts (i). O

Theorem 4.2. U, is an indecomposable B-module, for all n > 2.

Proof. Suppose U, decomposable. Let W, W be nontrivial B-submodules of
U, such that U, = WaeW. Consider {wi,...,w,} and {wy41,...,w,} basis
of W and W respectively. By Lemma 4.1, w; = Ajjv1 + Aizvs + ... + Ainn,
for all 1 < ¢ < n. Since vy € U,, there exist aq,...,a, € k such that
Vg = qqwy + ...+ apwy,, a contradiction. O

4.2. The family V,. Let a € k*. Consider the following action of X5 on
V.

a O 0 0 0 0
0 —a O 0 0 0
0O 1 —-a O 0 0
[(Xa]a = 0 O 1 —-a 0 0
0 O 0O ... 1 —-a O
0 O o ... 0 1 —a

Notice that V' is a B-module which will be denoted by V,. Since a # 0,
U, and V, are not isomorphic.

Theorem 4.3. V, is an indecomposable B-module, for all n > 2.

Proof. Let W a proper B-submodule of V,. As in Lemma 4.1 (i), we can
show that vy ¢ W. Let v € W such that v = " | \jv;. Assume that Ay # 0
and consider u := )\Q_lv € W. Then v; = Xju € W. Take wy := u—)\2_1/\11}1
and note that wy = asvs + ... + a,v,, Where a; = )\gl)w, for all 2 <4 <n.
Considering the following elements of V'

W) = Vjp1 + o3V + ...+ Qp_jp1v,, forall 2<j5<n—2,

it follows Xow; = —aw; + wj41, forall 1 < j < n —2. As in Lemma 4.1,

this implies that vo € W which is a contradiction. Thus, the result follows

as in Theorem 4.2. O
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