

A characterization of quantum groups

Nicolás Andruskiewitsch

UW Algebra and Algebraic Geometry Seminar

Seattle, October 25, 2012

I. Main result. k algebraically closed field.

Theorem. [ARS] *H* a **pointed** Hopf algebra with $\Gamma := G(H)$ abelian fin. gen. and **generic infinitesimal braiding**. TFAE:

- 1. *H* is a Γ -reductive domain with Gelfand-Kirillov dim $< \infty$.
- 2. The group Γ is free abelian of finite rank, and there exists a **reduced generic datum of finite Cartan type** \mathcal{D}_{red} for Γ such that $H \simeq \mathcal{U}(\mathcal{D}_{red})$ as Hopf algebras.

If H satisfies (2), then H is **reductive** iff $[\Gamma : \Gamma^2]$ is finite.

II. Invariants of a Hopf algebra *H*.

- $G(H) = \{x \in H 0 : \Delta(x) = x \otimes x\}$, group of grouplikes.
- The coradical $H_0 = \text{sum of all simple subcoalgebras of } H$.
- The coradical filtration is $H_n = \wedge^{n+1} H_0$.

Then: $(H_n)_{n>0}$ is a coalgebra filtration and $\cup_{n>0} H_n = H$.

Furthermore, if H_0 Hopf subalgebra, then $(H_n)_{n\geq 0}$ is an algebra filtration and gr H is a (graded) Hopf algebra.

H pointed iff every simple comodule has dim 1 iff $\&G(H) \simeq H_0$.

 ${}_{H}^{H}\mathcal{YD}$ = braided tensor category of Yetter-Drinfeld mod. over H.

- gr $H \simeq R \# H_0$, $R = \bigoplus_{n \in \mathbb{N}} R(n)$ is a graded braided Hopf algebra.
- $R(0) \simeq k$, R(1) = P(R) =: V infinitesimal braiding of H.

Fact: subalgebra generated by $V \simeq \mathfrak{B}(V)$ Nichols algebra of V.

Hypothesis: $H_0 = \Bbbk \Gamma$, Γ abelian group.

If $V \in {}^{H}_{H}\mathcal{YD}$ and dim $V < \infty$, then $V = \bigoplus_{g \in \Gamma, \chi \in \widehat{\Gamma}} V_{g}^{(\chi)}$.

• V of diagonal type when $V = \bigoplus_{g \in \Gamma, \chi \in \widehat{\Gamma}} V_g^{\chi} \rightsquigarrow (q_{ij})_{1 \le i,j \le \theta}$

generic infinitesimal braiding $\equiv q_{ii} \notin \mathbb{G}_{\infty}, 1 \leq i \leq \theta$.

III. Reductivity.

An algebra A reductive if all fin.-dim. A-modules are semisimple.

 $B \subset A$ a subalgebra. A is *B*-reductive if all finite-dimensional left *A*-modules which are semisimple over *B* are semisimple.

H pointed Hopf algebra, $\Gamma := G(H)$. *H* Γ -reductive $\equiv H \ \& \Gamma$ -reductive

IV. Constructions of pointed Hopf algebras.

• Γ is a free abelian group of finite rank s. $\mathbb{I} = \{1, \ldots, \theta\}$.

• $(a_{ij}) \in \mathbb{Z}^{\theta \times \theta}$ is a Cartan matrix of finite type; $(d_1, \ldots, d_{\theta})$ diagonal matrix such that $d_i a_{ij} = d_j a_{ji}$, $d_{ii} > 0$ minimal.

• $\mathcal{X} =$ set of connected components of the Cartan matrix (a_{ij}) ; if $i, j \in \mathbb{I}$, then $i \sim j \iff i, j \in$ same connected component.

• $(q_I)_{I \in \mathcal{X}}$ is a family of elements in \Bbbk which are not roots of 1.

•
$$g_1, \ldots, g_{\theta} \in \Gamma, \ \chi_1, \ldots, \chi_{\theta} \in \widehat{\Gamma}$$
, satisfy
 $\langle \chi_i, g_i \rangle = q_I^{d_i}, \quad \langle \chi_j, g_i \rangle \langle \chi_i, g_j \rangle = q_I^{d_i a_{ij}}, \quad \forall i, j \in \mathbb{I}, \quad i \in I.$

Two vertices i and j are linkable if $i \not\sim j$, $g_i g_j \neq 1$ and $\chi_i \chi_j = \varepsilon$.

A linking datum for

 Γ , (a_{ij}) , $(q_I)_{I \in \mathcal{X}}$, g_1, \ldots, g_{θ} and $\chi_1, \ldots, \chi_{\theta}$ is a collection $(\lambda_{ij})_{1 \leq i < j \leq \theta, i \approx j}$ of elements in $\{0, 1\}$ such that λ_{ij} is arbitrary if *i* and *j* are linkable but 0 otherwise. Given a linking datum, we say that two vertices *i* and *j* are linked if $\lambda_{ij} \neq 0$. The collection

 $\mathcal{D} = \mathcal{D}((a_{ij}), (q_I), (g_i), (\chi_i), (\lambda_{ij})),$

where (λ_{ij}) is a linking datum, will be called a **generic datum** of finite Cartan type for Γ . **Definition.** \mathcal{D} a generic datum of finite Cartan type for Γ . $U(\mathcal{D}) =$ algebra presented by gens. $a_1, \ldots, a_{\theta}, y_1^{\pm 1}, \ldots, y_s^{\pm 1}$, rels.

$$y_{m}^{\pm 1}y_{h}^{\pm 1} = y_{h}^{\pm 1}y_{m}^{\pm 1}, \quad y_{m}^{\pm 1}y_{m}^{\mp 1} = 1, \qquad 1 \le m, h \le s,$$
$$y_{h}a_{j} = \chi_{j}(y_{h})a_{j}y_{h}, \qquad 1 \le h \le s, \ 1 \le j \le \theta,$$
$$(ad \ a_{i})^{1-a_{ij}}a_{j} = 0, \qquad 1 \le i \ne j \le \theta, \quad i \sim j,$$
$$a_{i}a_{j} - \chi_{j}(g_{i})a_{j}a_{i} = \lambda_{ij}(1 - g_{i}g_{j}), \qquad 1 \le i < j \le \theta, \quad i \not\sim j.$$

Theorem. [AS] $U(\mathcal{D})$ is a pointed Hopf algebra with

$$\Delta y_h = y_h \otimes y_h, \qquad \Delta a_i = a_i \otimes 1 + g_i \otimes a_i, \qquad 1 \le h \le s, \ 1 \le i \le \theta.$$

 $U(\mathcal{D})$ has a PBW-basis given by monomials in the root vectors. The associated graded Hopf algebra $\operatorname{gr} U(\mathcal{D})$ is isomorphic to $\mathfrak{B}(V) \# \mathbb{k}\Gamma$; $U(\mathcal{D})$ is a domain with finite GK-dim. **Theorem.** [AS, AA] H a pointed Hopf algebra with fin. generated abelian G(H), and generic infinitesimal braiding. TFAE:

(a). H is a domain with finite Gelfand-Kirillov dimension.

(b). The group $\Gamma := G(H)$ is free abelian of finite rank, and there exists a generic datum of finite Cartan type \mathcal{D} for Γ such that $H \simeq U(\mathcal{D})$ as Hopf algebras.

V. Reduced data and Levi-type decomposition.

 \mathcal{D} a generic datum of finite Cartan type, linking parameter λ .

•
$$\mathbb{I}^{\mathsf{s}} = \{h \in \mathbb{I} : h \text{ is not linked}\}; \mathbb{I}' = \mathbb{I} - \mathbb{I}^{\mathsf{s}}; X' = X_{\mathbb{I}'};$$

• \approx , the equivalence relation on \mathbb{I}' defined by \mathcal{D}' ;

•
$$\lambda'_{ij} = \begin{cases} \lambda_{ij}, & \text{if } i \not\sim j \\ 0, & \text{if } i \sim j, \end{cases}$$
 for all $i, j \in \mathbb{I}', i \not\approx j.$

Then λ' is a linking parameter for \mathcal{D}' .

•
$$\mathcal{D}' = \mathcal{D}((a_{ij})_{i,j\in\mathbb{I}'}, (q_I)_{I\in X'}, (g_i)_{i\in\mathbb{I}'}, (\chi_i)_{i\in\mathbb{I}'}, (\lambda_{ij})_{i,j\in\mathbb{I}'})$$

Theorem. [ARS]

There are Hopf algebra morphisms

 $\Phi: \mathcal{U}(\mathcal{D},\lambda) \to \mathcal{U}(\mathcal{D}',\lambda'), \quad \Psi: \mathcal{U}(\mathcal{D}',\lambda') \to \mathcal{U}(\mathcal{D},\lambda), \quad \Phi \Psi = \mathsf{id}.$

 $K = \mathcal{U}(\mathcal{D}, \lambda)^{co\Phi}$ is a braided Hopf algebra in $\mathcal{U}(\mathcal{D}') \mathcal{YD}$ and $K \# \mathcal{U}(\mathcal{D}', \lambda') \cong \mathcal{U}(\mathcal{D}, \lambda)$

The algebra K is generated by the set

 $S = \{ \mathrm{ad}(x_{i_1} \cdots x_{i_n})(x_h) \mid h \in L, n \ge 0, i_{\nu} \in \mathbb{I}', i_{\nu} \sim h, 0 \le \nu \le n \}.$

A linking parameter \mathcal{D} is *perfect* if and only if any vertex is linked.

 \mathcal{D} a generic datum of finite Cartan type, linking parameter $\lambda \implies \mathcal{U}(\mathcal{D},\lambda) \twoheadrightarrow \mathcal{U}(\mathcal{D}',\lambda')$ with perfect linking parameter λ' .

 \mathcal{D}_{red} = half of \mathcal{D} with perfect linking parameter.

 $\mathcal{U}(\mathcal{D}_{red}) = \text{corresponding Hopf algebra}.$

 $\Gamma^2 =$ subgroup of Γ generated by $g_i g_j$: *i* and *j* linked.

References.

[AA] N. A. and I. Angiono. On Nichols algebras with generic braiding. In "Modules and Comodules". Trends in Mathematics. Brzezinski, T.; Gmez Pardo, J.L.; Shestakov, I.; Smith, P.F. (Eds.), pp. 47-64 (2008).

[ARS] N. A., D. Radford and H.-J. Schneider. Complete reducibility theorems for modules over pointed Hopf algebras. J. Algebra 324 (2010), pp. 2932-2970, Special Issue in honor of Susan Montgomery.

[AS] N. A. and H.-J. Schneider. A characterization of quantum groups . J. Reine Angew. Math. 577, 81–104 (2004).