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Position of the problem: cancer disease and its modelling	


  in the perspective of theoretical treatment optimisation	





A general framework to optimise cancer therapeutics: 
designing mathematical methods along 3 axes 	



     1. Modelling the behaviour of growing cell populations on which drugs act (the targeted 
cell populations):  proliferating tumour and healthy cell populations, including describing 
molecular or functional targets for physiological or pharmacological control	



	


     2. Modelling the external control system, i.e., fate of drugs in the organism, at the 

molecular and whole body levels by molecular pharmacokinetics-pharmacodynamics:           
PK-PD (ideally WBPBPKPD = whole body physiologically based...) or by functional 
representation of drugs in use: cytotoxic, cytostatic or differentiating agents	



     3. Optimising the therapeutic control: dynamically optimised control of theoretical	


      drug delivery flows, representing time-dependent objectives and constraints, using                     

known or hypothesised differences between cancer and healthy cell populations	


     	


      (JC Math Mod Nat Phenom 2009; Pers Med 2011; Springer book chapters 2013, 2014; Lorz et al. 2013, 2014)	





Relative importance of cancer as one of the major 
killer chronic diseases worldwide	



WHO source (2005): http://www.who.int/chp/chronic_disease_report/full_report.pdf	



Background: basic facts about cancer	





Cancer, a major public health problem in Europe	



2 major killers in Western Europe:	


Cardio-vascular diseases: 35% of deaths by disease, and Cancer: 25%	


(precise data according to zones and countries: http://www.euro.who.int)	


	



Estimated incidence of main cancers in the European Union in 2004,  from Boyle & Ferlay, Ann. Oncol.  2005	



Background: basic facts about cancer	





In France, cancer (now 1st) and cardiovascular diseases 
(2nd) are by far the 2 major killers among all diseases	



(Bulletin available online: http://www.invs.sante.fr/beh/2007/35_36/index.htm) 
Bulletin Épidémiologique Hebdomadaire (BEH) de l’INVS, 18/09/2007	



Background: basic facts about cancer	





The same trend (Cancer 1st) is also true in the USA	



(from Jemal et al.,  CA Cancer J Clin 2007)	



Background: basic facts about cancer	





Persistence of a very slow decrease in cancer mortality	



From Siegel et al.,	


Cancer statistics 2014	


CA Cancer J Clin 2014 	



in the US	



Background: basic facts about cancer	





Tissues that may evolve toward malignancy 	



…are the tissues where cells are committed to fast proliferation	


(fast renewing tissues):	


	


- epithelial cells+++, i.e., cells belonging to those tissues which 	


  cover the free surfaces  of the body (namely epithelia): gut (colorectal cancer),	


  lung, cervix, glandular coverings (breast, prostate), skin,…	


	


- liver cells in situations where the liver is called for renewal (e.g., surgery)	


  or, in pathology, hepatocellular carcinoma	


	


- cells belonging to the different blood lineages, daily produced in	


  the bone marrow: liquid tumours, or malignant haemopathies	


	


- others (rare: gliomas, sarcomas, neuroblastomas, dysembryomas…) 	



Background: basic facts about cancer	





Natural history of cancers: from genes to bedside	



•  Control on entry in the cell cycle for quiescent (=non-proliferating) cells	


•  Control on cell cycle phase transitions and apoptosis for proliferating cells	


•  Normal inability to use anaerobic glycolysis (selective advantage for cancer cells)	


•  Contact inhibition by surrounding cells (cell adhesion, cell density pressure)	


•  Normal inability to stimulate new blood vessels from the vascular neighbourhood	


•  Normal linking to the extracellular matrix (ECM) fibre network and basal membranes	


•  Recognition (friend or foe) by the immune system 	



Gene mutations: an evolutionary process which may give rise to abnormal DNA 
when a cell duplicates its genome, due to defects in tumour suppressor or DNA	


repair (BER, NER) genes (Yashiro et al. Canc Res. 2001; Gatenby & Vincent, Canc. Res. 2003)	



 Resulting genomic instability allows malignant cells to escape control on 	


 proliferation at different levels: subcellular, cell, tissue and whole organism:	



Cancer invasion is the macroscopic result of breaches in these control mechanisms	



Background: basic facts about cancer	





Evading proliferation and growth control mechanisms	



(Hanahan & Weinberg, Cell 2000)	



…but just what is cell proliferation?	



(Hanahan & Weinberg, Cell 2011)	





Cell population growth in proliferating tissues	



One cell divides in two: a controlled process at cell and tissue levels	



(from Lodish et al., Molecular cell biology, Nov. 2003) 	



Background: basic facts about cancer	





Cyclin D	



Cyclin E	

Cyclin A 

Cyclin B	



S	


G1	



G2 
M

At the origin of proliferation: the cell division cycle 

Physiological or therapeutic control 
exerted on:	


- transitions between cell cycle phases	


   (G1/S, G2/M, M/G1)	


- death rates (apoptosis or necrosis) 	


   inside cell cycle phases	


- velocity of progression of cell      
populations in cell cycle phases 	


	



S:=DNA synthesis; G1,G2:=Gap1,2; M:=mitosis	


	



Mitosis=M phase	



(from Lodish et al., Molecular cell biology, Nov. 2003)	



Background: basic facts about cancer	





Exchanges between proliferating (G1SG2M) and quiescent (G0) cell compartments	


are controlled by mitogens and antimitogenic factors in G1 phase	



From Vermeulen et al. Cell Prolif. 2003	


Most cells do not proliferate physiologically, even in fast renewing tissues (e.g. gut) 	



Proliferating and quiescent cells	



R	

Restriction point	


(in late G1 phase)	



before R:	


mitogen-dependent	


progression through G1	


(possible regression to G0)	



after R:	


mitogen-independent	


progression through G1 to S	


(no way back to G0)	



(Pardee 1974	


 Zetterberg & Larsson 1985)	



Background: basic facts about cancer	





Phase transitions, apoptosis and DNA repair	



Repair or apoptosis 

S!
G1!

G2!
M!

- Sensor proteins, e.g. p53, detect defects 
in DNA, arrest the cycle at G1/S and G2/M 
phase transitions to repair damaged 
fragments, or lead the whole cell toward 
controlled death = apoptosis	



- p53 expression is known to be down-
regulated in about 50% of cancers	



- Physiological inputs, such as circadian 
gene PER2, control p53 expression; 
circadian clock disruptions (shiftwork) 
may result in low p53-induced genomic 
instability and higher incidence of cancer	



Repair or apoptosis 

p53	



p53	



(Fu & Lee, Nature Rev. 2003)	



Background: basic facts about cancer	





Invasion: local, regional and remote	


1) Local invasion by tumour cells implies loss of 
normal cell-cell and cell-ECM (extracellular matrix) 
contact inhibition of size growth and progression in the 
cell cycle. ECM (fibronectin) is digested by tumour-
secreted matrix degrading enzymes (MDE=PA, MMP) 
so that tumour cells can move out of it. Until 106 cells 
(1 mm δ) is the tumour in the avascular stage.	


	


2) To overcome the limitations of the avascular stage, 
local tumour growth is enhanced by tumour-secreted 
endothelial growth factors which call for blood vessel 
sprouts to bring nutrients and oxygen to the insatiable	


tumour cells (angiogenesis, vasculogenesis)	


	


3) Moving cancer cells can achieve intravasation, i.e., 
migration in blood and lymph vessels (by diapedesis), 
and extravasation, i.e. evasion from vessels, through 
vascular walls, to form new colonies in distant tissues. 
These colonies are called metastases.	


	


	



Proliferating rim	



Quiescent layer	



Necrotic core	



(Images thanks to A. Anderson, M. Chaplain, J. Sherratt, and Cl. Verdier)	



Background: basic facts about cancer	





Interactions with the immune system	



Tumours are antigenic, i.e., recognisable as foes by the immune system:	


	


Innate immunity:   Cytokines, macrophage-produced molecules to protect intact cells 	


(non specific)             (e.g. interferon) 	

 	

 	

 	

      	

 	



	

 	

 	

   	


	

 	

  NK Lymphocytes = cells which sense foe antigens (receptors are	


	

 	

 	

 	

     modifications of cytoskeleton), migrate	


	

 	

 	

 	

     into blood and tissues to kill antigenic cells	



	


Adaptive immunity: B Lymphocytes produce specific antibodies (immunoglobulins)	


(specific: immune memory)	



	

 	

     Helper T-Lymphocytes produce cytokines (e.g. interleukins)	


	

 	

 	

 	

 	

which boost the immune response	


	

 	

     Cytotoxic T-Lymphocytes kill specific antigenic cells	



(after P. Lollini, 2005)	



Background: basic facts about cancer	





I. Mathematical models of healthy and cancer tissue growth	





Mathematical models of tumour growth and therapy ���
A great variety of models, depending on what one intends to describe���

	


•  In vivo (tumours) or in vitro (cultured cell colonies) growth? In vivo (diffusion in 

living organisms) or in vitro (constant concentrations) growth control by drugs?	



•  Scale of description for the phenomenon of interest: subcellular, cell, tissue or whole 
organism level? … may depend upon therapeutic description level	



•  Is space a relevant variable? [Not necessarily!] Must the cell cycle be represented?	


	


•  Are there surrounding tissue spatial limitations? Limitations by nutrient supply or 

other metabolic factors? 	



•  Is loco-regional invasion the main point? Then reaction-diffusion equations (e.g. 
KPP-Fisher) are widely used, for instance to describe tumour propagation fronts	



•  Is cell migration to be considered? Then chemotaxis [=chemically induced cell 
movement] models (e.g. Keller-Segel) have been used 	



A reference: A. Friedman. ‘A hierarchy of cancer models and their mathematical challenges’, DCDS-B 2004	





Models of tumour growth 1	


Macroscopic, non-mechanistic models: the simplest ones:	


exponential, logistic, Gompertz	



	



Exponential model: relevant for the early stages of tumour growth only	


	


[Logistic and] Gompertz model: represent growth limitations (S-shaped curves with 
plateau=maximal growth), due to mechanical pressure or nutrient/space scarcity 	


	


[Used to describe therapeutic control by adding a drug action term -ϕ (d, x) on the RHS]	



x= tumour weight	


or volume, proportional	


to the number of cells,	


or tumour cell density	



t	



x	



Ordinary differential equations 	





Models of tumour growth 2: Gompertz revisited	


ODE models a) with 2 cell compartments, proliferating and quiescent,	


or b) varying the tumour carrying capacity xmax in the original Gompertz model	



Avowed aim: to justify global Gompertz-like growth	



However, a lot of cell colonies and tumours do not follow Gompertz growth	


Refinements: Hahnfeldt et al., Canc. Res 1999; Ergun et al., Bull Math Biol 2003	



	



(Gyllenberg & Webb, Growth, Dev. & Aging 1989; Kozusko & Bajzer, Math BioSci 2003)	



Tumour burden	



time	



Gompertz model	



Data	


d9	



d8	



d12	


d14	



Example of non-Gompertz	


tumour growth:	


(GOS) in a population of	


mice, laboratory data	



Ordinary differential equations 	





a) ODE models with 2 exchanging cell compartments, 	


proliferating (P) and quiescent (Q)	



(Gyllenberg & Webb, Growth, Dev. & Aging 1989; Kozusko & Bajzer, Math BioSci 2003)	


where, for instance:	



r0 representing here the rate of	


inactivation of proliferating cells,	


and ri the rate of recruitment from	


quiescence to proliferation	



Initial goal: to mimic Gompertz growth	



Cell exchanges	



Ordinary differential equations 	





b) ODE models with varying carrying capacity 	


Ordinary differential equations 	



Hahnfeldt et al., Cancer Res. 1999	


Ergün et al., BMB 2003	



Used by U. Ledzewicz et al. to optimise combined delivery of 	


cytotoxic and antiangiogenic drugs, acting on pt and et, respectively	





Models of tumour growth 3	


Physical laws describing macroscopic spatial dynamics of an avascular tumour	



	


- Fractal-based phenomenological description of growth of cell colonies and tumours,	


  relying on observations and measures: roughness parameters for the 2D or 3D tumour 	


  	


 Findings: - all proliferation occurs at the outer rim	



	

  - cell diffusion along (not from) the tumour border or surface	


	

  - linear growth of the tumour radius after a critical time (before: exponential)	



(A. Bru et al. Phys Rev Lett 1998,  Biophys J 2003)	


	


	


Individual-based models:	


 - cell division and motion described by	


   stochastic algorithm then continuous limit	


 - permanent regime = KPP-Fisher-like	


   (also linear growth of the tumour radius) 	


(D. Drasdo, Math Comp Modelling 2003; Phys Biol 2005) 	



Individual-based models	





Models of tumour growth 3	


Mechanical models of macroscopic spatial dynamics involving pressure 	



Multiphase models with moving boundaries:	


proliferating cells, quiescent cells, necrotic cells, surrounding healthy cells…	



	

 	

 	

 	

 	

 	

 	

(see Preziosi et al.)	


	


Simplified models with only intra-tumour cell pressure p and cell velocity v:	



(from H. Byrne & D. Drasdo JMB 2009) 	



Simplified models involving pressure p and nutrient concentration c (ρ=cell density):	


(from Perthame-Quiroz-Vazquez Arch Rat Mech Anal 2014)  	



Partial differential equations 	





Models of tumour growth 4	


Macroscopic reaction-diffusion evolution equations (travelling wave fronts)	



1 variable c = density of tumour cells): KPP-Fisher equation	



D(x) = diffusion (motility) in [brain] tissue, ρ  (reaction)=growth of tumour cells	


1D x and c instead of c(1-c): used to represent [brain] tumour radial propagation	


(K. Swanson & J. Murray, Cell Prolif 2000; Br J Cancer 2002; J Neurol Sci 2003)	



2 or more variables: ex.: healthy cells N1, tumour cells N2, excess H+ ions L	



(Gatenby & Gawlinski, Canc. Res. 1996)	

 Prediction: interstitial cell gap between tumour 
propagation and healthy tissue recession fronts	



Partial differential equations 	





PDE models of tumour growth: invasion	


Macroscopic reaction-diffusion equations to represent invasion front	



1-dimensional variable c = density of tumour cells): KPP-Fisher equation	



D(x) = diffusion (motility) in brain tissue, 	


ρ (reaction)=growth of tumour cells, x spatial 
variable (1-d, 2-d or 3-d) and c: density of 
tumour cells, used to represent brain tumour 
radial propagation from a centre. If D(x) = D,	


then v= 2.sqrt(ρD) is the front propagation speed	


	


(K. Swanson & J. Murray, Cell Prolif 2000;	


 Br J Cancer 2002; J Neurol Sci 2003)	



Partial differential equations 	





PDE models of tumour growth: invasion as competition	


Macroscopic reaction-diffusion equations to represent invasion / recession fronts	



2 or more variables: ex.: healthy cells N1, tumour cells N2, excess H+ ions L	



(Gatenby & Gawlinski, Canc. Res. 1996)	

Prediction: interstitial cell gap between tumour	


propagation and healthy tissue recession fronts	



N1	


N2	



L

Partial differential equations 	





PDE models for moving tumour cells in the ECM	


Chemotaxis: chemo-attractant induced cell movements	



Keller-Segel model	



p = density of cells	


w = density of chemoattractant	



(Originally designed for movements of bacteria, with w=[cAMP])	


(Keller & Segel, J Theoret Biol 1971) 	


Anderson-Chaplain model for local invasion by tumour cells in the ECM	



n = density of cells	


	


f = ECM density	


	


m = MDE (tumour	


     metalloproteases)	


	


u = MDE inhibitor	



(Anderson & Chaplain, Chap 10 in Cancer modelling and simulation, L. Preziosi Ed, Chapman & Hall 2003)	



Partial differential equations 	





Models of tumour growth 5	


Models of Lotka-Volterra type, phenotype-structured, with built-in growth limitation	



(mentioned in Billy & Clairambault, DCDS-B 2013); see also Delitala & Lorenzi’s papers 	


or:	



(mentioned in Billy & Clairambault, DCDS-B 2013); see also Delitala & Lorenzi’s papers 	



where	

 is the total cell population or, more generally, 
a [total] cell population-dependent 
environment variable = growth limitation	



Integro-differential models	





Models for angiogenesis	


VEGF-induced endothelial cell movements towards tumour	



- Biochemical enzyme kinetics	


- Chemical transport (capillary and ECM)	


- “Reinforced random walks”	


- Cell movements in the ECM	



Models by Anderson  and Chaplain, 
Levine and Sleeman	


(Levine & Sleeman,Chap. 6 in Cancer modelling and 
simulation, L. Preziosi Ed, Chapman & Hall 2003)	



Partial differential equations 	





A multiscale angiogenesis model 	


Interacting cell populations	

 Proliferating cancer cell population	



F. Billy et al., J. Theor. Biol. 2009	



Coupling by oxygen concentration, 	

acting on actual commitment of cells	


into the division cycle (passing the restriction point)	


	


Aim: assessment of an antiangiogenic treatment by endostatin	



Partial differential equations 	





Modelling the cell cycle 1 (single-cell models)	


Ordinary differential equations to describe progression in the cell cycle	



C	



X

M	



A. Golbeter’s minimal model for the « mitotic oscillator » 	



C = cyclin B, M = Cyclin-linked cyclin dependent kinase, X = anticyclin protease	



Switch-like dynamics of kinase cdk1, M	


	


Adapted to describe G2/M phase transition, 	


which is controlled by Cyclin B	



(A. Goldebeter Biochemical oscillations and cellular rhythms, CUP 1996)	



Ordinary differential equations 	





Including more phase transitions in the cell cycle model?	


Hint: an existing model for G1/S and G2/M synchronisation	


(recalling the minimum mitotic oscillator (C, M, X) by A. Goldbeter, 1996, here 	


duplicated to take into account synchronisation between G1/S and G2/M transitions)	



Changing the coupling strength may lead to:	



 i=1:	


G1/S	



 i=2:	


G2/M	



Romond, Gonze, Rustici, Goldbeter, Ann NYAS, 1999	



Ci=Cyclin	


Mi=CDK	


Xi=Protease	



Ordinary differential equations 	





Modelling the cell cycle 2 (single-cell models)���
Detailed ODE models to describe progression in the cell cycle	



Phase transitions:	


-G1/S	


-G2/M	


-Metaphase/anaphase	


	


…due to steep variations	


of  Cyc-cdk concentrations	


(bifurcation parameter=cell mass)	



(Novak, Bioinformatics 1999)	

 (Tyson, Chen, Novak, Nature Reviews 2001)	



Ordinary differential equations 	





Modelling the cell cycle 2: single cell (continued) ���
Even more detailed ODE models to describe progression in the cell cycle	



39 variables. Growth factor, rather than cell mass	


(as in Tyson, Chen & Novak) is the driving parameter for	


bifurcations	


	


A simplified model has been proposed, with 5 variables	


	

   C. Gérard & A. Goldbeter, PNAS 2009; Interface Focus 2011	



   C. Gérard, D. Gonze & A. Goldbeter, FEBS Journal 2012	



Ordinary differential equations 	





Modelling the cell cycle 3���
PDE models for age-structured cycling cell populations	



(after B. Basse et al., J Math Biol 2003)	



In each phase i , a Von Foerster-McKendrick-like equation:	



di , K i->i+1 constant or 
periodic w. r. to time t 
(1≤i≤I, I+1=1)	



ni:=cell population 
density in phase i 
di:=death rate	


K i->i+1:=transition rate 
(with a factor 2for i=1)	



Flow cytometry may help quantify	


proliferating cell population repartition	


according to cell cycle phases	



Death rates di and phase transitions K i->i+1 are targets	


for physiological (e.g. circadian) and therapeutic (drugs) control 

Partial differential equations 	





 General case (N phases): by the Krein-Rutman theorem (infinite-dimensional form	


 of the Perron-Frobenius theorem), there exists a nonnegative first eigenvalue λ and, 	


 if                                           ,  Ni , bounded solutions to the problem (here vi(a)=1) :	



(the weights ϕi being solutions to the dual problem); this can be proved by using 
an entropy principle (GRE). Moreover, if the control (di  or Ki->i+1) is constant, or 
if it is periodic, so are the Ni , with the same period in the periodic case.	


	



with a real number ρ such that the asymptotics of 	

 	

 	

       follow:	



Ph. Michel, S. Mischler, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2004; J Math Pures Appl 2005 	

      JC, 
Ph. Michel, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2006; Proc. ECMTB Dresden 2005, Birkhäuser 2007	


	



   ρ.	





In summary: proof of the existence of a unique growth exponent λ, the same for all 
phases i, such that the                                       are bounded, and asymptotically 
periodic if the control is periodic	



Example of control (periodic control case): 2 phases, control on G2/M transition by 
24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator model)	



 ψ=CDK1   All cells in G1-S-G2 (phase i=1)  All cells in M (phase i=2)	


	


  Entrainment of the cell division cycle by ψ= CDK1 at the circadian period	



  	



λ: a growth exponent governing the cell population behaviour	



time t 

“Surfing on the 
exponential growth curve”	


	


(= the same as adding	


an artificial death term	


+λ to the di)	



Partial differential equations 	





Details (1): 2 phases, no control on G2/M transition	



The total population of cells	


	


	


inside each phase follows	


asymptotically an exponential	


behaviour	



Stationary state 
distribution of cells 
inside phases 
according to age a: 
no control, hence 
exponential decay	





 Details (2): 2 phases, periodic control  ψ  on G2/M transition	



The total population of cells	


	


	


inside each phase follows	


asymptotically an exponential	


behaviour tuned by a periodic 
function	



Stationary state	


distribution of cells	


inside phases	


according to age a: 
sharp periodic 
control, hence sharp 
rise and decay 	





The simplest case: 1-phase model with division	



(Here, v(a)=1, a* is the cell cycle duration, and τ(<1)  is the time	


during which the 1-periodic control ψ is actually exerted on cell division)	


	


Then it can be shown that  the eigenvalue problem:	


	


	


	


	



	

 	

 	

 	

 	

 	

 	

  has a unique positive	


1-periodic eigenvector N, with a positive eigenvalue λ, solution, if d(t)=d, K(t,a)=K(a)	


of Lotka’s (=Euler’s) equation:	



Partial differential equations 	





Experimental measurements to identify transition kernels Ki_i+1	



(and simultaneously experimental evaluation of the first eigenvalue λ)	


In the simplest model with d=0 (one phase with division) and assuming K=K(x)	


(instead of indicator functions              , experimentally more realistic transitions):	



Interpreted as: if τ is the age in phase at division, or transition:	


	



With probability density (experimentally identifiable):	



with	



Whence (by integration 	


along characteristic lines):	



i.e.,	



Partial differential equations 	





Experimental parameter identification for this cell cycle	


model with 2 phases G1 / S-G2-M using FUCCI reporters 	



FUCCI=Fluorescent Ubiquitination-based Cell Cycle Indicator	





FUCCI: a movie (Sakaue-Sawano 2008), HeLa cells	





Another FUCCI movie (C. Feillet, IBDC Nice), NIH3T3 cells	





FUCCI reporters + individual cell tracking (non trivial...):	


Measuring time intervals: G1 and total division cycle durations	



Data from Bert van der Horst’s lab, Erasmus University, Rotterdam, processed  by Frédérique Billy at INRIA 	





Phase durations (hence transitions, using 	

 	

  ) in age x	


Pdfs f(x) fitted from data on 50 NIH 3T3 proliferating cells	



	

 	

 	

 	

 	

 	

(mouse embryonic fibroblasts)	


 	



FUCCI data in NIH3T3 cells, that are healthy mouse fibroblasts tracked in liquid medium	



Density of duration of G1 phase	

 Density of duration of SG2M	





Fitting probability density functions to data and computing λ:	


Gamma p.d.f.s were best fits and yielded simple computations	



2-phase Lotka’s equation simply reads:	


	


... which yields here λ = 0.039 h-1	



(and yields mean doubling time Td =17.77 h, and mean cell cycle time Tc =17.95 h)  	



(Billy et al., Math. Comp. Simul. 2014) 	





Phase transitions w.r.t. age x:	


Transition rates K(x) from pdfs f(x) on NIH 3T3 healthy cells	



and resulting population evolution without control on transitions	



G1 to S	

 M to G1	



G1 to S	

 S/G2/M to G1	



G1	



S/G2/M 	



(cell synchronisation “by hand”)	

 Asynchronous theoretical cell growth	



Exponential growth of theoretical total 	


cell population: here, λ=0.039 h-1 	



One complete observed cell cycle	



Recalling that in the model	


f = p.d.f. of phase duration time	


and K = phase transition kernel:	





More single cell data to build population data���
from IBDC (F. Delaunay, C. Feillet) in Nice  	



•  117+150 single NIH3T3 cell data stained by FUCCI, plus a RevErb-α track	



•  117 in 10% Fœtal Calf Serum (FCS) and 150 in 15% FCS (150 out of many; 
only the ones with a robust RevErb-α circadian clock were kept)	



•  Results: evaluation of phase transition rates in a 2-phase model of the cell cycle 
in the two concentration media	



	


•  Increasing FCS from 10 to 15%  reduces standard deviation of both phase 

durations, suggesting increased synchrony between cell cycle phases	



•  Good agreement of the model behaviour with the data, evidencing higher 
velocity v in cell cycle progression with 15% FCS	



•  v: 15% FCS cell population grows approximately 10% faster than the 10% FCS	





More on FUCCI to identify cell cycle phase durations:	


Effects of growth factors on NIH3T3 cell populations	



117 cells	


in 10% FBS	



150 cells	


in 15% FBS	



G1	



G1	



S/G2/M	



S/G2/M	



F. Billy et al. Math BioSci Eng 2013	





Descriptive statistics: influence of growth factors on m and sd ���
	

   Coefficient of variation	



 (sd/m)	


	



       G1:     0.53  / 0.40	


	


S/G2/M:     0.21 / 0.20	



   Coefficient of variation	


 	

(sd/m)	


	


       G1:    0.34  / 0.25	


	


S/G2/M:    0.16 / 0.15	



F. Billy et al. Math BioSci Eng 2013	



Measured	



Using	


model	


parameters	





(F. Billy et al., Math Biosci. Eng. 2013)	





Taking into account different progression velocities in the cycle	


•  The complete model, with speed of progression v (in age x w.r.t. time t):	



•  ... or, choosing a constant speed v independent of age x:	





Setting free the parameter v = speed of progression	


in the cell cycle for 15% FCS cells (with basis	


v=1 in the 10% FCS cell population) yielded	


v=1.095 in the 15% FCS cell population and	


better fit of model to experimental data	


(with Td=15.4 h instead of 18.1 h in 15% FCS	


compared with Td=20.8 h in 10% FCS)	



(F. Billy et al., Math Biosci. Eng. 2013)	



Results: better fit with evaluation of varying speed v	



v=1.095 in 15% FCS  



One cell divides in two: a physiologically controlled process at cell and tissue levels	


in all healthy and fast renewing tissues (gut, bone marrow) that is disrupted in cancer:	


	


Is cell cycle phase synchronisation a mark of health in tissues? 	



(from Lodish et al., Molecular cell biology, Nov. 2003) 	



A possible application to the investigation of	


synchronisation between cell cycle phases  	





A working hypothesis that could explain differences in 
responses to drug treatments between healthy and cancer tissues	



Healthy tissues, i.e., cell populations, would be well synchronised	


w. r. to proliferation rhythms and w. r. to circadian clocks, whereas…	


	


...tumour cell populations would be desynchronised w. r. to both, and such	


proliferation desynchronisation would be a consequence of an escape	


by tumour cells from central circadian clock control messages, just as	


they evade most physiological controls, cf. e.g., Hanahan & Weinberg:	


  	


	

 Question: 	



is cell cycle phase	


desynchronisation 
another hallmark of 
cancer in cell 
populations? 	





A mathematical result: λ increases with desynchronisation   	


where desynchronisation is defined as a measure of phase overlapping at transition	



 	



i.e.,for a given family (fi) of p.d.f.s with second moment σi, λ is increasing with each σi   	



(also shown in Billy et al., Math. Comp. Simul., 2014)	





Simple age-structured PDE models representing	


exchanges between proliferation and quiescence	



p=density of proliferating cells; q=density of quiescent cells; γ,δ=death terms;	


K=term describing cells leaving proliferation to quiescence, due to mitosis;	


β=term describing “reintroduction” (or recruitment) from quiescence to proliferation	



Partial differential equations 	





Delay differential models with two cell compartments,	


 proliferating (P)/quiescent (Q): Haematopoiesis models 	



(obtained from the previous model with additional hypotheses and integration in x along characteristics)	



(from Mackey, Blood 1978)	



Properties of this model: depending on the parameters, one can have positive	


stability, extinction, explosion, or sustained oscillations of both populations	



	

 	

 	

(Hayes stability criteria, see Hayes, J London Math Soc 1950)	


Oscillatory behaviour is observed in periodic Chronic Myelogenous Leukaemia	


(CML) where oscillations with limited amplitude are compatible with survival, 	


whereas explosion (blast crisis, alias acutisation) leads to AML and death	


 (Mackey and Bélair in Montréal; Adimy, Bernard, Crauste, Pujo-Menjouet, Volpert in Lyon)	



(delay τ = cell division cycle time)	



Delay differential equations 	





Modelling haematopoiesis	


for Acute Myeloblastic Leukaemia (AML)	


…aiming at non-cell-killing therapeutics	


by inducing re-differentiation of cells using	


molecules (e.g. ATRA) enhancing differentiation	


rates represented by Ki terms	



 

 

 

where ri and pi represent resting and proliferating	


cells, respectively, with reintroduction term βi=βi(xi) 
positive decaying to zero, 	


with population argument:	


	



and boundary conditions:	



From Adimy, Crauste, ElAbdllaoui J Biol Syst 2008 (see also: Özbay, Bonnet, Benjelloun, JC MMNP 2012)	





Modelling leukaemic haematopoiesis (Mackey/Adimy) : ���
proliferation advantage?	



‘Stem-like’ cells CD34+/CD38-	



Committed cells CD34+/CD38+	



TK (flt3-ITD) mutation	



Blood/ bone marrow sampling	


in AML patients	


Cell sorting (magnetic beads)	


	


FACS for cell cycle phases 	


Self-renewal: critical penomenon	


Measuring apoptosis and cell	


division in each population should lead to model identification	





An age[a]-and-cyclin[x]-structured PDE model	


with proliferating and quiescent cells	



(exchanges between (p) and (q), healthy and tumour tissue cases: G0 to G1 recruitments G from q to p differ)	



Healthy tissue 
recruitment G: 
homeostasis	



Tumour recruitment G:	


(α2>0) exponential growth	



F. Bekkal Brikci, 
JC, B. Ribba,     	


B. Perthame	


J Math Biol 2008;	


Math Comp Mod	


2008; 	


M. Doumic-
Jauffret, MMNP 
2007	



N=p+q: 
total number 
of cells                         
L: leak term 
from p to q     
F: mitosis	



λ>0	


for small Ν	


λ<0	


for large N	



λ>0	


for all Ν	





i.e., “It is appropriate to the model to testify for the phenomena, 	


 and to the phenomena for the model”	


	


(in Aristotle’s Περί  Ουρανού [Sky], from which I freely translate λόγος by model)	



To conclude this first part, quoting Aristotle: 	


	

 	

	





II. Introducing weapons and targets in proliferation models	





Cancer therapeutics summed up���
	

•  Surgery: 	

    highly localised	



•  Radiotherapy:     localised, kills all renewing cells… including tumour cells	



•  Chemotherapy: - usually general, adapted to diffuse and metastatic cancers;	


	

 	

 	

    acts on all renewing cells at the subcellular level (degrading 

	

 	

    DNA, blocking phase transitions, inducing apoptosis), at the 
	

 	

    cell and tissue level (antiangiogenic drugs), or at the whole 
	

 	

    organism level	



	

 	

 	

   - but: new molecules = monoclonal antibodies (xxx-mab) 
	

 	

    directed toward tumours or tumour-favoring antigenic sites	



•  Immunotherapy: - injection of cytokines (interferon, interleukins) = boosters	


	

 	

 	

    - use of engineered macrophages or lymphocytes directed 

	

 	

      toward specific targets: future?	





Some pitfalls of cancer therapeutics	


•  Surgery: - (partly) blindfold	


	

 	

      - not feasible when tumour is adherent to vital blood vessels (liver)	



     To overcome these drawbacks: - radio-guided surgery, possibly using DTI	


	

 	

 	

 	

             - previous use of radio- or chemotherapy	



	


•  Radiotherapy: not enough localised or not enough energetic 	

    

Recently proposed: hadrontherapy = particle beam therapy (protons, neutrons 
and helium, carbon, oxygen and neon ions instead of photons): better 
localisation, possibility to deliver higher doses without unwanted damage 	



•  Chemotherapy: - toxic to all fast renewing tissues (including healthy ones: 	


	

    	

    gut and other digestive epithelia, skin, bone-marrow)	



	

 	

 	

   - induces development of drug resistance by selecting 	


	

   	

     resistant clones among cancer cells	



      Proposed: optimisation of treatment to reduce toxicity and drug resistance	


	


…..New molecules: xxx-mab, e.g. EGFR inhibitors (cytostatic drugs)	


	

 	

 	

 - monoclonal antibodies are mouse antibodies!-> HAMA	


	

 	

 	

                                          	

	





DNA synthesis 

Antimetabolites 

DNA 

DNA transcription DNA duplication 

Mitosis 

Alkylating agents 

Spindle poisons 

Intercalating agents 

Examples of drugs and targets at the subcellular level: 
chemotherapy for liver, pancreatic or biliary cancers 

• 5-FU 
• MTX 
• OH-urea 

• CDDP 
• Oxaliplatin 
• CPM 

• Vinorelbine 
• Docetaxel, 
  paclitaxel 

• Irinotecan 

• Doxorubicin, epirubicin 

(Image thanks to F. Lévi, INSERM U776)	





S	


(2-6h) G2	



(2-32h)	



M	


(0.5-2h) 

Alkylating	


agents 

G1	


(2-∞h)	



G0 

Vinca alkaloids	



Mitotic inhibitors 

Taxoids 

Antimetabolites	



Cell cycle phases as targets for chemotherapy agents 
Antibiotics	



	



(Image thanks to F. Lévi, INSERM U776)	





Different viewpoints to represent tumour therapies	


1. At the molecular level:	


Hitting specific molecular targets in cancer cells by “targeted therapies”	


Presently the most popular point of view among cancer biologists	


Achievements: imatinib in chronic myelogenous leukaemia (CML),	


ATRA+anthracylins in acute promyelocytic leukaemia (APL)	


Problems: (often very) relative specificity; toxicity to healthy tissues;	


not taking into account emergence of drug resistance	


	


2. At the cell and molecular level:	


Taking into account all intracellular molecular pathways involved in proliferation,	


cell death and [de-]differentiation: a biocomputer scientist's point of view	


Problems: scores of reaction networks, hundreds of parameters to estimate,	


not taking into account emergence of drug resistance	


	


3. At the cell population level:	


Defining functional targets for drugs in qualitative population dynamics models	


with added external control: PDEs or IDEs (integro-differential equations). 	


Advantages: the right level to take into account population level effects	


(in particular emergence of drug resistance) and to design optimisation strategies	


Problems:  attributing specific functional effects to given drugs	





Examples: macroscopic models of the action of drugs	



(T. Jackson & H. Byrne, Math BioSci 2000)	



(JC Panetta, Math BioSci 2003)	



1. ODE with functional representation of pharmacodynamics for bone marrow toxicity 	



2. PDEs describing action of a drug (d) on proliferating (p) and quiescent (q) cells	



PBM, NBMi = bone marrow cells, N = circulating neutrophils, D = drug concentration	



p (resp. q) cells:	


high (resp. low)	


susceptibility to drug d	



“Functional’’=by designing targets related to those fates that are considered as relevant	


for cell and tissue behaviour in cancer: proliferation, cell death, [de-]differentiation	





3 detailed examples of molecular PK-PD modelling:	


Oxaliplatin, Irinotecan, 5-Fluorouracil	



Pharmacokinetic-pharmacodynamic (PK-PD) modelling	


 

“Pharmacokinetics is what the organism does to the drug,	


     Pharmacodynamics is what the drug does to the organism”	



	


	





1st example: Modelling PK-PD of cytotoxic drug Oxaliplatin	


(cytotoxic action exerted on DNA in all phases except M phase)  	



Decay of free DNA	



Input i =oxaliplatin infusion	


Plasma proteins	



Intracellular reduced glutathione	



oxaliplatin	


infusion	



oxaliplatin	


infusion	



(JC, O. Fercoq, submitted as Springer book chapter, 2014)	





Molecular PK of Oxaliplatin in plasma compartment	



[ ] )(tiPLCl
dt
dP

+⋅⋅++−= λξ

Mass of  active oxaliplatin  Instantaneous infused 
dose (flow)	



Rate of transfer from plasma to 
peripheral tissue (cellular uptake) 

Constant clearance  

Binding rate of oxaliplatin to plasma proteins	
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Mass of plasma  proteins (albumin 
or other hepatic proteins)	
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dN L −−=
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Hepatic synthesis activity of plasma proteins ωL tunes the period of the cycle of plasma proteins	



rL tunes the amplitude of the 
cycle of plasma proteins	



ε tunes the robustness of GSH oscillations, from harmonic to relaxation-like	



Plasma protein synthesis	


shows circadian rhythm	





Molecular PK of Oxaliplatin: tissue concentration	



Tissue concentration	



in free oxaliplatin (C=[DACHPt]) 

GST-mediated binding of reduced glutathione (G)     
to oxaliplatin (C), i.e., cell shielding by GSH	



Degradation of free DNA (F)  
by oxaliplatin (C)	



W = volume of 	


tissue in which	


the mass P of 	


free oxaliplatin	


is infused
“Competition” between free DNA [=F] and reduced glutathione	



GSH [=G] to bind oxaliplatin [=C] in proliferating cells	





Molecular PD of Oxaliplatin activity in tissue	


Mass of free DNA	



DNA repair  function	



(θ1 < θ2 : activation and inactivation  thresholds; gR: stiffness) 
Mass of reduced     
glutathione in target          
cell compartment 

Activity of γ-Glu-cysteinyl ligase (GCS) 

Action of oxaliplatin on free DNA (F)	



Glutathione synthesis	


(  detoxification) in cells 
shows circadian rhythm	



ωG  tunes the period of the cycle	


of GSH synthesis by GCS	



Oxaliplatin cell concentration	



ρG tunes the amplitude of the cycle of GSH 
synthesis by GCS = γ-Glu-cysteinyl ligase	



δ tunes the robustness of GSH oscillations, from harmonic to relaxation-like	



1-F/F0 =DNA damage	


dN
dt

= −
ωL
2

ε
(L − L0 )



PD of Oxaliplatin on DNA and genetic polymorphism	


 of repair function in tumour cells: drug resistance	



…the same with stronger DNA repair function, ERCC2=XPD-determined:	



F (free DNA)	



F (free DNA)	



G (glutathione)	



S (GCS activity)	



(Diminished VGST binding to GSH / cellular uptake ξ, changed infusion peak time, lead to comparable results)	



F (free DNA)	





2nd example: cytotoxic drug Irinotecan (CPT11)	



(from Klein et al., Clin Pharmacol Therap 2002)	



Intracellular PK-PD model of CPT11 activity:	


	


•  [CPT11], [SN38], [SN38G], [ABCG2],	


   [TOP1], [DNA], [p53], [Mdm2]	


•  Input=CPT11 intracellular concentration	


•  Output=DNA damage (Double Strand Breaks)	


•  Constant activities of enzymes CES and UGT1A1	


•  A. Ciliberto’s model for p53-Mdm2 dynamics	



(from Mathijssen et al., JNCI 2004)	



(CES)	



(from Pommier, Nature Rev Cancer 2006)	



Topoisomerase 1: the target	

Prodrug	



Drug	



Catabolite	





PD	



PK	



Intracellular PK-PD of Irinotecan (CPT11)	



(Luna Dimitrio’s Master thesis 2007; 	


A. Ballesta’s PhD work 2012)	





A. Ciliberto’s model of p53-Mdm2 oscillations	



(Ciliberto, Novak, Tyson, Cell Cycle 2005)	





PD of Irinotecan: p53-Mdm2 oscillations can repair 
DNA damage provided that not too much ���

SN38-TOP1-DNA ternary complex accumulates	



(Intracellular PK-PD of irinotecan and A. Ciliberto’s model of p53-MDM2 oscillations)	


(Luna Dimitrio)	





3rd example: PK-PD of cytotoxic drug 5-Fluorouracil ���
���

5-FU: 50 years on the service of���
colorectal cancer treatment	



[= Uridine]	



(NB : Uracil is found only in DNA) 	



(Methylation site blocked)	



Normally,!
methylation in 5!
by Thymidylate!
Synthase (TS) of !
dUMP into dTMP"

(5-FU will be later transformed into 
FdUMP instead of normal dUMP)	





PK-PD of 5-FU 	



Competitive	


inhibition	


by FdUMP of 
dUMP binding to 
target TS	



+	


[Stabilisation 
by CH2-THF of 
binary complex 
FdUMP-TS]	



Incorporation of 
FUTP instead of 
UTP to RNA 	



Incorporation of 
FdUTP instead of 
dTTP to DNA 	

(Longley, Nat Rev Canc 2003)	



RNA pathway	

 DNA pathway 
2 main metabolic pathways:	


 action on RNA and on DNA	





 Formyltetrahydrofolate (CHO-THF) = LV ���
a.k.a. Folinic acid, a.k.a. Leucovorin  

   Precursor of CH2-THF, coenzyme of TS, that forms with it and FdUMP 
a stable ternary complex, blocking the normal reaction"

	

 	

                         (Longley, Nat Rev Canc 2003)	



5,10-CH2-THF + dUMP + FADH2     dTMP +THF + FAD 
TS	



	

 	

Inhibition of Thymidylate Synthase (TS) by 5-FU and Leucovorin	



(TS affinity:	


FdUMP > dUMP)	





Plasma and cell pharmacokinetics (PK) of 5-FU	


•  Poor binding to  plasma proteins	



•  Degradation +++ (80%) by liver DPD	



•  Cell uptake using a saturable transporter	



•  Rapid diffusion in fast renewing tissues	



•  5-FU = prodrug; main active anabolite = Fd-UMP	



•  Fd-UMP: active efflux by ABC transporter ABCC11 = MRP8	


(Oguri, Mol Canc Therap 2007)	





5-FU catabolism: DPD ���
(dihydropyrimidine dehydrogenase)	



•  5-FU 	

DPD 	

5-FU H2, hydrolysable [           FβAlanin]	



•  DPD: hepatic +++	



•  DPD: limiting enzyme of 5FU catabolism 	



•  Michaelian kinetics	



•  Circadian rhythm of activity	



•  Genetic polymorphism +++ (very variable toxicity)	





Modelling PK-PD of 5-FU [with drug resistance] + Leucovorin	


(action exerted on thymidylate synthase only in the S-G2 phase) 	



(F. Lévi, A. Okyar, S. Dulong, JC, Annu Rev Pharm Toxicol 2010)	





P = Plasma [5FU]	


	


F = Intracellular [FdUMP]	


	


Q = Plasma [LV]	


	


L = ‘Intracellular [LV]’=[CH2THF]	


	


N = [nrf2] efflux Nuclear Factor	


	


A = ABC Transporter activity	


	


S = Free [TS] (not FdUMP-bound)	


	


B = [FdUMP-TS] binary complex	


	


T = [FdUMP-TS-LV]  irreversible 
ternary complex (TS blockade)	



  5-FU (+ drug-induced drug resistance) + Leucovorin	



Input = 5FU infusion flow 

Output = blocked 
Thymidylate Synthase 

Input = LV infusion flow	





5-FU and LV, plasma and intracellular PK:	


uptake, degrading enzymes, active efflux	



P=5FU	


(plasma)	


	


F=FdUMP	


(cell)	


	


Q=LV	


(plasma)	


	


L=LV (cell)	



5-FU cell uptake	

 5-FU DPD detoxication in liver	

FdUMP extracellular efflux	


(by ABC Transporter ABCC11)	



Binding of	


FdUMP to TS	


to form a reversible	


binary complex B	



Binding of LV to	


FdUMP-TS = B to	


form a stable 	


ternary complex	


	



i(t) = 5-FU	


infusion flow	



j(t) = LV	


infusion flow	





N=nuclear factor nrf2	


	


	


A=ABC transporter MRP8	



Resistance? Induction of ABC Transporter activity by	


FdUMP-triggered synthesis of nuclear factor nrf2	



FdUMP	


Nuclear factor	


(e.g., nrf2)	


ABC Transporter activity	


(ABCC11=MRP8)	





S=free TS	


	


B=binary 
complex	


	


T=ternary 
complex	


	



Targeting Thimidylate Synthase (TS) by FdUMP:	


Formation of binary and ternary TS-complexes	



        "

F + S 	

 	

F-S = B (FdUMP-TS 2-complex)	



B + L 	

 	

B-L = T (FdUMP-TS-LV 3-complex)	



k1"
k-1	

 k4	



TS blockade results in subsequent DNA damage	


	





Simulation: 5 sequences of 2-week therapy courses	


4 days of 5-FU+LV infusion,12 hours a day, every other week	


	


P = Plasma [5FU]	


	


	


F = Intracellular [FdUMP]	


	


	


Q = Plasma [LV]	


	


	


L = Intracellular [LV]	


	


N = [nrf2] 5FU-triggered 
Nuclear Factor	


	


A = ABC Transporter activity, 
nrf2-inducted	


	


S = Free [TS] (not FdUMP-
bound)	


	


B = [FdUMP-TS] reversible 
binary complex	


	


T = [FdUMP-TS-LV] 	

           
stable ternary complex	


	





Some features of the model: 	


a) 5-FU with/without LV in resistant cancer cells (=MRP8+ cells)	



With Leucovorin added in treatment	

 Without Leucovorin added	



TS	

 TS	



Cancer cells die	

 Cancer cells survive	



6.4	

2.5	


Binary	


complex	



Ternary	


complex	



Ternary	


complex	



42.6	



TS	


Binary	


complex	


Ternary	


complex	



6.4	



(42.9)	


Binary	


complex	



Ternary	


complex	



6.4	

2.5	





b) 5-FU+LV with/without MRP8 (cancer vs. healthy cells)	



Resistant cancer cells (=MRP8+)	

 Healthy or sensitive cells (=MRP8-)	



TS	

 TS	

2.5	

 0.8	



Cancer cells resist more than healthy cells, due to lesser exposure to FdUMP	



(actively effluxed from cells by ABC Transporter MRP8)	



TS	

 2.5	

 TS	





The sentinel protein p53 senses DNA damage	


due to cytotoxic drugs, induces cell cycle arrest and	


launches DNA repair or (in case of failure) apoptosis



















Connecting DNA damage with cell cycle arrest at G1/S and G2/M checkpoints 
by inhibition of phase transition functions ψi and by induction of cell death	



	

 	

	



(from You et al., Breast Canc Res Treat 2005)	





Modelling p53 cell dynamics ( L. Dimitrio’s, then J. Elias’s theses)	



Dimitrio et al. JTB 2012; further work by Elias et al. BBA Prot 2014, Phys Biol 2014, CSBJ 2014   	



Single-cell  intracellular reaction-diffusion oscillatory dynamics of p53 and Mdm2 	





III. Therapeutic control and its theoretical optimisation	





Optimising cancer therapy by drugs 	

	



•  Pulsed chemotherapies aiming at synchronising drug injections with cell cycle 
events to enhance the effect of drugs on tumours: e.g. optimal control of IL21 
injection times and doses Σ ui δ (t-ti) using variational methods (Z. Agur,IMBM, Israel)	



•   Optimising [combined delivery of cytotoxic drugs and] immunotherapy 	

           
(L. de Pillis & A. Radunskaya Cancer Res 2005, JTB 2006, Frontiers Oncol 2013)	



•  Chronotherapy = continuous infusion time regimens taking advantage	


       of optimal circadian anti-tumour efficacy and healthy tissue tolerability	


       for each particular drug: has been in use for the last 15 years, with achievements 

for colorectal cancer treatment in human males (M.-C. Mormont & F. Lévi, Cancer 2003)	



•  Optimising combined delivery of cytotoxic and antiangiogenic drugs           	

      
(U. Ledzewicz et al. MBE 2011)	



•  Overcoming drug resistance +++: optimal control strategies to overcome the 
development of drug resistant cell populations, using different drugs	



(M. Kimmel & A. Swierniak, Springer LN Math 1872, 2006; Lorz et al. 2013, 2014; Trélat et al., underway)	


	


	



	





Choosing the constraint to be represented may determine	


the model of proliferation used to optimise drug delivery,	


aiming at avoiding the two main pitfalls of pharmacotherapy:	



•  Toxicity issues. Controlling toxic side effects to preserve healthy cell populations 
leads to representing proliferating cell populations by ordinary differential equations, 
or by age-structured models: physiologically structured partial differential equations	



•  Drug resistance issues. Controlling emergence of drug-induced drug-resistant cell 
subpopulations in tumour tissues leads to using phenotypic trait-structured models of 
proliferation: physiologically structured evolutionary integro-differential equations	





1. Minimising unwanted toxic side effects on healthy cells 	





Search for a difference between healthy and cancer cell populations: 
possible role of circadian rhythms?���

Mammalian physiology at the macroscopic level: control by 
circadian rhythms of the cell division cycle at checkpoints	


 Example of circadian rhythm in normal  Human oral mucosa: tissue concentrations 

in Cyclin E (control of G1/S transition) and Cyclin B (control of G2/M transition)	
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Nuclear staining for Cyclin-E and Cyclin-B1. Percentages of mean ± S.E.M. in oral mucosa 
samples from 6 male volunteers. Cosinor fitting, p < 0.001 and p = 0.016, respectively.	

	



	

(from Bjarnason et al. Am J Pathol 1999)	
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Circadian chronobiology: the circadian system	



Lévi, Lancet Oncol 2001 ; Mormont & Lévi, Cancer 2003	



A system of molecular clocks	


that gives a 24 h rhythm to	


all cells in our organism	





•  Tolerance for anticancer drugs:	


  variation > 50% as a function of 	


  circadian timing	


	



•  Determinants:	


  rhythms in metabolism,	


  proliferation, apoptosis, repair	


	



•  Antitumour activity:	


  best near the time of best tolerance	



•  Combination of cytotoxic drugs	


  most effective following the delivery of each agent	


  near its time of best tolerance	



Lévi, Lancet Oncol 2001 ; Granda et Lévi, Chronobiology Int 
2002 

Chronotherapeutic principles, according to F. Lévi	



INSERM E 0354 

Gemcitabine	



R-Roscovitine	



Activity	

 Rest	



Experimental settings for laboratory rodents	



(M.-C. Mormont & F. Lévi, Cancer 2003	





Simple pharmacokinetics-pharmacodynamics (PK-PD)	


of a cancer drug acting on cell populations: 6 state variables	



Healthy cells (jejunal mucosa)	

 Tumour cells	



f(C,t)=F.Cγ/(C50
γ+Cγ).{1+cos 2π(t-ϕS)/T}	

 g(D,t)=H.Dγ/(D50

γ+Dγ).{1+cos 2π(t-ϕT)/T}	



(PK)	



(« chrono-PD »)	



(homeostasis=damped harmonic oscillator)	

 (tumour growth=Gompertz model)	



(JC, Pathol-Biol 2003; Adv Drug Deliv Rev 2007)	


Aim: balancing IV delivered drug anti-tumour efficacy by healthy tissue toxicity 	



Main work hypothesis: ϕT=ϕS+12  

 oxaliplatin infusion flow 	





Optimal control, step 1: deriving a constraint 	


function from the enterocyte population model	



Minimal toxicity constraint, for 0<τA<1 (e.g. τA =60%):	



Other possible constraints:	





Optimal control, step 2: deriving an objective 
function from the tumoral cell population model	



Objective function 1: Eradication strategy: minimize GB(i), where;	



Objective function 2: Stabilisation strategy: minimize GB(i), where;	



or else:	



or!



Optimal control problem (eradication): defining a Lagrangian:	



then:	



If GB and FA were convex, then one should have:	



…and the minimum would be obtained at a saddle-point	


    of the Lagrangian, reachable by an Uzawa-like algorithm	





…but GB and FA need not be convex functions of infusion flow i!!	


	


	


	


Yet it may be proved using a compacity argument that	


the minimum of GB under the constraint FA≤0 actually exists:	


	


	


FA and GB  are weakly continuous functions of i, from L2([t0,tf]) to  H2([t0,tf]) since 
i->A(t,i) and i->B(t,i) are continuous by integration of the initial system:	



Investigating the minima of the objective 
function: a continuous problem	



and the constraint set {i, 0 ≤ i ≤ imax, FA(i) ≤ 0} is weakly compact in L2([t0,tf])	


	



hence also are	


C,D,A,B as 
functions of i	





Investigating the minima of the objective 
function: a differentiable problem	



     Moreover, A and B are C 2  as functions of time t  (by integration of the initial system)	


	


	


     The minimum of A being attained at tA(i), i.e., FA(i) = τA-A(tA, i)/Aeq, it can be proved, 

assuming that ∂2A(tA(i),i) / ∂t2 > 0 and using the implicit function theorem, that tA is  a 
differentiable function of i	



	


	


     In the same way,  tB , defined by GB(i)=maxt B(i,t)=B(i,tB(i)), is, provided that 
∂2B(tB(i),i) / ∂t2 < 0,  a differentiable function of i	



	


     Hence, the infusion flow optimatisation problem is liable to differentiable optimisation 

techniques, and though the problem is not convex, so that searching for saddle points of 
the Lagrangian will only yield sufficient conditions,	



	


      We nevertheless can define a heuristics to obtain minima of the objective function GB 

submitted to the constraint FA≤0, based on a Uzawa-like algorithm with a nonlinear 
conjugate gradient	



	


	


	





Optimal control: results of the tumour stabilisation strategy 
using this simple one-drug  PK-PD model	



(and investigating more than Uzawa’s algorithm fixed points, by storing best profiles)	

	


	



Objective: minimising the maximum 
of the tumour cell population	



Constraint : preserving the jejunal mucosa 
according to the patient’s state of health	



(C. Basdevant, JC, F. Lévi, M2AN 2005; JC Adv Drug Deliv Rev 2007)	



Solution : optimal infusion flow i(t) adaptable to the patient’s state of health 
(according to a tunable parameter τA: here preserving τA=50% of enterocytes) 	



i	

 B	

 A	





Physiologically and pharmacologically controlled model:	


age-structured PDE model for the cell division cycle	



(here only linear models are considered, but nonlinear models with feedback are possible)	



(from B. Basse et al., J Math Biol 2003)	



In each phase i, a McKendrick linear model:	



di , Ki->i+1 constant or periodic	


 w. r. t. time t (1≤i≤I, I+1=1)	


	



ni:=cell population density in 
phase i ; di:=death rate;	


vi :=progression speed;	



Ki-1->i:=transition rate	


(with a factor 2for i=1)	



Death rates di: (“loss”), “speeds” vi and phase transitions Ki->i+1 are model targets	


for physiological (e.g., circadian) or therapeutic (drug) control ψ(t)	


[ψ(t): e.g., clock-controlled CDK1 or intracellular output of drug infusion flow]	


(Presented in: JC, B. Laroche, S. Mischler, B. Perthame, RR INRIA #4892,  2003;  recently: JC, S. Gaubert, T. Lepoutre MMNP, MCM 2009, 2011)	





In summary: proof of the existence of a unique growth exponent λ, the same for all 
phases i, such that the                                       are bounded, and asymptotically 
periodic if the control is periodic	



Example of control (periodic control case): 2 phases, control on G2/M transition by 
24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator model)	



 ψ=CDK1   All cells in G1-S-G2 (phase i=1)  All cells in M (phase i=2)	


	


  Entrainment of the cell division cycle by ψ= CDK1 at the circadian period	



  	



λ: a first eigenvalue governing the cell population behaviour	



time t 

“Surfing on the 
exponential growth curve”	


	


(= the same as adding	


an artificial death term	


+λ to the di)	



Main output of this age-structured PDE model	





(from You et al. 2005, Breast Canc. Res. Treat. 2005)	



Circadian rhythms and physiological control of the cell cycle:	


Known connections between the cell cycle and circadian clocks 	



So, what if we add circadian clock control??	


i.e., what if we put K(t,x) = κ(x).ψ(t)	


with κ = FUCCI-identified and ψ = a cosine?	


[cosine: in the absence of a better identified clock thus far!] 	


	



At the molecular level (Bmal1 and Per2 are 
constituents of the circadian clock):	


	


Bmal1 controls Wee1 and Cyclin B-Cdk1	


	


Per2 controls p21 and Cyclin E- Cdk2	


	


Wee1 and p21 act in antiphase	


	


The circadian clock (Bmal1, Per2) might thus	


be a synchroniser in control of cell populations 	


between G1/S and G2/M transitions 	


	


	





(a 12 h delay between the two cosines was determined as the one that maximised the λ) 	



Circadian control on phase transitions: two cosines for ψ1 and ψ2 	



Resulting evolution of the clock-controlled cell population: λ=0.024 h-1 (<0.0039 h-1)  	


  	



λ=0.024 h-1 	



Adding theoretical circadian control on phase transitions	



Here we put	


K(t,x) = κ(x).ψ(t)	


with κ = FUCCI-identified	


and ψ = cosine-like function	


	


[cosine: in the absence of a	


better identified clock thus far] 	


 

SG2M to G1 gating	

G1 to SG2M gating	



Gate open	



Gate closed	



Gate open	



Gate closed	





Phases: asynchronous cell growth	

 Global: sheer exponential cell growth	



[Agreement between	


model and data on	


the first division] 	



F. Billy	





Steep synchronisation within the cell cycle	

 Stepwise cell population growth	



F. Billy	



(1) Healthy        	


cell population	



(=sharp gating by 	


circadian clock)	



‘Healthy gating’	





Loose synchronisation within the cell cycle	

 Stepwise cell population growth	



F. Billy	



(2) cancer cell	


population	



(=lazy gating by 	


circadian clock)	



Main work hypothesis	


(difference from healthy cells)	



‘Cancer gating’	





F. Billy	



Healthy control case ψ	

 Cancer control case ψ	

 No control	





Theoretical chronotherapeutic optimisation	


of a first eigenvalue (for cancer growth) under the constraint	


of preserving another first eigenvalue (healthy tissue growth)	



-  McKendrick’s model of cell population proliferation	


-  Control of proliferation by blocking Ki_i+1 using theoretic periodic drug delivery:	


 K(t,x)=[1-g(t)].ψ(t).κ(x) where: g(t) is a periodic external control (chronotherapy)    

	

 	

 	

         ψ(t) is a circadian clock control on the cell cycle
	

 	

 	

         κ(x) is an [only] age-dependent transition rate	



	


-  Objective function to be minimised: λ1, 1st eigenvalue of cancer cell population	


-  Constraint function to be preserved: λ2 [≥Λ], 1st eigenvalue of healthy cell population	


-  Design of an augmented Lagrangian by combining λ1 and λ2-Λ (with penalty)	


- Arrow-Hurwitz (or Uzawa) algorithm to track saddle points of the Lagrangian	


-  …thus obtaining only suboptimality (necessary to obtain critical points) conditions	



	



i.e., what if now we add a drug control, setting K(t,x) = κ(x).ψ(t).[1-g(t)]?	


 



Results: circadian + 24h-periodic drug control on transitions	


K(x,t) = κ(x).ψ(t).g(t): κ FUCCI-identified, ψ clock, g optimal drug effect on S-phase 	



green and red gating: ψ	


(circadian clock control	


without drug)	


	


blue: g.ψ	


(drug + circadian control)	


g here numerical solution	


to the optimisation problem	


	



healthy case:	


sharp ψ gating	



cancer case:	


lazy ψ gating	



G1/S	



G1/S	



M/G1	



M/G1	



F. Billy et al. Math Comp Simul 2012,	


Math Biosc Eng 2012, DCDS-B 2012, 	


Springer book chapter 2013	





Evolution of the two populations: cancer (blue), healthy (green)	



Circadian control,	


no drug infusion	



Circadian control,	


added drug infusion	



(F. Billy et al. 2013, 2014)	





Numerical solution to the optimal infusion problem	


(Uzawa) and effect on eigenvalues, healthy and cancer 	


Infusion scheme g(t)	



Target eigenvalues:	


Cancer (blue)	


Healthy (green)	



In favour of this approach:	


- characterises long-term                	


   trends with one number,	


- easily accessible	


   target for control	


- fits to physiologically	


  structured growth models	



Its drawbacks:	


-  deals with asymptotics,	


not with transients	


-  assumes a linear model	


 for proliferation	


- assumes periodic control	


 by drugs (but the period	


 can be infinitely long)	





Introducing pharmacological effects on death rates with repair	


(rather than on phase transitions): extension of the model	



+  PK-PD added models: cytotoxic (death rates) effects 	



(JC, O. Fercoq, book chapter to appear, 2014)	





Pharmacokinetics-pharmacodynamics (PK-PD) of oxaliplatin	


(cytotoxic action exerted on DNA in all phases except M phase)  	



Decay of free DNA	



Input i =oxaliplatin infusion	


Plasma proteins	



Intracellular reduced glutathione	



oxaliplatin	


infusion	



oxaliplatin	


infusion	



(JC, O. Fercoq, Springer book chapter to appear, 2014)	





PK-PD of 5FU [with drug resistance] + Leucovorin	


(action exerted on thymidylate synthase only in the S-G2 phase) 	



(F. Lévi, A. Okyar, S. Dulong, JC, Annu Rev Pharm Toxicol 2010)	





Solution to the chronotherapeutic combined drug delivery optimisation problem 	



(JC, O. Fercoq, Springer book chapter to appear, 2014)	



Here, only	


cytotoxic	


drugs acting	


on death rates 	



Leucovorin	



5FU	



Oxaliplatin	





Effects of this optimised periodic drug delivery regimen on growth rates 	



(JC, O. Fercoq, Springer book chapter to appear, 2014)	



Target eigenvalues:	


Cancer (blue)	


Healthy (green)	





Evolution of the two cell populations, without, then with cytotoxic drugs	



(JC, O. Fercoq, Springer book chapter to appear, 2014)	



A result not as good as in the previous case, when drugs were applied on	


transition rates... hence the suggestion of a cytotoxic+cytostatic treatment	


(e.g., 5FU+oxaliplatin+cetuximab): a story to be continued	



(Here, drugs acting on death rates and not on transition rates ) 	





+Modelling effects of cytostatics (CDKIs, TKIs, ...) acting	


on cell cycle phase transition rates [and boundary conditions]	



Control on inputs from G0 phase may be represented by a multiplicative factor in the	


 first (G1) boundary condition (which is the same as modifying the first transition rate);	


for instance, following Pierre Gabriel and Glenn Webb (JTB 2012):	



New mitosis term 	



New ‘death’ term	


(=death + escape	


 towards G0) 	

f: target of 	



cytostatic drug,	


sending cells to	


quiescence	


(measurable)	



Optional (not done, to be added)	





[Therapeutic control and its theoretical optimisation]	


	


     2. Overcoming resistance in cancer cell populations	



	

 	

      Cancer as an evolutionary problem	


	


“Nothing in biology makes sense except in the light of evolution”	



	

 	

 	

 	

 	

 	

Theodosius Dobzhansky, 1973	





Tackling this other main issue in cancer pharmacotherapeutics:	


Emergence of drug resistance in cancer cell populations	


(another model of cell population dynamics, with thus far no PK-PD) 	



Instead of controlling drug resistance at the individual cell level (ABC transporters),	


representing the possible emergence of resistant cell clones due to mutations	


occurring at mitoses in a cell Darwinism evolutionary perspective.	


	


	


Assumption: Cancer cell populations, under the pressure of a drug-enriched	


environment, may develop (costly) mutations evolving into resistant cell clones,	


less fit in a drug-free environment, but better survivors in a hostile environment.	


	


	


A therapeutic objective, under these circumstances, may be not to eradicate all	


cancer cells (in fact only all drug-sensitive cells), but instead to let some of them	


live so as to limit the growth of an emergent resistant cell clone (‘adaptive therapy’).	





Carlo Maley	

 Robert Gatenby, MD*	



First international  	


Evolution and cancer conference 
SF, June 3-5, 2011, second in 2013	



A soaring theme on the international scene: Evolution and cancer	



* RG advocates ‘adaptive therapy’, cf. Gatenby Nature 2009, Gatenby et al. Cancer Research 2009  	





  Gatenby’s new paradigm: rational management of cancer burden by ‘adaptive therapy’	



See also review on evolution and cancer by Aktipis et al. PLoS One, Nov. 2011 	





Evolution of cell populations toward resistance under anticancer 
drug pressure: ecological-like integro-differential models 	



- Exposure to anticancer drugs is an environmental factor to which cell populations	


   adapt or not, according to their evolution abilities	


	


	


- Due to genomic instabilities (mutated p53, error-prone DNA polymerases),	


   resulting in higher genomic variability at division, cancer cell populations have	


   better capacities than healthy cell populations to adapt to a changing environment	


	


	


- Such variability is multiple and cannot be reduced to only pointwise mutations	


	


	


-  Inspired by ecological models, one can represent it by a continuous trait x governing	


  an evolving phenotype expressed as resistance to a drug, or to multiple drugs	





First point of view: ‘small mutations only’, one cytotoxic drug c(t), evolutionary trait x 	


a) Healthy cells	



A. Lorz et al. M2AN 2013	





First point of view: ‘small mutations only’, one cytotoxic drug c(t), evolutionary trait x 	


b) Cancer cells           	



A. Lorz et al. M2AN 2013	



Mathematical models: integro-differential equations	





Small mutations only: monomorphism= evolution towards a single phenotype	



Theorem: evolution towards monomorphism (proved in A. Lorz et al., M2AN 2013)	



Asymptotic pdf in trait x	

Evolution in time t and trait x  	



xH, fittest trait	



(illustrations with θH=0, i.e., no mutations and µH(x)=0, i.e., no drug-induced resistance)	





	


	


	


Small mutations only: monomorphism= evolution towards a single phenotype	


	


	


	



Theorem: evolution towards monomorphism (proved in A. Lorz et al., M2AN 2013)	



Asymptotic pdf in trait x	

Evolution in time t and trait x  	



xC, fittest trait	



(illustrations with θC=0, i.e., no mutations and µC’(x)<0, i.e., drug-induced resistance)	





Second point of view : ‘no mutations, exchanges with the environment’,      	


cytotoxic and cytostatic drugs, 2d resistance trait (x [cytotoxic],y [cytostatic])	





No mutations: sensitive (‘healthy’) cells. Starting from a common medium phenotype ���
(cytotoxic res.=.5, cytostatic res.= .5), evolution towards the non-resistant (0,0) phenotype:���

Monomorphism of asymptotic cell populations	



Model, simulations and figures by Tommaso Lorenzi (work underway)	





No mutations: resistant (‘cancer’) cells. Starting from the same common medium 
phenotype (.5,.5), evolution towards 2 resistant phenotypes, (1,0) and (0,1):���

Dimorphism (which is in fact a ‘double monomorphism’ of asymptotic cell populations)	



Model, simulations and figures by Tommaso Lorenzi (work underway)	





Mutations again, cytotoxic and cytostatic drugs,	


  with a 1d drug resistance trait x for both drugs	



(A. Lorz et al., M2AN 2013)	





A. Lorz et al. M2AN 2013	



Cancer cells	

 Healthy cells	



Cancer cell	


population	


extinct	



Healthy cell	


population	


preserved	



[illustrations with θH=θC=0.1, µH’(x)<0, µC’(x)<0, µC(x)=2.µH(x)]	



‘Pedestrian’s optimisation: distinct drug effects on the two cell populations	





And, time permitting, more recent developments about drug resistance in cancer… 	




