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Position of the problem: cancer disease and its modelling

in the perspective of theoretical treatment optimisation




A general framework to optimise cancer therapeutics:
designing mathematical methods along 3 axes

1. Modelling the behaviour of growing cell populations on which drugs act (the targeted
cell populations): proliferating tumour and healthy cell populations, including describing
molecular or functional targets for physiological or pharmacological control

2. Modelling the external control system, i.e., fate of drugs in the organism, at the
molecular and whole body levels by molecular pharmacokinetics-pharmacodynamics:
PK-PD (ideally WBPBPKPD = whole body physiologically based...) or by functional

representation of drugs in use: cytotoxic, cytostatic or differentiating agents

3. Optimising the therapeutic control: dynamically optimised control of theoretical

drug delivery flows, representing time-dependent objectives and constraints, using
known or hypothesised differences between cancer and healthy cell populations

(JC Math Mod Nat Phenom 2009, Pers Med 2011, Springer book chapters 2013, 2014, Lorz et al. 2013, 2014)




Background: basic facts about cancer

Relative importance of cancer as one of the major
killer chronic diseases worldwide

all ages, 2005
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WHO source (2005): http.//www.who.int/chp/chronic_disease report/full report.pdf




Background: basic facts about cancer

Cancer, a major public health problem 1n Europe

2 major killers in Western Europe:

Cardio-vascular diseases: 35% of deaths by disease, and Cancer: 25%
(precise data according to zones and countries: http://www.euro.who.int)
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Background: basic facts about cancer

In France, cancer (now 1) and cardiovascular diseases
(27d) are by far the 2 major killers among all diseases

Figure 2 Evolution des taux* de décés par grande catégorie de causes de déces, 1980-2004, France
métropolitaine, deux sexes / Figure 2 Trends in death rates by main category of causes of death, 1980-2004,
Metropolitan France, both sexes
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Background: basic facts about cancer

The same trend (Cancer 1%) 1s also true in the USA
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FIGURE & Death Rates® From Cancer and Heart Disease for Ages Younger Than 85 and 85 and Older.

*Ratas are aga-adustad tothe 2000 US standam population.

Source: US Mortality Public Use Data Tapes, 1960 to 2003, National Center for Health Statistics, Centers for Disease Contral and
Prevention, 2006,

(from Jemal et al., CA Cancer J Clin 2007)




Background: basic facts about cancer

Persistence of a very slow decrease in cancer mortality
in the US

Male Incidence
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FIGURE 2. Trends in Cancer Incidence and Death Rates by From Siegel et al.,
Sex, United States, 1975 to 2010. e
Rates are age adjusted to the 2000 US standard population. Incidence rates Cancer Sl‘al‘lSl‘leS.’ 2014
are adjusted for delays in reporting. CA Cancer J Clin 2014




Background: basic facts about cancer

Tissues that may evolve toward malignancy

...are the tissues where cells are committed to fast proliferation
(fast renewing tissues):

- epithelial cells+++, 1.e., cells belonging to those tissues which
cover the free surfaces of the body (namely epithelia): gut (colorectal cancer),

lung, cervix, glandular coverings (breast, prostate), skin,...

- liver cells in situations where the liver is called for renewal (e.g., surgery)
or, in pathology, hepatocellular carcinoma

- cells belonging to the different blood lineages, daily produced in
the bone marrow: liquid tumours, or malignant haemopathies

- others (rare: gliomas, sarcomas, neuroblastomas, dysembryomas...)




Background: basic facts about cancer

Natural history of cancers: from genes to bedside

Gene mutations: an evolutionary process which may give rise to abnormal DNA
when a cell duplicates its genome, due to defects in tumour suppressor or DNA
repair (BER, NER) gCNCS (Yashiro et al. Canc Res. 2001; Gatenby & Vincent, Canc. Res. 2003)

Resulting genomic instability allows malignant cells to escape control on
proliferation at different levels: subcellular, cell, tissue and whole organism:

Control on entry in the cell cycle for quiescent (=non-proliferating) cells

Control on cell cycle phase transitions and apoptosis for proliferating cells

Normal inability to use anaerobic glycolysis (selective advantage for cancer cells)
Contact inhibition by surrounding cells (cell adhesion, cell density pressure)

Normal 1nability to stimulate new blood vessels from the vascular neighbourhood
Normal linking to the extracellular matrix (ECM) fibre network and basal membranes
Recognition (friend or foe) by the immune system

Cancer invasion is the macroscopic result of breaches in these control mechanisms




Evading proliferation and growth control mechanisms

(Hanahan & Weinberg, Cell 2000)
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...but just what 1s cell proliferation?




Background: basic facts about cancer

Cell population growth in proliferating tissues

(from Lodish et al., Molecular cell biology, Nov. 2003)

One cell divides in two: a controlled process at cell and tissue levels




Background: basic facts about cancer

At the origin of proliferation: the cell division cycle

S:=DNA synthesis; G,,G,:=Gap1,2; M:=mitosis—pMitosis=M phase

(from Lodish et al., Molecular cell biology, Nov. 2003)

Physiological or therapeutic control

exerted on:

- transitions between cell cycle phases
(G,/S, G,/M, M/G,)

- death rates (apoptosis or necrosis)
inside cell cycle phases

- velocity of progression of cell

populations in cell cycle phases




Background: basic facts about cancer

Proliferating and quiescent cells

after R:
mitogen-independent
progression through G, to S
(no way back to G,)

Restriction point
(in late G, phase)

(Pardee 1974
Zetterberg & Larsson 1985)

before R: Eyeinld  (Cyalin D /
mitogen-dependent @

progression through G,

(possible regression to G)
0

From Vermeulen et al. Cell Prolif. 2003

Most cells do not proliferate physiologically, even in fast renewing tissues (e.g. gut)

Exchanges between proliferating (G,SG,M) and quiescent (G)) cell compartments
are controlled by mitogens and antimitogenic factors in G, phase




Background: basic facts about cancer

Phase transitions, apoptosis and DNA repair

- Sensor proteins, e.g. p53, detect defects
in DNA, arrest the cycle at G,/S and G,/M
phase transitions to repair damaged
fragments, or lead the whole cell toward
controlled death = apoptosis

- p53 expression 1s known to be down-
regulated in about 50% of cancers

- Physiological inputs, such as circadian
gene PER2, control p53 expression;
circadian clock disruptions (shiftwork)
may result in low p53-induced genomic
instability and higher incidence of cancer

-
Deficiency in p53
Induction/Function

Damaged Cells

(Fu & Lee, Nature Rev. 2003)




Background: basic facts about cancer
Invasion: local, regional and remote
1) Local invasion by tumour cells 1mphes loss of
normal cell-cell and cell-ECM (extracellular matrix)
contact inhibition of size growth and progression in the
cell cycle. ECM (fibronectin) is digested by tumour-
secreted matrix degrading enzymes (MDE=PA, MMP)
so that tumour cells can move out of it. Until 106 cells
(1 mm d) 1s the tumour in the avascular stage.

2) To overcome the limitations of the avascular stage,
local tumour growth is enhanced by tumour-secreted
endothelial growth factors which call for blood vessel
sprouts to bring nutrients and oxygen to the insatiable
tumour cells (angiogenesis, vasculogenesis)

ETALEMENT

3) Moving cancer cells can achieve intravasation, 1.e., G —

migration in blood and lymph vessels (by diapedesis),

and extravasation, i.e. evasion from vessels, through

vascular walls, to form new colonies in distant tissucs. | —————— .,
These colonies are called metastases. i

(Images thanks to A. Anderson, M. Chaplain, J. Sherratt, and CI. Verdier)




Background: basic facts about cancer

Interactions with the immune system

Tumours are antigenic, 1.€., recognisable as foes by the immune system:

Innate immunity: Cyfokines, macrophage-produced molecules to protect intact cells
(non specific) (e.g. interferon)

NK Lymphocytes = cells which sense foe antigens (receptors are
modifications of cytoskeleton), migrate
into blood and tissues to kill antigenic cells

Adaptive immunity: B Lymphocytes produce specific antibodies (immunoglobulins)
(specific: immune memory)

Helper T-Lymphocytes produce cytokines (e.g. interleukins)
which boost the immune response
Cytotoxic T-Lymphocytes kill specific antigenic cells

(after P. Lollini, 2005)




I. Mathematical models of healthy and cancer tissue growth




Mathematical models of tumour growth and therapy

A great variety of models, depending on what one intends to describe

In vivo (tumours) or in vitro (cultured cell colonies) growth? In vivo (diffusion in
living organisms) or in vitro (constant concentrations) growth control by drugs?

Scale of description for the phenomenon of interest: subcellular, cell, tissue or whole
organism level? ... may depend upon therapeutic description level

Is space a relevant variable? [Not necessarily!] Must the cell cycle be represented?

Are there surrounding tissue spatial limitations? Limitations by nutrient supply or
other metabolic factors?

Is loco-regional invasion the main point? Then reaction-diffusion equations (e.g.
KPP-Fisher) are widely used, for instance to describe tumour propagation fronts

Is cell migration to be considered? Then chemotaxis [=chemically induced cell
movement] models (e.g. Keller-Segel) have been used

A reference: A. Friedman. ‘A hierarchy of cancer models and their mathematical challenges’, DCDS-B 2004




Ordinary differential equations

Models of tumour growth 1

Macroscopic, non-mechanistic models: the simplest ones:
exponential, logistic, Gompertz

X= tumour weight

or volume, proportional
to the number of cells,
or tumour cell density

kx (exponential)

kx(1 —x) (logistic)

Tmax o~ \
kx 111( = ) (Gompertz)

£z

Exponential model: relevant for the early stages of tumour growth only

[Logistic and] Gompertz model: represent growth limitations (S-shaped curves with
plateau=maximal growth), due to mechanical pressure or nutrient/space scarcity

[Used to describe therapeutic control by adding a drug action term -¢ (d, x) on the RHS]




Ordinary differential equations

Models of tumour growth 2: Gompertz revisited

ODE models a) with 2 cell compartments, proliferating and quiescent,

or b) varying the tumour carrying capacity x,,,, in the original Gompertz model

ro(N)P = [ri(N) + 114)Q

P+Q, Py+Qy=1
(Gyllenberg & Webb, Growth, Dev. & Aging 1989; Kozusko & Bajzer, Math BioSci 2003)

Avowed aim: to justify global Gompertz-like growth

However, a lot of cell colonies and tumours do not follow Gompertz growth
Refinements: Hahnfeldt et al., Canc. Res 1999, Ergun et al., Bull Math Biol 2003 | "

Example of non-Gompertz at

tumour growth: z mpdel
(GOS) in a population of
mice, laboratory data




Ordinary differential equations

a) ODE models with 2 exchanging cell compartments,
proliferating (P) and quiescent (Q)

ro(N)P — [ri(V) + 1] 2
P+Q, Pp+Qp=1

(Gyllenberg & Webb, Growth, Dev. & Aging 1989; Kozusko & Bajzer, Math BioSci 2003)

where, for instance: ,
aN7 rorepresenting here the rate of

nactivation of proliferating cells,
and r; the rate of recruitment from
quiescence to proliferation

Initial goal: to mimic Gompertz growth {48 — brln (-‘17' max )

X




Ordinary differential equations

b) ODE models with varying carrying capacity

18000
16000
14000
12000
10000

=

g
8000

Hahnfeldt et al., Cancer Res. 1999
Ergiin et al., BMB 2003

4000
2000}/

0=

Used by U. Ledzewicz et al. to optimise combined delivery of
cytotoxic and antiangiogenic drugs, acting on p, and e,, respectively




Individual-based models

Models of tumour growth 3

Physical laws describing macroscopic spatial dynamics of an avascular tumour

- Fractal-based phenomenological description of growth of cell colonies and tumours,
relying on observations and measures: roughness parameters for the 2D or 3D tumour

Findings: - all proliferation occurs at the outer rim

- cell diffusion along (not from) the tumour border or surface

- linear growth of the tumour radius after a critical time (before: exponential)
(A. Bru et al. Phys Rev Lett 1998, BiophysJ 2003)

Individual-based models:
- cell division and motion described by
stochastic algorithm then continuous limit
- permanent regime = KPP-Fisher-like _‘
(also linear growth of the tumour radius) etk ) _
(D. Drasdo, Math Comp Modelling 2003; Phys Biol 2005) Fig. 1.l.T.'-.'lp'|-.‘a.| simulation scenario in the off l;.tti:re model starting from (a) a single cell to (a)

three cells and aggregates (B) N = 100, (c¢) N = 1000, and (d) N = 10000 calls. {Further




Partial differential equations

Models of tumour growth 3

Mechanical models of macroscopic spatial dynamics involving pressure

Multiphase models with moving boundaries:
proliferating cells, quiescent cells, necrotic cells, surrounding healthy cells...
(see Preziosi et al.)

Simplified models with only intra-tumour cell pressure p and cell velocity v:

(from H. Byrne & D. Drasdo JMB 2009)

where H (pg — p) denotes the Heaviside step function

Simplified models involving pressure p and nutrient concentration ¢ (p=cell density):

;0 — div(oVp) = p O(p. c), (from Perthame-Quiroz-Vazquez Arch Rat Mech Anal 2014)

81"1} < []1 aﬂ‘I} E D D {f"i\f CB )1 — D

c(x,t) =+ cg >0 as |r| — cofilo, U < 0, 0.V >0, U(p,0) =0.




Partial differential equations

Models of tumour growth 4

Macroscopic reaction-diffusion evolution equations (travelling wave fronts)

1 variable ¢ = density of tumour cells): KPP-Fisher equation

dc o | ._
2y V.(D(x)Ve)+ pc(l — c)

D(x) = diffusion (motility) in [brain] tissue, p (reaction)=growth of tumour cells
1D x and c instead of ¢(1-c): used to represent [brain] tumour radial propagation

(K. Swanson & J. Murray, Cell Prolif 2000; Br J Cancer 2002; J Neurol Sci 2003)

2 or more variables: ex.: healthy cells N,, tumour cells N,, excess H" ions L

V- N |
a2 ) — LN,
K 1 K 2

|'II -'.Ir.-' J'_m';lr l . NT ®
K, ““Kl) N ( 2 ( <

T3 LNTQ — d;‘_:; L -+ D:-_-), vj L

(Gatenby & Gawlinski, Canc. Res. 1996)  Predjction: interstitial cell gap between tumour
propagation and healthy tissue recession fronts




Partial differential equations

PDE models of tumour growth: invasion

Macroscopic reaction-diffusion equations to represent invasion front

1-dimensional variable ¢ = density of tumour cells): KPP-Fisher equation
Di is Deatt

D(x) = diffusion (motility) in brain tissue,
p(reaction)=growth of tumour cells, x spatial
variable (1-d, 2-d or 3-d) and c: density of
tumour cells, used to represent brain tumour
radial propagation from a centre. If D(x) = D,
then v= 2.sqrt(pD) is the front propagation speed

(K. Swanson & J. Murray, Cell Prolif 2000;
Br J Cancer 2002, J Neurol Sci 2003)




Partial differential equations

PDE models of tumour growth: invasion as competition

Macroscopic reaction-diffusion equations to represent invasion / recession fronts

2 or more variables: ex.: healthy cells N,, tumour cells N,, excess H" ions L

Ny Ny
it N1 — — —ayo— | —d{LN,
r 1( K, Qqu) aq 1

Ny
A D1 — —
)+v(2( K

==== A Numerical
1, Equation (A4)
T, Equation (A3)
. A Equation (A2)

“G & Tinsk ;‘t'? 6
Prediction: interstitial cell gap between tumour atenby & Gawlinski, Canc. Res. 1996)
propagation and healthy tissue recession fronts




Partial differential equations

PDE models for moving tumour cells in the ECM

Chemotaxis: chemo-attractant induced cell movements
Keller-Segel model

o Ap —div(px (w)Vw), p = density of cells

0=Aw+ (p—1). w = density of chemoattractant

(Originally designed for movements of bacteria, with w=[cAMP])
(Keller & Segel, J Theoret Biol 1971)

Anderson-Chaplain model for local invasion by tumour cells in the ECM
random motility haptotaxis
" —

) /_A_\ — .
D.V?n  —xV.(nVf) n = density of cells

degradation

f=ECM density

dif fusion

production ~ neutralisation  decay m = MDE (tumour

Qum — — Am 3 metalloproteases)

dif fusion  production  peutralisation
D,V*u + F(m, f) — Bum e A1) MDE inhibitor

decay

(Anderson & Chaplain, Chap 10 in Cancer modelling and simulation, L. Preziosi Ed, Chapman & Hall 2003)




Integro-differential models

Models of tumour growth 5
Models of Lotka-Volterra type, phenotype-structured, with built-in growth limitation

mutations and renewal

L )

0 0
—n(x,t) = T+ o) (f r(y)M(y, z)n(y,t)dy — r(x)n(z, t))

ot
;(l‘) - . _ c 2nlr
+ \L(l oo (@) — d(‘t.)ﬂf)) n.(:ﬂ,t)J k,l(t),u(._.) (z, t):

, N , effect of cytotoxic therapies
growth with cytostatic therapies and death

I

(mentioned in Billy & Clairambault, DCDS-B 2013), see also Delitala & Lorenzis papers

r(z,y)

—d(z,y)I(t) — p1(z,y)ei(t) | n(t, z,y)

(mentioned in Billy & Clairambault, DCDS-B 2013), see also Delitala & Lorenzis papers

is the total cell population or, more generally,
a [total] cell population-dependent
environment variable = growth limitation




Partial differential equations

Models for angiogenesis

VEGF-induced endothelial cell movements towards tumour

- Chemical transport (capillary and ECM) T
- “Reinforced random walks”
- Cell movements in the ECM

-'c:r"e
- Biochemical enzyme kinetics —
) _—.@L’;a 2S00
. LA I-,.llll

Models by Anderson and Chaplain,
Levine and Sleeman e i

* EC proliferation
* formation of sprouts

* formation of pseudopods

(Levine & Sleeman,Chap. 6 in Cancer modelling and
simulation, L. Preziosi Ed, Chapman & Hall 2003)




Partial differential equations

A multiscale angiogenesis model

Interacting cell populations Proliferating cancer cell population

mitosis

Endothelial cells

Ang2 - Tie2R | | Anal - Tie2R | {VEGE - Flke1

Tumor cells

Quiescentcells | |Proliferative cells

No proliferation and ||, _| | Proliferation and

D, T
¥ Cell-cell contact
r no mugration

migration

Fig. 4. Schematic representation of our age-structured cell cycle regulation model.
We took into account two proliferative phases P, and P, one quiescent phase Q,
and one apoptotic phase A. At the end of the P; phase, environmental conditions
are checked; this checking is modeled through functions f and g. In a context of
overpopulation or hypoxia, proliferative cells become quiescent (through function
). If the hypoxic stress is too high, cells can become apoptotic (through function g).
If the environmental conditions become more favorable, quiescent cells can revert
to the proliferative phase. We suppose that mitosis occurs at the end of the P,
phase, leading to the generation of new cells.

/ » -l - -
‘: Apoptosis | | Migration | Prolli.erllltm

“r
Endothelial cell local density

Coupling by oxygen concentration, acting on actual commitment of cells
into the division cycle (passing the restriction point)

Aim: assessment of an antiangiogenic treatment by endostatin

F. Billy et al., J. Theor. Biol. 2009
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Ordinary differential equations
Including more phase transitions 1n the cell cycle model?

Hint: an existing model for G,/S and G,/M synchronisation

(recalling the minimum mitotic oscillator (C, 1/, X) by A. Goldbeter, 1996, here
duplicated to take into account synchronisation between G,/S and G,/M transitions)
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Romond, Gonze, Rustici, Goldbeter, Ann NYAS, 1999




Simulation of mammalian cell cycle
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Ordinary differential equations

Modelling the cell cycle 2: single cell (continued)

Even more detailed ODE models to describe progression in the cell cycle

=

- Cdk modules Cell cycle

| 1.2} I Sulﬁained
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——— [ Cyclin DICdk4-6 | ———» I - 4l
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39 variables. Growth factor, rather than cell mass C . Time () .
(as in Tyson, Chen & Novak) is the driving parameter for S A M
bifurcations " »
2 joooe 3
S 10.006 3,
A simplified model has been proposed, with 5 variables i i
C. Gérard & A. Goldbeter, PNAS 2009, Interface Focus 2011 \ &6

C. Gérard, D. Gonze & A. Goldbeter, FEBS Journal 2012



Partial differential equations

Modelling the cell cycle 3

PDE models for age-structured cycling cell populations

Transition Transition

k, "
S Phase . M Phasze
~ 10 hours ~[1.5 hours

240 480 7200 960 1200

i

o0 200 1000
alaichiurn Iodide

2eells
Flow cytometry may help quantify
proliferating cell population repartition
according to cell cycle phases

In each phase i , a Von Foerster-McKendrick-like equation: [Radeatgl s rato?
0 ] density invphase i
Al (t,a) + T[fz,r?;(a.)n@- (t,a)] + di(t,a)ni(t,a) + Ki—ip1(t, a)n;(t,a) = O d=deativrate
ot da
K s =transition rate
v (0)n;(t,a =0) = / K; 1 .i(t,a)n; 1(t,a) da |l (with o factor 2for i=1)
Ja20 .- Ay, K o1 CcOtONE OV
Kiit1(t,a) = ¥(t)1a>a,(a) periodicw. r. to-time t
(1<ixI, I+1=1)

Death rates d; and phase transitions K , ., ; are targets
for physiological (e.g. circadian) and therapeutic (drugs) control




General case (N phases): by the Krein-Rutman theorem (infinite-dimensional form
of the Perron-Frobenius theorem), there exists a nonnegative first eigenvalue A and,
if j{f@ (t,a) = e M, (t, a) A bounded solutions to the problem (here v,(a)=1) :

with a real number p such that the asymptotics of N i(t,a) = e, (ND)] follow:

N;(t,a) — p. Ni(t,a)‘cpi(t,a)da—ir@ as t— oo

(the weights ¢, being solutions to the dual problem); this can be proved by using
an entropy principle (GRE). Moreover, if the control (d; or X, ,,,) 1s constant, or
if 1t 1s periodic, so are the N, , with the same period in the periodic case.

Ph. Michel, S. Mischler, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2004, J Math Pures Appl 2005
Ph. Michel, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2006; Proc. ECMTB Dresden 2005, Birkhduser 2007




Partial differential equations
L. a growth exponent governing the cell population behaviour
In summary: proof of the existence of a unique growth exponent A, the same for all

phases i, such that the | (O N(AD] 2rc bounded, and asymptotically
periodic if the control is periodic

Example of control (periodic control case): 2 phases, control on G,/M transition by
24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator model)

MtOt(t) —= f_’,_/\t / TEZ(tq (})d(}q Jé' = 1'.‘ 2

Ja=0

“Surfing on the
exponential growth curve”

(= the same as adding

T A_J an artificial death term

- _ , +\ to the d))
=CDK1 All cells in G1-S-G2 (phase i=1)




Details (1): 2 phases, no control on G,/M transition

The total population of cells

inside each phase follows
asymptotically an exponential
behaviour

T N T T T
10 20 30 40 50 60 70 80 a0 100

controle
G1-5-G2
M

ncell=population en phase G1-S-G2 a | equilibre
671 ] 4.07C

pcell=population en phase M a | equilibre

Stationary state 5| 261
distribution of cells d ) 28,
inside phases 3 20/ |
according to age a: ? 2 |
no control, hence i o]

0+ = 0.0

exponential decay 0.0 0.4 08 12 ‘I..E.S-_E.D 24 28 32 36 4.0 0.0 0.4 08 1.2‘.'1.5 20 24 28 32 36 4.0



Details (2): 2 phases, periodic control w on G,/M transition

The total population of cells
n;(t, a)da,
J a0
inside each phase follows
asymptotically an exponential
behaviour tuned by a periodic
function

Statlonary State G1-5-G2 a | equilibre, controle periodique, lambda=0.2385 M a | equilibre, controle periodigue, lambda=0.2385
20 i ' . )

distribution of cells 18]
inside phases “
according to age a: b
sharp periodic
control, hence sharp | A . ! |
rise and d@CCly 0 04 08 12 16 20 24 28 32 36 40 D0 04 08 12 16 20 24 28 32 36 40




Partial differential equations
The simplest case: 1-phase model with division

a[ n(t,a)] + [d(t) + K(t,a)]n(t,a) =0

2/ K(t,a) n(t,a) da

where K (t,a) = Koy (t) g+ +oo[(@)
and 9 (t) = Lo +((t), 1-periodic

(Here, v(a)=1, a* 1s the cell cycle duration, and t(<1) is the time
during which the 1-periodic control \J 1s actually exerted on cell division)

Then 1t can be shown that the eigenvalue problem: n(t’ @) - e}‘t N (t, a,)

a[ (t,a)] + [N+ d(t) + K(t,a)] N(t,a) =0

—2/ K(t,a) N(t,a) da

has a unique positive
1-periodic eigenvector N, with a posmve elgenvalue A, solution, if d(t)=d, K(t,a)=K(a)
of Lotka’s (=Euler’s) equation

+oo
e dx, where f(r) = K(x)e™Jo K& js a p.d.f. iff K(z)dx = +o00
0



Partial differential equations
Experimental measurements to identify transition kernels X .,

(and simultaneously experimental evaluation of the first eigenvalue \)

In the simplest model with =0 (one phase with division) and assuming K=K(x)
(instead of indicator functions experimentally more realistic transitions):

(gt ) + %n(f z) + K(z)n(t, )

Ot

n(t,0) = ZL;}U K(x)n(t,z)dx.

%

Whence (by integration
along characteristic lines):




Experimental parameter 1dentification for this cell cycle

model with 2 phases G1 / S-G2-M using FUCCI reporters
FUCCI=Fluorescent Ubiquitination-based Cell Cycle Indicator

Cells:
NIH 3T3 of a common population
(mouse embryonic fibroblasts)

without preliminary synchronization

Measures: for each individual cell:
red and green fluorescence time recording

every 15 min

approx. 150 measures for each cell

from Sakaue-S5awanc et al.
Cell 2008, 132, 487—-498




FUCCI: a movie (Sakaue-Sawano 2008), HeLa cells

Fri 17:44



Another FUCCI movie (C. Feillet, IBDC Nice), NIH3T3 cells

Y




FUCCI reporters + individual cell tracking (non trivial...):
Measuring time intervals: G, and total division cycle durations

L

. ;
A .80
time ( / 15 min)

Data from Bert van der Horst ~ s lab, Erasmus University, Rotterdam, processed by Frédérique Billy at INRIA



f(x)

Phase durations (hence transitions, using [NE T 10

) In age x

Pdfs f(x) fitted from data on 50 NIH 3T3 proliferating cells

(mouse embryonic fibroblasts)

Density of duratlon of G1 phase Density of duration of SG2M

10
® daa » * daa
it
. . i i
B 6k
7 14
T ]
B £ 1z
i 3
0 o |
E =S
~§ 5 L] $1E
g s
z 4 Z B
it e B
L ]
2l - e \e 4 L]
L]
1 . 3
L1 1] L L] L] L]
o - R R s -k B SR A A A A S
E = E E 0 e S S8 SIS RS eSS eSS eeeeeR
0 3 10 15 20 23 a0 35 40 45 a0 0 5 10 15 20 25 30 35 40 45 50

duration of G1 () duration of SG2M (h)

UCCI data in NIH3T3 cells, that are healthy mouse fibroblasts tracked in liquid medium




Fitting probability density functions to data and computing A
Gamma p.d.f.s were best fits and yielded simple computations

~ei—1 goi —Bi(z—yi) 7
)% B e AT Ly (a)

2-phase Lotka’s equation simply reads: W\ €

¥ \ a9
. ) (1 -+ _ ) E"}L (vi+v2) — 9
.. which yields here A = 0.039 A’ S o4 P

(and yields mean doubling time 7,=17.77 h, and mean cell cycle time 7, =17.95 h)

(Billy et al., Math. Comp. Simul. 2014)




Phase transitions w.r.t. age x:
Transition rates K(x) from pdfs f(x) on NIH 3T3 healthy cells

and resulting population evolution without control on transitions

Recalling that in the model
f=p.d.f. of phase duration time
and K = phase transition kernel:

_ fz(’f)
1— [y fil§)de

Kisiv1(x)

in G1 and SG2M
o o




More single cell data to build population data
from IBDC (F. Delaunay, C. Feillet) in Nice

117+150 single NIH3T3 cell data stained by FUCCI, plus a RevErb-a track

117 in 10% Fceetal Calf Serum (FCS) and 150 in 15% FCS (150 out of many;
only the ones with a robust RevErb-a circadian clock were kept)

Results: evaluation of phase transition rates in a 2-phase model of the cell cycle
in the two concentration media

Increasing FCS from 10 to 15% reduces standard deviation of both phase
durations, suggesting increased synchrony between cell cycle phases

Good agreement of the model behaviour with the data, evidencing higher
velocity v in cell cycle progression with 15% FCS

v: 15% FCS cell population grows approximately 10% faster than the 10% FCS




More on FUCCI to identify cell cycle phase durations:
Effects of growth factors on NIH3T3 cell populations

30

251

117 cells
in 10% FBS

201
151

G,

10F

.. ... ] Hnm.ﬂn

10 40 50 1] 10

occurance in the population
occurance in the population

20 30 20 30
duration of G1 (h) duration of SG2M (h)

45
[Cdata
40F fit

a5t

150 cells o S/'Gy/M

in 15% FBS

accurance in the population

I |

oo ul m rJ [ ”Fr on

10 20 30 40 50 10 20
duration of G1 (h) duration of SG2M (h)

30 40 50

FICGURE 3. Gamma laws (solid line) (multiplied by a coefficient
equal to the total number of data) that fit experimental data (bars)
for the distribution of the duration of phases G (left) and S/Ga/M
(right), for the two experimental conditions i.e., 10% FBS (top) and
15% FBS (bottom).

F Billy et al. Math BioSci Eng 2013




Descriptive statistics: influence of growth factors on m and sd

10% FBS 15% FBS
mean (h) | sd (h) | mean (h) | sd (h)
Gy 9.3) 4.9 € 3.3
S/Gy/M | A2.D 2.5 d0.9 2.1
cycle 21.4 5.5 18.6 4.1

Coefficient of variation
(sd/m)

G: 0.53 /0.40

TABLE 1. Mean and standard deviation (sd) (in hours) of the du-
ration of the phases Gy and S/G5/M and of the cell cycle for two
experimental conditions (culture medium composed of 10% of FBS

or of 15% of FBS).

S/'G,M: 0.21/0.20

10% FBS 15% FBS
Gi(i=1)[5/Ga/M (i=2) |Gy (i=1)]5/Ga/M (1=2)
o 1.80 16.96 5.68 2.71
5| 0.43h~! 2.22h~ ! 1.23h~ 1 1.01h~!
4.83h 4.37h 3.13h 7.77h

"TABLE 2. Parameters used to fit experimental data of the distribu-
tion of the durations of phases G1 and S/G5/M in the population
by Gamma laws, for the two experimental FBS supplementation of

the medium (10% FBS and 15% FBS).

Coefficient of variation
(sd/m)

10% FBS 15% FBS

m (h) | sd (h) | m (h) | sd (h)
G4 @0 | 31 |[(7TD 1.9

S/Gy/M |20 | 19 [(105H | 16

TABLE 3. Mean (m) and standard deviation (sd) (in hours) of the G,
Gamma distributed duration of the phases G; and S/Gs/M for
two experimental conditions (culture medium composed of 10% of
FBS or of 15% of FBS), according to the parameters mentioned in

Table 2.

0.34 /0.25

S/G,M: 0.16/0.15
F Billy et al. Math BioSci Eng 2013
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age (h) age= (h})
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FIGURE 4. Transition rates from G; to S/Gs/M (left) and from
S/G5 /M to G, (right) for the two experimental conditions, i.e. 10%
FBS (top) and 15% FBS (bottom). These rates are functions of
age of cells in the phases only.

(F. Billy et al., Math Biosci. Eng. 2013)




Taking into account different progression velocities in the cycle

« The complete model, with speed of progression v (in age x w.r.t. time 7):

%nz t,x)+ —(1‘ i(t,x ) + (d (t,z) + Kisiy1(t, fﬂ)) ni(t,z) =0

ni(t,r =0) = f Ki_144(t,&) ni1(t,€)d§ 2<i< 1,
£>0

ni(t,z =0) = 2/ Kr_1(t,&) nr(t, &) d€ .
£>0

... or, choosing a constant speed v independent of age x:

0 0
Eﬂ; (f_ 1)—|—1 Eni(t :ﬂ) + Rl%i—l—]_ 1[}%( ) 'n-’i.(t, :L‘) — 0

ng(t,z =0) = /ﬁ}nﬁl—ﬂ 10% (&) na(t, &) d€ |

i (t,i.‘- = U) = 2./5} _R.FQ_:.]_:]_D%(S) ?12(5,5) dE ;
>0




Results: better fit with evaluation of varying speed v

W\ e [T Setting free the parameter v = speed of progression
’ in the cell cycle for 15% FCS cells (with basis

v=1 in the 10% FCS cell population) yielded
v=1.095 in the 15% FCS cell population and

better fit of model to experimental data

(with 7/=15.4 h instead of 18.1 h in 15% FCS
compared with 7,=20.8 h in 10% FCS)

=

% of calls in G1 and SG2M
e 2
'-;l- &n

— 1 sim
0.3 . SGIM sim 1
- - -Gt data ——G1sm
SGEM data L SOIM sim
0.8 09 —— —G1 data
08 SGEIM data
207 }
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uu (¥
g a o8
& os > g
— : 0 b
%Dq V_1.095 m 15/0 FCS :05
[F]
= 4 oaf
£ 03 o
# 03t
0.z #
0.3r
01
01
a L L L L L
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Hmae (k) ] 5 10 15 20 o 30 L]

Hima thh

F1GURrE 5. Time evolution of the percentages of cells in G (red or
deep grey) and S/Go /M (green or light grey) phases from biological
data (dashed line) and from numerical simulations (solid line), in
the case of 10% FBS (top) and 15% FBS (bottom). Our model
results in a good approximation of the biological data.

Ficure 7. Time evolution of the percentages of cells in Gy (red or
deep grey) and S/G5 /M (green or light grey) phases from biological
data in the case of 15% FBS (dashed line) and from numerical
simulations (solid line) resulting from Equations (13) for v = 1.095.
Our model results in a good approximation of the biological data.

(F. Billy et al., Math Biosci. Eng. 2013)




A possible application to the investigation of
synchronisation between cell cycle phases

(from Lodish et al., Molecular cell biology, Nov. 2003)
One cell divides in two: a physiologically controlled process at cell and tissue levels
in all healthy and fast renewing tissues (gut, bone marrow) that is disrupted in cancer:

Is cell cycle phase synchronisation a mark of health in tissues?




A working hypothesis that could explain differences in
esponses to drug treatments between healthy and cancer tissues

Healthy tissues, i.e., cell populations, would be well synchronised
w. . to proliferation rhythms and w. r. to circadian clocks, whereas. ..

...tumour cell populations would be desynchronised w. r. to both, and such
proliferation desynchronisation would be a consequence of an escape

by tumour cells from central circadian clock control messages, just as
they evade most physiological controls, cf. e.g., Hanahan & Weinberg:

Question:

is cell cycle phase
desynchronisation
another hallmark of
cancer in cell
populations?

inflammatory drugs

Inhibitors of Inhibitors of
VEGF signaling HGF/c-Met




A mathematical result: A increases with desynchronisation
where desynchronisation 1s defined as a measure of phase overlapping at transition

roliferation, as measured by the Malthus growth exponent, or
igenvalue, increases with overlapping between cell cycle phases

.e., the less synchronised phases are, the faster is proliferation

NB: so far, this has not been extended to the periodic control case,
.e., phase transitions have been assumed to be uncontrolled)

i.e.,for a given family (f) of p.d.f.s with second moment o;, A is increasing with each o;

Proposition 1. Soit f;, 1 < i < I, une famille de fonctions de densité sur R, . Les tauz de
transition associés K;_,; .1 sont ainsi donnés par (voir (2)) :

fi(x) _ fi(z)

Kisivi(z) = . — 2
A1) .lr:ﬂd fi(z"dz' 1— [y fi(z")dz'

En supposant d; =0 (1 <1i < 1), la premiére valeur propre du systéme (1) A > 0 est donnée

par (voir [1]) :
1 I + o0 . )
== Hf fi(x)e™dx
2 i=1 0

Pour 1 <i <1, on pose e; = fﬂ-'_m zfi(z)dz et O’? = ﬂ+w z fi (z)dx — ef el on suppose que
les e; > 0 sont constants. Soit j € {1,...,1}. On suppose que lesa; (1 <1 # j < [) sont constants.

. )
Alors |\ est croissante avee o

(also shown in Billy et al., Math. Comp. Simul., 2014)



Partial differential equations

Simple age-structured PDE models representing
exchanges between proliferation and quiescence

p=density of proliferating cells; g=density of qulescent cells; y,0=death terms;
K=term describing cells leaving proliferation to quiescence, due to mitosis;
p=term describing “reintroduction” (or recruitment) from quiescence to proliferation




Delay differential equations
Delay differential models with two cell compartments,
proliferating (P)/quiescent (Q): Haematopoiesis models

(obtained from the previous model with additional hypotheses and integration in x along characteristics)

O P~ BQUQM) + BQ—))e TQ(E —7) =0

%2 1 1B(Q() +91Q — 2B(Q(t — 7)e " Q(t —7) = 0

(delay 7 = cell division cycle time) (from Mackey, Blood 1978)

Properties of this model: depending on the parameters, one can have positive
stability, extinction, explosion, or sustained oscillations of both populations
(Hayes stability criteria, see Hayes, J London Math Soc 1950)
Oscillatory behaviour is observed in periodic Chronic Myelogenous Leukaemia
(CML) where oscillations with limited amplitude are compatible with survival,

whereas explosion (blast crisis, alias acutisation) leads to AML and death
(Mackey and Bélair in Montréal; Adimy, Bernard, Crauste, Pujo-Menjouet, Volpert in Lyon)




From Adimy, Crauste, EIAbdllaoui J Biol Syst 2008 (see also: Ozbay, Bonnet, Benjelloun, JC MMNP 2012)

Modelling haematopoiesis

for Acute Myeloblastic Leukaemia (AML) o ohase
...alming at non-cell-killing therapeutics
by inducing re-differentiation of cells using

2 tar)

Ty

molecules (e.g. ATRA) enhancing differentiation T
rates represented by K, terms

Apoptosis

— (s + 3;) r4, a>0, t=>0,

Apoptosis

= — (¥ +gila)) p, D<a<Ty,t>0

where r; and p, represent resting and proliferating Pult)

™n

cells, respectively, with reintroduction term f,=f,(x,) -
positive decaying to zero, Apoptosis

= -y
with population argument: R EIRES / ri(t,a)d
Jo

and boundary conditions: ay
Apoptosis

r(t,0) = 2(1 - K,) [Tl g la)p1(t,a)da, r/i_____/

o0

| 2(1-k, )

I
Ti { I

ri(t,0) = 2(1 - K) f " g(@)plt, a)d \ ‘:[ a1t ]‘
0 - l".i‘"r - \\
\‘"Ill
I|

Ti—1 * Tin

+2K;‘,_1 gf_lia]pf-_llit,ajda, i = 2, Apoptosis

2k

0
oo

pilt,0) = Bilzi(t) )ralt, a)da = Bi(z:(t))xs(t), @ € In, Cells leave /;
_ 0 the bone marrow i

lim r(t,a) = 0.
N, a— =30




Modelling leukaemic haematopoiesis (Mackey/Adimy) :
proliferation advantage?

Introduction en Cycle Cellulaire ¢ Stem-like ’ CeHS CD3 4+/CD3 8'

Phase de
/ Phase de Prolifération Repos

P(t) N(t)
L Gy s Gy

Apoplose Diferenciation / Mor Committed cells CD34+/CD3&+

Blood/ bone marrow sampling

iIl AML patients Phase de Prolifération P::T::: °
Cell sorting (magnetic beads) P(t) C: N(t)
M

s G,

FACS for cell cycle phases I :>
.
Apopiose

Self-renewal: critical penomenon
Measuring apoptosis and cell
division in each population should lead to model identification

Differenciation / Mort




An age[a]-and-cyclin[x]-structured PDE model
with proliferating and quiescent cells

(exchanges between (p) and (g), healthy and tumour tissue cases: G, to G, recruitments G from ¢ to p differ)
. 7 N:p +q:
—plt.a,r) +—=—lgplt.a. x)) + =—(l1la.x)pit.a x)) total numbe
(M e x
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J Math Biol 2008,
Math Comp Mod
2008;
M. Doumic-
el Jauffret, MMNP

00 150 300 7RG 300 30 410
e (dage) 2007

ea

proliferating cells




To conclude this first part, quoting Aristotle:

gowxe 0 0 te AOYOS TOLS YALVOUEVOLS
LOLETUEELY, %Ol TA (QULVOULEVA TG AOY®

i.e., “It is appropriate to the model to testify for the phenomena,
and to the phenomena for the model”

(in Aristotle’s Ilepi Ovpavod [Sky], from which I freely translate Joyoc by model)




II. Introducing weapons and targets in proliferation models




Cancer therapeutics summed up

e Surgery: highly localised

« Radiotherapy: localised, kills all renewing cells... including tumour cells

» Chemotherapy: - usually general, adapted to diffuse and metastatic cancers;

acts on all renewing cells at the subcellular level (degrading

DNA, blocking phase transitions, inducing apoptosis), at the

cell and tissue level (antiangiogenic drugs), or at the whole
organism level

- but: new molecules = monoclonal antibodies (xxx-mab)
directed toward tumours or tumour-favoring antigenic sites

* Immunotherapy: - injection of cytokines (interferon, interleukins) = boosters

- use of engineered macrophages or lymphocytes directed
toward specific targets: future?




Some pitfalls of cancer therapeutics

Surgery: - (partly) blindfold
- not feasible when tumour is adherent to vital blood vessels (liver)
To overcome these drawbacks: - radio-guided surgery, possibly using DTI
- previous use of radio- or chemotherapy

Radiotherapy: not enough localised or not enough energetic

Recently proposed: hadrontherapy = particle beam therapy (protons, neutrons
and helium, carbon, oxygen and neon 1ons instead of photons): better
localisation, possibility to deliver higher doses without unwanted damage

Chemotherapy: - toxic to all fast renewing tissues (including healthy ones:
gut and other digestive epithelia, skin, bone-marrow)

- induces development of drug resistance by selecting
resistant clones among cancer cells

Proposed: optimisation of treatment to reduce toxicity and drug resistance

New molecules: xxx-mab, e.g. EGFR inhibitors (cytostatic drugs)
- monoclonal antibodies are mouse antibodies!-> HAMA



Examples of drugs and targets at the subcellular level:
chemotherapy for liver, pancreatic or biliary cancers

DNA synthesis 5-FU

‘ -: Antimetabolites *MTX

eOH-urea

«CDDP
«:I Alkylating agents «Oxaliplatin
«CPM
eIrinotecan

DNA transcrlptlon DNA dupllcatlon

M|t03|s
Intercalatlng agents
1r eVinorelbine

eDocetaxel,
paclitaxel

(Image thanks to F. Lévi, INSERM U776)

«Doxorubicin, epirubicin Spindle poisons




Cell cycle phases as targets for chemotherapy agents
Antibiotics

Antimetabolites

Vinca alkaloids

1

Mitotic inhibitors
(0.5-2h) 1

Taxoids
Alkylating

agents

(Image thanks to F. Lévi, INSERM U776)




Different viewpoints to represent tumour therapies

1. At the molecular level:

Hitting specific molecular targets in cancer cells by “targeted therapies”
Presently the most popular point of view among cancer biologists
Achievements: 1matinib in chronic myelogenous leukaemia (CML),
ATRA+anthracylins in acute promyelocytic leukaemia (APL)
Problems: (often very) relative specificity; toxicity to healthy tissues;
not taking into account emergence of drug resistance

2. At the cell and molecular level:

Taking into account all intracellular molecular pathways involved in proliferation,
cell death and [de-]differentiation: a biocomputer scientist's point of view
Problems: scores of reaction networks, hundreds of parameters to estimate,

not taking into account emergence of drug resistance

3. At the cell population level:

Defining functional targets for drugs in qualitative population dynamics models
with added external control: PDEs or IDEs (integro-differential equations).
Advantages: the right level to take into account population level effects

(in particular emergence of drug resistance) and to design optimisation strategies
Problems: attributing specific functional effects to given drugs




“Functional "=by designing targets related to those fates that are considered as relevant
for cell and tissue behaviour in cancer: proliferation, cell death, [de-]differentiation

Examples: macroscopic models of the action of drugs

1. ODE with functional representation of pharmacodynamics for bone marrow toxicity

dPBM m dN
=1 =/(D)] -r(N) -PBM — k, - PBM Il —— = k; - NBM; — &y - V.

dNBM, W ‘ N N
o= ki - PBM — k> - NBM,, F{N) = rmax = (Fmax = "min) TN PD model

dNBM,
=~ — k> - NBM, — k3 - NBM,, fiD) = ..D ;
di Ky + D"

PBM, NBM; = bone marrow cells, N = circulating neutrophils, D = drug concentration

(JC Panetta, Math BioSci 2003)

2. PDEs describing action of a drug (d) on proliferating (p) and quiescent (g) cells

od | - o
i—{+ V- (ud) =V - (D(F)Vd) + [(#)(ds(t) — d) — Id,
!

p (resp. q) cells:
cp

L4V (up) = DpAp+ Fy(p) — Co(d. p), high (resp. loy)
Ot susceptibility to drug d

Cl , , ,
T:—F Vlug) =D,Ag+ Fylqg)— Cyld. gq).
C

(T. Jackson & H. Byrne, Math BioSci 2000)




Pharmacokinetic-pharmacodynamic (PK-PD) modelling

‘Pharmacokinetics is what the organism does to the drug,
Pharmacodynamics is what the drug does to the organism”

3 detailed examples of molecular PK-PD modelling:
Oxaliplatin, Irinotecan, 5-Fluorouracil




15t example: Modelling PK-PD of cytotoxic drug Oxaliplatin
(cytotoxic action exerted on DNA 1in all phases except M phase)

& _ —[§+cz+AK]R+i@

Input i =oxaliplatin infusion

= —ARK + g (Ko — K)

Plasma proteins

8
[}
- N
/ H/H,’H/H/
I
T T
200 400
lasma oxaliplatin
plasma proteins

S

CG*
= —Vgsr K(%ST e — kpnaCF +ER

= —kpNaCF + Up )

CG?
= -V +Uc(Gyo—G
GSTKE;ST+G2 #G( 0 )

R
dr
dK
dr
dc
dr
dF
dr
dG
dt

(
\

(JC, O. Fercoq, submitted as Springer book chapter, 2014)




Molecular PK of Oxaliplatin in plasma compartment

Mass of active oxaliplatin

Instantaneous infused
Constant clearance :

dose (flow)

?:—[ﬁ-l—ﬂ-l-laup+l—{f}

Binding rate of oxaliplatin to plasma proteins

Rate of transfer from plasma to
peripheral tissue (cellular uptake)
Mass of plasma proteins (albumin
or other hepatic proteins) € tunes the robustness of GSH oscillations, from harmonic to relaxation-like

V| tunes the amplitude of the
l_ cycle of plasma proteins

%:-A- P L+e N—NO—%(L—LO)3+rL(L—LO)

Hepatic synthesis activity of plasma pmteins—l l_ () tunes the period of the cycle of plasma proteins

Plasma protein synthesis
shows circadian rhythm




Molecular PK of Oxaliplatin: tissue concentration

Degradation of free DNA (F)
by oxaliplatin (C)

Tissue concentration

in free oxali[latin (C=[DACHPt])

GST-mediated binding of reduced glutathione (G)
to oxaliplatin (C), i.e., cell shielding by GSH

tissue in which
the mass P of
free oxaliplatin

“Competition” between free DNA [=F] and reduced glutathione """
GSH [=G] to bind oxaliplatin [=C] in proliferating cells




Molecular PD of Oxaliplatin activity in tissue

Mass of free DNA

l Action of oxaliplatin on free DNA (F)

Fy— F - Fg—F
g =—kDNAWCF+kRFUF repaLr 93391,9230%

Mass of reduced DNA repair function

glutathione in target CIRYI% aZ\{ivation and inactivation thresholds; gg: stiffness) | ———

cell compartment \

£ (s— Sy — %(G— Gol® + (G Gg))

\

\‘\ [] G tunes the amplitude of the cycle of GSH
Activity of v-Glu-cysteinyl ligase (GCS) \
\

(o + (G — Go)?

synthesis by GCS = y-Glu-cysteinyl ligase

\

l_ (0 tunes the period Qf the cycle
of GSH synthesis by Gzi’\S

\

Glutathione synthesis
(»detoxification) in cells
shows circadian rhythm




PD of Oxaliplatin on DNA and genetic polymorphism
of repair function in tumour cells: drug resistance
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&, changed infusion peak time, lead to comparable results)



Jine example cytotoxic drug Irinotecan (CPT11)
| Intracellular PK-PD model of CPT11 activity:

« [CPT11], [SN38], [SN38G], [ABCG2],

[TOP1], [DNA], [p53], [Mdm2]
 Input=CPT 11 intracellular concentration
* Output=DNA damage (Double Strand Breaks)
 Constant activities of enzymes CES and UGT1Al
* A. Ciliberto’ s model for p53-Mdm?2 dynamics

' Topoisomerase 1: the target &5’
eading stranc

] K . ]
S g e RegfDSB \ N&N
lCarbuxylestera'SE(CES) ‘w
P o (c:a;r 1
| e — 'd
| r ,L !| o) Replication
i . = machinery
aH : . :
l UGT 141 ~ 57
| H Single- woled INA

-

e

J . - i
] i _]/ L --“f o
o _JJ ’! L |[ .

]
)

(from Klein et al., Clin Pharmacol Therap 2002) (from Pommier, Nature Rev Cancer 2006)




Intracellular PK-PD of Irinotecan (CPT11)

(dlCPTl] o - [CES[CPTLY]  [ABCG2[[CPT1]]
di - YKo + [CPT1] "% K, + [CPT1]]
dSN38] _, [CES|CPT1] . [ABCG2|[SN38]  [UGT1AL|[SN38]"
dt K1 + [CPT11] ™" Ky +[SN38] > Kn,+[SN3g"
_kcom,pl [SN38] [TOPl] [ADNE?lee] + kcmnpil [CC]
d[SN38G]  , [UGT1A1][SN38]"
dt =R g T lsnagm  ralSNV38C]
d[ABCG2] [SN38| [CPT11] ) B
dt = k| ABOG?) (Kﬂﬂszvgs] K+ [CPT11]) © kaz| ABCG]

dTOP1 2m(t —
[ CC; ] = k:topl (1 + € cos ( 77(24 90) )) — k;compg[SN?)S][TOPl”ADNgibT-e] + kcomp,gl [CO] — kdtopl[TOPl]

W = —keompt[SN38|[TOP1][ADNiipre] + kcompl, [CC] + repair DN A([p53sot), [C Cirr])
% = kcompl[SNBS] [TOP].][ADNMb?’E] - kcompll [CC] — ki [CC]

d[CCZTT]

d

= kirr|CC] — repair DN A([pb3iot], [C Cirr])

|CCipr] (Luna Dimitrio’s Master thesis 2007

repair DN A([p53tar], [CCirr ] T eOrm| 1. Ballesta 's PhD work 2012)

= —kapna|[pb3tot]




A. Ciliberto’ s model of p53-Mdm?2 oscillations

( d[p53
[pdtt d kss3 — kasa [p53tot] — kasa[p53UU |
d
[piU | _ ket [Mdm2puc][p53] + K, [p33U U] — [p53U] (kr + k[ Mdm2,uc]) + —kass [p53U]
d
[p5§tU vl _ ks [Mdm2puc] [p53U] — [p53U Uk, — [p53U U] (kass: + kass)
4
d[Md;:;fznuc] ] V:pa,tio(k;i [Mdmngyt] - k?[) [Mdm?nuc]) - kbif[Mde"uuc]
d[Mdmgcyt] ks2[p53tot]3 k L
= ks — kgor [Mdm2, Egepn|M Mdm2P,,;] — P Mdm?2,
vt : I8 P53l oz (Mt 2eye] + Raepn [ MMdmaFey) =5 =0 g M dm2ey]
[Mdm2P,,,] Ph [Mdm2ey) — kgeph [Mdm2P.y] — ki [MMdm2P,,,] + ko[Mdm2p,c] — kaz [M Mdm2P, ;]
\ dt Jph, + [P53tot]

(Ciliberto, Novak, Tyson, Cell Cycle 2005)




PD of Irinotecan: p53-Mdm?2 oscillations can repair
DNA damage provided that not too much
SN38-TOP1-DNA ternary complex accumulates

IRINOTECANiniections: CPTIN{DARK GREEN ), SMN35{(BELACK), SN35-G{ELUEand TOP1{WIOLET )
"

CPT11
SN38
SN38-G
topl

DMNA damage
d | —pS3
rmdm2

e —

40 160 ] 260 %E]na Dzﬁﬁ%o
(Intracellular PK-PD of irinotecan and A. Ciliberto’ s model of p53-MDM?2 oscillations)




3rd example: PK-PD of cytotoxic drug 5-Fluorouracil

5-FU: 50 years on the service of
colorectal cancer treatment

(Methylation site blocked)

0 0 L

HN

F
HM HN
10000 T
':} M Normally, E" N G M
H H H

methylation in 5
by Thymidylate
Synthase (TS) of

P{Ja(f;i!edUMPinto dTvP Thymine 5-Fluoro-Uracile
= uriaimne

(NB : Uracil is found only in DNA)

(5-FU will be later transformed into
FAUMP instead of normal dUMP)




PK-PD of 5-FU

RNA pathway = € DNA pathway

2 2 main metabolic pathways:
action on RNA and on DNA Competitive

inhibition

by FAUMP of
dUMP binding to
target TS

TS
hiin [Stabilisation

by CH,-THF of
binary complex

! FAUMP-T
g FauMP-TS]

: T L DNA
Incorporation of e | lamags I —
FUTP instead of e, FAUTP instead of

UTP to RNA _ dTTP to DNA




Inhibition of Thymidylate Synthase (TS) by 5-FU and Leucovorin
Formyltetrahydrofolate (CHO-THF) = LV
a.k.a. Folinic acid, a.k.a. Leucovorin

Precursor of CH,-THF, coenzyme of TS, that forms with it and FAUMP
a stable ternary complex, blocking the normal reaction

N
5,10-CH,-THF + dUMP + FADH, =====dTMP +THF + FAD

Thymiding
l
TK

!

- ——
: w TP : Flaﬂ.rer%gljlrﬂatlﬂ

kx dNTP imbalances » DMA
damage
increased dUTE = »
T [

|-;:|LJTF’aEe| |LD-E|

FdUMP > dUMP)

(Longley, Nat Rev Canc 2003)




Plasma and cell pharmacokinetics (PK) of 5-FU

Poor binding to plasma proteins

Degradation +++ (80%) by liver DPD

Cell uptake using a saturable transporter

Rapid diffusion in fast renewing tissues

5-FU = prodrug; main active anabolite = Fd-UMP

Fd-UMP: active efflux by ABC transporter ABCCI11 = MRP8
(Oguri, Mol Canc Therap 2007)




5-FU catabolism: DPD
(dihydropyrimidine dehydrogenase)

5-FU > o 5-FU H,, hydrolysable [ — F[} Alanin]

DPD: hepatic +++

DPD: limiting enzyme of SFU catabolism

Michaelian kinetics

Circadian rhythm of activity

Genetic polymorphism +++ (very variable toxicity)




Modelling PK-PD of 5-FU [with drug resistance] + Leucovorin

(action exerted on thymidylate synthase only in the S-G, phase)

G 8 . _p  BF F__, i T-.T T T W : :
dt ot b+ P PPPmppp+ P V] P z a E W l J o
wm O _a P AF ook .B L . A A i | \'.
dt Eb+P e+ F i @ "‘ - r II X(l) (3) II
(3} “!Q g o sz + J“}q— Tnput | = LV infusion flow ‘ Q I| P Q \ .'I
dt I!’ ‘ j_?l..._. :.'?- = & Al = I'.\ B ______‘_/'
) “;_L = ;EQ—k.-;L— k4BL ‘ ------------- i = 5-FU infusion flow| 3 L e VR i SO PR . WO | [drug influx]
dt £ ' & = = {2) (4)
i3y dN wF" r h\f . . . I 1T g ! #
— = - - — N A ¥ o G o R v VR s, SR arug ¢ IX
dt A" 4 Fn pdN i @ B i = [ o H (5 6)
dA : |'1 SR T s A \ AN .
2 i - At o S ot - “ @ K & # /(8/
(7 ﬁ i nlal i e ' S’ .
5 = kiFS +k_1 B+ 9)’5 f @ B ] = S-_...B

®  dB [drug ih:‘ff.];’z’{'f

22 = Ky FS—k_1B —kyBL | 5= Free Thymidylate Symhase (T5) | yk e T Y S
it 1 1 - 4BL | n = = = .
- = kyBL — vpT +— | (stable terary FdUMP-MTHF-TS comples wdl e —
P P!fmm: [3-FU]; F= Intracellular [FdUMP];
2 (t — pppp) Q= Plasma [LV]; L =Intracellular [MTHF];
where Ippp =lppp BASE { 1+ &cos 2: } N= 3-FU-triggered Nuclear Factor; 4= ABC

Transporter activity, NuclearFactor-induced;
St prs) 8= Free [TS] (not FAUMP-bound);
and Sp= So_pase { 1+ dcos 7*’} B =[FdUMP-TS] reversible binary complex;

4 T'={FdUMP-TS-MTHF] stable ternary complex

(F. Levi, A. Okyar, S. Dulong, JC, Annu Rev Pharm Toxicol 2010)
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5-FU and LV, plasma and intracellular PK:
uptake, degrading enzymes, active efflux

FAUMP extracellular efflux 5-FU cell uptake 5-FU DPD detoxication in liver
(by ABC Transporter ABCC11)

i(t) = 5-FU Binding of
infusion flow ’ FAUMP to TS
to form a reversible
binary complex B

Binding of LV to
FAUMP-TS =B to
form a stable
ternary complex

j()=Lv

infusion flow [ekA




Resistance? Induction of ABC Transporter activity by
FdUMP-triggered synthesis of nuclear factor nrf2

Nuclear factor

(e.g., nrf2)

ABC Transporter activity
(ABCC11=MRPS)




Targeting Thimidylate Synthase (75) by FAUMP:
Formation of binary and ternary 7S-complexes

—k 1 FS+k_1B +9TS(SD — S)
kiF'S —k_1B — k4BL

k4BL — ”UTT

F+S - F-S =B (FAUMP-TS 2-complex)
k

B+ L oo B.I =T (FAUMP-TS-LV 3-complex)

1§ blockade results 1in subsequent DNA damage




Simulation: 5 sequences of 2-week therapy courses

4 days of 5-FU+LV infusion,12 hours a day, every other week

P = Plasma [5FU] T l‘ || | " [ 1 | || |
| | 1 i

0 [ [ L | L |_. |

4 0 420 B40 1260 1680
F = Intracellular [FAUMP]
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a4 420 840 - 1260 1680
QO = Plasma [LV] I|| || || ||| || |||| || [ || |I ||| |

0 ll-anl\rIL J'..llu'..llL AATETAN Il.. '.Jl' L |'.|II.||||I.

] 0 420 840 1260 1680
L = Intracellular [LV] 1A AR A AhA A f

0 I y V I'ul\ JI I'I.I Ill 1'|| II [y ||.‘| I'|I ! [ I'I I'||- I'\I III'\,‘__ - II I..I I'i 1'|| \ |
N = [nrf2] 5FU-triggered ;0 420 840 1260 1880
Nuclear Factor J

o LT et T P —
A = ABC Transporter activity, 20 420 840 1260 1680
nrf2-inducted ' / /\/\

G | _,..-I""-F ---_,_____‘__ . ,.F/ \-\.‘H""——._. \___‘_
S = Free [TS] (not FAUMP- 10 D‘x\__ ——420 840 1260 1680
bound) l o H‘“‘——-——_““*x__ - — -

0+ : - —
B = [FAUMP-TS] reversible 49 420 840 1260 1680
binary complex G- e ——\_—\__—\___—
T = [FAUMP-TS-LV] 19 420 840 1260 1680
stable ternary complex ] f f f .‘

0 AN ’Nw\ N N | N J
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Some features of the model.:

a) 5-FU with/without LV in resistant cancer cells (=MRP8+ cells)

With Leucovorin added in treatment Without Leucovorin added

mm m m mm m m
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Cancer cells die Cancer cells survive




b) 5-FU+LV with/without MRP8 (cancer vs. healthy cells)

Resistant cancer cells (=MRP8+) Healthy or sensitive cells (=MRPS8-)

WM ‘h ‘| ‘I‘ | ||‘ “ ,l| |\ |

09 420 840 1260 1660 09 40 1260 1680
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Cancer cells resist more than healthy cells, due to lesser exposure to FdUMP

(actively effluxed from cells by ABC Transporter MRPS)



The sentinel protein p53 senses DNA damage

due to cytotoxic drugs, induces cell cycle arrest and
launches DNA repair or (in case of failure) apoptosis

(from You et al., Breast Canc Res Treat 2005)

Connecting DNA damage with cell cycle arrest at G1/S and G2/M checkpoints
by inhibition of phase transition functions /; and by induction of cell death




What is p537

Modelling p53 cell dynamics ( L. Dimitrio

The Madel

MUCLEUS
In 1979 a protein of melecular mass of 53 kDa was solated. |t was

named p53.
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U higuitinatian—Dewuh

553 g, A[p53]
"‘-*""'_.Z,_-'lﬁ

der & [p53 ]
At first biclogists believed that p53 wes an oncogene, e, zn 553,
abnormal gene that predisposes cells to develop into cancers
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Dimitrio et al. JTB 2012, further work by Elias et al. BBA Prot 2014, Phys Biol 2014, CSBJ 2014



[II. Therapeutic control and its theoretical optimisation




Optimising cancer therapy by drugs

*Pulsed chemotherapies aiming at synchronising drug injections with cell cycle events
to enhance the effect of drugs on tumours: e.g. optimal control of IL21 injection times

and doses 2 u; & (-t,) using variational methods (Z. Agur,IMBM, Israel)

» Optimising [combined delivery of cytotoxic drugs and] immunotherapy
(L. de Pillis & A. Radunskaya Cancer Res 2005, JTB 2006, Frontiers Oncol 2013)

*Chronotherapy = continuous infusion time regimens taking advantage
of optimal circadian anti-tumour efficacy and healthy tissue tolerability

for each particular drug: has been in use for the last 15 years, with achievements
for colorectal cancer treatment in human males (M.-C. Mormont & F. Lévi, Cancer 2003)

*Optimising combined delivery of cytotoxic and antiangiogenic drugs
(U. Ledzewicz et al. MBE 2011)

*Overcoming drug resistance +++: optimal control strategies to overcome the
development of drug resistant cell populations, using different drugs
(M. Kimmel & A. Swierniak, Springer LN Math 1872, 2006, Lorz et al. 2013, 2014, Trélat et al., underway)




Choosing the constraint to be represented may determine
the model of proliferation used to optimise drug delivery,
aiming at avoiding the two main pitfalls of pharmacotherapy:

« Toxicity issues. Controlling toxic side effects to preserve healthy cell populations
leads to representing proliferating cell populations by ordinary differential equations,
or by age-structured models: physiologically structured partial differential equations

* Drug resistance issues. Controlling emergence of drug-induced drug-resistant cell
subpopulations in tumour tissues leads to using phenotypic trait-structured models of
proliferation: physiologically structured evolutionary integro-differential equations




1. Minimising unwanted toxic side effects on healthy cells




Search for a difference between healthy and cancer cell populations:
possible role of circadian rhythms?

Mammalian physiology at the macroscopic level: control by
circadian rhythms of the cell division cycle at checkpoints

Example of circadian rhythm in normal Human oral mucosa: tissue concentrations
in Cyclin E (control of G,/S transition) and Cyclin B (control of G,/M transition)
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Nuclear staining for Cyclin-E and Cyclin-B1. Percentages of mean = S.E.M. in oral mucosa

samples from 6 male volunteers. Cosinor fitting, p <0.001 and p = 0.016, respectively.
(from Bjarnason et al. Am J Pathol 1999)
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Circadian chronobiology: the circadian system
Central coordination

A system of molecular clocks

that gives a 24 h rhythm to CNS, hormones,
all cells in our organism peptides, mediators Pineal gland

PVN
' ‘ Melatonin

ary units

Proliferation

Rest-activity cycle Peripheral oscillators
Levi, Lancet Oncol 2001 ; Mormont & Levi, Cancer 2003




Chronotherapeutic principles, according to F. Levi

Experimental settings for laboratory rodents

R-Roscovitine

. Iphosphamide
* Tolerance for anticancer drugs: PROP o
Epirubicin

variation > 50% as a function of / Daunorubicin
. . .. Actinomycin-D
circadian timing Mitomycin-C
(:)"Stenlustine . _,- ) 5_Fluoroul'acil
. Interleukin-2 - )
e Determinants: TNF

rhythms in metabolism,
Vinblastine

proliferation, apoptosis, repair Floxaridine
Methotrexate

Vinorelbine

» Antitumour activity:

best near the time of best tolerance Cisplatin
Oxaliplatin

« Combination of cytotoxic drugs Carboplatin N <3 Arabinosylcytosine
yt 8 P 4 Doxorubicin ip
most effective following the deliver Mitoxantrone Melphalan
oposide

Peptichemio o
Gemcitabine Pirarubicin

near its time of best tolerance Doxorubicin iv * Xorans
Vincristine Cyclophosphamide Trinotecan

~ Docetaxel

(M.-C. Mormont & F. Lévi, Cancer 2003




Simple pharmacokinetics-pharmacodynamics (PK-PD)
of a cancer drug acting on cell populations: 6 state variables

oxaliplatin infusion flow

Healthy cells (jejunal picosa) Tumour cells

~{a+ f(C,0}Z - BA+9

s N
vm; ! ( { ‘E‘ \ |

(tumour /gro’\{lth=G0mpertz model)

7

(« chrono-PD ») -~ ’

HCH=EC/(Cs, +C). {1+cos 201(t- o(D,)=H.D"/(Ds,"'+D").{1+cos 201 (-
/T T)/T}
Aim: balancing IV delivered drug anti-tumour efficacy by healthy tissue toxicity

Main work hypothesis; ] = ] S—i—]Z (JC, Pathol-Biol 2003; Adv Drug Deliv Rev 2007)




Optimal control, step 1: deriving a constraint
function from the enterocyte population model

(1)
LY

—puC + P
—{a+ f(C,1)}Z — BA+~
4 — Z(3

Minimal toxicity constraint, for 0<t,<1 (e.g. T, =60%):

min A(t,i) > TaAe, i € L*([to,t¢]), or:
telto,ty]
Fa(i) =74 — min A(t,7)/A. <0

teto,tr]

Other possible constraints: feﬂ[}ai{ ]’f'(t) < lmaz ;
g L0 f




Optimal control, step 2: deriving an objective
function from the tumoral cell population model

Gp(i) = min B(t,1)

telto,tr]

max B(t,1)
te(to,ts]




Optimal control problem (eradication): defining a Lagrangian:
L(1,0) = Gp(i) + 0F4(2), where
ty

O S ( S ?-"Tnflﬂ’,‘! ( ~ LZ([y‘O, ff])* / z(f) i AUC'?TM-HJ ? aﬂd 9 Z O

J e

min Gpg(1) = min max L(1,0)
Fa(1)<0 = LQ([tU,tf]) 0>0

+ other constraints

If G and F, were convex, then one should have:

min max L£(¢,0) = maxmin £(z, 0)
i >0 6>0 i

...and the minimum would be obtained at a saddle-point
of the Lagrangian, reachable by an Uzawa-like algorithm




Investigating the minima of the objective
function: a continuous problem

...but Gy and F, need not be convex functions of infusion flow i!!

Yet it may be proved using a compacity argument that
the minimum of Gg under the constraint F,<0 actually exists:

F, and Gy are weakly continuous functions of i, from L?([ty,t]) to H?([t,,t¢]) since
i->A(t,i) and i->B(t,i) are continuous by integration of the initial system:

| i(T) . hence also are

P(t)=P (t{'::)ff-’-_’\t —+ / ~O(7)e” OW?8 C.D,AB as
B - J it V o functions of i

and the constraint set {i, 0 <i <i, ., F\(i) <0} is weakly compact in L?([t,,t])

max>




Investigating the minima of the objective
function: a differentiable problem

Moreover, A and B are C ? as functions of time ¢ (by integration of the initial system)

The minimum of A being attained at £,(i), 1.e., F5(i) = T5-A(Z,, i)/A,, 1t can be proved

assuming that ?A(t,(i),i) / 9*> 0 and using the implicit function theorem that ¢, is a
differentiable function of i

In the same way, t5, defined by Gg(i)=max, B(i,1)=B(i,;3(7)), is, provided that 0*B(t(i),i)
/ 02 < 0, a differentiable function of i

Hence, the infusion flow optimatisation problem is liable to differentiable optimisation

techniques, and though the problem is not convex, so that searching for saddle points of
the Lagrangian will only yield sufficient conditions,

We nevertheless can define a heuristics to obtain minima of the objective function Gy

submitted to the constraint F,<0, based on a Uzawa-like algorithm with a nonlinear
conjugate gradient




Optimal control: results of the tumour stabilisation strategy
using this simple one-drug PK-PD model

(and investigating more than Uzawa’s algorithm fixed points, by storing best profiles)

Dirug imfusian flow

!

¥ 10° Tumaral call populatian

Villi populatian

—
o

mactian [ugh)

B = numbar of call
A —numbar of calls

0 l l l
01234567 8910 TMAH M5 6N EHBE]
Time {days)

. : - 0
012345678010 H2AAHNS6 78 PET 01234567890 NAA45ETEHEE]
Tima (days) Time {days)

Objective: minimising the maximum

Constraint : preserving the jejunal mucosa
of the tumour cell population

according to the patient’s state of health

Solution : optimal infusion flow i(t) adaptable to the patient’s state of health

(according to a tunable parameter | ,. here preserving [],=50% of enterocytes)

(C. Basdevant, JC, F. Levi, M2AN 2005, JC Adv Drug Deliv Rev 2007)




Physiologically and pharmacologically controlled model:
age-structured PDE model for the cell division cycle

(here only linear models are considered, but nonlinear models with feedback are possible)

Transition Transition
ko
———

M Phase
1.5 hours

S Phase

51 Phase ~ 10 hours

n;:=cell population density in
phase i ; d.:=death rate;
v, :=progression speed,

In each phase i, a McKendrick linear model:

) )
,%fm(t, a) + E;—([’z,rq;(a)n@- (t,a)] + di(t,a)ni(t,a) + Ki—iv1(t,a)ni(t,a) =0
ot 1

K, , ., =transition rate
(with a factor 2for i=1)

v;(0)n;(t,a=0) = / K 1it,a)n;_1(t,a) do

Ja>0 d;, K. ..., constant or periodic
B w r t timet (I<<I, [+1=1)

Kiit1(t.a) = 9(t)1la>a,(a)

Death rates d.: (“loss”), “speeds” v; and phase transitions K. ., ; are model targets
for physiological (e.g., circadian) or therapeutic (drug) control [](?)
[1[7(2): e.g., clock-controlled CDK1 or intracellular output of drug infusion flow]

(Presented in: JC, B. Laroche, S. Mischler, B. Perthame, RR INRIA #4892, 2003; recently: JC, S. Gaubert, T. Lepoutre MMNP, MCM 2009, 2011)




General case (N phases): by the Krein-Rutman theorem (infinite-dimensional form
of the Perron-Frobenius theorem), there exists a nonnegative first eigenvalue A and,
if j{f@ (t,a) = e M, (t, a) A bounded solutions to the problem (here v,(a)=1) :

with a real number p such that the asymptotics of N i(t,a) = e, (ND)] follow:

N;(t,a) — p. Ni(t,a)‘cpi(t,a)da—ir@ as t— oo

(the weights ¢, being solutions to the dual problem); this can be proved by using
an entropy principle (GRE). Moreover, if the control (d; or X, ,,,) 1s constant, or
if 1t 1s periodic, so are the N, , with the same period in the periodic case.

Ph. Michel, S. Mischler, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2004, J Math Pures Appl 2005
Ph. Michel, B. Perthame, C. R. Acad. Sci. Paris Ser. I (Math.) 2006; Proc. ECMTB Dresden 2005, Birkhduser 2007




Main output of this age-structured PDE model

A: a first eigenvalue governing the cell population behaviour
In summary: proof of the existence of a unique growth exponent A, the same for all

phases i, such that the | (O N(AD] 2rc bounded, and asymptotically
periodic if the control is periodic

Example of control (periodic control case): 2 phases, control on G,/M transition by
24-h-periodic CDK1-Cyclin B (from A. Goldbeter’s minimal mitotic oscillator model)

MtOt(t) —= f_’,_/\t / TEZ(tq (})d(}q Jé' = 1'.‘ 2

Ja=0

“Surfing on the
exponential growth curve”

(= the same as adding

T A_J an artificial death term

- _ , +\ to the d))
=CDK1 All cells in G1-S-G2 (phase i=1)




Experimental measurements to identify transition kernels X .,

(and simultaneously experimental evaluation of the first eigenvalue \)

In the simplest model with =0 (one phase with division) and assuming K=K(x)
(instead of indicator functions experimentally more realistic transitions):

(gt ) + %n(f z) + K(z)n(t, )

Ot

n(t,0) = ZL;}U K(x)n(t,z)dx.

%

Whence (by integration
along characteristic lines):




Circadian rhythms and physiological control of the cell cycle:

Known connections between the cell cycle and circadian clocks

At the molecular level (Bmall and Per2 are
constituents of the circadian clock):

Bmall controls Weel and Cyclin B-Cdkl

Per2 controls p21 and Cyclin E- Cdk2

Weel and p21 act in antiphase

The circadian clock (Bmall, Per2) might thus
be a synchroniser in control of cell populations
between G,/S and G,/M transitions

So, what if we add circadian clock control??
1.e., what if we put K(z,x) = «(x). w(t)
with k¥ = FUCClI-identified and y = a cosine?

[cosine: in the absence of a better identified clock thus far!

Cell Cycle Clock

Rav-Erba
Circadian Clock

from You et al. 2005, Breast Canc. Res. Treat. 2005)




Adding theoretical circadian control on phase transitions

. G, to SG,M gating

ate open

1 Gate closed
U1 (t) = cos (Zn(f lJ)/lZ)ﬂ[m 18](t)+€= 'f.—-’"f’*z(t) = €08 ( “(f 3)/12) (t)+5

(a 12 h delay between the two cosines was determined as the one that maximised the L)
Resulting evolution of the clock-controlled cell population: A=0.024 h-! (<0.0039 h-!)

Here we put

K(t.x) = k(x).y(t)
with k¥ = FUCCI-identified
and y = cosine-like functiorjgl

[cosine: in the absence of a
better identified clock thus far|
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Without time control

Phases: asynchronous cell growth
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With time control (1)

Ri—it1 (a)
N, e’

Kf—>f—|—1 (a: t) —

from exp. data

W; ( t)

N

circ. clock ——

(1) Healthy
cell population
(=sharp gating by
circadian clock)

Steep synchronisation within the cell cycle
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With time control (2) t “Cancer gating” ==

K;_;;+1 (a, f) = Ki—it+1 (a) X -'a;'fﬁ,-(t)
I_ﬂ V
from exp. data circ. clock ——
(2) cancer cell
population

tima (h}

Main work hypothesis e | 14, ouing by
(difference from healthy cells) | circadian clock)

Loose synchronisation within the cell cycle

T
MMW\\&\M\

1 1 1
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Theoretical chronotherapeutic optimisation
of a first eigenvalue (for cancer growth) under the constraint
of preserving another first eigenvalue (healthy tissue growth)

1.e., what if now we add a drug control, setting K(¢,x) = x(x). w(t).[1-g()]?

- McKendrick’s model of cell population proliferation

- Control of proliferation by blocking X; ;. ; using theoretic periodic drug delivery:

K(tx)=[1-g(t)].w(1).x(x) where: g(t) is a periodic external control (chronotherapy)
w(t) is a circadian clock control on the cell cycle
k(x) is an [only] age-dependent transition rate

- Objective function to be minimised: A, 1st eigenvalue of cancer cell population

- Constraint function to be preserved: A, [eAl, 1st eigenvalue of healthy cell population
- Design of an augmented Lagrangian by combining A, and A,—A (with penalty)

- Arrow-Hurwitz (or Uzawa) algorithm to track saddle points of the Lagrangian

- ...thus obtaining only suboptimality (necessary to obtain critical points) conditions




Results: circadian + 24h-periodic drug control on transitions
Kx,t) = k(x).y(t).g(t): « FUCCl-identified, v clock, g optimal drug effect on S-phase

healthy case: %

sharp \/ gating | |

0.0

.timE {h)

Figure 9: Modelled circadian control for transition G to S/G2/M (dashdotted line) and transition
S/Ga/M to G4. The natural control for §/G5 /M to 4 transition is in solid line, the drug induced
control is in dashed line.
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=1 ', i N

05 IIl | M/G] i \\G']/S
cancer case: = | |
0.5 |
lazy / gating ..

014

0.0 -5
0

.timE {h

Figure 10: Modelled answer of cancerous cells to circadian control for transition Gy to S/Go /M
(dash-dotted line) and transition S/G5/M to G;. The answer to natural control for S/G5/M to
(71 transition is in solid line, the drug-induced control is in dashed line.

green and red gating: y
(circadian clock control
without drug)

blue: [1-g].w
(drug + circadian control)
g here numerical solution

to the optimisation problem

FE Billy et al. Math Comp Simul 2012,
Math Biosci Eng 2012, DCDS-B 2012,
Springer book chapters 2013, 2014




Evolution of the two populations: cancer (blue), healthy (green

2500

1an

Circadian control,
no drug infusion

populat

AT AT B
time (days)

Figure 11: Evolution of the population of cancer (blue, beneath) and healthy (green, above) cells
without drug infusion during 12 days. We can see that the populations have different exponential
growth raies (Asgneer 0.026 and Apeqrny = 0.024) In the beginming, there wem as many
cancer cells as healthy cells, in the end they represent a much larger part of the total population.

2500

Circadian control,
added drug infusion

I
—

4 G A 10 12
time (days)

Figure 12: Evolution of the population of cancer (blue, beneath) and healthy (green, above) cells

with the drug infusion, stanting at time 0, given by the algorithm. Healthy cells keep multiplying ;
{Aneareny = 0.022) while the cancer cell population is weakened (Ampeer = 0.019). (F Bllly et al‘ 2013’ 2014)




Numerical solution to the optimal infusion problem

(Uzawa) and effect on eigenvalues, healthy and cancer

Infusion scheme g() ' In favour of this approach:
' - characterises long-term
trends with one number,
- easily accessible
target for control
N amma ! - fits to physiologically
o structured growth models

Injection

Figure 11: Locally optimal drug injection strategy found by the optimisation algorithm.

Target eigenvalues:
Cancer (blue)

Healthy (green) - R Its drawbacks:
: ” - deals with asymptotics,
not with transients

- assumes a linear model
R Z for proliferation

Figure 12: Daily mean growth rates for cancerous (solid line) and healthy cells (dashed line) when - dSSumes peI'lOdlC ContrOI

starting drug injections at time 0. After a 10 day transitional phase, the biological system stabilises by drugs (but the period
towards the expected asymptotic growth rate

dally mean growt|
o :

can be infinitely long)




Introducing pharmacological effects on death rates with repair
(rather than on phase transitions): extension of the model

. irzl(r.x]—ki nl(r..r]+{K1 (r..v)+L1[!]—|—d1}n1(r.x] —er(t.x)=0,

ot ' dx

d
Erl (t,x)+ {dm] + &1 }r] (t,x)=Li(t)m(t,x)=0,

ny(t,x =0)=2n3(xp,1) ,n1(0,x) =vi(x),r(0,x) =p1(x) .

with L{(t) = C] and Ky (¢,x) = k1(x)yn(t,x) ,
d d

na(t,x) + = na(t +{K2 tx)+La(t)+ dg} na(t,x) —&ra(t,x) =0 |

at dx

J
5.“2 t.x —l—{d ) —1—87}}’7 t,x)—La(t)na(t,x) =0,

f Ki(t.&)n(E,1) dE ,np(0.x) = va(x) ,r2(0.x) = pa(x)

0 — r(f +Cf\0_5'(r
FO S‘O

and K> (r,x) = o (x)ya(r)

Ka(t.&)na(t,&) dE, ,n3(0.x) = v3(x) .
£>0

(JC, O. Fercoq, book chapter to appear, 2014)

+ PK-PD added models: cytotoxic (death rates) effects




Pharmacokinetics-pharmacodynamics (PK-PD) of oxaliplatin
cytotoxic action exerted on DNA 1n all phases except M phase)

& _ —[§+cz+AK]R+i@

Input i =oxaliplatin infusion

= —ARK + g (Ko — K)

Plasma proteins

8
[}
- N
/ H/H,’H/H/
I
T T
200 400
lasma oxaliplatin
plasma proteins

S

CG*
= —Vgsr K(%ST e — kpnaCF +ER

= —kpNaCF + Up )

CG?
= -V +Uc(Gyo—G
GSTKE;ST+G2 #G( 0 )

R
dr
dK
dr
dc
dr
dF
dr
dG
dt

(
\

(JC, O. Fercoq, Springer book chapter to appear, 2014)




PK-PD of SFU [with drug resistance] + Leucovorin

(action exerted on thymidylate synthase only in the S-G, phase)

G 8 . _p  BF F__, i T-.T T T W : :
dt ot b+ P PPPmppp+ P V] P z a E W l J o
wm O _a P AF ook .B L . A A i | \'.
dt Eb+P e+ F i @ "‘ - r II X(l) (3) II
(3} “!Q g o sz + J“}q— Tnput | = LV infusion flow ‘ Q I| P Q \ .'I
dt I!’ ‘ j_?l..._. :.'?- = & Al = I'.\ B ______‘_/'
) “;_L = ;EQ—k.-;L— k4BL ‘ ------------- i = 5-FU infusion flow| 3 L e VR i SO PR . WO | [drug influx]
dt £ ' & = = {2) (4)
i3y dN wF" r h\f . . . I 1T g ! #
— = - - — N A ¥ o G o R v VR s, SR arug ¢ IX
dt A" 4 Fn pdN i @ B i = [ o H (5 6)
dA : |'1 SR T s A \ AN .
2 i - At o S ot - “ @ K & # /(8/
(7 ﬁ i nlal i e ' S’ .
5 = kiFS +k_1 B+ 9)’5 f @ B ] = S-_...B

®  dB [drug ih:‘ff.];’z’{'f

22 = Ky FS—k_1B —kyBL | 5= Free Thymidylate Symhase (T5) | yk e T Y S
it 1 1 - 4BL | n = = = .
- = kyBL — vpT +— | (stable terary FdUMP-MTHF-TS comples wdl e —
P P!fmm: [3-FU]; F= Intracellular [FdUMP];
2 (t — pppp) Q= Plasma [LV]; L =Intracellular [MTHF];
where Ippp =lppp BASE { 1+ &cos 2: } N= 3-FU-triggered Nuclear Factor; 4= ABC

Transporter activity, NuclearFactor-induced;
St prs) 8= Free [TS] (not FAUMP-bound);
and Sp= So_pase { 1+ dcos 7*’} B =[FdUMP-TS] reversible binary complex;

4 T'={FdUMP-TS-MTHF] stable ternary complex

(F. Levi, A. Okyar, S. Dulong, JC, Annu Rev Pharm Toxicol 2010)




Solution to the chronotherapeutic combined drug delivery optimisation problem

Oxaliplatin
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Fig. 6 Locally optimal infusion strategy with a combination of leucovorin (dash-dotted line), 5-
FU (dotted line) and oxaliplatin (solid line). These infusions are repeated every day in order to
minimise the growth rate of the cancer cell population while maintaining the growth rate of the
healthy cell population above the toxicity threshold of 0.021.

(JC, O. Fercoq, Springer book chapter to appear, 2014)




Effects of this optimised periodic drug delivery regimen on growth rates

Target eigenvalues:
Cancer (blue)
Healthy (green)
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time (days)

Fig. 11 Daily mean growth rates for cancer (solid line) and healthy cells (dashed line) when start-
ing drug infusions at time (. After a 10-day transitional phase, the biological system stabilises
towards the expected asymptotic growth rate.

(JC, O. Fercoq, Springer book chapter to appear, 2014)




Evolution of the two cell populations, without, then with cytotoxic drugs
(Here, drugs acting on death rates and not on transition rates )
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Fig. 7 Evolution of the population of cancer (blue, above) and healthy (green, beneath) cells with- Fig. 8 Evolution of the population of cancer (blue, above) and healthy (green, beneath) cells

out drug infusion during 12 days. We can see that the populations have different exponential growth with the drug infusion, starting at time 0, given by the algorithm. Healthy cells keep multiply-
rates (Acancer = 0.0265 and Apgqppy = 0.0234). Cancer cells proliferate faster than healthy cells. ing (Aheateny = 0.021) while the cancer cell population is weakened (Aeancer = 0.0229).

A result not as good as 1n the previous case, when drugs were applied on
transition rates... hence the suggestion of a cytotoxic+cytostatic treatment
(e.g., SFU+oxaliplatint+cetuximab): a story to be continued

(JC, O. Fercoq, Springer book chapter to appear, 2014)




Optional (not done, to be added)

+Modelling effects of cytostatics (CDKIs, TKIs, ...) acting
on cell cycle phase transition rates [and boundary conditions]

0 0
,(—n,i(t, a) + ‘)l—[zv,;(u)n,?(t a)] +di(t, a)ni(t, a) + Ki—ip1(t, a)ni(t,a) =0
Ot da

0Ot = 0) = / Kio1i(t,a) ni_y (t,0) da
>0

>q,(a)
Control on inputs from G, phase may be represented by a multiplicative factor in the

first (G ;) boundary condition (which is the same as modifying the first transition rate);
for instance, following Pierre Gabriel and Glenn Webb (JTB 2012):

(d d
g”l(fv\’)+a—”l(f-‘f) +1(r..x)+ n(t2) =0 .

\ ma(t.x (1—f / Ki2(t,8) ni(1,8) c
( 12(0,x) = n20(x),

Figure

Ki_it1(t,a) = ¢(t)1,

New ‘death’ term
(=death + escape

towards G,)

f: target of
cytostatic drug,

: 5) L
sending cells to  with the adjunction of a quiescent phase G represented by New mitosis term
quiescence

K 1S —
(measurable) { 7 / 1-2(1,8) n1(2.8) dS —vO(1) | ©)
Q(0) =

which is thus fed only by cells escaping from G instead of processing into S phase.



[Therapeutic control and its theoretical optimisation/

2. Overcoming resistance in cancer cell populations

Cancer as an evolutionary problem

“Nothing in biology makes sense except in the light of evolution”
Theodosius Dobzhansky, 1973




Tackling this other main 1ssue in cancer pharmacotherapeutics:

Emergence of drug resistance in cancer cell populations
(other models of cell population dynamics, with thus far no PK-PD)

Instead of controlling drug resistance at the individual cell level (ABC transporters),
representing the possible emergence of resistant cell clones due to mutations
occurring at mitoses in a cell Darwinism evolutionary perspective.

Assumption: Cancer cell populations, under the pressure of a drug-enriched
environment, may develop costly (epi-)mutations evolving into resistant cell clones,
less fit in a drug-free environment, but better survivors in a hostile environment.

A therapeutic objective, under these circumstances, may be not to eradicate all
cancer cells (in fact only all drug-sensitive cells), but instead to let some of them
live so as to limit the growth of an emergent resistant cell clone ( ‘adaptive therapy’).




A soaring theme on the international scene: Evolution and cancer

L

- q
‘

Carlo Maley Robert Gatenby, MD*

~

|
-y
A1
*

- First international conference “Evolution
and cancer” SF, June 201

- Second 1n SF, June 2013

- Workshop “Ecological and evolutionist
perspectives on cancer’’, Roscoff, Nov 2013

* RG advocates ‘adaptive therapy’, cf. Gatenby Nature 2009, Gatenby et al. Cancer Research 2009




Gatenby s new paradigm: rational management of cancer burden by ‘adaptive therapy’

OPINION HATURE Vol A59[28 May 2005

ESSAY

A change of strategy in the war on cancer

Patients and politicians anxiously await and increasingly demand a ‘cure’ for cancer. But trying to contral the
disease may prove a better plan than striving to cure it, says Robert A. Gatenby.

See also review on evolution and cancer by Aktipis et al. PLoS One, Nov. 2011



Evolution of cell populations toward resistance under anticance
drug pressure: ecological-like integro-differential models

- Exposure to anticancer drugs is an environmental factor to which cell populations
adapt or not, according to their evolution abilities

- Due to genomic instabilities (mutated p53, error-prone DNA polymerases),
resulting in higher genomic variability at division, cancer cell populations have
better capacities than healthy cell populations to adapt to a changing environment

- Such variability 1s multiple and cannot be reduced to only pointwise mutations

- Inspired by ecological models, one can represent it by a continuous trait x governing
an evolving phenotype expressed as resistance to a drug, or to multiple drugs




First point of view: ‘small mutations only’, one cytotoxic drug c(t), evolutionary trait x
a) Healthy cells

growth withAhDrnecrstasis

natural apoptosis effect of drug

8 10y ) e sy
—ny(z,t) = r(z) — d(x) — e(t)py(z) [ng(x,t)
ot | (14 p(1)” |
O
-+ B /r(y)ﬂfag(y,iﬁ)ﬂff(y:t)dy:
(1 + ’O(t)) 'E birth with mutation J

la population totale est définie comme

p(H) = pr(D+rc(®),  pu()= [ _ nu(w,0ds, pc() = [_ no(a,t)de.

Jr=0 r=0

e [ >0 to impose healthy tissue homeostasis,
e c(t) denotes the dose of chemotherapy. Here we assume it has

only an effect on increasing apoptosis,

A. Lorz et al. M2AN 2013




Mathematical models: integro-differential equations

First point of view: ‘small mutations only’, one cytotoxic drug c(t), evolutionary trait x
b) Cancer cells
Point of view ‘mutations only’

e r = eXpression of a single resistance phenotype
e ny(x,t), nc(x,t) density of cell populations de cellules (healthy or tumour)

o
ot

no(z,t) = [(1 _00) () — d(z) — e(®)pc() | nolz, t)

+00 [ (W) Mooy, 2)nc(y, Hdy,

e r(x) = basic reproduction rate and d(x) = basic death rate. They depend on
the gene expression level = ; in order to incorporate a cost to produce the
resistance gene, we assume

r(0) > d(0) > 0O, r'(-) <0, r(+oc) = 0, d(-) >0,

e 0 <0y~ < 1 denotes the proportion of divisions with mutations, we can assume

it to be higher for cancer cells
e upc(x) represents the phenotypical dependent response to the drug; drugs are
designed to target cancer cells more than healthy cells.

A. Lorz et al. M2AN 2013




Small mutations only: monomorphism= evolution towards a single phenotype

On such models, one observes, starting from a middle phenotype :
1) Healthy case : evolution towards a sensitive phenotype

(illustrations with 9,=0, i.e., no mutations and u H(x) =0, i.e., no drug-induced reszstance)

&0

Evolution in time t and trait x | | Asymptotlc pdf in trait x

[iR=] 3

50y
0BF 4 |1

07 E |

Xy, fittest

Theorem: evolution towards monomorphig% (proved in A. Lorz et al., M2AN 2013




Small mutations only: monomorphism= evolution towards a single phenotype

oo~ Evolution in time t and trait x 1
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2) The cancer case : evolution towards a resistant phenotype

(illustrations with 9-=0, i.e., no mutations and . (x)<0, i.e., drug-induced resistance)
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Theorem: evolution towards monomorphism (proved in A. Lorz et al., M2AN 2013



Second point of view : ‘no mutations, exchanges with the environment
cytotoxic and cytostatic drugs, 2d resistance trait (x [cytotoxic],y [cytostatic])

( growth with cytostatic therapies and death effect of cytotoxic therapies

Snp(t,z,y) = ra(e,y;cp) — du(z, v) g () ng(t,x,y) —  hg(e,y;cx)npg(t,z,y)

growth with cytostatic therapies and death effect of cytotoxic therapies

gmo(t,z,y) = [ro(z,yicp) — do(z.y)lo(t) ne(t,z,y) —  ho(z,y;cx)no(t,z,y)
g
environment evolution effect of cells on the environment
d /"_J\_\ ”~ % ~\
alm(t) + T1H(t) = 7lagcpc(t) +annpm(t)]
environment evolution effect of cells on the environment
d /_A_\ - 7 ~
gz lc(t) + Tlc(t) = Tlaccpc(t) +acuapu(t)]
where:

1 1 1 1
pH(t):/ / ng(t, z,y)dzdy, pc(i):/ / ne(t, x,y)drdy.
0o JoO 0o JoO

With particular reference to nc(t, z, y), simulations have been developed assuming the follow-

ing definitions to hold

(1 CECCP) 2 2 2_2 4,4
+(1—= +(1— z° —cp(l — =z ,

rc(x,y;cp) == 4 {1 + 2

1
dC(mz y) = 5 V(J": y)! hC(xﬂ y;CK) = CK(]- - y)4$4:

under distinct scenarios defined by different values of parameters ¢, ¢p and a. In particular,

we considered cxk = cp=0and ac=1or cg =2, cp = % and oo = 2.




No mutations: sensitive (‘healthy’) cells. Starting from a common medium phenotype
(cytotoxic res.=.5, cytostatic res.= .5), evolution towards the non-resistant (0,0) phenotype:
Monomorphism of asymptotic cell populations

nz(t,x,y) at t=0

nz(t,x,y) at t=100

nz(t,x,y) at t=70

nz(t,x,y) at t=200

Model, simulations and figures by Tommaso Lorenzi (work underway)




No mutations: resistant (‘cancer’) cells. Starting from the same common medium
phenotype (.5,.5), evolution towards 2 resistant phenotypes, (1,0) and (0,1):
Dimorphism (which is in fact a ‘double monomorphism’ of asymptotic cell populations)

nz(t,x,y) at t=0

nz(t,x,y) at t=75

nz(t,x,y) at t=70

nz(t,x,y) at t=100

Model, simulations and figures by Tommaso Lorenzi (work underway)




Mutations again, cytotoxic and cytostatic drugs,
with a 1d drug resistance trait x for both drugs

Rar(Tia(0): c1(8), o). a)nan(o.0) + i [ ()M Gyt )y

Oc

Re(Io(t), e1(t), ca(t), x)ne(x, t) + 1 + acea(t)

/ ro(y) M (y, 2)no(t, y)dy,

_ rg(x)(1—0y)
1+ age(t)
~ro(z)(1—0y)
14 ace(t)

—dg ()1 (t) — pu(x)er(t),

—do(x)Ic(t) — po(x)er(t).

(A. Lorz et al., M2AN 2013)




Pedestrian’s optimisation: distinct drug effects on the two cell populations
Cancer cells Healthy cells
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Figure 6.6: (Cytotoxic and cytostatic drugs) Dynamics of ng(z,t) for ¢y = ¢ = 0 (topleft), o = Figure 6.7 [C}'I:c:'toxicr and cytostatic drugs) Dynamics of n(z. 1) for ¢ =!og = 0 (top-left), ¢y =
2 =1 (top-night), ¢y = e = 1.3 (bottom-left) and c; = cy = 2 (bottom-right). As long as parameters W ;) - 1 (top-right), ¢y = ¢y = L5 (bottomleft) and ¢; = ¢y = 2 (bottom-right). As long as parameters
¢t and ¢y merease, the maximum value of ne(t = 2000, z) becomes smaller so that, under the choice ¢ and ¢ increase, the maximum value of g (¢ = 2000, z) becomes smaller but about one half of the
¢ = ¢y =, function ng{z, ) tends to zero across time. healthy cells 15 still alive at the end of computations,

[illustrations with 9,=0=0.1, 1ty (x)<0, i (x)<0, () =2.115(x)] A Lorz et al. M2AN 2013




And, time permitting, more recent developments about drug resistance in cancer...




