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Drug resistance in cancer cell populations as
evolutionary phenomenon

• “Nothing in biology makes sense except in the light of evolution" (Thedosius
Dobzhansky, The American Biology Teacher 35 (3): 125-129, 1973)

• Cancer cell populations, under the pressure of anticancer drug stress, evolve as
any population of living individuals to ensure their survival as a whole

• But just what is evolution, and what is mere adaptation?
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A few definitions: evolution or adaptation of cell populations

[Naive and utilitary definitions]

• Evolution: constitution of a new species (cell population of a new type) by
genetic mutations (including single nucleotide substitutions, deletions,
translocations...), i.e. irreversible modifications of the genome ‘written in the
marble of the genetic code’, resulting in a new phenotype

• Adaptation: modification of a cell type also resulting in a new phenotype in a
cell population, but reversible, i.e., amenable to complete restitution of the
initial phenotype, with preservation of the intact genome (= of the initial
sequence of base pairs)
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Mutations, epimutations in cell populations

[Again, naive and utilitary definitions]

• [Genetic] mutation: irreversible modification of the genome, with changes in
the sequence of base pairs in the DNA (cf. Evolution)

• Epigenetic modification = ‘epimutation’: modification of the phenotype due to
mechanisms that do not affect the genetic code, but are due to silencing of
genes (that may be activators or inhibitors of the expression of other genes) by
DNA methylation and histone methylation or acetylation
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Drug resistance:
a phenomenon common to various therapeutic situations

• In therapeutic situations where an external pathogenic agent is proliferating at
the expense of the resources of an organism: antibiotherapy, virology,
parasitology, target populations are able to develop drug resistance mechanisms
(e.g., expression of β-lactamase in bacteria submitted to amoxicillin).

• In cancer, there is no external pathogenic agent (even though one may have
favoured the disease) and the target cell populations share much of their
genome with the host healthy cell population, making overexpression of natural
defence phenomena easy (e.g., ABC transporters in cancer cells).

• Drug resistance may account for unexpected failures in targeted therapies.
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Drug resistance: how does it work?

• What was formerly assumed: 0-1 expression of genes (e.g., functional or
inefficient p53 due to a mutation)

• Varying expressivity of genes in a cell population, or else degree of effectiveness
of mutations (e.g., mutated EGFR)

• Varying activity of ATP transporters, main effectors of drug efflux out of cells

• Darwinian effects of drug pressure selecting subpopulations in a heterogeneously
constituted (by stochastic variations: bet hedging?) cell population

• Transient adaptation to hostile environments by subclones in the cell population?
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Drug resistance: evolutionary bottlenecks in cancer

• Furthermore, animal genome (of the host to cancer) is rich and amenable to
adaptation scenarios that may recapitulate developmental scenarios abandoned
in the process of evolution from protozoa to metazoa (Davies & Lineweaver
2011).

• So that drug therapy may be followed, after initial success, by relapse due to
selection of a resistant clone (Ding et al. 2012).
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Molecular mechanisms at the single cell level
vs. Phenotypes at the cell population level

• Overexpression of ABC transporters, of drug processing enzymes, decrease of
drug cellular influx, etc. are relevant to describe resistance mechanisms at the
single cell level.

• At the cell population level, representing drug resistance by a continuous
variable x standing for a resistance phenotype (in evolutionary game theory: a
strategy) is adapted to describe evolution from sensitivity (x = 0) towards
resistance (x = 1).

• Hypothesised biological basis for this structure variable representing relevant
variability inside a population of cells: degree of methylation silencing normally
present tumour suppressor genes, that arrest the cell cycle and send a cell
towards programmed death

• Is it due to sheer Darwinian selection of the fittest after cell division or, at least
partially, due to adaptation of individual cells? Not clear.
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Drug resistance: a genetic or epigenetic phenomenon?

In the same way as one can ask to what extent evolution towards malignancy in
premalignant cell populations is genetic (irreversible, due to mutations) or epigenetic
(reversible, due to epimutations), we can ask whether, in cancer cell populations,
drug-induced evolution towards drug resistance is genetic or epigenetic.

• hence, is it irreversible or reversible?

• and if it is reversible:

• can we design combined drug strategies to
overcome it?
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Can it be assessed by biological experiments? (1)

First hint: cell heterogeneity in Luria and Delbrück’s experiment (1943)

Bacterial populations proliferating freely, then
submitted to a phage environment: some will show
resistance to the phages

Question: Is resistance induced by the phage
environment (A)? Or was it preexistent in some
subclones, due to random mutations at each
generation, and selection by the phages (B)?

The answer is always (B):
preexistent mutations before selection.
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Can it be assessed by biological experiments? (2)

Yes, it can! Example from Sharma et al., Cell April 2010: Fast and reversible,
chromatin-mediated, acquisition of tolerance to anticancer drugs in a genetically
homogeneous cell population:

• PC9 cells (NSCLC cells) submitted to various drugs (gefitinib, erlotinib...) at
very high doses yielded 0.3% alive cells constituting a resistant clone (Drug
Tolerant Persisters = DTPs), among which 20% were able to proliferate in
maintained high doses of the drug (Drug Tolerant Expanded Persisters =
DTEPs).

• The resistant phenotype was reversed, after drug withdrawal, in 9 doubling
times for DTPs, in 30 doubling times for DTEPs.

• Evidence of necessity to obtain these persisters of the involvement of KDM5A
(histone 3 lysine 4 demethylase, an epigenetic enzyme)

• Possible explanation: likely pre-existing random epimutations, i.e.,
Epigenetic heterogeneity in a population of genetically homogeneous cells

• ... But can it be completely excluded that stress-induced adaptation might have
yielded emergent, non pre-existing DTPs from PC9 cells?
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Can it be assessed by biological experiments? (3)

... Not meaning that all drug resistance should be only epigenetic: this ‘dynamic
phenotypic heterogeneity of non genetic nature’ might be only a first step towards
drug tolerance of a genetic nature if drug pressure is maintained.

• Multidrug tolerance in Sharma’s experiment is without cell efflux (no ABC
transporters)

• Transient clone (DTPs) of cells with stem-cell like characteristics (CD133,
CD24, CD44): called for first-aid rescue?

• During transition from DTPs to DTEPs, stem-cell like markers are lost.

• Note that this is not the usual way (that is more gradual, but is it for this
reason less reversible?) in biology labs to select resistant cell lineages.

• Work underway: evolutionary models, based on integro-differential equations
structured by a 2D phenotype to account for the observations of Sharma et al.
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A metaphoric tale, in the manner of Waddington

• A cell population is differentiating (taking
branch lines), and thriving following an
evolutionary valley; the slope of the valley is
the velocity of evolution.

• Suddenly, a flood occurs, limited to the
hosting valley, drowning the population; the
flood does not withdraw and remains slack
for a long time.

• Some cells are not deadly drowned: those,
stem-like, that were running on the sides of
the valley and had enough adaptability to
jump and reach a parallel, unflooded, valley.

• In this neighbouring valley, conditions are
harsh, but it is still possible to survive, and
even for some of these cells, to proliferate;
from the crest between the two valleys, the
forsaken valley can be watched over: it is still
flooded.

• However, at some point, the flood recedes:
these cells that were not committed in
proliferation in this hostile valley, very
quickly, freely following a hillside path, go
back to the old valley where life is easier.

• Then the other cells, proliferating at high
cost in the hostile valley, change their costly
adapted programs, which takes some time,
but eventually also go back to the old valley.



Biological background Drug resistance Mathematical models Optimisation Pending questions

What could therapeutic implications be?
• Suggested by Sharma et al.: Conventional chemotherapies with epigenetic drugs

to prevent chromatin intervention

• Also suggested: ‘drug holiday’ and re-treatment (now a popular concept among
oncologists)

• More classically, association of drugs with different modes of action, to limit
emergence of multi-drug resistance
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Different viewpoints to represent tumour therapies
• At the molecular level: hitting specific molecular targets in cancer cells by

“targeted therapies”. Presently the most popular point of view among cancer
biologists. Achievements: imatinib (gleevec) in chronic myelogenous leukaemia
(CML), ATRA+anthracylins in acute promyelocytic leukaemia (APL)
Problems: (often very) relative specificity; toxicity to healthy tissues; not taking
into account emergence of resistance.

• At the molecular level: taking into accounts all intracellular molecular pathways
involved in proliferation, cell death and [de-]differentiation: a biocomputer
scientist’s point of view
Problems: scores of reaction networks, hundreds of parameters to estimate, not
taking into account drug resistance

• At the cell population level: choosing functional targets for drugs in a
qualitative population dynamics model with added external control: PDEs or
IDEs (integro-differential equations). “Functional” : i.e., by designing built-in
model targets related to those fates that are considered as relevant for cell and
tissue behaviour in cancer: proliferation, cell death, [de-]differentiation
Advantages: the right level to take into account population level effects (in
particular emergence of resistance) and to design theoretical optimisation
strategies for continuous drug delivery
Problems: attributing to given drugs specific functional effects; macroscopic (cell
cultures, ex-vivo and in-vivo) rather than molecular data (but is it a drawback?)
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PDE model, one cytotoxic drug: equations for cancer cells

• x = level of expression of a drug resistance phenotype (to a given drug)

• nH(x , t), nC (x , t) densities of cell populations (H=healthy, C=tumour)

∂

∂t
nC (x , t) =

[
growth

︷ ︸︸ ︷

(1 − θC ) r(x)−

death
︷︸︸︷

d(x)−

drug effect
︷ ︸︸ ︷

u(t)µC (x)
]

nC (x , t)

+θC

birth with mutation
︷ ︸︸ ︷∫

r(y)MσC
(y , x)nC (y , t)dy

• r(x) = basic reproduction rate, d(x) = basic death rate; we assume

r(0) > d(0) > 0, r ′(·) < 0, r(+∞) = 0, d ′(·) > 0,
• 0 ≤ θH,C < 1 (θC > θH) is the proportion of divisions with mutations,
• µ[H,C ](x) (with µ′

C (·) < 0) represents the phenotype-dependent response to
cytotoxic drug, with concentration u(t), designed to target cancer cells.

• Note: assumptions r(·) > 0, µC (·) > 0, µ′

C (·) < 0 and r ′(·) < 0 (cost of

resistance: the higher is x , the lower is proliferation) represent an evolutionary

double bind on resistant cancer cell populations, i.e., an evolutionary trade-off

between growing (thus getting exposed) and keeping still (thus surviving)
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Continued, one cytotoxic drug: equations for healthy cells

∂

∂t
nH(x , t) =

[

growth with homeostasis
︷ ︸︸ ︷

1 − θH
(
1 + ρ(t)

)β
r(x) −

death
︷︸︸︷

d(x)−

drug effect
︷ ︸︸ ︷

u(t)µH(x)
]

nH(x , t)

+
θH

(
1 + ρ(t)

)β

birth with mutation
︷ ︸︸ ︷∫

r(y)MσH
(y , x)nH(y , t)dy ,

where the total population is defined as

ρ(t) = ρH(t) + ρC (t); ρH(t) =
∫

∞

x=0
nH(x , t)dx ; ρC (t) =

∫
∞

x=0
nC (x , t)dx .

• β > 0 to impose healthy tissue homeostasis,

• u(t) denotes the instantaneous dose (concentration) of chemotherapy. We

assume in this model that its effect is cytotoxic, i.e., on the death term only.
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PDE model with one cytotoxic drug: illustrations (1)

[Sensitive cell population case: illustration of Gause’s exclusion principle]

Theorem: Monomorphic evolution towards drug sensitivity, illustrated here with

θH = 0, (no mutations) and µH = 0 (no drug-induced resistance)

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug-
sensitive population in the (t, x) plane. Right panel: asymptotic distribution of
this drug-sensitive population according to the drug resistance phenotype x .

(Lorz et al., M2AN 2013)
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PDE model with one cytotoxic drug: illustrations (2)

[Resistant cell population case: Gause’s exclusion principle again]

Theorem: Monomorphic evolution towards drug-induced drug resistance, here

with θC = 0, µC (·) > 0, r ′(·) < 0, µ′

C (·) < 0 (costly drug-induced resistance)

Left panel: starting from a medium phenotype x = 0.5, level sets of a drug-
resistant population in the (t, x) plane. Right panel: asymptotic distribution of
this drug-resistant population according to the drug resistance phenotype x .

(Lorz et al., M2AN 2013)
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Another model: 2 drugs, cytotoxic u1(t), cytostatic u2(t)
with bidimensional resistance phenotype (x , y)

∂

∂t
nC (x , y , t) =

[
rC (x , y)

1 + ku2(t)
− dC (x , y)IC (t)− u1(t)µC (x , y)

]

nC (x , y , t)

Environment: IC (t) = α
∫

1

0

∫
1

0
nC (x , y , t) dx dy + β

∫
1

0

∫
1

0
nH(x , y , t) dx dy

Sensitive cell population case:

Convergence toward total sensitivity

Resistant cell population case:

Convergence toward 2 resistant phenotypes

(Tommaso Lorenzi, work underway)
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Now 2 drugs with one (scalar) resistance phenotype x

∂

∂t
nH(x , t) =

[
rH(x)

1 + kHu2(t)
− dH(x)IH(t)− u1(t)µH(x)

]

nH(x , t)

∂

∂t
nC (x , t) =

[
rC (x)

1 + kCu2(t)
− dC (x)IC (t)− u1(t)µC (x)

]

nC (x , t)

Environment: IH(t) = aHH .ρH(t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),
with ρH(t) =

∫
1

0
nH(x , t) dx , ρC (t) =

∫
1

0
nC (x , t) dx .

Simultaneous combinations of the 2 drugs, with increasing equal doses

Healthy cells: preserved Cancer cells: eventually extinct

(“Pedestrian’s optimisation”)
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Notes about the ‘cooking recipes’ used in the simulations (1)

In this version of the simulations (used throughout in the sequel)

rH (x) =
1.5

1 + x2
, rC (x) =

3

1 + x2
,

dH (x) =
1

2
(1 − 0.1x), dC (x) =

1

2
(1 − 0.3x),

u
max

1 = 3.5, u
max

2 = 7,

and the initial data are

nH (0, x) = C0 exp(−(x − 0.5)2/ε), nC (0, x) = C
0 exp(−(x − 0.5)2/ε),

with ε > 0 small (typically, we will take either ε = 0.1 or ε = 0.01), and where C0 > 0
is such that

ρH (0) + ρC (0) = 1.
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Notes about the ‘cooking recipes’ used in the simulations (2)

The closer to 1 is the variable x , the more resistant are the tumour cells. The choice
done in Lorz et al. 2013 is

µH (x) =
0.2

0.72 + x2
, µC (x) =

0.4

0.72 + x2
.

Note that, with this choice of functions, if we take constant controls u1 and u2, with

u1(t) = Cst = u
max

1 = 3.5, u2(t) = Cst = 2,

then we can kill all tumour cells (at least, they decrease exponentially to 0), and no

optimisation is necessary.
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Notes about the ‘cooking recipes’ used in the simulations (3)

The “environment” variables I[H,C ](t) defined by

IH(t) = aHHρH (t) + aHCρC (t),

IC (t) = aCHρH (t) + aCCρC (t),
(1)

and

ρH (t) =

∫

1

0

nH (x , t) dx , ρC (t) =

∫

1

0

nC (x , t) dx .

have been chosen such that

aHH = 1, aCC = 1, aHC = 0.07, aCH = 0.01, αH = 0.01, αC = 1,

which means in particular that in the limiting logistic terms in the model, intraspecific

competition is overwhelmingly higher than interspecific competition, i.e., cell growth is

mainly limited by access to resources, and very little by frontal competition between

cancer and healthy cells, a choice done on biological grounds (cancer cells and healthy

cells are not thriving on the same metabolic niche, e.g., aerobic vs. glycolytic

metabolisms). As a consequence, as in classical Lotka-Volterra models with

competition, the choice of these parameters will lead in the simulations to asymptotic

coexistence of the two species, healthy and cancer, in a non trivial equilibrium state.
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Optimisation algorithms to improve drug delivery in cancer
cell populations (work by Emmanuel Trélat, LJLL, UPMC)

Same phenotype-structured model, but instead of a ‘pedestrian’s optimisation’
(i.e., merely using grids), solving an optimal control problem: determining
control functions u1 and u2 in L∞(0,T ), satisfying the constraints

0 ≤ u1(t) ≤ u
max

1 , 0 ≤ u2(t) ≤ u
max

2 , (2)

and minimising the cost functional

CT (u1, u2) =

∫
1

0

nC (x ,T ) dx + γ1

∫
T

0

u1(t) dt + γ2

∫
T

0

u2(t) dt, (3)

where (nC (·, ·), nH(·, ·)) is the unique solution of the system of PDEs
corresponding to the controls u1 and u2, such that nH(0, ·) = n0

H(·) and
nC (0, ·) = n0

C (·) and where the trajectory t 7→ (nC (·, t), nH(·, t)) is subject to
the dynamic state constraint

ρH(t)

ρH(t) + ρC (t)
≥ θ. (4)

(here θ = 0.4) We use a direct approach, discretising the whole problem and

then solving the resulting constrained optimisation problem with AMPL

(automatic differentiation) combined with IPOPT (expert optimisation routine)
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Numerical solution to this first optimisation problem

Distribution of populations according to phenotype (black: initial; red: final;
blue: intermediate steps of the optimisation algorithm)

Left panels: optimised drug flows for u1(t) (cytotoxic) and u2(t) (cytostatic)

Right panel: satisfaction of dynamic constraint
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Introducing ‘adaptive therapy’, following Robert Gatenby

• Principle: keep alive an objective ally in
the enemy place

• Relies on competition for resources
between resistant (weakly proliferative)
and sensitive cancer cells in the tumour

• Aim: avoid extinction of sensitive tumour
cells, that are able to outcompete
resistant tumour cells provided that not
too high doses of a drug are delivered

• Method: deliver relatively low doses of
the drug to prevent thriving of too many
sensitive cells and limit emergence of too
many (unbeatable) resistant cells

• Objective: controlling total (sensitive +
resistant) tumour cell population

• Caveat: not necessarily applicable in the
case of fast growing tumours (e.g., acute
myeloblastic leukaemia)
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Second optimisation problem, same model (1)

Environment: IH(t) = aHH .ρH (t) + aHC .ρC (t), IC (t) = aCH .ρH(t) + aCC .ρC (t),

with ρH(t) =
∫

1

0
nH (x , t) dx , ρC (t) =

∫

1

0
nC (x , t) dx .

∂

∂t
nH (x , t) =

(

rH(x)

1 + αHu2(t)
− dH (x)IH (t)− u1(t)µH (x)

)

nH (x , t)

∂

∂t
nC (x , t) =

(

rC (x)

1 + αCu2(t)
− dC (x)IC (t) − u1(t)µC (x)

)

nC (x , t)

0 ≤ u1(t) ≤ u
max

1 , 0 ≤ u2(t) ≤ u
max

2

minCT (u1, u2) = ρC (T ) =

∫

1

0

nC (x ,T ) dx

under the additional constraints

ρH(t)

ρH (t) + ρC (t)
≥ θH , ρH (t) ≥ ρH(0)



Biological background Drug resistance Mathematical models Optimisation Pending questions

Second optimisation problem, same model (2)

Furthermore, we add the “adaptive” constraint

ρCS (t)

ρC (t)
≥ θCS , where

ρCS (t) =

∫

1

0

(1 − x)nC (t, x) dx

may be seen as the total number at time t of tumour cells that are sensitive, and

ρCR(t) =

∫

1

0

xnC (t, x) dx

as the total number at time t of tumour cells that are resistant.

Of course, sensitivity/resistance being by construction a non-binary variable, the
weights x and 1 − x are here to stress in a simple way a partition between a sensitive
class and a resistant class in the cancer cell population; other choices might be made
for these weights, e.g., x2 and 1 − x2. Note that ρC (t) = ρCS (t) + ρCR (t).
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Second optimal control problem: theoretical results

Theorem
Under these conditions, the optimal trajectory in large time T > 0 consists of 3 arcs:

1. A first transient short-time arc, consisting of reaching the boundary
ρH (t)

ρH (t)+ρC (t)
= θH , with u1 = 0 and with an appropriate control u2.

2. A middle long-time arc: u1 = 0, u2 ≃ Cst, this constant being tuned so that

ρH (t)

ρH(t) + ρC (t)
= θH .

At the end of this long-time arc, we have

nH (·, t) ≃ δx∞
H

, nC (·, t) ≃ δx∞
C

(δx∞
[H,C ]

Dirac masses)

i.e., healthy and tumour cells have concentrated at some given respective
phenotypes x∞

H
and x∞

C
.

3. A last transient short-time arc: u1 = umax

1
, u2 = umax

2
, along which the

population of healthy and of tumour cells is very quickly decreasing.
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Simulations illustrating this theorem

Simulation with T = 30

(optimisation using
AMPL-IPOPT)
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Interpretation

Neglecting the first transient arc, in a first approximation the optimal trajectory is
made of two parts, the first one with u1 = 0 and the second one with u1 = umax

1
.

Main idea:

1. Let the system naturally evolve to a phenotype concentration (long-time phase).

2. Then, apply the maximal quantity of drugs, during a short-time phase, in order
to eradicate as many tumour cells as possible.

The second short-time phase is all the more efficient as the phenotypes are
concentrated (hence, as the time T is large).
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Limitations of this optimisation procedure, owing to the fact
that the trait represents resistance to only one drug

• The model assumes one trait of resistance corresponding to one cytotoxic drug.

• However, overcoming resistance using this strategy may not be successful if too
many types of resistance coexist, due to high phenotype heterogeneity.

• Phenotype heterogeneity within the resistant tumour cell population may thus
reduce such strategy to nothing, unless a multidimensional phenotype may be
found, corresponding to drugs specific of each scalar phenotype.

• ... Unless also it may be possible, more generally, in the perspective of Sharma
et al., to avoid the development of transient drug-resistant cell clones, whatever
the drug used, assuming that these transient clones are mandatory to obtain
genetically established drug resistance, such avoidance being achieved by
epigenetic drugs (e.g., HDAC inhibitors) or metabolism modifying strategies.
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Back to evolution towards resistance: pending questions,
possible tracks to enrich the model

• Is there a succession of events from a population dynamics point of view
between an epigenetic, reversible, state of drug resistance, followed by a possibly
acquired, genetic, unbeatable state of resistance to a given drug?

• Is there a way to measure in a molecular way the cost of resistance, so as to
design realistic cost functions at the cell population level?

• Can we connect stochastic events such as transcription at the single cell level -
ruled by genetic regulatory networks and possibly influenced by the cellular
environment - with the determination of cell fate (e.g., drug resistance or EMT
phenotype) at the cell population level?

• These are qualitative rather than quantitative models. Identification of a
continuous trait x with a resistance phenotype will be linked to a given drug and
a given cancer cell population studied in Petri dishes; identifying parameters in
model functions of phenotype x (µ[H,C ](x), r[H,C ](x), d[H,C ](x)) is another
challenge that might be addressed by inverse problems methods if necessary.
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Future prospects: develop models of cancer and its
therapeutic control according to further considerations

• Structuring the population according to a multidimensional phenotype, e.g.,
survival potential, proliferation potential (and possibly also stem cell-like
plasticity, work underway): to be submitted soon

• Adding space (e.g., radial variable in a tumour spheroid) and available resources,
accounting for drug diffusion in the tumour: work presently in revision

• Adding local metabolism modifications: oxygen, nutrients, pH... that may
influence survival and proliferation

• Energy reallocation: cell population self-assessment in terms of costs (ATP):
even with a non-molecular, but rather symbolical identification of energy costs,
choice between dormancy, proliferation or death?

• Represent the effects of HDAC inhibitors or other epigenetic drug therapies
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Concluding remarks on drug resistance

• Drug resistance in cancer cell populations may be assessed by biological
experiments and by mathematical modelling of cell populations structured
according to relevant continuous traits, amenable to describe phenotype
heterogeneity better than discrete traits (e.g., resistance vs. sensitivity)

• Evolutionary bottlenecks may then be represented by convergence of the
cell population to a limited number of phenotypes (one for only one drug
- Gause’s exclusion principle -, 2 for 2 drugs with different mechanisms...)

• Epigenetic or genetic phenomenon? Most likely both, but epigenetic prior
to genetic, and reversibility of drug-resistant cell lines produced by drug
exposure should always be tested

• Therapeutic consequences of this point of view (epigenetic? reversible?
phenomenon) may lead to innovative drug delivery strategies, that may
be theoretically optimised by using numerical optimisation algorithms
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