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Aims

Aims
Present a simple mathematical model that simulates the administra-
tion of a chemotherapeutic cycle-nonspecific agent, where the model
takes into account the carrying capacity of tumour cells associated
with the vascular endothelial cells as well as the chemotherapeutic
action on vascular endothelial cells.



Introduction

Model
Four ordinary differential equations: normal and tumour cells, vas-
cular endothelial cells and chemotherapeutic agent.
Modalities of chemotherapy under varying protocols: the conven-
tional protocol and the metronomic schedule (smaller cycle time
intervals T and lower dose-per-infusion than the conventional sched-
ule) and continuous drug infusion



Introduction

Model
Angiogenic process involves a spatial structure well analysed by par-
tial differential equations models [3].
We consider, as in other vascular tumour models for which the main
focus is the treatment dynamic [5], [8], an ODE model, since cell
growth in the vascular stage may be assumed to be a continuous
process and the tumour may be considered, as a first approximation,
an homogeneous population of cells.



Mathematical model

Model
Tumour angiogenesis is represented by the increase in carrying ca-
pacity due to neo-vascularization, which is related to the number of
the vascular endothelial cells. To define the equation for vascular
endothelial cells we follow [8].
We assume the logistic function for natural growth and intraspecific
competition of tumour cells and k1 is the carrying capacity of the
tumour in the pre-vascular stage.



Mathematical model

Model
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Mathematical model

Model
The contribution to the carrying capacity of tumour cells due to tu-
mour angiogenesis is represented by L1 - the number of the vascular
endothelial cells; σ is related to the proliferation of the endothelial
cells adjacent to the tumour and their movement into the peritu-
moural region; φ measures the angiogenic factors released by the
tumour and ω models the neo-vascularization inhibition by the tu-
mour itself.



Mathematical model

Model
Regarding the drug effect, we assume the classical log-kill functional
response (i.e. the percentage of cells eliminated by the drug is al-
ways the same constant) hypothesized by [17] with a saturation of
the Michaelis-Menten type for the amount of the drug; a, b and c
determine the saturation of the drug functional response (they are
the amount of the drug for which the respective effect is half of its
maximum); µ is the treatment rate of the tumour cells; ν is the mor-
tality rate of normal cells due to treatment; η models the intensity
of the antiangiogenic effect of the chemotherapeutic drug; λ > 0
is the washout rate of a given cycle-nonspecific chemotherapeutic
drug.



Mathematical model

Equilibrium solutions: untreated cancer

I E1(0, 0, 0) – Extinction of normal, endothelial and tumour
cells.

I E2(0, k2, 0) – Spontaneous cure.

I E3(Ñ1, 0, L̃1) – Extinction of normal cells in the presence of
tumour cells and endothelial vascular cells.

I E4(N
∗
1 , N

∗
2 , L

∗
1) – Coexistence between cells.



Mathematical model

Stability analysis: untreated cancer

The non-biological equilibrium E1(0, 0, 0) and disease free equilib-
rium E2(0, k2, 0) are locally unstable for σ > 0 and any non-negative
values of the other parameters (except for k1 > 0 and k2 > 0). If
we assume σ = 0, we have to impose k1 > α1k2 in order to guaran-
tee the unstable character of E2(0, k2, 0). Without treatment, the
system may evolve to E4(N

∗
1 , N

∗
2 , L

∗
1) in the positive cone, if

α1α2 < 1 and
σ

ω
< N∗

1 <
k2
α2
. (2)



Mathematical model

Table : Parameters related to the tumour, normal and endothelial cells
for model (1).

Parameter Value Unity Reference/Comments

r1 10−2 day−1 [18]
r2 10−3 day−1 r2 < r1
k1 108 cells estimated value
k2 1012 cells [21]
α1 9× 10−5 - assumed value
α2 9× 10−2 - assumed value
σ 10−3 day−1 σ ∼ r2
φ 1 day−1 assumed value
ω 10−12 cells−1 dia−1 assumed value
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Figure : Tumour evolution for no treatment model (with Q(t) ≡ 0, ∀ t). Initial

conditions: N1(0) = 108 tumour cells (solid line), N2(0) = 1012 normal cells

(dashed line) and L1(0) = 0 vascular endothelial cells (dash-dotted line).



Mathematical model

Anti-cancer chemotherapy: continuous administration

I P1

(
0, 0, 0,

q

λ

)
– Elimination of normal and tumour cells due

to high dose.

I P2

(
0, N̂2, 0,

q

λ

)
– Curing disease through continuous

chemotherapy.

I P3

(
N̂1, 0, L̂1,

q

λ

)
– Elimination of normal cells by treatment

in the presence of tumour cells and vascular endothelial cells.

I P4

(
N1, N2, L1,

q

λ

)
– Coexistence between normal and

tumour cells in the presence vascular endothelial cells.



Mathematical model

Anti-cancer chemotherapy: continuous administration

Let us consider the details for the cure state P2(0, N̂2, 0, q/λ):

N̂2 =
k2 (r2bλ+ q(r2 − ν))

r2 (bλ+ q)
. (3)

From a biological point of view, we have N̂2 > 0, which occurs if

0 < q < qthreshold com ν > r2. (4)

where

qthreshold =
r2bλ

ν − r2
, (5)

corresponds to the rate of infusion of the drug required to cure.



Mathematical model

Anti-cancer chemotherapy: continuous administration

The cure state P2(0, N̂2, 0, q/λ) is locally stable when

I

ηthreshold = σ

(
1 +

cλ

q

)
(6)

below that, there is no cure for the disease. There is a trans-
critical bifurcation in the bifurcation diagram, assuming η to be
a control parameter, since P2 changes from unstable to stable
equilibrium. Therefore, above ηthreshold, the tumour is elimi-
nated.

I

α1 > E/D (7)



Mathematical model

Anti-cancer chemotherapy: continuous administration

where

D = −r1k2(aλ+ q)
(
r2(bλ+ q)− νq

)
,

E = −r2k1(bλ+ q)
(
r1(aλ+ q)− µq

)
,

sets up an inequality expressed in terms of the infusion rate q, which
is, from a clinical perspective, a parameter that can be controlled.
The critical parameters q and η, given, respectively by (5) and (6)
corresponds, respectively, to the upper and lower values for the cure
state; condition (7) is also necessary to guarantee the local stable
character of the cure state.



Mathematical model

Table : Parameters related to the chemotherapy action.

Parameter Value Unity Reference/Comment

µ 8 day−1 assumed value
ν 8× 10−2 day−1 ν � µ
λ 4.16 day−1 [11]
a 2× 103 mg assumed value
b 5× 106 mg assumed value
c 2× 103 mg c ∼ a



Mathematical model

Anti-cancer chemotherapy: conventional schedule

From [13] we estimate that the body surface of a patient with a
weight of 70 kg and height 1.70m is 1.8m2, thus establishing a dose
of 900 mg per cycle. We assume that this dose is infused over
3 hours because we assume that the drug interacts immediately
with the tumour and also because cyclophosphamide’s peak plasma
concentration occurs approximately 3 hours after infusion [11]. An
infusion of 3 hours (1/8 day) implies an infusion rate of 8× 900 =
7200 mg/day. This corresponds to an standard protocol which will
be called the conventional schedule.



Mathematical model

Anti-cancer chemotherapy: conventional schedule

We define such a regimen by [12]

q(t) =

{
7200, l ≤ t < l + 1

8 ,
0, l + 1

8 ≤ t < l + 21,
(8)

where l = 0, 21, 42, 63 (ninf = 4 infusions), with q(t ≥ 84) ≡ 0.



Mathematical model

Table : Parameters related to chemotherapy administration in cycles for
model (1). Chemotherapeutic drug: cyclophosphamide.

Parameter Conventional Metronomic

Drug infusion rate (qcycle) 7200 mg/day q < 7200 mg/day
Cycle time interval (T ) 21 days T < 21 days
Number of infusions (ninf) 4 ninf > 4
Drug infusion time (τ) 1/8 day = 3h 1/8 day = 3h
Total drug dose (D = qcycle ninf τ) Dc = 3600 mg D ≥ 3600 mg
Antiangiogenic effect (η) η > 0 day−1 η > 0 day−1



We set both to-
tal dose D at
Dc = 3600 mg.
We simulate three
metronomic sched-
ules with ninf equal
to 8, 12 or 16
infusions. As we
can see in Figure,
the lower and more
frequent the dose,
the greater the
tumoural reduction
will be.
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Figure : Number of tumour cells.
Conventional (the thickest solid line)
and metronomic schedules (the three
thinnest solid lines correspond to
ninf = 16, 12 and 8) until 70 days (the
last day of infusion is the 63th).



Mathematical model

CASE STUDY I – Computing the antiangiogenic effect

For the same tumoural curves, the lowest value of tumour cells
reached during each respective protocol is (63 days of treatment):

I Conventional schedule: 7.53× 108 tumour cells;
I Metronomic chemotherapy:

I ninf = 8 and T = 7 days: 4.45× 108 tumour cells.
I ninf = 12 and T = 63/11 = 5.72 days: 3.79× 108 tumour

cells.
I ninf = 16 and T = 63/15 = 4.2 days: 2.87× 108 tumour cells.



Table : Analysis of the cycle time interval T apart from the antiangiogenic
chemotherapeutic effect itself. Total treatment time: 42 days; total dose:
D = 3600 mg.

ninf T (days) η (day−1) Min. of tumour cells (×109)

8 6
0 1.069

500 0.380

12 3.81
0 1.075

500 0.328

16 2.8
0 0.920

500 0.252
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Figure : Number of vascular endothelial cells for a conventional schedule
(thickest line) and for metronomic chemotherapy schedule with ninf = 8
(thinnest line).



Mathematical model

CASE STUDY II – Antiangiogenic protocols and human
survival time
We compare a conventional schedule and a metronomic one, both
with total dose Dc and 2Dc. Our goal is to investigate the differ-
ences between them in respect to the argument that metronomic
chemotherapy increases human survival time.
Note that, unlike the conventional schedule at dose Dc, for the other
three cases, the number of tumour cells is reduced from an order of
magnitude of 1010 cells to less than 109 cells, that is, they become
clinically undetectable tumours.
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Figure : Number of tumour cells for conventional schedule with dose Dc =
3600 mg (thickest dashed line), conventional schedule with doubled dose
2Dc = 7200 mg (thinnest solid line), metronomic chemotherapy with dose
Dc = 3600 mg (thinnest dashed line) and metronomic chemotherapy with
dose 2Dc = 7200 mg (thickest solid line). η = 500 day−1.



Table : Analysis of patient’s survival time.

Total dose (mg) Schedule Min. of tumour cells Survival time (days)

3600 (Dc) conventional 7.526× 108 1000
3600 (Dc) metronomic 3.495× 108 1100
7200 (2Dc) conventional 0.876× 108 1200
7200 (2Dc) metronomic 0.154× 108 1450



Conclusion

Conclusion

a) The killing action of chemotherapeutic drug on vascular en-
dothelial cells is more relevant to the reduction of a tumour
than the metronomic schedule of chemotherapy. Applying a
metronomic schedule for a chemical efficient in killing endothe-
lial cells enhances the antiangiogenic effect, which leads to a
more effective tumour reduction.

b) Increasing the total dose is a better strategy for increas-
ing the survival of a patient (after the total treatment time),
even for conventional or metronomic schedules. However, for
metronomic schedules, at the end of treatment, larger dose are
effective for tumoural reduction.

c) In the limit case of continuous drug administration, there
are critical values for dose per infusion and chemotherapeutic
action on endothelial cells that guarantee the elimination of
cancer cells.
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Model

We propose the following model based on [4] and [16]:

dN1

dt
= r1N1

(
1− N1

k1+L
− α12N2

k1+L

)
− c1 I N1 − µN1Q

a+Q

dN2

dt
= r2N2

(
1− N2

k2
− α21N1

k2

)
− ν N2Q

b+Q

dI

dt
= s− d1 I + ρ I N1

γ+N1
− c2 I N1 − δ I Q

d+Q

dL

dt
= σ L+ φN1 − ωN1 L− η LQ

c+Q

dQ

dt
= q(t)− λQ

. (9)
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Figure : Conventional and metronomic: ρ = 0.215 day−1, s = 104 cells
day−1, N1(0) = 108, N2(0) = 1012, I(0) = 107 and L(0) = 102.
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