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1- The motivation.

The Systems Biology’s challenge: how biological functions at different levels of
organization are generated from the interactions between molecules?
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The ability to reduce everything to simple fundamental laws does not
imply the ability to start from those laws and reconstruct the universe.

(...) The constructionist hypothesis breaks down when confronted with
the twin difficulties of scale and complexity.

P. W. Anderson, 1972.



How complex patterns can emerge from simple dynamical rules?
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Many particles interacting through simple rules

+

Simple initial state

l successive iterations

Complex pattern
» Lessons from this tale:
1- The origin of complex patterns in nature is a dynamical problem;

2- In the nonlinear regime even very simple physical systems are
able to exhibit complex behaviors;



2- Cancer biology in two cartoons.

2.1- Cancer progression

INVASIVE CANCER

GENETICALLY ALTERED CELL F [ e

. HYPERPLASIA DYSPLASIA -

5 If the genetic changes allow the tu-

DANA BLRNSPIZER.

1 Tumor development begins when
some cell {arange) within a normal
population ( bejge) sustains a genal-
ic mutation that increases its
propensity to proliferate when it
would normally rest.

2 The altered cell and its descendants
continue to look normal, but they re-
produce too much—a condition
termed hyperplasia. After years, one
in a million of these cells (pink) suf-
fers ancther mutation that further

3 In addition to proliferating excessively, the off
spring of this cell appear abnormal in shaps and in
orienitation; the tissue is now said to exhibit dys-
plasia. Once again, ater a time, a rare mutation
that alters cell behavior occurs (purpie)

4 The affected cells become still mare
abnormal in growth and appearance. If
the tumor has not yet broken through
ary boundaries between tissues, it is
called in situ cancer. This tumor may
remain contained indefinitely; however,
same cells may eventually acquire ad-

loosans controls an cell growth.
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Constrained
growth conditions.

Accumulation
of mutations in

How Cancer Arises

ditional mutations { blue)

Houw Cancer Avises

mor to begin invading underying tis- R
sue and to shed cells into the blood
or lymph, the mass is considerad to
have become malignant. The rene-
gade cells are likely to establish new
tumors (metastases) throughout the
body: these may became lethal by
disrupting a vital organ.
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R. Weinberg, Sci. Am. 1996

Selection of cells with
proliferative advantages.

‘ Additional replication

and selection.

selected cells.

Transformed foci with
malignant phenotypes,
derived from a single
cell.



2.2- The multiple scales of cancer

DMA transcription Proteins

Protein-protein interaction
& » , and metabolic networks

Microscopic scale:

molecular and subcellular H
processes (mutations, 3
alterations in gene
expression, signaling,
metabolic pathways, cell
cycle etc.)

Macroscopic scale:

Processes at the tissue level (difusion of
nutrients/GFs, basal membrane breach,

cell migration and invasion etc.)

COCIS 15,18 (2010)

Mesoscopic scale:

cell-cell and cell-matrix
interactions (angiogenesis,
immune response, local
remodeling of the ECM etc.)




3- Multiscale modeling of cancer growth.

3.1- Modeling multiple scales

Almost all problems in science and engineering are multiscale in
nature and we primarily face their macroscopic scales.

!

Multiscale mathematics is a systematic approach for integrate models

that may be of different nature and applied to different scales, e. g.
molecular dynamics at the microscale and continuum mechanics at

the macroscale.

Key step: Connecting the outputs of one scale to the inputs of the
other scales.



General philosophy: coupling the macro and microscales such that the
macrostate provides the environment (constraints) for the micromodel
and the micromodel provides the needed constitutive data for the
macromodel.

ﬂ(ao/rr/b/ete /%amfaa//b

Coarse~graied D=data necessary to

. node! complete the model
macroseaplo state

Macroscopic solver

U< mmmmmmmmmmmmm e 0,U = F(U,D(u))

d.u= f(u,bU))

/”/amm//a noded b=auxiliary conditions
(initial and boundary
conditions etc)

Mieroseapic state Microscopic solver

variable



v"The multiscale toolbox:

Modeling approaches:
Reaction kinetics ODEs,

Boolean dynamics There is no rule for

T select an approach!
microscopic scale l
subcellular level)

| Guiding principles:
/ v’ The question to be
addressed;

Fow H 1 a Y 1 .
(tissue level) (cell level) available for the system;
v The balance between
¢ l, complexity and the

Modeling approaches: Modeling approaches: details considered.
Reaction-diffusion and/or Cell-level ODEs, cellular
continuum mechanics automata, center models,
EDPs. cellular Potts model (SEM).




3.2- A multiscale model for cancer.

Microscopic scale:
—3 Active (o=1) or inactive (c=0) protein .

o, (t+1)=sgn() J,0,-0,), ——=> Deterministic
Boolean
0,x<0

n(x) = model
molecular and subcellular \ sgn(x) {1, x>0
processes \ Al fo

Y =)

agents performing stochastic actions
(replication, death and migration).

P .= Jf(N,C¢,{o}) — Stochastic
lattice growth
model

Mesoscopic scale:

cell-cell and cell-matrix
interactions

0= Vp—a’Np—La>Cé.
EDPs with stochastic
sources/boundaries

Macroscopic scale:

Processes at the tissue level



Diffusion equations :
»Flowchart: —> , - Macroscopic level
W (nutrients, oxygen, GFs, H*) P

|

Microenvironmental { [0,1<6, = hypoxia;
conditions [0,]>0, = normoxia.

|

Network inputs  (RTKs, AMP/ATP, HIF1-a, etc.)

|

Network evolution
- Molecular level
(attractors)

|

Phenotype (Apoptotic, proliferative,
determination quiescent etc.)

l, compel

Stochastic cell actions
— o T - Cell level
(replication, death, migration)




3.2.1 - Macroscopic scale (Tissue level)

» Tissue: a square lattice fed by a capillary at its bottom edge.

» Nutrientes, oxygen and acid diffuse throughout the tissue.

Glucose: 2_(: =D V’G-k,G(o, +0,)— AoksGo,
Oxygen: 88—? = DOV20— kO, +0,)
H*: a%zDHVzH+ +ayAcksGo,.

Boundary conditions: fixed supply at the vessel; null flux at the border
of the tissue; periodic along the capillary direction.



3.2.2 - Mesoscopic scale (cellular level)

» Cells are agents which perform stochastic cell actions: mitotic division,

migration and death.
Stochastic cell Kinetios connec ting
/ the macro and mesoseoplo seales
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»Growth patterns

Slow growth

Fast growth (algebraic)

(exponencial)

Simulations

Histhological
patterns

PRE 65, 021907 (2002);



3.2.3 — Applications in cancer therapy: major results

- L Cancer Res. 2009 & PRE 2013
»In silico oncolytic virotherapy

cna"‘ virus . . o A
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*The optimal traits for oncolytic viruses depends critically on the tumor growth
dynamics.

*They do not necessarily include rapid replication, cytolysis and spreading
currently assumed as necessary conditions to a successful therapy.

*The antitumor efficacy of a virus is primarily determined by its entry efficiency,
its replicative capacity within the tumor, and its ability to spread over the tissue.



Phys. Biol. 2013
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The host immune response remove both free virus and their source
(infected cancer cells), triggering therapy fail.



Tumor erradication probability
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*Reprogramming the
immune microenvironment
in tumors could substantially
enhances the oncolytic
virotherapy.

*Promising routes to such
reprogramming are either in
situ virus-mediated
impairing of CD8+ T cells
motility or blockade of B and
T lymphocytes recruitment.



»Chemotherapy based on chimeric nanoparticles

Appl. Phys. Lett. 2011
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* Cancer chemotherapy using CP-NPs fails primarily due to the small NP endocytic
rates. Effective treatments should rely on NPs exhibiting long residence time in the
bloodstream, high selectivity for, and large endocytic rates by cancer cells.



Tumor just before the therapy Tumor atter therapy, Chy = 0.6mAM ., 7 = 4h.

*Tumor eradication demands either an anticancer drug with a very high endocytic
rate (possibly unrealistic) or a combined therapy based on cytotoxic and
antiangiogenic agents.



3.2.4 - Microscopic scale (cancer pathways) PLoS ONE (2013);

» Cancer-related driver mutations affect a dozen or more core signaling
pathways that regulate cell death, proliferation and migration.

A natural organizing principle is represent - AN
these pathways as a network. '- g
— X AL/
. TSI T
> :I'he S|mPI|f|ed protein - T N sa%égg;;f\jﬁgf#‘,ﬁ
interaction network \ X— ClTp AN v e \
T I N
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Network property  Cancer Random K
nodes 06 06 4
edges 249 249+ 12
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»Each protein, a node in the network, is represented by a binary state c.
o = 1 — functionally active protein; c = 0 — inactive protein.

> A Boolean dynamics e
for protein states: O (t+1)=sgn ; ingj (1) —0:

J;=interaction from input j on protein /; g;=activation threshold
of protein i; sgn(x)=0, if x<0, but sgn(x)=1, if x>0;

P o
& » —
- L e g
i v & 3 J
| Wt S .
70
7
7t
!.
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v The state-space is organized into a number ¥ (7, 7 /iy
of basins of attraction. AN



62 attractors, 47 corresponding to apoptotic, 3 to proliferative and 12 to
quiescent phenotypes, which attract respectively 87.4%, 3.1%, and 9.5%
of the initial states tested. ;

!

Microenvironmental
conditions and
network response: @




3.3- Predicting carcinogenesis.

3.3.1 — Driver Mutations

Given a microenvironment, which protein mutations transform a formerly
qguiescent, normal cell into a proliferating one or confers to this cell the
ability to evade apoptosis?

Protein mutation efficacy A :
- 2 optotic
Egfr activation 0.91% p p
overexpression  0.91% Hypoxia ‘ resistant
. Gl activation 0.08%
Normoxia overexpression  0.35% p h en Otypes
hTert activation 0.07% . . -
overexpression  0.07% Protein mutation efficacy
Nfl deletion 0.03% Akt OvereXpression 100%
Nf-xB  overexpression  0.13% Bel?2 activation 100%
=11 ] b T & 407 . - -
Pik activation U. l_J‘; 0 overexpression  100%
Prolif ti Pl m’“'et:,':l:'lsﬁﬁl"'n I'l_')'r‘;'_;'" Bel-X1  overexpression  100%
c activation 259 . o o
rolirerative ) . 0 Ikk overexpression S8, 79
OVereXpression 66 . . : -
phenotypeS Ften deletion 0.51% Nf-xB activation 91_' o
Ras activation 0.16% OVerexpress1o 10077
Wt activation 0.6% ph3 deletion 100%

overexpression  0.6% Snail  overexpression  83.6%




Have driver nodes special status in network topology?

Akt, Hif1, hTert, Ikk, mTor, — <k> 13.87, connectivity
Mye, Nt-kB, and p53 centrality B > 2(B). and centrality.
—<k> =6.5; Intermediate
Mdm2 and Pdk1 —> = ‘ connectivity
B< B<2(B) and centrality.
Bcl2,Bcl-xL, Egfr, Gli, Nf1, (k) =4.08; small
Phd, Pi3k, Pkc, Pten, ~ —> EEE)  connectivity
Ras, Snail, Vhl, and Wnt B< <B> and centrality.

Driver nodes are not necessarily central in the network topology, but at
least they are direct regulators of central components towards which
converge or through which crosstalk distinct cancer signaling pathways.



3.3.2 — Carcinogenic routes

» The classical route of colorectal carcinogenesis

APC/

K-RAS/ SMAD4/ PIK3CA

CTNNB1 BRAF TGFBR2 PTEN P53 PRL3
Normal Small Large
tissue adenoma || | adenoma _bl Cancer I—ﬂ Metastases

Fraction

Genetic Instab»

1 ,O T T T T T T T
—&— Proliferative

L S L —8— Quiescent
0,8 - —&— Apoptotic
0,6 \
0,4 |
0,2~ ° -
0,0 ®

] ] I ! I I |

Mutation Free  APC Ras Smad PTEN p53

Mutation Sequence

» Alternative routes of colorectal carcinogenesis

Pten

APC —>» Ras —>

PIBK AKT Bcl2 Mdm?2

pd3 ATM (deletion)

(activation)




4- Concluding remarks

v’ Theoretical multiscale approaches are basic tools in the quest for a quantitative,
“ab initio” systems physiology, pathophysiology and for P4 medicine: predictive,
preventive, personalized, and participatory.

v'The thought imposed by equation writing will improve understanding of the

biological model’s assumptions and dynamics.
P.Nurse & J. Hayles, Cell 144, 850 (2011).

v'A functional cell can be created in a laboratory by assembling its parts, even
without a detailed understanding of how they engage. But this is not possible in a
software.

Mathematics is biology’s next microscope, only better.
J. E. Cohen, PLoS Biol. 2, e439 (2004).
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