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The problem

Under which conditions on the mutation rates
can a virus survive if its environment (immune
system persecution) changes periodically?



The Eigen quasispecies model

Introduced by Eigen in the 1970’s to study the origin of life.

Later used to study virus replication, taking into account
the possibility of replication errors.

A virus genome is o = (S, Sp, ..., S¢) with s; € {0,1}.

¢ is large, in the range 103 to 10° for viruses.

Genome space is A = {0, 1}*.

Phase transitions, methods from Statistical Mechanics and
Quantum Field Theory. Interest of physicists.



The Eigen model in general

e If p,(t) be the virus population with genome o in
generation t, then
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d(o,0') =D Isi—si|.
i=1



Mutation matrix

e Let u be the per site mutation probability.
o Naturally, W, = u (1 — 1)*~9, where d is the Hamming
distance between o and ¢’.

o As p is very small, of order 10~/ or less, a useful
simplification is taking
1—-p, if d(o,0')=0
Woor = p, it d(o, OJ) =1 ) (2)
0, if d(o,0")>1

where 5 = uf is the genome mutation probability.
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The sharp-peak fitness landscape

¢ A simple and popular choice for the fitness is the
sharp-peak landscape (SPL):

[ 1+k, if o=o0p()
f(U,t)—{ 17 if U#Uo(t)o : (3)

e The fittest genome o(t) at time t is called the wild type or
master sequence.

e Parameter k > 0 is called the selective advantage of the
master sequence above all other genomes.



The error catastrophe

e In the static SPL, if 5 is too large, or k too small, the virus
population will not be concentrated within genomes close
to the master sequence, being spread throughout genome
space.

e In the static SPL, this error catastrophe will occur if
B> pic where .

static __
Y1+ k- @

e The error catastrophe is a transition between a localized
phase in A, the quasispecies, and a delocalized phase in
A, in which the virus population is not able to maintain
genetic identity.



The Nilsson-Snoad model

¢ Nilsson and Snoad proposed in Phys. Rev. Lett. 84 (2000)
a time-dependent version of the SPL in which at every
generations the master sequece hops to a random nearest
neighbor in A.
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The Nilsson-Snoad model

Nilsson and Snoad proposed in Phys. Rev. Lett. 84 (2000)
a time-dependent version of the SPL in which at every
generations the master sequece hops to a random nearest
neighbor in A.

The idea is to model a viral population forced to
periodically change its master sequence due to
persecution by an immune system.

Nilsson and Snoad treated the model using several
questionable approximations. They found out not only the
well-known error catastrophe characterized by an upper
threshold A5, but also an adaptability catastrophe
characterized by a lower threshold 3NS.

A quasispecies will exist if sNS < 8 < g)S.
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82(3):031915 (2010), we
have shown that the
conclusions by Nilsson and
Snoad about the existence
of upper and lower
thresholds were correct.

But their approximation
scheme was not so much
accurate, particuarly for
small values of the
selective advantage k.



Some ideas about our techinques

¢ Nilsson and Snoad divide the virus population into 3
classes: viruses in the present master sequence, viruses
in the next master sequence and all others.

¢ Existence of a quasispecies turns out to be the calcuation
of the dominant eigenvalue of a 3 x 3 matrix.

e We divide instead the population into M + 1 classes: each
of the M genomes which are going to be master
sequences at some time plus one class for all other
genomes.

e M should be of order 2¢, but smaller values produce almost
the same results.

e We seek the dominant eigenvalue of the non-negative
matrix A= S~1ET, where E; gives the evolution for one
generation while the master sequence remains unchanged
and S represents the shift of the master sequence after r
generations.



Some ideas about our techinques 2

¢ By the Perron-Frobenius theory for non-negative matrices,
the dominant eigenvalue \pf is given by the maximum
over non-negative vectors of the Collatz-Wielandt function

(Av);

=Ry,

e The vector v which maximizes the above function is an
eigenvector corresponding to Apr.

e For any vector v, f4(v) is a lower bound to Apr. If vis a
good approximant to the dominant eigenvector, f4(v) will
be a large lower bound approximating Apr.

o If e is the k-th vector in the canonical basis for RV, a good
guess for the dominant eigenvector is
v(d) =dey + (1 —0)ew.

e |t is straightforward to find the value of dmax € [0, 1]
maximizing fa(v(9)).



Some ideas about our techinques 3

Surprisingly, fa(v(dmax)) is not only a lower bound, but a very
good approximation for Apr.
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