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modeling living matter and mimicking it.
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Active soft-matter?

What is active soft-matter?

It is @ novel area of research at the interface between biology, mathematics,
and soft-matte_r_gh_ysms that is being developed to understand the physics
behind non-equilibrium systems such as bacterial colonies, tissue formation,
cancer growth, and more generally, embryogenesis.

Active soft-matter (ASM) has recently withessed the emergence of a promising
new direction: the design and construction of biomimetic, active materials,
which are essentially ensembles of artificial active particles.

Specifically, ASM deals with ensembles of active particles and their
macroscopic properties.
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Active soft-matter?

What is an active particle?

It is a particle able to convert energy into work
in order to self-propel in a dissipative medium.

(for instance, it could be a particle equipped with a propelling engine.)
What is the difference between a passive and an active particle?
There is energy consumption, energy dissipation, while the FDT does not

necessary apply, and in general, momentum (neither linear nor angular)
is not conserved.

Are there examples of such kind of particles?

Plenty!



Active matter systems: examples



Pattern formation and active matter

Order motion

— » Vortexes

density waves «———

‘ _Various |
collective motion” patterns
in animals and insects

Self-organized motion
at highdensity ¥

See movies!

From Vicsek’s review




Pattern formation and active matter

Various CM patterns in bacteria

(*) Vortex in bacterial!
ST

Paenibacillus

Ben-Jacob’s group

Order motion and clustering
In bacteria

Myxobacteria

Zhang et al. (2010) Peruani et al. (2011)
B. subtilis Myxobacteria

Super complex coordinated motion in bacteria: —, | .
They pile up and form complex 3D structures! : r

[See movie from Reichenbach (1965) and others] Strassmann and Queller (2011)



Pattern formation and active matter

A
fluorescently labeled F-actin ATP

\ Various CM patterns at intracellular scale

unlabeled F-actin

| Coverslip

Schaller et al. (2010)



Non-living active matter systems

Driven granular media

Kudrolli et al.

I Shaken

Blair et al.

[ SP particles with fixed asymmetry |




Non-living active matter systems

Chemically driven particles

4H"+0,+4e
H202+2H++2E- - _ HEOI

4H,0 2H +0,+2e

<“—2um —>»
Posner et al.

Freemantle et al.

[ SP particles with fixed asymmetry |




Non-living active matter systems

Experimental example that exhibits the claimed symmetry: Quincke rollers!

v, (mms™)

v, (mm s

ﬁ particles that undergo a spontaneous symmetry breaking

Bricard, Caussin, Desreumaux, Dauchot, Bartolo, Nature (2013)



~ Active matter systems:
theoretical challenges & minimal models



Theoretical challenges

Active systems are intrinsically non-equilibrium systems

* Energy consumption ——*  Often particles have an energy depot
(e.g., ATP in cells)

* Energy dissipation \
\» s therela balance?

It depends on the time scale we look at.
In several experiments the answer is no!

[we look at a long transient]

 Often active systems (if we forget about the medium where they move) do
not conserve momentum!

« Anomalous fluctuations are found everywhere: density, speed, etc, etc



Theoretical challenges

active systems - classification

* Non-interacting active particles

* Interacting active particles

* long-range interactions
* short-range interactions
» homogeneous populations of particles

« inhomogeneous populations of particles (e.g., with leaders)

l

We will focus (mainly) on identical active particles with short-range interactions




Theoretical challenges

Active systems - classification

* Interaction “forces”:

« Attraction

* Repulsion

» Alignment (velocity-velocity interactions!)




Minimal models -- non-interacting active particles

« A minimal model for non-interacting active particles:

Equations of motion:

x; = vi(t)V(0;)
0; nﬁi(t)

where V (0) = (cos(#),sin(0))




Minimal models -- non-interacting active particles

Fluctuations in the direction of motion and in the propelling engine!

Random direction of motion + constant speed:

If you drive a car at constant speed while randomly turning the direction wheel,
you perform a well-known type of motion called persistent Brownian motion.

Random direction of motion + fluctuations in the speed:

If now instead of keeping the speed constant, you randomly press the gas and
break pedals while still randomly turning the direction wheel, the resulting

movement is no longer well described by a plain persistent Brownian motion.

Fluctuations in the direction of motion + fluctuations in the speed

Anomalous (Brownian) motion
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Minimal models -- non-interacting active particles

Fluctuations in the direction of motion and in the propelling engine!

3 Mean square displacement

10 ' '

Self-propelled particles .

-
~
o
-
-
-
o

We are going to see how to generalize the Fuerth formula!

Peruani, Morelli, PRL (2007)

10 '}

10

Brownian particles

7~
oz

10° t 10

10



Minimal models -- non-interacting active particles

Active fluctuations and the anomalous transient can be observed
in cell motility experiments

i‘»x as in experiments

1.6/® "~ inBiophy. J, 89, 912 (2005)
61 1]

2
(x%(1)) = 2%&5 — 1 + e %)

() —(v)? (k4 B)
—I-ZW((K—F Bt — 1+ e AN,

Peruani, Morelli, PRL (2007)

D = DThermal + DActive+ DActive Fluct




Minimal models -- non-interacting active particles

A simple model of active particles in heterogeneous media:

Equations of motion:

}:{1‘ — ’UgV(ﬁi)

, where V() = (cos(6),sin(0))
0; = h(x;)+n&(t)

Interaction with “obstacles”:
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O. Chepizhko, F. Peruani, PRL (2013)



Minimal models -- non-interacting active particles
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Starting from a random initial condition, traps emerge. The time that Barticles spendin a
particular trap depends on the particular configuration of obstacles.



Minimal models -- non-interacting active particles
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Minimal models -- non-interacting active particles

* How is possible to trapped particles moving at constant speed?

b

These traps are closed stable orbits that are found by the active particles in the
landscape of obstacles.

Remember that noise is present. These orbits are not absorbing, and particle can
escape.



Minimal models -- non-interacting active particles

)'(z' = UoV(Qz’)

* The transport properties — dependency withy and p, 4, _ (’Y) > sin(ak — 0;) +n&i()
S |x; —yr|<R ’
(a) T T .I. LI 1| |
D ‘.x.y_
X “I“
10F B _
F | ® simulations .‘"@ o o
-- LD approx. 90 g eet?® ]
" |- HD approx. TN
oot 01 T
() T .
D b Y=Si Trapping || Trapping
XT \'\. . Subdiffusion’ Subdiffusion
10F e, ! '; e
- . | ® Egulmi@ns 11| No Trapping n=0.01
o : - J 0T : .
e APPTOX _ Diffusion
0.01 P, 0.1 1 0.5

Diffusion and subdiffusion are observed!

Subdiffusion is related to the emergence of trapping!

Chepizhko, Peruani, PRL (2013)



Minimal models -- non-interacting active particles

)'(z' = UoV(gi)
* The transport properties — dependency withyandp, 4 - ~ > sin(ak — 0;) +n&i()

n(x;)

® simulations
-- LD approx.

|- HD approx.

Trapping || Trapping
Subdiffusion] Subdiffusion
. e simulations |_No Trapping _n:_{]'[i |
ol DR T Biffusion
0.01 p, 0.1 1 0.5 P, 1

Diffusion and subdiffusion are observed!

Subdiffusion is related to the emergence of trapping!
(These findings can be understood theoretically!)



Minimal models -- non-interacting active particles

)'(z' = UoV(gi)
* The transport properties — dependency withy and p, 4, _ (’Y ) > sin(ak — 0;) +n&i()
T |x; —yr|<R ’
(a) - | i ront I I
! o V=1
D ‘@
X .
10E %o i
£ | ® simulations| e 4 o
-- LD approx. %0 g geee?®®
-— HD approx. TN

Trapplﬁg _ Trapping
Subdiffusion] Subdiffusion

L ———

n=0.01

e simulations) ] | No Trapping

-- LD approx.| ]

_ Diffusion
1 05 P,

Diffusion and subdiffusion are observed!

Subdiffusion is related to the emergence of trapping!
(These findings can be understood theoretically!)
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Minimal models -- interacting active particles

The Vicsek model — moving spins
[T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995)]

Average direction of motion
in neighborhood ¢

Time t Time t+1
Motion in space
x;(t + 1) = x;(t) + v;(r)At

Change of the direction of motion

O(r + 1) =<0(2)), + A6
N

Angular noise !!!

Average direction of motion at time t




Minimal models -- interacting active particles

A more general, better defined active particle models

7}

f(i — Vo e'

93' — —')/g—éi(xipgi) T ﬁi(t)

Ferromagnetic alignment — U(@, 9’) = — (.'.OS(H — 9’)

Polar order parameters:

1 N . [global] average velocity
¢ = ( N Z exp(i6)|)— (or average magnetization if we treat the velocity vector
k=1 as spins).

[Peruani, Deutsch, and Bar, EPJ ST 157, 111 (2008)]
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Imperfect flow of information leads to defects, and defects set the limit to

the size/scale of the patterns we can observe

Some classical results from statistical mechanics:

-J cos(p; - p; )

* The Kosterlitz-Thouless transition: Ej;
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* The Mermin-Wagner theorem:

In equilibrium systems with SU2 symmetry, long-range order out of short-range

interactions cannot emer

ge in 1D or 2D!

What is short- and long-range order? And how to measure it?



Minimal models -- interacting active particles

Imperfect flow of information leads to defects, and defects set the limit to
the size/scale of the patterns we can observe

* The Mermin-Wagner theorem:

In equilibrium systems with SU2 symmetry, long-range order out of short-range
interactions cannot emerge in 1D or 2D!

 Long-range order is not possible in equilibrium systems
(spin waves and vortices)

MW theorem also works in several non-equilibrium system
« Random motion (of diffusive type) of the spins is not

enough to get long-range order in the thermodynamical limit
(though it is for finite systems)

[Peruani et al., New J. Phys. (2010)]



Minimal models -- interacting active particles

Properties of the Vicsek model — when the spins move!

v > ¥ ¥
i ?} - ﬂé P :: F . “‘: ; F TII.; '91'1} Ej'”fﬂf ffj‘:{}ﬂt ﬂflﬁﬁr\n |" 1
£ . - %,
i - P R A N bt R e e
o R o T S X ! f } f:h ffﬁ Df
%ﬁh N W éh& i‘._!z,# = -;gf,ﬂr-i s - #ﬁu _‘,,.”}ti-‘-e.":'§ 1 Hf ]\'f p "ﬂ ﬂ* f‘f’.‘
AV - 1_%: ﬂahgqva fﬂv_‘f’x 1 1‘f p n‘?;f th
G my s FORTES ST Ipfh 0L gl
,’% )W ‘f} A v »Eﬁﬁ N o iy b J‘; p Jﬂ%ﬁ 3 Fy
i i’#} W &{""’3"1 T %a:‘? ¥ o« " " “ﬁ T f ft % ? f
@ [l hsk EJE'-N 4 = » IF f.'lll H 'ITF
,ﬂf v 7 o v < } %, <& () f‘},l o
I B KA I
A 4 i? e 4 £ M fﬁ d ) f !

Decreasing noise values

[Vicsek et al. PRL (1995)]



Minimal models -- interacting active particles

The phase transition and long-range order

l.ﬂ T T T T T T T T T ]

, E‘ 0O N=40 i
;77 + N=100

0.8+ ' x N=400 .

i A N=4000
Va < N=10000

0.6 |

0.4 |

0.2 F
- (a)

U []

0 [Vicsek et al. PRL (1995)]
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[explain LRO, QLRO, and Short RO for finite size systems]



Minimal models -- interacting active particles

First vs second order transition
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“--;l F —_— —
% G f p(t) = —(vi(t)):
| pr 0.6 ? Up o (a)
I I
B | 0. —
05} | M
0.4|- ya d(; 2 ;2 |\
_ / o o, L) =L ((¢")e — (@)F) ot |1 -
0 M—‘G“ﬁ;ﬂ ] 0.2 ] ] =3 ] 02 O;\ I\Ifll'. —
0.4 0 ¢ 0.4 04 0 e 0.4 PN
R {en l,-r f "I"."I. :_",I'II
o P(0) (P77 0.6 0.62 064
0} I
af
B ] || ! ~
i 10} | “5h
201 P4 I
/5, ;J {,\ g Bands!
= ‘ Y \
A \ Il
) TS A &k.ﬂﬁ.@w—f 0 ! A i
0.4 0 g04 0 03 06 (09 128 [
' 1024 =
) :
0.4 T ; T . .
®(t)

i L it Lbbliin o i, Ll lla] . |l I
U 2e+05 deH)5 Ge+0F

8e+03 [Chaté et al. PRE (2010)]  [£:574%




Minimal models -- interacting active particles

I II 111

. 1 VAT
Ordered, with A N

giant number fluct. %8
0.6

0.4

0.2
0 : B —o——o

1 Disordered, with

~e_ 1 normal number fluct.

__________’(;S.__
L
1

0.04 .
- 0.03-

0.02F /
0.01F |

0 o——5

Dev. ¢
L

Std

0.1 0.2
n [Peruani et al. (2010)]



Minimal models -- interacting active particles

Number fluctuations
[at low cell densities]

Average number:

® ° ® <n(L)> =p E
®
.. Average square number:
® ° Py
. . 2 2
o | %o An =<[n(L) - <n(L)>]>
®
\ J
U , An = (<[n(L) - <n(L)>T>)" = <n(L)>
LYz
\ Y J
Ls Normal number fluctuations

(L)b— nur]pber OE particles
IN DOX OT SiZe An =<n(L)$/2




Minimal models -- interacting active particles

Number fluctuations
[at low cell densities]

Average number:

° . ° <n(L)>=pL
o
.. Average square number:
o ° Py
. . 2 2
e | v Art = <[n(L) - <n(L)>>
\ J
U , An = (<[ n(L) - <n(L)>T>)" = <n(L)>
LYz
\ Y J
La Giant number fluctuations

n(L) = number of particles "
in box of size L An = <n(L)> u>1/2 '




Minimal models -- interacting active particles

* A minimal continuum time SPP model with obstacles:

Xf — UOV(QE)

0, = g(xf)[ b Z sin(6; — 91—)]

nb(xf) |X;‘—Xj|<Rb

T h(xz') T né:f(t):

v
e S sin(ag — 60 ifn,(x;) >0
h(xi) — o

|Xi _Ykl <R0

0 ifn (x)=0

O. Chepizhko, E. Altmann, F. Peruani, Phys Rev Lett (2013)



Minimal models -- interacting active particles

* A minimal continuum time SPP model with obstacles:

Xf — UOV(QE)

0, = g(xf)[ b Z sin(6; — 91—)]

nb(xf) |Xi_xi|<Rb

\ 4
Continuum time version of Vicsek model (1995), i.e. a self-propelled XY model
as introduced in Peruani, Deutch, Baer, Eur. J-ST (2008)

|Xi _Ykl <R0

Yo. Z Sin(ak i 91) ifn()(xi) >0
hix;) = 4 " | ,
0 ifn, (x,)=0

O. Chepizhko, E. Altmann, F. Peruani, Phys Rev Lett (2013)



Minimal models -- interacting active particles

* A minimal continuum time SPP model with obstacles:

Xf — UOV(QE)

0, = g(xf)[ b Z sin(6; — 91—)]

nb(xf) |X;‘—Xj|<Rb

T h(xz') T né:f(t):

Obstacle avoidance:

______

h(x;) =

{

A

0

i
Ix; =yl <R,

Sin(ak,! - 61)

it n,(x;) >0

ifn (x)=0

______




Minimal models -- interacting active particles

* A minimal continuum time SPP model with obstacles:

Xf — UOV(QE)

0, = g(xi-)li b Z sin(6; — 95—)]

nb(xf) |X5_Xj|<Rb

T h(xi) T Wff(f),

Ny
1 .
Order parameter mmpp 1 — (’f‘)t = ( — Z et0i(t) )t [equiv. to the magnetization]
Ny, 4
1=1
SuSCEPtibility e x = ((r(t) — r)?),
Binder cumulant ey G=1-— (r')s



Minimal models -- interacting active particles




Minimal models -- interacting active particles

| | | =
—eo P = 0
—a pﬂ = 00325 ]
B p,=0051 |
0.8 —a p_=0.0625
o p,=0.0765|
p,=0.102
0.6 -
S o
0.4 3
0.2
0 |
0 0.5 1



Minimal models -- interacting active particles

P =0
N — 254107
pp=1.27:10°
,=3.2510"" #
p,=5.110"?
0,=6.25-10"
p,=7.65:10°
P =1.02:10"

|
0 0.5 1
n

N=10000




Minimal models -- interacting active particles

P =0
N — 254107
pp=1.27:10°
,=3.2510"" #
p,=5.110"?
0,=6.25-10"
p,=7.65:10°
P =1.02:10"

|
0 0.5 1
n

N=10000




Minimal models -- interacting active particles

P =0
0, =2.54:10*
pp=1.27:10°
,=3.2510"" #
p,=5.110"?
0,=6.25-10"
p,=7.65:10°
P =1.02:10"

0.10

100

80}

20

|
0 0.5 1
n

N=10000




Minimal models -- interacting active particles

All this would have been impossible without the help of Sasha!

Chepizkho, Peruani, PRL (2013)
Chepizkho, Altmann, Peruani, PRL (2013)

And many more to come in 2014!

Oleksandr (Sasha) Chepizhko



Symmetries in active matter systems



Symmetries!

A simple model for (“point-like”’) self-propelled rods (e.g., bacteria)
[F. Peruani, A. Deutsch, and M. Bar, Eur. Phys. J. Special Topics 157, 111 (2008)]

%@ ' % | Same
~ symmetry
D =

Particles move in
xHAt — xt 4w (91‘) At » the direction given by:
| | | v(6;) = (cos(b;),sin(6;))

PrHAt = arg > of (V(Qj)v(ﬁf)) -> Update of the moving

direction

v
Alighment l Additive noise

—V; 1 f Vi.Vj'(O

% Vi 1 v;.v;, >0
(B [jm={ 3wz




Minimal models -- interacting active particles

A simple model for (“point-like”’) self-propelled rods (e.g., bacteria)

[F. Peruani, A. Deutsch, and M. Bar, Eur. Phys. J. Special Topics 157, 111 (2008)]

7}

f(i — Vo e'

93' — —')/g—éi(xipgi) T ﬁi(t)

Ferromagnetic alignment —> U(@, 9’) = — (:(:JS(H — 9’)

Nematic alignment ———> /(9. 6') = — cos® (§ — ¢)

Order parameters:

¢ = { ) 5=

)

1 N
k=1

[Peruani, Deutsch, and Bar, EPJ ST 157, 111 (2008)]

1 N
— Zexp(i 0)
N k=1




40
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30
251 °
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10}

[F. Peruani et al., EJP-ST (2008)]



Symmetries!

The symmetry of the alignment plays a crucial role in pattern formation

[F. Ginelli, F. Peruani, M. Bar, and H. Chaté, Phys. Rev. Lett. 104, 184502 (2010)]

Nematic OP:
1 2 3 4
T I | T | II | T 1 N _
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The symmetry of the alignment plays a crucial role in pattern formation
[F. Ginelli, F. Peruani, M. Bar, and H. Chaté, Phys. Rev. Lett. 104, 184502 (2010)]
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021 I _'=" I o 1 N -t
I ./ o ] (¢>:<ﬁzeze’° Yt
8.08 0.1 0.12 0.2 k=1

[watch them using VLC!]




The symmetry of the alignment plays a crucial role in pattern formation
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Symmetries!
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The symmetry of the alignment plays a crucial role in pattern formation
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If we observe a very small sgstem size or using a small box in a large system,

particles behaves as shown in the movie



The symmetry of the alignment plays a crucial role in pattern formation
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We are looking at the behavior of the system for this noise amplitude
Ginelli, FP, Baer, Chate, PRL (2010)



The symmetry of the alignment determines the type of macroscopic order

* A mean-field approach to understand collective motion

27

,C = DydouC +1(p), [e’)@ ( 0C @, 1)U, 9’)) C ((9,1?)]

J 0

noise alignment

Ferromagnetic alignment — U(6,8) = — cos( — 6)

Nematic alignment————> [/ (4,6') = — cos® (6 — &)
~ Ferro Nema
(a) (b) ,
06 : s | ' -
To4 e D05 .
O, Z / o 0 O J;-_
% 50 'y J

3.14

g 620 6  °*®° [Peruani et al., 2008]



The symmetry of the alignment determines the type of macroscopic order

* A mean-field approach to understand collective motion

2T
0;C = DgOggC' + ~(p)0y |Og do'C (0", t)U(9,8") | C(0,t)

J 0

noise alignment
Ferromagnetic alignment — U(#,8') = — cos(6 — §')
Nematic alignment————> [/ (4,6') = — cos® (6 — &)

Ferro Nema




Gas-liquid-like transitions in active matter systems



Gas-liquid-like transitions in active matter

Coupling between local orientation, density and local particle speed!
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Each particle can perform two actions:
.. I . I 1) Migrate according to its velocity direction

2) Reorient its velocity direction

- - Peruani, Klauss, Deutsch, Voss-Boehme, PRL (2011)



Gas-liquid-like transitions in active matter

1) Migration according to its velocity direction

Tha((x.v)—= (y=x4+vVv,v)) =

0

T

if node y 1s empty
if node y 1s occupied

- - Peruani, Klauss, Deutsch, Voss-Boehme, PRL (2011)




Gas-liquid-like transitions in active matter

!
!

1) Migration according to its velocity direction

0

I Tha((x.v)—= (y=x4+vVv,v)) =

T

if node y 1s empty
if node y 1s occupied

—rpp P Peruani, Klauss, Deutsch, Voss-Boehme, PRL (2011)




Gas-liquid-like transitions in active matter

(c) |

1507,

2) Reorient its velocity direction

Tr((x.v) = (x.w)) =explg Y (w[V(y)))

y £A(x)

Peruani, Klauss, Deutsch, Voss-Boehme, PRL (2011)



Gas-liquid-like transitions in active matter

(c) |

1507,

!

2) Reorient its velocity direction

Tr((x.v) = (x.w)) =explg Y (w[V(y)))

y £A(x)

Peruani, Klauss, Deutsch, Voss-Boehme, PRL (2011)



Gas-liquid-like transitions in active matter

>
1 — LA . As g is increased, we observe:
@e L=97 |
08 |« L=193 : : - , .
| | * Jamming
0.6 | | s . .
A () * moving jams
Y oal | () f / | .
M R Coam * bands
strong clustering | ¢ Aafﬂé jams | oriented bands
02+ . ! . " . .
i gliders | and a transition to orientational order!
e i | (H} I i I
% 05 g%1 I5¢g 2

=

g Peruani, Klauss, Deutsch, Voss-Boehme, PRL (2011)



Gas-liquid-like transitions in active matter

>
J
o « Gas-liquid-like transition
glm  Second orientational order

5000

Different behavior

at low and high densities
(particularly evident at full occupancy)




Gas-liquid-like transitions in active matter

Order of the phase transition at high and low density

Results at “high” (=full occupancy) density

» The problem with full occupancy can be mapped onto the 4-Potts model
* The 4-Potts model exhibits a second order phase transition
* Then, our model exhibits a second order transition at d=1 !

1

0.8 —0.65

0.6 0.6
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Gas-liquid-like transitions in active matter

Are these transition similar to the equilibrium gas-liquid transitions?

Can we map non-equilibrium to equilibrium?



Gas-liquid-like transitions in active matter

Equations of motion for the i-th particle:

X; = v(n;))u(®;) +2Dyo (1)

N
: y :
0; = - E g(|x;i —x;|/R)sin(6; —6;) ++/2Dgn; (1)
;-
j=1

Number of neighbors: 7; = Z?{zlé’qxi — X|/R)

Active speed: |v(n;)u(6; )l

L

lv(p) = exp(—1p)| u(6;) = (cos(6;), sin(6;))

dependency with the number of neighbors/local density

Barré, Chetrite, Muratori, Peruani, J. Stat. Phys. (2014)



Gas-liquid-like transitions in active matter

We can write the previous equations in the following dimensionless form:

vo/ (L De) Dy = DyDy/v}

| /
/

.
dd";f =©@v(n)u(d;) + €y/2Dy0;(7)

do;

- N
— = _g > g(& —X;j)/a) sin(6; — 6;) + v/2n; (D)

l _}'=1




Gas-liquid-like transitions in active matter

Evolution of the empirical density

g — V. (v(p(x, D)) fu(x, 6, 1))
7 , ,
_I_p(x 5 36 (fd(x 6, r)/d9 sin(@ — 6") fa(x, 0 f))
2
+W];d + 2D, V? fy —I—f (n(x 0, f)\/ﬁ)

Lo Y2Diy (cr(x, 0. r)\/ﬁ) |
N\

JN
N/

Gaussian noise delta correlated




Gas-liquid-like transitions in active matter

Instead of working with fd with can look at the evolution of the first n Fourier modes of fd:

p(X, 1) =/d6’fd(x,9,f) —> density

P(x,1) = / dou(®) fy(x,v,0,1) _ polarization

Their evolution are given by:

5 ., 2D
— = —&V.(vP DV V. t
af € (U )+8 X p+€ \/ﬁ (E('xayﬂ ))

X Lvepm+ (L-1)p+envie+ [Zqeyvn+o (=
— = ——¢V (v = — £ —n(x,y, —
o 20 WP T, X Ny N




Gas-liquid-like transitions in active matter

The noise term are given by:

e (6, ¥, 1) = / 46 sin 0/ Tan(x, v, 6, 1
iy (6, ¥, 1) = — / 46 cos 03/ Tan(x, v, 6, 1)

E(x,v,1) = /de\/ﬁa(x, v,6,1).

With correlations:

1
(e, y, O (x', ¥, 1)) > 8(x — xS (y — y)8(t — r’)zp(x, y, 1)

1
(ny(x, vy, Ony(x', ¥, 1)) > 8(x — x")8(y — y)é(t — r’)ip(x, y, 1)

(nx(x, y, DNy (x’, ¥, 1)) >~ 0
(Ex,y, DEX, Y, 1)) = 8(x —x)8(y = y)s(t —t)p(x,y,1).



Gas-liquid-like transitions in active matter

The evolution of P is faster than the evolution of the density
and asymptotically we expect P=0, which means that at order € we can expect:

—1 [27 1
P=c¢ — V(v(p)p) + =1
2(1- %) Ni-1%

If we insert this expression into the equation for the density we find:

1 v
V- _V/[v + D, .V?
il P [v(p)p] xVp

2Dy \F v

p

PR




Gas-liquid-like transitions in active matter

The previous equation can be rewriten as a Lagevin eq. of the following form:

» _y !
ik o] (x) NS

V(X, 1)

Where we define:

1
Ulpl(x) = EV : (;}(_—p)iv[v(p)p]) + Dy V?p

2

(vx, y, Hvx’, ¥, 1)) = Dlpl(x,x)8(r — 1)

and in addition:
pv*(p)

(-3

Dlpl(x, x') = 0,9y [b[p](x)8(x — X')] + 3y dy [b[p](x)8 (x — X)]

blp]l =2Dyp +



Gas-liquid-like transitions in active matter

We derive the associated FP for the previous Lagevin equation:

ot~ [ ax—— Wlp]
W—‘/ X5 UIPI0RD)
1 / /
v | e |/ APl X sy f]

()We look for solution of the following type (formal solution of the previous eq.):

o] ~ NSl —— S[p] = / dxs (p(%))

After some calculations, we arrive at:

(=~ o

yoo [ v+ pu(p)V(p) 2Dy
sT(p) = —
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