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Efficient simulations of quantum evolutions of spin-1=2 systems are relevant for ensemble quantum

computation as well as in typical NMR experiments. We propose an efficient method to calculate the

dynamics of an observable provided that the initial excitation is ‘‘local.’’ It resorts to a single entangled

pure initial state built as a superposition, with random phases, of the pure elements that compose the

mixture. This ensures self-averaging of any observable, drastically reducing the calculation time. The

procedure is tested for two representative systems: a spin star (cluster with random long range

interactions) and a spin ladder.
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One of the goals of quantum computers is the simulation
of quantum systems. While quantum processing is ideally
cast in terms of pure states, experimental realizations are a
major challenge [1] met only for very small systems [2].
The alternative use of statistical mixtures of pure states, as
the spin ensembles in standard NMR experiments [3–6],
led to the development of ensemble quantum computation
(EQC) [7] that allowed useful algorithm optimizations
[8,9]. Recently, EQC was experimentally implemented in
a 12-qubits system [10], and much larger quantum registers
[11] were prepared to assess its stability against deco-
herence. Hence, an efficient evaluation of ensemble
evolutions is needed. Analytical solutions of ensemble
dynamics, either from the integration of the Liouville–
von Neumann equation [12] or the alternative Keldysh
formalism [13,14] are limited to special cases (e.g.,
[15,16]). Thus, one has to resort to numerical solutions.
One can describe an ensemble of M spins by using the
2M � 2M density matrix, but this quickly reaches a storage
limit as M increases. Thus, a typical exact diagonalization
method on a desktop computer slightly exceeds a dozen
qubits. Alternatively, the use of wave functions combined
with the Trotter-Suzuki decomposition [17,18] overcomes
this limitation because it uses vectors of size 2M. However,
the average over individual evolutions of a large number of
components of the ensemble takes a long time. Here, this
limitation is overcome by profiting of quantum parallelism
[19] to evaluate the ensemble dynamics of any observable
evolved from a ‘‘local’’ initial condition. The idea is that
when evaluated on single pure states that are a superposi-
tion of all the elements of the ensemble, these observables
become self-averaging. This reinforces the suggestions
that one can avoid ensemble or thermal averages by using
a single pure state [20,21]. Reference [20] considers a
subsystem with the reduced density matrix derived from
a pure state, where the subsystem is entangled with an
environment which has a much bigger size. The resulting
reduced density matrix describes the microcanonical en-
semble without resorting to the equiprobability postulate of

statistical mechanics. Following a similar inspiration,
we focus on the nonequilibrium dynamics of any given
observable. The key is that the initial nonequilibrium
state has a local character; i.e., starting from an equilib-
rium ensemble state, a perturbing excitation acts on a
small portion of the system. A number of useful tech-
niques to simulate dynamics of a small system in the
presence of a mixed bath that involve averages over ran-
dom states [18,22] could be interpreted as particular cases.
Specifically, an analytical justification of the numerically
observed self-averaging property in some particular sys-
tems [22] follows from our results.
While our method is general and can be applied to any

mixed many-body system, we focus on the time evolution
of the observable of greatest interest in NMR experiments,
the local polarization [3–5]. We consider two spin configu-
rations that are representative of physical situations of
contrasting topology. One is a spin ladder which is a variant
of the linear chains that are exactly solvable [16,23] and
that are known to have strong mesoscopic echoes [4,5].
The other is a spin star, a cluster with random long-range
interactions that is a fair representation of many molecular
crystals [24]. Here, mesoscopic interferences becomes less
intense [25].
Ensemble vs pure entangled state.—We take the en-

semble of all the many-spin states j�m
i i ¼ j mi � j�ii,

where m spins are in the state j mi and the j�ii are a base
for the remainingM�m spins. These states have a statis-
tical weight pi. The probability to find m

0 spins in the state
j m0 i at time twhen them spins were in state j mi at t ¼ 0
is

Wens
m0mðtÞ ¼

X2M�m0

f¼1

X2M�m

i¼1

pijh�m0
f je�iĤ t=@j�m

i ij2: (1)

Here, jh�m0
f je�iĤ t=@j�m

i ij2 is the probability of finding m0

spins in the state j m0 i within the many-spin state j�m0
f i at

time t provided that, at t ¼ 0, the m spins were in the state
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j mi within the state j�m
i i. The sum runs over all possible

initial and final states. An example of this is the local
correlation function where m ¼ m0 ¼ 1, j mi ¼ j"in is
the state of the nth spin, and j m0 i ¼ j"in0 is the state of
spin n0. The polarization of spin n0 at time t provided that
the spin n was up at time t ¼ 0 is given by Pens

n0nðtÞ ¼
2½Wens

11 ðtÞ � 1=2� [4]. The expression (1) involves D ¼
2M�m different dynamics for each of the initial states; see
Fig. 1(a). This number is directly related to the dimension
of the Hilbert space. Thus, the number of computed evo-
lutions increases exponentially with M. Our goal is to
extract the same information in a shorter time. The paral-
lelism implicit in quantum superpositions [19] suggests
that the desired correlation functions are contained in the
dynamics of a single pure state; see Fig. 1(b). The pure
state is built as an arbitrary linear superposition of compo-

nents of the ensemble; i.e., j�f�g
purei ¼ P

D
i¼1 �ij�m

i i, where
�i ¼ ffiffiffiffiffi

pi
p

ei’i with random ’i. Thus, the correlation func-

tion is given by

Wf�g
m0mðtÞ ¼

XD0

f¼1

jh�m0
f je�iĤ t=@

XD

i¼1

�ij�m
i ij2: (2)

Here f�g denotes the set of all the �i involved in the initial
pure state and D0 ¼ 2M�m0

. Note that the substantial dif-
ference between Eq. (1) and Eq. (2) is that the sum on i in
the former is outside the square modulus while in the latter
is inside. Rewriting Eq. (2) as

Wf�g
m0mðtÞ ¼

XD0

f¼1

XD

i¼1

pijh�m0
f je�iĤt=@j�m

i ij2

þ XD0

f¼1

XD

i�i0¼1

�i�
�
i0 h�m

i0 jeiĤt=@j�m0
f i

� h�m0
f je�iĤt=@j�m

i i; (3)

the second term contains the initial correlations between
the components of the initial state. These cross termsmake

the difference between Wens
m0mðtÞ and Wf�g

m0mðtÞ. By perform-

ing an extra average over N� realizations of the possible
initial states, we obtain

hWf�g
m0mðtÞiN� ¼ 1

N�

XN�

f�g
Wf�g
m0mðtÞ: (4)

Under this average, each element in the cross term goes to

zero, hence Wens
m0mðtÞ ¼ limN�!1hWf�g

m0mðtÞiN� . Thus, by in-

creasing the number N� of evolutions, expression (4) con-
verges toWens

m0mðtÞ as described by the central limit theorem.

The variance ofWf�g
m0mðtÞ is Var ¼ limN�!1hWf�g

m0mðtÞ2iN� �
hWf�g

m0mðtÞi2N� . At this stage, the four phases ’i sum-

ming up in each exponent are correlated. This
enables terms where the exponent cancels out. These

survive the average and contribute to Var ¼
P
D
i�i0¼1 pipi0 jh�m

i0 jeiĤ t=@P̂fe
�iĤ t=@j�m

i ij2, where P̂f ¼P
D0
f j�m0

f ih�m0
f j. In the last expression

jh�m
i0 jeiĤ t=@P̂fe

�iĤ t=@j�m
i ij2 ¼ wi0i is the probability to

find the state j�m
i0 i after the subunitary evolution

eiĤ t=@P̂fe
�iĤ t=@ provided that the initial state was j�m

i i.
The projector P̂f involves only part of the Hilbert

space states. Hence,
P
D
i0 wi0i � 1 implies Var ¼

P
D
i;i0¼1
i�i0

pipi0wi0i � P
D
i pimaxfpi0 g ¼ maxfpi0 g. Thus, by

using Chebyshev’s inequality the probability that

jhWf�g
m0mðtÞiN� �Wens

m0mðtÞj � " (i.e., the error exceeds a de-

sired precision ") is lower than Var=ðN�"2Þ �
maxfpi0 g=ðN�"2Þ. For an homogeneous distribution, pi ¼
1=2M�m; hence maxfpi0 g=ðN�"2Þ ¼ 2=ð2M�mN�"2Þ. The
locality of the initial condition ensures that M � m; thus,

as 2M�m increases, one getsWf�g
m0mðtÞ 	 Wens

m0mðtÞ in a single
realization; i.e., the cross terms in Eq. (3) self-average to
zero even for N� ¼ 1.
Spin systems with different coupling networks.—To

illustrate the use of Eq. (4) we consider typical situations
of high-field solid-state NMR. Here, the Hamiltonian is
simplified by using a frame that eliminates the Zeeman
contribution [12]. We are left with the spin-spin inter-

action, Ĥ ¼ P
M
i<j½aijÎzi Îzj þ 1

2bijðÎþi Î�j þ Î�i Îþj Þ�, where

bij=aij ¼ 0 represents an Ising-like coupling, aij=bij ¼ 0

an XY Hamiltonian, aij=bij ¼ 1 the isotropic one, and

aij=bij ¼ �2 a dipolar (secular) Hamiltonian truncated

with respect to a Zeeman field along the z axis. The
ensemble relevant for NMR experiments is in the infinite
temperature limit [6,12], i.e., pi ¼ 1=2M�1, where j�ii are
simple tensor product states in the Zeeman basis. The
initial conditions are states with a local excitation at site
n over a background level which is determined by the zero
magnetization of the other M� 1 spins [3–5].

FIG. 1 (color online). (a) Schemes of the quantum evolution of
an ensemble and (b) a pure state. Each j�m

i i ¼ j mi � j�ii
contains a complete base, j�ii, of the M�m spins.
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We calculate the local polarization of site n0 at time t
provided that it was polarized (n ¼ n0) at time t ¼ 0 in two
different spin systems which have well differentiated kinds
of dynamics: (a) A ladder of spins interacting through an
XY Hamiltonian, as shown in Fig. 2(a). There, aij ¼ 0,

bi;iþ1 ¼ biþM=2;iþM=2þ1 ¼ bx, and bi;iþM=2 ¼ by. Here,

the exact dynamics presents long-lived recurrences (meso-
scopic echoes) shown by the black line in Fig. 3(a), due to
the high symmetry in the coupling topology [4,5]. The
method also reproduces the exact solutions in isolated
spin chains with both pure XY or XY plus Ising interactions
[23]. Moreover, the results confirm that inclusion of Ising
terms or interchain couplings leads to decoherence degrad-
ing the mesoscopic echoes [5]. (b) A star system [see Fig. 2
(b)] in which all the spins interact with each other through a
dipolar coupling aij=bij ¼ �2. The coupling intensities

are given by a Gaussian random distribution with zero
mean and variance �2. In this case, the local polarization
decays with a rate proportional to the square root of the
local second moment �2

0 ¼ 9
4 ðM� 1Þ�2 [12] of the

Hamiltonian and recurrences are negligible [25]. The black
line (exact solution) of Fig. 3(b) shows the local polariza-
tion of this system.

Testing the quantum parallelism.—In order to compare
Eq. (4) to the ensemble average of Eq. (1), as well as its
dependence on the choice of the phases ’i, we calculate
the evolution for two types of initial states. First, a pure
entangled state is constructed by choosing ’i randomly.

Thus, assuming n ¼ 1, j�f�g
purei becomes j�f�g

ent i ¼P
2M�1

i¼1
1ffiffiffiffiffiffiffiffi
2M�1

p e�i’i j"i1 � j�ii. The correlation function,

Eq. (4), calculated with this state is hWent
11 ðtÞiN� , giving

the polarization hPent
11 ðtÞiN� ¼ 2ðhWent

11 ðtÞiN� � 1=2Þ. The

second case is a product (not entangled) state. It is built
with the nth spin-up and all the others in a linear combi-
nation of spin-up and spin-down, with equal probability

and arbitrary phase. Assuming n ¼ 1, we have j�f�g
prodi ¼

j"i1
NQ

M
l¼2 j!il, where j!il ¼ 1ffiffi

2
p ðj#il þ j"ile�i�lÞ with

�l random variables. Note that this state can be rewritten in

the form of j�f�g
purei where the resulting phases ’i are cor-

related. Here, the correlation function (4) is hWprod
11 ðtÞiN�

and the polarization is hPprod
11 ðtÞiN� ¼ 2hWprod

11 ðtÞiN� � 1.

The local polarization, Pens
11 ðtÞ ¼ 2ðWens

11 ðtÞ � 1=2Þ, ob-
tained with Eq. (1), for the 14-spin ladder system, is shown
in Fig. 3(a) with a black line. Square and circle scatter lines

correspond to the temporal evolution of hPprod
11 ðtÞiN� and

hPent
11 ðtÞiN� , respectively, with N� ¼ 1. The agreement be-

tween Pens
11 ðtÞ and hPent

11 ðtÞi1 is excellent, while hPprod
11 ðtÞi1

has a dynamics quite different from that of the ensemble.
The difference between the dynamics of the two initial
pure states is due to the different number of independent
random phases of each state. In the random entangled state,
there are 2M�1 independent phases that make the cancella-
tion of the second term on the right-hand side of Eq. (3)
possible. However, the number of independent phases for
the product state is M� 1. This implies that there are
multiple correlations between the phases in the cross terms
inhibiting their self-cancellation. The triangle scatter line

in Fig. 3(a) shows the dynamics of hPprod
11 ðtÞiN� . It becomes

indistinguishable from the exact dynamics provided that

N� * 630. The relation between N
prod
� ¼ 630 and Nent

� ¼
1 is determined by the number of independent phases
associated with the dimension of the sampled portion of

the Hilbert space [20], i.e., 8192 ¼ Nent
� 2M�1 ’ Nprod

� ðM�
1Þ ¼ 8190.
Figure 3(b) shows the local polarization for the spin star

system. The complexity of this system washes out any
possible recurrence for long times leading to a form of

spin ‘‘diffusion.’’ For N� ¼ 1, both hPprod
11 ðtÞi1 and

hPent
11 ðtÞi1 are almost indistinguishable from the ensemble

dynamics. This contrasts with the spin ladder where one

would need hPprod
11 ðtÞi630 to get a fair description. Notably,

hPent
11 ðtÞi1 is an excellent approximant of the ensemble for

both cases. This is because in the star system the cross

terms h�1
fje�iĤ t=@j�1

i ih�1
i0 jeiĤ t=@j�1

fi of Eq. (3) decay to
a value of the order of 1=2M within a time scale determined
by the Hamiltonian second moment �2

H ¼ M
2 �

2
0. Thus,

even the few M independent phases are enough to cancel
the cross terms. In contrast, in the ladder system, the terms

h�1
fje�iĤ t=@j�1

i ih�1
i0 jeiĤ t=@j�1

fi present strong correla-

tions and thus the role of the phases becomes more
relevant.
In summary, we developed a method to overcome the

limitations of the numerical calculations of an ensemble
spin dynamics for large number of spins. Instead of evolv-
ing every one of the 2M�m initial states, when 2M � 2m,
we evolve a single random entangled state. The procedure
exploits the quantum parallelism implicit in quantum
superpositions [19] to reproduce the ensemble dynamics
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FIG. 2. Panel (a) shows the coupling network of a spin ladder.
Panel (b) contains the coupling network of a spin star in which
all the spins interact with each other.

PRL 101, 120503 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

19 SEPTEMBER 2008

120503-3



of any observable. This result supports a novel view of the
foundation of equilibrium statistical mechanics [20,21].
Moreover, even the nonequilibrium statistical theory of
the density matrix describing an ensemble in the thermo-
dynamic limit could now be based on single states. Here,
we observe that even for systems as small as 14 spins, the
equivalence between a randomly correlated pure state and
an ensemble state holds. This is a consequence of the
exponential increase of the dimension of the Hilbert space
with the system size. The power of the method is enhanced
when combined with the Trotter-Suzuki decomposition.
We showed that the contribution of the extra correlations
of the initial pure state to the dynamics becomes negligible
by increasing 2M�m, the ratio between the size of the
system Hilbert space and that of the subsystem where the
nonequilibrium initial condition is supported. The method
developed here allows for very efficient dynamical calcu-
lations of common experimental situations where large
ensembles are involved. Conversely, it prescribes possible
pure input states for a quantum simulator to yield ensemble
evolutions.
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FIG. 3 (color online). Local spin dynamics in a 14-spin sys-
tem. The ensemble dynamics (solid line) is compared with that
of entangled and product pure states. The square and circle

scatter points correspond to hPprod
11 ðtÞiN� and hPent

11 ðtÞiN� for N� ¼
1, respectively. (a) The extreme of a spin ladder with by=bx ¼
1=10. The triangle scatter points correspond to hPprod

11 ðtÞiN� with

N� ¼ 630, the lower value yielding the ensemble dynamics. A
strong mesoscopic echo is evident. (b) A site in a spin star with
random dipolar interactions. No mesoscopic echo is evident.
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