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Abstract

Quantum computers, which process information encoded in quantum mechanical systems, hold

the potential to solve some of the hardest computational problems. A substantial obstacle for the

further development of quantum computers is the fact that the life time of quantum information

is usually too short to allow practical computation. A promising method to increase the life

time, known as dynamical decoupling, consists of applying a periodic series of inversion pulses

to the quantum bits. In the present review, we give an overview of this technique and compare

different pulse sequences proposed earlier. We show that pulse imperfections, which are always

present in experimental implementations, limit the performance of dynamical decoupling. The loss

of coherence due to the accumulation of pulse errors can even exceed the perturbation from the

environment. This effect can be largely eliminated by a judicious design of pulses and sequences.

The corresponding sequences are largely immune to pulse imperfections and provide an increase of

the coherence time of the system by several orders of magnitude.
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I. INTRODUCTION

During the last decade, it was shown that quantum mechanical systems have the po-

tential for processing information more efficiently than classical systems [1–4]. However, it

remains difficult to realize this potential because quantum systems are extremely sensitive

to perturbations. These perturbations come from external degrees of freedom or from the

finite precision with which the systems can be realized and controlled by external fields.

This loss of quantum information to the environment is called decoherence [5]. Different

results show that a state is more sensitive to decoherence as the number of qubits increases

[6–13]. This is also manifested by the impossibility to time reverse a quantum evolution

when an initially localized excitation spreads over a system [14–17]. As the information

is distributed over a increasing number of qubits, the evolution becomes more sensitive to

the perturbation [17, 18]. In a similar vein, this sensitivity with the systems size limits the

distance over which one can transfer information or analogously limits the number of qubits

that one can control reliably [19, 20]. This is manifested as a localization effect for the

quantum information [19–27]. In order to overcome these limitations for allowing quantum

information processing with large number of qubits, methods for reducing the decoherence

effects have to be developed.

One can tackle the problem by correcting the errors generated by the perturbations,

but this is only possible if the perturbation is small enough to keep the quantumness of

the system [28–30]. Therefore, one needs first to reduce the perturbation effects. The

pioneering strategies for reducing decoherence were introduced in the Nuclear Magnetic

Resonance (NMR) community, in particular by Erwin Hahn who showed that inverting a

spin-1/2 system (a qubit) corresponds to an effective change of the sign of the perturbation

Hamiltonian and therefore generates a time reversal of the corresponding evolution [31]. This

leads to the formation of an echo that later was formalized as a Loschmidt echo [18]. These

manipulations were extended to the so-called decoupling methods [32–36], which disconnect

effectively the environment.

In the context of this review, we describe the environment as a spin-bath, without loss of

generality. Considering spins 1/2 as qubits, two different types of decoupling methods can be

distinguished. In the first case, the qubit system is well distinguished from the environment.

Its energy level splitting differs significantly from that of the bath. As a result, the coupling
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between them is much smaller than the difference of their energy level splittings. The

interaction can then always be approximated by an Ising-type (zz) interaction, which causes

dephasing of the system qubit but no qubit flips. The decoupling methods required for these

cases are called heteronuclear decoupling within the NMR community and they can involve

manipulation only on the spin-system [31–33, 35, 36] or only at the environment [37].

In the second case, the system and the environment have similar energy level splittings.

This is the case of a homonuclear system where the general form of the coupling must be

retained and it can induce flips of the system qubit as well as dephasing. In this case,

decoupling will generally affect the complete system plus “bath” [38–43].

In this review we focus on decoupling the system from the environment by applying

control pulses only to the system. During the last years this technique has gathered a lot of

interest because it requires relatively modest resources: it requires no overhead of information

encoding, measurements or feedback. The method is known as dynamical decoupling (DD).

Since its initial introduction [44], a lot of effort has been invested to find sequences with

improved error suppression [45–54]. The optimal design of DD sequences depends of the

different sources of errors that have to be eliminated. The first to be considered is the

nature of the SE interaction, i.e., a pure dephasing when only the 1/2-spin operator Sz is

present, a pure spin-flip interaction (Sx and/or Sy are present) or a general interaction with

Sx, Sy and Sz. Sequences like Carr-Purcell (CP) and Carr-Purcell-Meiboom-Gill (CPMG),

which use rotations around a single axis, are useful when only two operators of Sx, Sy and

Sz are present, but in order to fight against a general interaction, pulses along different

spatial direction have to be applied. The shortest sequence that fulfills this condition is the

XY-4 sequence [35, 44]. An actual implementation must take into account, in addition to

the above issues, the effect of pulse imperfections [45, 54–58]. Fighting the effect of pulse

errors was in fact the original motivation for the development of the XY-4 sequence [35].

Another experimental consideration is the amount of power deposited in the system, which

often must be kept small to avoid heating effect or damage to the sample.

DD technique is becoming an important tool for quantum information processing [49, 54–

56, 59–67] as well as in spectroscopy [68–71] and imaging [72–75]. In most cases, the goal is

to preserve a given input state, but it may also be combined with gate operations [76–80].

In many cases, experimental results show that one of the main limitations for improving

the decoupling efficiency are the non-ideal properties of the decoupling pulses [54–56, 67].
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Decoherence effects due to the environment can in principle be reduced by shortening the

cycle time τc. However, in reality the pulse lengths are finite and the DD cycle time is limited

by the available hardware. It is therefore important to find the best finite time sequences for

decoupling [45, 54, 55, 67, 81–84]. Furthermore, the pulses do not only have finite lengths,

they also do not implement perfect rotations. Thus, increasing the number of pulses can

result in a large overall error that destroys the qubit coherence instead of preserving it. As

a result, the performance of the decoupling sequence may have an optimum at a finite cycle

time [54, 55, 67]. In this review, we summarize the different DD strategies for fighting the

effect of pulse imperfections and we show that they must be considered in the designing of

useful DD sequences.

The paper is structured as follows: In section II we give some basics of dynamical de-

coupling, in section III we introduce the effects of pulse imperfections and in section IV we

describe the strategies to fight against the imperfections effects. In the last section we draw

some conclusions and perspectives.

II. BASICS OF DYNAMICAL DECOUPLING

A. The system

We consider a single qubit Ŝ as the system that is coupled to the bath. In a resonantly

rotating frame of reference [85], the free evolution Hamiltonian is

Ĥf = ĤSE + ĤE , (1)

where ĤE is the environment Hamiltonian and

ĤSE =
∑

β

(
bβz

ˆ
Eβ

z Ŝz + bβy
ˆ
Eβ

y Ŝy + bβx
ˆ
Eβ

x Ŝx

)
(2)

is a general interaction between the system and the environment. Êβ
u are operators of the

environment and bβu the SE coupling strength. The index β runs over all modes of the

environment. Dephasing is due to an interaction that affects the z component of the spin-

system operator, and spin-flips are done trough the x and/or y operators. A heteronuclear

spin-spin interaction involves a pure dephasing interaction. This type of interaction that is

naturally encountered when the system can be distinguished from the environment can be
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found in a wide range of solid-state spin systems, as for example nuclear spin systems in

NMR [32, 33, 55, 65], electron spins in diamonds [56], electron spins in quantum dots [86],

donors in silicon [87], etc. In other cases when the system and environment have similar

energies, the SE interaction can include terms along the x, y and z axis.

B. DD sequences with a single rotation axis

DD is achieved by iteratively applying to the system a series of stroboscopic control

pulses in cycles of period τc [44]. Over that period, the time-averaged SE interaction can be

described by an averaged or effective Hamiltonian [88]. The goal of DD is the elimination

of the effective SE interaction. This can be seen by looking at Hahn’s pioneering spin-

echo experiment [31] (See Fig. 1b). It is based on the application of a π-pulse to the spin

system at a time τ after the spins were left to evolve in the magnetic field. This pulse

effectively changes the sign of the system-environment (SE) interaction, in this case the

Zeeman interaction with the magnetic field. Letting the system to evolve for a refocusing

period or time reversed evolution during the same duration τ generates the echo. If the

magnetic field is static, the dynamics is completely reversed and the initial state of the

spin recovered. This is observed as the echo. However if the magnetic field fluctuates, its

effect cannot be reversed completely. Thus, the echo amplitude decays as a function of the

refocusing time [31, 32]. This decay contains information about the time-dependence of the

environment.

To reduce the decay rate of the echo due to a time-dependent environment, Carr and

Purcell introduced a variant of the Hahn-echo sequence, where the single π-pulse is replaced

by a series of pulses separated by intervals of duration τ [32]. This CP sequence reduces the

changes induced by the environment if the pulse intervals are shorter than the correlation

time of the environment. However, as the number of pulses increases, pulse errors tend

to accumulate. Their combined effect can destroy the state of the system, rather than

preserving it against the effect of the environment. This was noticed by Meiboom and Gill

who proposed a modification of the CP sequence for compensating pulse errors, the CPMG

sequence [33].

CP and CPMG sequences are useful only when two of the spin operators Sx, Sy and Sz
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Figure 1: Dynamical decoupling pulse sequences. The empty and solid rectangles represent 90◦

and 180◦ pulses, respectively and N represents the number of iterations of the cycle. (a) Initial

state preparation. (b) Hahn spin-echo sequence. (c) CPMG sequence. (d) CDD sequence of order

n, CDDn = Cn and C0 = τ .

are affected by the environment. They can be written as

fτ/2Ŷ fτ Ŷ fτ/2, (3)

where fτ is a free evolution operator and Ŷ is a π pulse around the Y axis (and the analogous

for X̂). The difference between the CP and CPMG sequence is the orientation of the

rotation axis with respect to the initial condition. For applications in quantum information

processing, this distinction is not relevant, since all operations have to be independent of

the initial condition. CP or CPMG is the shortest sequence of pulses for decoupling a SE

interaction that affects only two of the spin components Sz, Sy and Sz [44].

Usually the average Hamiltonian generated by DD sequences can be described by a series

expansion, such as the Magnus expansion[89]. All the higher-order terms in this expansion

describe imperfections, which reduce the fidelity of the sequence and should be eliminated.

Improving the DD performance is therefore related to reducing the contribution of higher

order terms. This is closely related to efforts for developing better decoupling sequences for

NMR [34]. For quantum information processing (QIP), this lead to the design of sequences
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that make DD more effective, such as concatenated dynamical decoupling [46, 81]. An im-

portant innovation was due to G. Uhrig [47], who proposed a sequence with non-equidistant

pulse spacings, while all the standard sequences like CPMG are based on equidistant pulses.

The UDD sequence is defined by

UDDN = fτN+1
Ŷ fτN Ŷ ...Ŷ fτ2 Ŷ fτ1 , (4)

where the delays τi = ti − ti−1 are determined by the positions

ti = τc sin
2

[
πi

2 (N + 1)

]
(5)

of the pulses with tN+1 = τc and t0 = 0. The lowest nontrivial order is equal to the CPMG

sequence, UDD2 = CPMG.

The effect of the non equidistant pulses can be discussed in the context of filter theory:

DD can be considered as an environmental noise filter, where the distribution of pulses

generates different filter shapes as a function of the frequencies. The overlap of this filter

function with the spectral distribution of the environmental noise determines the decoherence

rate [90]. Analogously, the filter shapes can be connected to diffraction patterns induced by

interferences in the time domain [65]. The Uhrig DD sequence was shown theoretically to

be the optimal sequence for reducing low frequency noise [47, 90, 91]. This prediction was

confirmed experimentally [49, 61, 68]. However, it appears that non-equidistant sequences

perform better only for particular noise spectral densities that increase for higher frequencies

and have a strong cut off. In usual case, where the spectral density decrease smoothly

with the frequency, as usually happens with NMR spin baths, equidistant sequences were

predicted [90–92] and demonstrated [49, 55, 56, 62, 63, 65]to be the best option [65].

This filter function description can be traced back to previous NMR approaches [93] and

to work on universal dynamical control [94]. Choosing the times for the pulses leads to a

variety of sequences that can be optimized according to the spectral density of the bath

[48, 49, 52, 92, 94–96].

If the SE interaction is a pure dephasing one, it is sufficient to apply pulses in one

direction. However because every experimental setup has finite precision, pulse errors create

an effective general SE interaction [55, 67, 81]. In this case, it was shown that sequences

that are designed for general SE interaction perform better than 1D sequences [54–56].
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C. DD sequences with multiple rotation axis

If the system-environment interaction includes all three components of the system spin

operator, decoupling can only be achieved if the sequence includes rotations around at least

two different axes. The first decoupling sequence of this type is the XY-4 sequence, which

alternates rotations around the x- and y-axes (see Fig. 1 d, n = 1). This sequence was

initially used to eliminate the effect of pulse errors in the CP and CPMG sequences [35]. It

is also the shortest sequence for DD for general SE interactions [44]. In quantum information

processing, where we consider the initial state to be unknown, the CP and CPMG sequences,

which correspond to a train of identical π-pulses, are identical [55]. However, their effect

on the quantum state depends on the (generally unknown) initial condition: If the initial

condition is oriented along the rotation axis of the pulses, flip angle errors of the first pulse

are refocused by the second pulse. However, for components perpendicular to the rotation

axis, the pulse errors of all pulses add and cause rapid decay of the coherence, even in the

absence of system-environment interactions [35, 55]. This motivated the development of the

XY-4 sequence. In addition, pulse imperfections convert an ising-type system environment

interaction into an effective general SE interaction [55, 67, 81], which is not eliminated

by the CP/CPMG sequence, but is partially eliminated by the XY-4 sequence. In the

QIP community, the XY-4 sequence is usually referred to as periodic dynamical decoupling

(PDD).

The XY-4 sequence is also the building block for concatenated DD (CDD) sequences

that improve the decoupling efficiency [46, 81]. The CDD scheme recursively concatenates

lower order sequences to increase the decoupling power. The CDD evolution operator for its

original version for a recursion order of n is given by

CDDn = Cn = Ŷ Cn−1X̂Cn−1Ŷ Cn−1X̂Cn−1, (6)

where C0 = fτ and CDD1=XY-4. Figure 1 shows a general scheme for this process. Each

level of concatenation reduces the norm of the first non-vanishing order term of the Magnus

expansion of the previous level, provided that the norm was small enough to begin with

[46, 81]. This reduction comes at the expense of an extension of the cycle time by a factor

of four. If the delays between the pulses are allowed to be non-equidistant like in UDD, it

becomes possible to create hybrid sequences, such as CUDD [50] and QDD [53, 97, 98].
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III. EFFECTS OF IMPERFECTIONS

Since the precision of any real operation is finite, the control fields used for decoupling

introduce errors. Depending on the sequence, these errors can accumulate. If the number

of pulses is large and the sequence is not properly designed, the accumulated pulse errors

can lead to severe loss of coherence than the effect of the environment. Designing effective

decoupling sequences that suppress environmental effects without degrading the system,

even if the control fields have errors, requires a careful analysis of the relevant errors and

appropriate strategies for combining rotations in such a way that the errors cancel rather

than accumulate.

One example of a non-ideal control pulse is its finite duration, which implies a minimum

achievable cycle time. The effects introduced by finite pulse lengths have been considered in

different theoretical works [45, 81, 82]. These works predict that high order CDD or UDD

sequences in general lose their advantages when the delays between pulses or pulse length are

strongly constrained. While the limitation on the cycle reduces the maximal achievable DD

performance, pulse errors can be even more destructive. In most cases, the dominant cause

of errors is a deviation between the ideal and the actual amplitude the of control fields. The

result of this amplitude error is that the rotation angle experimentally implemented deviates

from π, typically by a few percent. Another important error occurs when the control field is

not applied in resonance with the transition of the qubit. This off-resonant effect produces

a rotation in which the flip angle and the rotation axis deviate from the ideal ones.

An example of the destructive effects of pulse imperfection is illustrated in the left panel

of figure 2. Here, we measured the magnetization decay of the 13C nuclear spins during two

different DD sequences. The sample used for this experiment was polycrystalline adamantane

[54, 55, 65, 67]. The dephasing of the nuclear spins originates from the interaction with

an environment consisting of 1H nuclear spins and can be considered as a pure dephasing

process. The first sequence considered in the figure is CPMG. In this case we can observe that

the decay of the magnetization is imperceptibly slow when the system is initially oriented

parallel to the rotation axis of the pulse (longitudinal state). As we discuss below, this is

an indication that the pulse errors have no effect on this initial state. In contrast, for a

transverse initial state, the errors of the individual pulses accumulate and lead to a rapid

decay, as shown in Fig. 2. A similar behavior is found for the UDD sequence [55, 65].
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Figure 2: Comparison between two basic DD sequences: CPMG, which is not robust against

errors, and the self-correcting sequence XY-4. The left panel shows the normalized magnetization

as a function of time. The delay τ = 40µs between the pulses is constant and identical for both

sequences. The panels on the left shows the real part of the process matrices χ for CPMG and

XY-4. The imaginary part, which is very small, is not shown.

The second DD sequence considered in Fig. 2 is the XY-4 sequence, which consists of

pulses applied along the x and y axes. The alternating phases of the pulses results in a

partial cancellation of pulse errors, independent of the initial condition [35, 36]. As a result,

the performance of this sequence is much more symmetric with respect to the initial state

in the xy-plane and the average decay times are significantly longer [54, 55].

In the context of quantum information processing, it is important that the performance

of gate operations be independent of the initial conditions (which typically are unknown).

A common choice for quantifying the performance of a general quantum operation is then

the fidelity F [99]:

F =
|Tr(AB†)|√

Tr(AA†)Tr(BB†)
. (7)

Here, A is the target propagator for the process and B the actual propagator. For the
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present situation, where the goal is a quantum memory, the target propagator is the identity

operation I.

We can not assume that the actual propagators are unitary. We therefore write the

process as

ρf =
∑

nm

χmnEmρiE
†
n (8)

where ρi and ρf are the density matrices at the beginning and end of the process. The oper-

ators Em must form a basis. For the present case, we choose them as Em = (I, σx, iσy, σz).

The ideal and actual processes can therefore be quantified by the matrix elements χmn. For

the target evolution, the χ-matrix is

χI =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




. (9)

The matrix elements for the actual process are determined experimentally by quantum

process tomography [3, 100]. We use them to calculate the process fidelity from eq. (7). In

figure 2, we compare the real part of the experimental χmatrices for the two sequences. After

one cycle, the process matrices for both sequences represent a quantum operation that is

close to the identity operation. The fidelity between the experimental matrices and the ideal

matrix (9) is 0.988 and 0.989 for the CPMG and XY-4 cycles, respectively. Measured over

40 cycles, the process matrices of the two sequences differ significantly from the identity

operation but also from each order. For the XY-4 sequence, the non-vanishing elements

are χ11 and χ44, while for CPMG the non-vanishing elements are χ11 and χ22. The two

matrices represent therefore qualitatively different processes. The XY-4 sequence destroys

all transversal magnetization, in this case the resulting density matrix is

ρf = χ11ρi + χ44σzρiσz. (10)

This corresponds to a projection of the density operator onto the z-axis, i.e. to a complete

dephasing of the transverse components in the xy-plane.

The CPMG sequence, conversely, projects the density operator onto the x-axis:

ρf = χ11ρi + χ22σxρiσx. (11)
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The CPMG is a spin lock [101] sequence that allows retains magnetization in the x direction

but destroys all components perpendicular to it. Since a real experimental implementation

always generates a distribution of control field amplitudes, spins at different positions precess

with different rates around the direction of the rf field. As a result, the perpendicular

components become completely randomized after a sufficiently large overall flip angle as

shown in the left panel of Fig. 2.

The performance of experimentally accessible DD sequences is limited by the pulse errors

[54–56, 67]. In many situations, the dominating error contributions are flip angle and offset

errors. In the next section we show different strategies to make decoupling sequences robust

against such errors.

IV. ROBUST DECOUPLING SEQUENCES

We have to make decoupling insensitive to pulse imperfections. Different possibilities for

generating high-fidelity sequences have been proposed in the context of quantum information

processing [46, 54, 81]. Here, we discuss two possible approaches: first we show that it is

possible to replace individual refocusing pulses by compensated pulses that implement very

precise inversions, and then we discuss sequences that are inherently robust, i.e. insensitive

to the imperfections of the individual pulses.

A. Robust Pulses

The simplest approach to make a sequence robust is by replacing every standard pulse

by a robust composite pulse [102]. The composite pulses are sequences of consecutive pulses

designed to be robust against various classes of imperfections generating therefore rotations

that are close to the ideal rotation even in the presence errors. Particularly useful for

quantum information applications are those composite pulses that produce compensated

rotations for any initial condition, denominated in the NMR literature as class-A pulses

[102].

Recent experiments have successfully used composite pulses to demonstrate the resulting

increase of the performance of different DD sequences [54, 56]. These works have imple-
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mented the composite pulse defined as:

(π)π/6+φ − (π)φ − (π)π/2+φ − (π)φ − (π)π/6+φ, (12)

which is equivalent to a robust π rotation around the axis defined by φ followed by a −π/3

rotation around the z axis [103]. For cyclic sequences, which always consist of even numbers

of π rotations, the effect of the additional z rotation vanishes if the flip angle errors are

sufficiently small.

A comparison between standard sequences (not using robust pulses) against sequences

with robust pulses has been reported in [54]. It was observed that robust pulses improve

the performance at high duty cycles. However, for low duty cycles, standard sequences

perform better. This is due to the shorter cycle time of the standard sequence if constant

duty cycles are compared. Thus, if the objective is only to preserve a quantum state, the

best performance is obtained at high duty cycles, using robust pulses. The best sequences

that are suitable for parallel application of quantum gate operations are the self-correcting

sequences discussed below.

The composite pulses are usually designed to correct flip angle errors and offset errors.

For compensating the effects introduced by the finite length of pulses, some theoretical works

have proposed that a finite pulse could be approximated as an instantaneous one by using

an appropriate shaped pulse [104–106]. These works has provided analytical and numerical

evidence that a careful shape design can strongly affects the performance of decoupling

sequences.

B. Self-correcting sequences

An alternative to the use of composite pulses consists in making the decoupling sequences

fault-tolerant without compensating the error of each pulse, but by designing them in such

a way that the error introduced by one pulse is compensated by the other pulses of the cycle

[54]. A straightforward strategy for designing improved sequences consists in concatenating

one basic building block cycle into a longer and robust cycle.

The XY-4 cycle is often chosen as the building block for constructing self-correcting se-

quences. This cycle is the shortest DD sequence that cancels the zero-order average Hamil-

tonian for a general SE interaction and also has the advantage of being partially robust to
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pulse imperfections.

In the spectroscopy and quantum computing communities, two versions of the XY-4

sequence are used [67]. The basic cycle originally introduced in NMR shows reflection

symmetry with respect to the center of the cycle. In contrast to that, the sequence used

in the quantum information community is time asymmetric. One consequence of this small

difference is that in the symmetric version, the echoes are formed in the center of the windows

between any two pulses, while in the case of asymmetric cycles, the echoes coincide with

every second pulse, as shown in figure 3. The separation in time between the echoes is

therefore twice as long in this case. If the environment is not static, the larger separation of

the echoes leads to a faster decay of the echo amplitude [67].

If a robust pulse only contains π rotations, as in the case of (12), it is also possible

to convert such a composite pulse into a decoupling cycle by inserting delays between the

individual π rotations. This approach has been used in [54] to build an self-correcting

sequence. The basic cycle is then

KDDφ = fτ/2(π)π/6+φfτ (π)φfτ (π)π/2+φfτ (π)φfτ (π)π/6+φfτ/2. (13)

The self-correcting sequence is created by combining 5-pulse blocks shifted in phase by π/2,

such as [KDDφ - KDDφ+π/2]
2, where the lower index gives the overall phase of the block.

The cyclic repetition of these 20 pulses is referred to as the KDD sequence [54].

In Fig. 4, we show how strongly errors in the flip angles of individual pulses affect the

fidelity of the pulse sequence. Neglecting the effect of the environment, we calculate the

fidelity F after the application of 20 pulses as a function of the flip angle error. The figure

compares the fidelities for the CPMG, XY-4 and KDD cycles. For the CPMG sequence, the

fidelity drops to <95% if the flip angle error exceeds ≈ 2 %. For the XY-4 sequence, this

bandwidth increases to ≈ 10 % and for KDD to ≈ 30 %. KDD and XY-4 are obviously much

less susceptible to pulse imperfections than CPMG. The low fidelities observed for CPMG

is experimentally manifested by the fast decay of the transverse components, such as Mx in

Fig. 2.
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C. Combining basic cycles

Every decoupling sequence contains unwanted terms in the average Hamiltonian. They

can be reduced by combining different versions of the basic cycles in such a way that some

of the error terms cancel. Two different versions of this procedure have been used: The

basic cycles can be applied subsequently [36] or one cycle can be inserted into the delays of

another cycle [46, 81]. The first approach was introduced in NMR, e.g. for designing high-
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performance homonuclear decoupling sequences [38–43] or in high-resolution heteronuclear

decoupling [31–33, 35–37]. Examples of DD sequences that can be constructed using this

approach are XY-8 and XY-16 sequences [36]. Here the XY-8 is created combining a XY-

4 cycle with its time-reversed image while XY-16 is created combining the XY-8 with its

phase-shifted copy.

The second approach is the concatenation scheme proposed by Khodjasteh and Lidar

[46, 81]. It generates the CDD sequence of order n + 1 by inserting CDDn cycles into the

delays of the XY-4 sequence (see figure 1). Ideally, each level of concatenation improves the

decoupling performance and the tolerance to pulse imperfections; in practice, higher order

sequences do not always perform better. It has been theoretically predicted [45, 81, 82] and

later observed experimentally that the finite duration of the pulses and constrained delays

between pulses result in the existence of optimal levels of concatenation [54, 55].

In figure 5, we demonstrate how the well-designed combination of basic cycles can lead

to extended cycles with better error compensation. Here, we consider as the leading exper-

imental imperfections deviations of the amplitude and frequency of the pulse. Neglecting

the effect of the environment, we calculate the fidelity F after applying 1680 pulses to the

system as a function of the two error parameters. Each panel contains the color-coded fi-

delity for one of six different decoupling sequences. In the top panels we can clearly see

the improvement in the error tolerance due to the CDD scheme of concatenation. Panels

1, 4 and 5 show the same result for the sequential concatenation scheme, where only two

cycles are combined at each step: concatenation of the XY-4 cycle with its time-inverted

and phase-shifted copies forms the XY-8 and XY-16 sequences. The 16-pulse XY-16 cycle is

significantly more robust than the 84-pulse CDD3 cycle. The best performance is achieved

by the KDD sequence, whose cycle consists of 20 pulses .

In Fig. 6, we compare the experimental performance of different self-correcting sequences.

The performance of the CDD sequences always saturates or decreases with increasing duty

cycle under the current experimental conditions [54]. However, instead of saturating, the

relaxation time for the KDD sequence continues to increase, as in the case of sequences with

robust pulses [67]. The KDD sequence combines the useful properties of robust sequences

with those of sequences of robust pulses and can thus be used for both quantum computing

and state preservation.
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Figure 5: Error tolerance of different self-correcting sequences. The upper row shows the calculated

fidelity F for CDD sequences, while the lower row shows the results for XY-8, XY-16 and KDD

sequences. Each panel shows the fidelity after 1680 pulses as a function of flip-angle error and

offset errors. The regions where the fidelity is lower than 0.95 are shown in white.

D. Time reversal symmetry

The symmetry of the basic building blocks has a key role in determining the performance

of the concatenated higher order sequences. Two sequences constructed according to the

same rules from a basic block have different propagators if the basic blocks are symmetric

or not [54, 67]. If we concatenate four XY-4 cycles to the XY-16 sequence, e.g., we obtain

new cycles, which are time-symmetric, independent of which version of the XY-4 sequence

was used for the building blocks. Although all the odd order terms vanish in the average

Hamiltonians of both versions, the even order terms of the sequences that are built from

asymmetric blocks contain additional unwanted terms [67]. The different behavior of se-

quences consisting of symmetric vs. asymmetric blocks is illustrated in figure 7. If we start

from the symmetric form of XY-4, the resulting XY-16 sequence shows much better per-

formance than the sequence using the asymmetric XY-4 as the building block. Analogous

results were obtained for the two versions of the XY-8 sequence [67].

Earlier experiments showed two different contributions to the overall fidelity loss [67]: A
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form of the XY-4 cycle, and XY-16 (A), built from the asymmetric block. The delay τ = 10µs

between the pulses is constant and identical for both sequences. The left panel shows the process

fidelity as a function time. The right panel shows the Bloch vector in the xy plane at different

times. The color code in the right panel denotes the time evolution, blue for the initial state and

red for the final state.

precession around the z-axis, which can be attributed to the combined effect of flip-angle

errors and an overall reduction of the amplitude, which results from the system-environment

interaction. The combination of precession and reduction of amplitude is illustrated in right

panel of Fig. 7. In this figure we show the xy-components of the magnetization at different
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times during the XY-16 sequence. If the XY-16 sequence is built by the asymmetric form of

XY-4 a distinct precession around the z-axis is observed. This causes a deviation from the

desired evolution and reduces therefore the fidelity of the process. However, for the sequence

consisting of symmetric blocks, the precession is negligible. These results suggest that pulse

errors are better compensated by concatenating symmetric building blocks.
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Figure 8: Experimental fidelity decay for CDD2 built from symmetric and asymmetric blocks. The

delay τ = 10µs between the pulses is constant and identical for both sequences.

The same concept can also be applied to CDD sequences. The conventional concatenation

scheme of eq. (6) uses asymmetric building blocks and is not compatible with the symmetric

version of XY-4. A new concatenation scheme was therefore proposed in [54, 67]. In this

scheme, the symmetrized version of CDD is constructed as

CDDn+1 = [
√

CDDn −X − CDDn − Y −
√

CDDn]
2. (14)

In Fig. 8 we compare the process fidelities for the two versions of the CDD2 sequence. As in

the case of XY sequences, clearly, the symmetrized version, CDD2(S), shows a significantly

improved performance, compared to the standard CDD2(A) version. In Ref. [67], it was

experimentally observed that the performance of all DD sequences based on symmetric

building blocks is better or equal to that of sequences using non-symmetric building blocks.

This behavior is consistent with general arguments based on average Hamiltonian theory

[107, 108].
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V. CONCLUSION AND PERSPECTIVES

Dynamical decoupling is becoming a standard technique for preserving the coherence of

quantum mechanical systems, which does not need control over the environmental degrees

of freedom. The technique aims to reduce decoherence rates by attenuating the system-

environment interaction with a periodic sequence of π pulses applied to the qubits. The

pioneering strategies for decoupling were introduced in the context of NMR spectroscopy

[31]. Since then, many different decoupling sequences have been developed in the context of

NMR [32, 33, 35, 36] or quantum information processing [44, 46, 47, 50, 53, 54, 81, 97, 98].

Generally, we can divide the DD sequences in two groups: (i) Sequences that involve

pulses in a single spatial direction and (ii) sequences that contain pulses in different spatial

directions. The type (i) sequences are strongly sensitive to pulse errors and are only capable

of suppressing the effects of a purely dephasing environment or pure spin-flip interaction.

Examples of such DD sequences are CPMG and UDD. The second group can suppress a

general SE interaction and usually exhibits better tolerance to experimental imperfections.

Example of such sequences are the XY-family (XY-4, XY-8 and XY-16), the CDD sequences

and the KDD sequence.

Recent experiments have successfully implemented DD methods and demonstrated the

resulting increase of the coherence times by several orders of magnitude [54–56, 67]. These

works also showed that the main limitation to the reduction of the decay rates are the im-

perfections of the pulse. Two approaches have been used to correct this. The first approach

replaces the inversion pulses by robust composite pulses [102], which generate rotations that

are close to the target value even in the presence of pulse errors. In this case, the pulses

are corrected individually. The second approach consists in designing the decoupling se-

quences in such a way that the error introduced by one pulse is compensated by the other

pulses, without compensating the error of each pulse individually. The properties of basic

decoupling cycles can be further improved by concatenating basic cycles into longer and

more robust cycles. The concatenation can be made either by combining symmetry-related

copies of a basic cycle subsequently [36] (resulting in the XY-8 and XY-16 sequences) or by

inserting the basic cycle into the delays of another cycle [46, 81] (CDD sequences).

The time reversal symmetry of the basic building blocks is a useful criterion for minimizing

error contributions. It has been demonstrated that the sequences built from symmetric build-
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ing blocks often perform better and never worse than sequences built from non-symmetric

blocks [54, 67]. This is a significant advantage, considering that the complexity of the se-

quences based on symmetric or asymmetric blocks are identical.

Earlier experiments [54] showed that the best sequences that are suitable for parallel ap-

plication of quantum gate operations are the symmetric self-correcting sequences. However,

as the delay between pulses decreases, sequences with robust pulses perform better. Thus, if

the objective is only to preserve a quantum state, the best performance is achieved by using

robust pulses to correct pulse errors. On the other hand, the KDD sequence introduced in

[54] combines the useful properties of self-correcting sequence with those of robust pulses

and can thus be used for both quantum memory and quantum computing.

During the last years, many advances have been achieved. However, for the application

of the technique in real quantum devices, further studies will certainly be required. So far,

most work has focused on single qubit systems. In the future, more experimental tests will be

needed with multi-qubit systems. In the field of quantum computation, another important

development may result from the combination of dynamical decoupling sequences with those

techniques used to implement robust quantum gates [28, 30, 109, 110]. Since DD does not

require auxiliary qubits or measurements, it can be used as an economical alternative to

complement quantum error correction. Some theoretical works [76–79] proposed methods for

combining the two methods but no experimental test was carried out to date. Future research

on dynamical decoupling will also focus on applications outside of quantum information

processing. Recent experiments have applied DD pulse sequences, for example, to probe the

noise spectrum directly [69–71] and detect weak magnetic fields [72–75].
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