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Robustness of spin-coupling distributions for perfect quantum state transfer
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The transmission of quantum information between different parts of a quantum computer is of fundamental
importance. Spin chains have been proposed as quantum channels for transferring information. Different
configurations for the spin couplings were proposed in order to optimize the transfer. As imperfections in the
creation of these specific spin-coupling distributions can never be completely avoided, it is important to find out
which systems are optimally suited for information transfer by assessing their robustness against imperfections
or disturbances. We analyze different spin coupling distributions of spin chain channels designed for perfect
quantum state transfer. In particular, we study the transfer of an initial state from one end of the chain to the other
end. We quantify the robustness of different coupling distributions against perturbations and we relate it to the
properties of the energy eigenstates and eigenvalues. We find that the localization properties of the systems play

an important role for robust quantum state transfer.
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I. INTRODUCTION

Quantum information processing has been extensively
studied during the past years [1]. One of the main challenges
of actual physical implementations has been the manipulation
of the quantum information with sufficient accuracy to prevent
errors. In particular it is important to be able to transfer
quantum information between different elements of a quantum
computer [2]. In this respect, spin chain systems have been
proposed as quantum channels for the transmission of quantum
states, where the spins act as the quantum bits [3—10]. Many
systems of this kind have been explored in order to improve
their performance for the state transmission. One of the goals
is to find systems that allow for state transfer without any
dynamical manipulations during the transfer procedure or
with only minimal additional requirements. For example, local
control only on the boundary spins in either an initialized
chain [11,12] or an unpolarized chain [13,14] can cause a large
enhancement of the transmission fidelity from one end of the
chain to the opposite end; even perfect state transfer (PST)
could be achieved by engineering the entire set of spin-spin
couplings in the chain [15-18].

Very few of these systems have been implemented experi-
mentally, for example using small numbers of spins in liquid
state NMR [19-23] and slightly larger numbers of them in
solid-state NMR [24,25]. Spin defects in diamond seem to
show a promising direction for near future implementations
[26-28]. Important experimental challenges are posed by
the lack of individual addressibility of the spins and, more
importantly, by their vulnerability to decoherence [29]. Im-
perfections in the implementation of spin-chain systems also
cause decoherence and were predicted to produce localization
of the quantum information [31-34] which was recently
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demonstrated experimentally [35]. Consequently, a successful
characterization of these PST protocols should consider these
errors in order to find the optimal one. Two PST protocols that
require engineered spin-couplings [16,17] have been analyzed
in this respect considering static perturbations [18,31,36].
Other important points to consider are the timing errors on
the time when the PST is achieved [18] and the speed of
transfer of the different protocols [37]. But, considering that
the number of possible systems that could be used for PST
[17,18] is infinite, a performance comparison between them
should be aimed at finding a system which is as robust against
perturbations as possible. For that purpose it is important to
find out which intrinsic properties of a system make it robust
against perturbations. In this work, we tackle these questions
analyzing different energy distributions that allow for PST
and compare their robustness against static perturbations. We
characterize the robustness of the systems by calculating their
transmission fidelity. In order to find the relevant properties
of the systems that make them robust, we analyze how the
eigenstates and eigenenergies are perturbed. We find that the
localization properties of a system are intimately connected to
its robustness.

The paper is organized as follows, in Sec. II we present the
XX model describing the quantum spin chain and the necessary
conditions for perfect state transfer. In Sec. Il we analyze
different energy eigenvalue configurations of the system and
the corresponding spin-coupling distributions. In Sec. IV A we
analyze the fidelity of the transfer of the different configura-
tions, and the influence of perturbations on the transmission is
discussed in Section IV B. Subsequently, in Sec. V, we analyze
how the individual perturbed eigenstates and eigenvalues
contribute to the dynamics of quantum information transport.
Finally, in Sec. VI we give the conclusions.

II. PERFECT STATE TRANSFER CHANNELS

We consider a chain of N spins 1/2 (qubits) with a
modulated XX interaction between nearest neighbors. Taking
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into account an external magnetic field, the Hamiltonian is
Ji v y _y bi .
HZZE(Ui O'i+1+0'i'0'i'+l)—230';, (1
1 1
where o/ are the Pauli operators of the ith spin, b; is the local
external field and J; is the exchange coupling.

The aim is to transmit a quantum state | o) stored on the first
spin (i = 1) to the last spin of the chain (i = N), where |{) =
a |0) 4+ B |1) is a given superposition of a spin down and up
respectively and the remaining spins of the chain are initialized
in the spin down state. The Hamiltonian (1) preserves the total
magnetization along the z-axis because [H,X;0°] = 0, i.e., the
number of excited spins is conserved. Because the initial state
|\Wy) is a superposition of the eigenstate |0) = |00...0) and the
state |1) = [1,0......0), the component |0) is conserved and
the component |1) evolves within the one excitation subspace
spanned by the basis states [i) = |0...01;0...0). The state of the
system at a given evolution time ¢ is

N
(W@) = e G =al0) + B O, Q)

i=l1

where fi(t) = (ile""#"/"|1). To measure the effectiveness of
state transfer between sites 1 and N, we determine the fidelity
F(t) = (Wolpn ()| W) averaged over all possible initial states
|Wy) distributed uniformly over the Bloch sphere, which is
given by [3]

2
[fn(@)lcosy | fn()l +l, 3)

3 6 2

where y = arg | fy(¢)|. Because the phase y can be controlled
by an external field once the state is transferred, we consider
cosy = 1. PST is achieved when F = 1.

For a spin chain possessing mirror symmetry with respect
to the center, i.e., J? = J3_, and b; = by.1_;, the necessary
and sufficient condition for PST is

F(t) =

wr1 — W = 2my + D/ tpsr, 4

where the set of eigenenergies {wy} is ordered, wp < Wi41-
The condition (4) must be fulfilled for all pairs of successive
energies, where the m; may be arbitrary integers. The shortest
time tpst for which (4) is fulfilled is the first time at which PST
is achieved [17,38]. Since (4) implies strictly periodic time
evolution, PST occurs again and again, at all odd multiples of
IpsT.

III. ENERGY AND SPIN-COUPLING DISTRIBUTIONS

Every set of integers my in (4) leads to a unique energy
spectrum enabling PST and hence, as we shall explain below,
to a unique set of coupling constants J;. Therefore, there
are infinitely many spin chains allowing for PST. But, are
all of them equally efficient for transferring information?
How is their PST capability affected by perturbations through
inaccuracies in the coupling constants or from coupling to
external degrees of freedom? What properties are necessary to
stabilize the system against such perturbations?

We tackle these questions by studying the transmission
robustness of different PST channels in the presence of static
perturbations. We characterize these spin-channel systems by
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their energy eigenvalue distributions. A given spectrum that
satisfies the condition (4) defines a unique Hamiltonian with
positive symmetric couplings J;, which can be obtained by
solving an inverse eigenvalue problem [39]. For simplicity we
choose wp = —wy+1-k, Yk, which imposes b; = 0, Vi [38].
In order to study a range of different eigenvalue distribu-
tions systematically, we start from the case of an equidistant
energy spectrum, m; = const. in Eq. (4), which was discussed
in Ref. [16]. We vary that spectrum by distributing the
energy values more densely either in the center or toward
the boundaries of the energy spectrum. The class of energy
spectra which we discuss can be parametrized as follows:

wy(kp,0) = —Aw,,0sgnk — ko)l(kg — |k — koD)* — kg].

(5
We assume that N is odd, kK = 1,..., N numbers the energy
eigenvalues in ascending order, as before, and kg = % marks

the center of the spectrum. The shape of the spectrum is
controlled by an exponent o and a reference index kg which can
assume two values; kg = k;, = ko or kg = k. = 0. The overall
width of the spectrum is controlled by A, «). The equidistant
energy spectrum (constant density of eigenvalues) is given
by wy(k.,1). The density of eigenvalues in the center of the
spectrum increases for both wy (k.,n) and wy (kp, %) with integer
n > 2. A larger density of eigenvalues close to the boundaries
of the spectrum is obtained for wy(kp,n) and wy (kc,%). The
shapes of the two spectra defined by these two possibilities for
given n are different, as are those of wy(k.,n) and wk(kb,’%),
respectively. For non-integer exponent « the energies of Eq. (5)
normally do not fulfill the commensurability condition Eq. (4)
and have to be slightly readjusted to make PST possible.
Figure 1(a) shows the energy eigenvalues for the equidistant
spectrum, wy(k.,1), along with the four possibilities just
discussed, for n = 2. The corresponding exchange couplings
J; (normalized by the maximum coupling strength Jy,,x) are
shown in Fig. 1(b). The coupling distribution determines the
transmission velocity as we shall discuss in Sec. IV.

IV. PERFECT STATE TRANSFER STABILITY
OF ENERGY DISTRIBUTIONS

A. Unperturbed transfer

To compare the perfect state transfer performance of the
spin-channels with the different energy eigenvalue distribu-
tions of Fig. 1, we calculated their averaged fidelity with
Eq. (3). Figure 2 shows the fidelity of state transfer from
one end of the chain to the other, as a function of time.
The time scale is given in units of the first perfect state
transfer time fpgy. At this point it is important to note that
the dynamics of the system contain at least two other relevant
time scales besides the time fpst which we shall use as a
unit of time. The first such time scale is the spin-channel
clock time 2ty i.e., the characteristic time of the information
propagation within the chain, also called mesoscopic echo
time [40]. For a chain supporting spin waves as elementary
excitations, e.g. the uniformly coupled XX or Heisenberg
chains, t is fixed by the maximum group velocity of the
spin waves [3,41-43]. The group velocity of excitations with
dispersion w(k) (where k now temporarily denotes the wave
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FIG. 1. (Color online) (a) Energy eigenvalue distributions
wy(kg,a). The symbols represent the energy values and the lines give
the exact functional dependence of Eq. (5). (b) Exchange couplings
determined by solving the inverse eigenvalue problem for each of the
spectra given in (a).

number) is given by v, = ‘é—‘]:’. Unfortunately this concept
breaks down for the systems of interest here, since translational
invariance is broken by the non-uniform couplings J; and the
wave number is no longer defined. Our numerical results show
that fpsy can be larger than 7,,, see for example, Fig. 2(c)
and 2(d). At t, the excitations created at r = 0 at site i = 1
interfere constructively but not perfectly at site i = N. Perfect
interference occurs only later, at t = tpgr, after the excitations
have traveled back and forth between the ends of the chain
many more times. Fig. 2(a) and (b) show that the linear
wyi(ke, 1) and quadratic wi(k.,2) distributions achieve perfect
transfer without secondary maximum of the fidelity at some
earlier time. For those two systems fpst is thus equal to the 7,
of the spin chain. To make a quantitative analysis of the speed
of the transfer, we consider as a reference the known value
tf(,, for a homogeneous spin-chain with J; = J in Eq. (1).
In that system, constructive interference at site N occurs
at time 7y, ~ 3% [43] related with what is often called the
quantum speed limit [37,44-46]. The transfer obtained at that
instant is not perfect, but by switching couplings on and off to
perform consecutive swap operations, perfect transfer may be
achieved at t,, " ~ Z' [46,47]. In terms of the maximum
coupling Jmax, the PST time for the linear distribution is

tl],‘;%ar = 47;N which is two times faster than the consecutive

swaps assuming J = Jyax, tll;é‘%“ = 11,,"", but slower than the
free evolution, 7585 = Z1y, in a homogeneous chain. The
other distributions are about 15 times slower than the linear
case as listed in the caption of Fig. 2. The second important
time scale is given by the duration of the PST maximum
of the fidelity, i.e. the time during which the fidelity is very
close to unity. At can be interpreted as the time of residence
of the perfectly transmitted state on the last site of the chain;
it determines the timing precision required for perfect state
read-out. While the quadratic distribution is much slower than
the linear one in terms of transfer time, its advantage is a

PHYSICAL REVIEW A 84, 022311 (2011)

0.;— k(W \ .
0.61 B ]
0.3k k(k 1) linear b

0.8} 1/2) 7

Averaged Fidelity F(t)

Normalized time t/tPST

FIG. 2. Averaged fidelity of the state transfer in a N = 31 spin
chain for the different energy distributions shown in Fig. 1 as
a function of time. The linear wi(k.,1) and quadratic wy(k.,2)
distributions achieve the perfect transmission with the first echo,
while the other cases achieve it after several echoes. In panels (d)
and (e), the black regions are due to fast oscillations because of the
coupling strength oscillations shown in Fig. 1 b. The transfer times are
given by #iged = Y ~ ytlisear with y = 15.4, 17, 15, 14.5
foraquadratic, wi(ky, %), wy(ke, 5) and wy (kp,2) distribution respec-
tively.

much longer window time. We will return to this point later
in Sec. V.

B. Perturbed transfer

So far, we have discussed the performances of different
spin-channels without any external perturbation. However,
since the perfect engineering of all spin couplings is highly
improbable, the study of the performance of different spin-
coupling distributions under perturbations by flawed spin
couplings becomes relevant. To study the robustness of the
spin chains against perturbations we introduce static random
spin-coupling imperfections quantified by §;

Ji — Ji(1 +8), (6)

where each §; is an independent uniformly distributed random
variable in the interval [—e&,,e;]. €; is a positive real
number that characterizes the maximum perturbation strength
relative to J;. The kind of disorder depends on the particular
experimental method used to engineer the spin chains. Imple-
mentations using superconductor flux qubits seem to match,
to some extent, this model for the perturbation [30].

We calculate numerically the fidelity time evolution F () =
(F(t))y, averaged over N, different realizations of the
random imperfection values §;. Figure 3 shows the averaged
fidelity evolution for the different energy eigenvalue distribu-
tions for a common &; value. Only two cases are strongly
distinguished by their robustness against the perturbation: the
linear distribution, which was already studied by De Chiara
et al. [31], and the quadratic distribution. As the near-perfect
echoes in Fig. 3(a) and 3(b) show, disorder at the level of

7 = 1072 does not significantly affect PST in those two cases.
In contrast, Figs. 3(c) and especially 3(d) and 3(e) show arather
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FIG. 3. (Color online) Averaged fidelity of the state transfer in
a N = 31 spin chain with random perturbations of strength ¢, =
1072 averaged over N,, = 10? realizations for the different energy
distributions from Fig. 1 as a function of time. The colored lines in (c),
(d) and (e) show F'(¢) for the systems without perturbation (¢; = 0).

rapid decay of the fidelity (black line) down to a useless level.
The colored lines in Figs. 3(c), 3(d) and 3(e) show the fidelities
of the unperturbed systems for comparison.

Figure 4 shows in detail the comparison of the 9th echo
between the linear and the quadratic distributions. The
quadratic distribution is obviously more robust than the linear
distribution, and also its At is larger. Also shown are the 9th
echoes for n = 3 (colored line) and for n = 10, respectively.
These data show that both the maximum fidelity and the length
At of the time window for the state read-out increase with n
for energy eigenvalue distributions of type wy (k.,n). However,
the increase from n = 3 to n = 10 is insignificant compared
to the increase fromn = 2 ton = 3.

The increase of Ar with growing n can be explained by the
changes of the exchange couplings J; shown in Fig. 1(b). When
n changes from 1 to 2 the J; decrease close to the boundaries
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FIG. 4. (Color online) Averaged fidelity of the state transfer in a
N = 31 spin chain with random perturbations of strength £; = 1072
averaged over N,, = 10? realizations for eigenvalue distributions
wy (ke,n). Shown is the range of times around the 9th echo of the PST
in the unperturbed chain, for n = 1,2,10 (black lines), and n = 3
(faint colored line very close to the n = 10 results).
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FIG. 5. (Color online) Averaged fidelity at time fpgy as a function
of the perturbation strength ¢; for the different energy distributions
from Fig. 1 with N = 31 and N,, = 10%.

and increase in the center of the chain. This trend continues
even more strongly for larger values of n (data not shown).
The small spin couplings close to the boundaries of the chain
prevent the spreading of the information once it is localized at
one of the chain ends, thus leading to larger values of Ar.

We now focus on n = 2 because the robustness properties
are similar for larger values of n, but it should be kept in
mind that energy eigenvalue distributions wy (k.,n) with larger
n are generally more robust. To determine the robustness of
the different distributions, we calculate the averaged fidelity
F(tpst,£7) as a function of the perturbation strength &, for
the first PST time #psT determined from the unperturbed case.
Figure 5 shows results for different energy distributions and
for a wide range of perturbation strengths. The linear and
quadratic distributions turn out to be the most robust ones
for all perturbation strengths of interest, yielding quite similar
results for weak perturbations (¢; < 0.2) where the fidelity
is larger than F = 0.9. For larger perturbation strengths, the
quadratic distribution is most robust, but probably not robust
enough for quantum information processing although it could
be relevant for other practical purposes where the experimental
errors lie in this region.

Recently, it has been shown that the relative decay of the
mesoscopic echoes between a perturbed evolution and the
corresponding unperturbed evolution could be used to deter-
mine and characterize the decoherence time of the spin-chain
channel [48]. Similarly, to determine the decoherence time for
each perturbation strength, we study the state transfer fidelity
for different PST echoes as a function of their respective
PST echo times t]’;ST = (2i — DtpsT, i.e., the times where the
i-th PST echo arrives at site N for an unperturbed evolution.
Figure 6 shows the fidelity f(tf;ST,e J) as a function of tf;ST,
for different perturbation strengths ¢;. The left panel shows
the fidelity for the quadratic distribution while the right panel
illustrates the linear distribution. The decoherence time, i.e.,
the decay time as a function of #jgy is longer for the quadratic
distribution than for the linear one, which could be relevant for
implementations purposes because it gives more opportunities
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FIG. 6. (Color online) Averaged fidelity at odd multiples of fpst
(symbols) for the linear and quadratic energy eigenvalue distributions,
wi(ke,n) (n = 1,2). Chainlengthis N = 31, averages were performed
over N,, = 10? realizations. Perturbation strengths are & = 0.01,
0.02,...,0.1.

to eventually perform a measurement. Additionally the fidelity
of the quadratic distribution converges to an asymptotic value
higher than that of the linear distribution due to the localization
effects caused by the small couplings in the borders, as
discussed above. Weak coupling between terminal qubits and
the intervening spin chain were used as key elements also
in other proposals for quantum information transfer by spin
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chains recently [11-14,49]. A quantitative analysis of the de-
coherence time merits a more careful study because of the dif-
ferent limiting values of the fidelity for different spin-coupling
distributions.

From Fig. 6 we can also see the importance of achiev-
ing PST with the first spin-wave, i.e., tpst ~ f37, because
the perturbation affects strongly the successive waves. For
example, the wk(kb,%) distribution, although it has similar
properties in the energy and coupling distributions compared
with the most robust cases, shows a strongly reduced transfer
fidelity because it achieves PST at a time 15 times longer
than ;.

V. ROBUSTNESS AND LOCALIZATION

We have shown that certain systems are more robust against
perturbations than others. In order to optimize the engineered
spin coupling distributions it is decisive to understand which
properties of the system are relevant for the robustness of
the perfect state transfer. To this end we determine how each
energy eigenstate contributes to the dynamics for each of the
spin-channels. We expand the states |i) (a single excitation
at site i) in the eigenstate basis |i) = ), ax;|W), where k
numbers the energy eigenstates in ascending order, as usual.
Figure 7 shows the weights P;; = |ai;|*, for the different
energy spectra from Fig. 1. The mirror symmetries with
respect to both the center of the chain and the center of
the energy spectrum are due to the spatial mirror symmetry

")
[

2

=

10 15 20 25 30
o Probability
Py
2
=
0
0 5 10 15 20 25 300 5 10 15 20 25 30
Eigenvector k
FIG. 7. Eigenvector probability P ; of the site (computational) states |i). P,; = a,f,i, where |i) = Y, ax;|W). The top part of each panel

shows the probabilities P, ; of the initial state [¥,) = |1), and thus shows which energy eigenstates contribute to the state transfer. The panel
labels refer to the different energy distributions given in Fig. 1, where (a) wy (k.,2) quadratic, (b) wy(k.,1) linear (¢) wy (kp, %), (d) wy(ke, %), and
() wr(kp,2).
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of the couplings, and the symmetric tridiagonal nature (with
zero diagonal) of the Hamiltonian matrix, respectively. Under
perturbations of the couplings the spatial symmetry of the
patterns of Fig. 7 is destroyed, while the energetic symmetry
is not. We observe that the degree of localization of the energy
eigenstates varies strongly between the different eigenvalue
distributions. The most robust distributions seem to generate
the most strongly localized energy eigenstates; in panels
(a), (b) and (c) of Fig. 7 each energy eigenstate basically
seems to be localized on two lattice sites. The quadratic
distribution [Fig. 7(a)] seems to have the most strongly
localized eigenstates; in particular the eigenstates that belong
to the center of the band are highly localized on the boundaries.
This is particularly clear from the upper panels in Fig. 7,
showing the contributions P ; of the energy eigenstates |k)
to the initial state |i = 1) with a single excitation localized at
the boundary of the chain. In comparison, the other energy
distributions show a larger spread in the contributions of the
energy eigenstates to each site eigenstate |i). Nevertheless,
we observe similarities of the distribution of P;; between
the linear, quadratic, and wy(kp, %) distributions. It has been
shown that the presence of localized states at the boundaries
of the spin chain can improve the transmission of quantum
states [12,14,50,51]. These localized states arise when the
coupling of the boundary sites is weaker than the coupling
between inner sites or if external fields are applied at the
boundary sites. Therefore, we study how the different energy
levels are affected by perturbations for the different energy
distributions.

We generated distributions of energy eigenvalues wy, for the
different kinds of unperturbed energy spectra and for different
perturbation strengths € ;. For small € ; we observe a symmetric
distribution of the perturbed eigenvalues w; around their
respective unperturbed values. The width of that distribution
scales with the perturbation strength. For larger values of
&y the distributions of the perturbed w; become asymmetric
with respect to the unperturbed energy level; the low-lying
levels tend to be pulled down, while the high-lying levels
are pushed up by the same amount. (The energy spectrum
of the perturbed Hamiltonian matrix is still symmetric.)
The value of e, where the asymmetry sets in depends
on the type of unperturbed energy spectrum and is largest
for the quadratic case. To see more quantitatively what is
going on in detail, we show in Fig. 8 the standard deviations
of the energy levels for the different kinds of unperturbed
spectra. Each data point represents an average over N,, = 10°
realizations of the random perturbations.

The symmetry of the data with respect to the center v = 0
of the energy spectrum and the fact that the zero energy
eigenvalue is not affected by the randomness at all are due
to the nature (symmetric, tridiagonal, zero diagonal elements)
of the Hamiltonian matrix. The key observation explaining the
differences in state transfer robustness is made by combining
figures 8 and the upper panels of Fig. 7. Those panels show
that for the quadratic energy spectrum wy(k.,2) the initial
state |i = 1) of the state transfer process is superposed from
a small number of energy eigenstates in the center of the
energy spectrum. In all other types of energy spectrum the
initial state shows a wider distribution in the energy quantum
number k. At the same time, the sensitivity to perturbations
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FIG. 8. (Color online) Standard deviation of the energy levels
|Awg, | = |ws, — wy| due to the perturbation with strength &, for the
different energy distributions of Fig. 1. For weak perturbations (small
&) the standard deviation turns out to be proportional to &;@max,
which we use as a unit here. The data shown are fore; < 0.1; N,, =
103 realizations were used for the calculations.

(which is what is shown in Fig. 8) shows a comparatively
wide minimum with value zero in the center of the spectrum,
whereas all other types of spectra show roughly constant
nonzero values in the central region of the spectrum, with
a single exceptional zero right in the center. The observed
particular robustness of the quadratic energy spectrum can
thus be ascribed to the fact that the initial state consists of a
particularly small number of energy eigenstates coming from a
part of the energy spectrum which is particularly insensitive to
perturbations in the spin coupling constants. For the less robust
distributions, the variance is roughly independent of the energy
in the center of the energy band, while for the quadratic energy
spectrum the variance decreases continuously towards the band
center. For that distribution (and for the two other distributions
shown in the upper panels of Fig. 7) all energy eigenstates are
quite strongly localized. A glance at Fig. 1(b) shows that the
corresponding coupling patterns have the smallest couplings
close to the ends of the chain, in the region where those energy
eigenstates are localized which are most important for the
state transfer. Since we discuss a constant relative strength &
of the disorder, the absolute changes of the couplings tend
to be smallest near the ends of the chain, causing only small
changes in the energy eigenvalues. That explains the particular
robustness of the quadratic distribution. We remark that while
the wy(kp, %) distribution is similar to the linear distribution,
it is less robust because it achieves the PST only after several
mesoscopic times (#y).

Another important aspect characterizing the robustness of
the transmission is the length of the window of time where high
fidelity is obtained for the transmitted state. In this context,
we are not only considering errors in the engineered spin
couplings, but also the timing error of the measurement [18].
To that end we analyze the term | fy(t)|> = [(N]|e~ 7/ |1)?
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from (3) at time #pst + 6¢. Taking into account the spatial
symmetry, | fy (tpst + 81)|? is given by

|fN|2 = | Z(_l)k-‘rs PsqlPk’le—i(wk—ws)(tPST+61)|

k,s
~ | Y P Pei(1 = 8t(oy — o)
k,s
812
+z27<wk — )’ — .|
~ 1 o PP ? 7
A —?; o1 Pr.1 (0 — ws)7, @)

where P;; = |(W|1)|>. Even without the Bloch-sphere av-
erage (3) which would be necessary for a comparison with
Fig. 2, the above result shows why the quadratic distribution
displays the longest window of time. The probabilities Py |
(see Fig. 7) are sharply peaked in the center of the energy
band and essentially zero otherwise. Furthermore, due to
the quadratic nature of the energy spectrum, the relevant
energy differences w; — wy are particularly small (see Fig. 1
a) making the fidelity deviate from unity only at rather large §¢
values.

VI. CONCLUSION

We have studied the robustness of spin chain systems
designed for perfect quantum state transfer (PST) under static
perturbations. We explored different PST systems by choosing
different energy spectra distributions that satisfy the PST
conditions. From the energy spectrum of a given chain, the
spin-spin coupling constant pattern can be obtained by solving
an inverse eigenvalue problem. The robustness of each system
was studied by calculating its transmission fidelity under static
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perturbations of the couplings. We found that robustness is
characterized by two main features. One is the reduction
of the transfer fidelity induced by the perturbed couplings
and the other is the duration of the time window during
which the transmitted state may be read out with high fidelity.
The most robust systems are those with linear and quadratic
energy eigenvalue distributions. These systems achieve PST
at the time of the first fidelity maximum. That time may be
called the spin-wave echo time, and the less robust systems
reach PST only after several spin-wave echoes. By analyzing
how the energy eigenstates and eigenvalues are affected by
the perturbations, we found that the most robust distributions
have strongly spatially localized eigenstates. Thus, because
the initial state is localized in one end of the chain, only
few eigenstates participate in the transfer. Because of the
localization properties of the eigenstates the perturbations
in the spin couplings close to the chain boundaries are the
only significant source of errors. Since these couplings are
rather weak for the most robust systems, a given relative
perturbation strength only causes a small absolute perturbation
in the couplings and thus in the energy eigenvalues, leading
to the observed robustness. The weak couplings close to the
ends of the chain also lead to a longer residence time of the
transmitted state at its target site at the chain boundary, causing
a longer time window for read-out.
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