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Experimental protection of quantum gates against decoherence and control errors
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One of the biggest challenges for implementing quantum devices is the requirement to perform accurate
quantum gates. The destructive effects of interactions with the environment present some of the most difficult
obstacles that must be overcome for precise quantum control. In this work we implement a proof of principle
experiment of quantum gates protected against a fluctuating environment and control pulse errors using dynamical
decoupling techniques. We show that decoherence can be reduced during the application of quantum gates.
High-fidelity quantum gates can be achieved even if the gate time exceeds the free evolution decoherence time
by one order of magnitude and for protected operations consisting of up to 330 individual control pulses.
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Introduction. Quantum-information processing (QIP) [1]
can lead to a dramatic computational speed-up over classical
computers for certain problems. However, any physical QIP
device is subject to errors arising from unavoidable interactions
with the environment or from control imperfections. There-
fore, scalable QIP needs methods for avoiding or correcting
those errors. The theory of quantum error correction (QEC)
states that it is possible to stabilize a quantum computation
provided that the error per gate is below some threshold [2] and
high-fidelity initial states are prepared [3,4]. However, QEC
needs many auxiliary qubits, generating a significant overhead
in additional resources. Therefore, it is highly desirable to
develop methods for reducing the perturbation both between
and inside the quantum gates without requiring additional
qubits. In addition, reaching the error threshold required for
fault tolerant quantum computation requires that the fidelity of
the individual gate operations must be very high [5].

A simple way to avoid decoherence and thus reduce the
error per gate consists in choosing qubit systems whose
decoherence times are long compared to the duration of a gate
operation. However, this is not always possible; in particular
in systems that combine different types of qubits, such as
electronic and nuclear spins, the decoherence of the electron
spin can be faster than the possible gate durations of the nuclear
spins. Furthermore, the reduction of the decoherence time of
a quantum register with the number of qubits [6,7] imposes an
additional difficulty for implementing quantum computation
in large systems.

Dynamical decoupling (DD) [8–10] is a promising method
developed to reduce decoherence by attenuating the system-
environment interaction with a sequence of inversion pulses
periodically applied to the qubits. Recent experiments have
successfully implemented DD methods and demonstrated the
resulting increase of the storage times in different systems
[11–17]. In all these implementations, the goal was to preserve
a given input state, i.e., to protect a quantum memory against
environmental perturbations.

The necessity of protecting qubits against environmental
noise occurs also in the context of quantum-information
processing. In a structured environment that induces well-
characterized relaxation pathways, it is possible to design
protected gate operations by optimal control techniques [18].
If the relaxation mechanism is not known or it affects all modes

of the system, it may still be possible to use DD techniques,
provided the effect of the DD sequence is compatible with
the gate operations used for information processing. In the
simplest case, gate operations can be made insensitive to
static environmental perturbations by refocusing them [19,20],
in a manner quite similar to a Hahn echo. In the more
general case of a fluctuating environment, the Hahn echo
has to be replaced by multiple-pulse DD sequences. Initial
experiments in this direction have been made recently on a
Nitrogen-Vacancy Center [21] and on an effective qubit in a
semiconductor quantum dot [22]. In the former case, two-qubit
control gates were implemented by applying DD to the control
qubit and adjusting the delay between the DD pulses to match
the inverse of the coupling constant. Possible schemes for
maintaining DD protection during the gate operation were
also suggested in Refs. [23–28]. In most cases, these schemes
were developed under the assumption of perfect controls, i.e.,
the controls operations used, e.g., for DD should not introduce
any additional errors. Here, we propose a general scheme for
protection against a fluctuating environment that does not rely
on this assumption but is robust against experimental errors
and can therefore be implemented in an experimental scheme
with realistic control operations.

We show that the decoherence can be reduced during the
application of quantum gates for a single qubit in a solid-
state system. High-fidelity quantum gates are achieved even
if the gate time exceeds the decoherence time by one order
of magnitude. Since the protection scheme introduces many
additional control operations, we design the protected gate
operations in such a way that the effect of control imperfections
on the fidelity of the system is minimized.

Protection scheme. Quantum logical gates are achieved by
using time-varying control Hamiltonians Hc(t) for the relevant
qubit system. Their propagators can be represented by unitary
operators

U = T e−i
∫ T

0 Hc(t)dt = e−iHGT , (1)

where T is the Dyson time ordering operator and T is the
gate time. The propagator can also be expressed in terms of
the time-independent average Hamiltonian HG, which would
generate the same operation if it were active for the time T .
For single-qubit gates, this Hamiltonian can be expressed as

HG = ω �n · S, (2)
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where S = (Sx,Sy,Sz) is the spin vector operator of the system
qubit, �n is a three-dimensional vector, and the strength ω is a
real parameter.

In any physical implementation, the system also interacts
with the environment, which introduces decoherence reducing
the gate fidelity. If the environmental effects become too
strong, the quantum computation cannot be stabilized by QEC
codes [2]. One approach to avoid this is to use DD for reducing
the effects of the environment. Consider the Hamiltonian
describing a one-qubit system and its environment

H = HS + HSE + HE, (3)

where HS = ωSSz is the system Hamiltonian and ωS is the
Larmor frequency of the system. HE is the environmental
Hamiltonian and HSE the system-environment coupling. Here,
we describe the environment as a spin bath and the coupling
as a pure dephasing interaction

HSE =
∑

k

bkSzI
k
z , (4)

where I k
z is the spin operator of the kth environment spin, bk

is the coupling constant between the system and the kth spin
of the environment.

The identity operation (HG = 0) can be implemented by
just applying DD sequences, such as the XY -4 sequence. This
sequence was initially introduced in the context of nuclear
magnetic resonance (NMR) [29,30]. A similar sequence is the
PDD sequence [8,16,31]. Neglecting pulse errors, we can write
the zeroth- and first-order terms of the average Hamiltonian
of the XY -4 sequence as H0 = HE and H1 = 0. The system-
environment Hamiltonian, which causes decoherence, as well
as the internal Zeeman Hamiltonian of the system qubit
are removed up to the first-order approximation. The only
remaining term is the environmental Hamiltonian HE , which
has no effect on the system qubit.

A simple way to introduce gates with real pulses during
decoupling consists in dividing the gate into two equal parts√

U = e−iHGT/2−iHT/2. Here, e−iHGT is the target control op-
eration, while the drift term HT/2 is an unwanted contribution
that we cancel in the protected control operation. We insert the
two half-gates

√
U into the initial and final free precession

periods of the DD sequence, as shown in Fig. 1. Adjusting
T = τ , the delay between the DD pulses, the propagator for
the full cycle (duration τc = 4τ , neglecting the pulse duration)
becomes, to first order in the cycle time,

U ≈ e−4iHEτ e−iHGT . (5)

The free evolution terms ∝HS + HSE are canceled to first
order by DD. This scheme resembles the theoretical approach
of Refs. [23,26], except that our scheme has higher symmetry,

X Y X Y

τ/2 τ τ τ τ/2

U1/2
U1/2

FIG. 1. (Color online) Pulse sequence for protecting quantum
gates using the XY -4 sequence.

which helps to eliminate some control errors [31]. The
remaining terms are HE , which acts only on the environment,
and the gate operator HG. Since the effect of the SE coupling is
absent here, decoherence has been eliminated in this first-order
approximation.

Robust implementation. In real implementations, experi-
mental imperfections must also be taken into account. In most
cases, the dominant imperfection is a deviation between the
actual and the ideal amplitude of the control field. The result
of this amplitude error is that the rotation angle deviates from
the target angle typically by a few percent. The imperfect
control can affect both the implementation of HG as well as
the π pulses of the dynamical decoupling sequence, and its
effect can be particularly devastating when the number of gate
operations is large and the errors accumulate.

The systematic control errors of the DD pulses can be
reduced by choosing robust DD sequences [10,16,32]. A well-
established method for eliminating control field errors is the
use of composite pulses [33]. Composite pulses are sequences
of consecutive pulses designed such that the resulting total
operation remains close to the ideal target operation even
in the presence of some experimental imperfections. A good
choice for correcting amplitude errors in a general single-qubit
rotation Rφ(θ ) is the BB1 composite pulse [34]:

Rφ(θ ) = Rφ(θ/2)Rφ+ψ (π )Rφ+3ψ (2π )Rφ+ψ (π )Rφ(θ/2),

where φ describes the rotation axis, θ the rotation angle, and
cos ψ = −θ/4π .

Figure 2 shows how a general rotation can be made robust
against amplitude errors and protected against decoherence
from a fluctuating environment. For this purpose, we replace
each rotation Rφ(θ ) in the BB1 pulse by the protected rotation
Rφ(θ ) according to the scheme of Fig. 1. This scheme
can obviously be extended to other DD sequences with
symmetrical timing simply by replacing the XY -4 cycle with
a different cycle.

Experimental performance. For the experimental tests we
used natural abundance 13C nuclear spins in the CH2 groups
of a polycrystalline adamantane sample as the system qubit. In
this system, the carbon spins are coupled to 1H nuclear spins
by heteronuclear magnetic dipole interactions. The protons
are coupled to each other by homonuclear dipolar interactions.
Under our conditions, the couplings between the carbon nuclei
can be neglected. The experiments were performed on a home-
built 300-MHz solid-state NMR spectrometer.

In the context of quantum-information processing, it is im-
portant that the performance of gate operations be independent

X X X X XYY Y Y

R
φ
(θ/4)R

φ+ψ
(π/2)R

φ+3ψ
(π)

XY X Y Y X Y X Y X Y

R
φ
(θ/4) R

φ+ψ
(π/2)

φ(θ/2)φ+3ψ(2π)
φ+ψ(π)φ+ψ(π)

φ(θ/2)

FIG. 2. (Color online) Pulse sequence for a decoherence-
protected BB1 pulse using the XY -4 sequence.

050301-2



RAPID COMMUNICATIONS

EXPERIMENTAL PROTECTION OF QUANTUM GATES . . . PHYSICAL REVIEW A 86, 050301(R) (2012)

TABLE I. Implemented quantum gates. The gate times and
fidelities refer to the experiment in which the XY-8 cycle is used.

Rotations Gate time (ms) Fidelity

H Rx(π )Ry( π

2 ) 1.6 0.985
NOT Rx(π ) 0.6 0.995
π/8 Rx( π

2 )Ry( π

4 )Rx(− π

2 ) 2.2 0.955

of the initial conditions. For quantifying the performance of a
general quantuxm operation, the fidelity F can be used [35]:

F = |Tr(AB†)|√
Tr(AA†)Tr(BB†)

. (6)

Here, A is the target propagator for the process and B the
actual propagator.

The actual operations are not always unitary. We therefore
write the process as

ρf =
∑

nm

χmnEmρiE
†
n, (7)

where ρi and ρf are the density matrices at the beginning and
end of the process. The operators Em must form a basis. For the
present case, we choose them as Em = (I,σx,iσy,σz), with the
Pauli matrices σα . The ideal and actual processes can therefore
be quantified by the matrix elements χmn and experimentally
determined by quantum process tomography [36].

In the experimental implementation of this concept, we
tested the Hadamard (H), NOT, and π/8 gates. For protection,
we used the DD sequences XY -4 [29], XY -8 [30], and
KDD [16]. The gates were decomposed into sequences of
rotations around axes in the xy plane (see Table I) and
each rotation was implemented as shown in Fig. 2. Figure 3
shows the results of the quantum process tomography for
the case of the H gate protected by the XY -8 sequence.
Without dynamical decoupling, the system coherence decays
on a time scale T ∗

2 ≈ 370 μs. The decay time only due to
the interaction with a fluctuating environment (measured by
the Hahn echo) is T2 ≈ 750 μs. As shown in Table I, the gate
fidelities for XY -8 are > 0.95, although the durations of the
gate operations are � T2. All the fidelities were calculated
from the process matrices obtained directly from the raw data,
without optimization methods as used in previous experiments
(see, for example, Ref. [37]). The obtained fidelity values close
to unity indicate that the accumulation of incoherent errors is
well compensated even for a very large number of pulses.
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FIG. 3. (Color online) Process tomography of the Hadamard gate.
The panels show the process matrix χ for an ideal gate and the
experimental process matrix of the protected gate.
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FIG. 4. (Color online) Gate fidelity as a function of gate time
for different gate operations protected by different DD sequences.
“Simple” indicates gates that were implemented by unprotected
rotations. The delay between the pulses for the NOOP was ≈3 μs.

In Fig. 4, we show the achieved gate fidelities for four gate
operations: identity = NOOP (no-operation), NOT, H, and π/8
phase gate. For each type of gate, we plot the achieved fidelity
against the total operation time for the gate, using the direct
implementation, labeled “simple” in the figure, using only
BB1 pulses and protected gates with different DD sequences.
The three DD sequences differ in cycle time and robustness,
with XY -4 having the shortest cycle and KDD being the most
robust sequence [16]. In the top panel, we plot the fidelity
of the NOOP gate for different gate durations, while the lower
three panels only show the fidelity for the shortest cycle with
each DD sequence. In all cases, the measured gate fidelities
were >0.928. This result is very gratifying, since it shows that
high gate fidelities can be obtained even if the gate duration
exceeds the decoherence time T ∗

2 by an order of magnitude.
Additionally, they exceed the T2 time, given by the Hahn echo
decay, being a clear indication that the fluctuating environment
has been decoupled during the gate execution.

Discussion and conclusion. In summary, we have presented
a proof of principle demonstration of decoherence suppression
during quantum logical gate operations by dynamical decou-
pling. For this purpose, we inserted robust gate operations
into different DD sequences in such a way that they do not
interfere destructively with the DD. Using quantum process
tomography, we have shown that high-fidelity single-qubit
quantum gates can be achieved even if the gate time exceeds
the decoherence time by one order of magnitude. We carefully
designed the protection scheme to be robust against deviations
of the control fields. As a result, even for protected operations
consisting of up to 330 individual control pulses, the resulting
fidelity is not significantly reduced compared to a gate
implemented with a single pulse, and often it is higher. For
some systems, slower gates promise higher fidelities than
short gates [38,39]. In these cases, the approach that we have
demonstrated here appears particularly appealing for further
increasing the robustness and precision of the gate operations.

This result indicates that quantum computation can be made
reliable even for systems in which the gate time is comparable

050301-3



RAPID COMMUNICATIONS
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to or even greater than the decoherence time of the individual
qubits. In the present study, we tested the scheme with three
different robust DD sequences. Our results are an additional
demonstration that dynamical decoupling can be a useful tool
that complements quantum error correction. We expect that the
scheme is equally applicable to other types of qubit systems as
well as to other types of gate operations. In particular, it will be
interesting to apply this concept also to multiqubit systems. In
this case we need to refocus the undesired system-environment
interactions without eliminating the desired qubit-qubit inter-
actions. This leads to more complex pulse sequences but can be

achieved in principle. Efficient methods for selectively turning
“on” and “off” specific Hamiltonian terms have been proposed
in Refs. [40–42]. While the evolution-time overhead grows
linearly in these schemes, a particular scheme [43] designed
for a network of dipolar-coupled spins leads to an evolution
time that is independent of the number of qubits. A proposal
to combine this scheme with dynamical decoupling was made
in Ref. [44].
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[10] A. M. Souza, G. A. Álvarez, and D. Suter, Phil. Trans. R. Soc.
A 370, 4748 (2012).

[11] M. J. Biercuk, H. Uys, A. P. VanDevender, N. Shiga, W. M.
Itano, and J. J. Bollinger, Nature 458, 996 (2009).

[12] J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu, Nature
421, 1265 (2009).
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