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Abstract
Quantum information processing often uses systems with dipolar interactions. Here a nuclear

spin-based quantum simulator is used to study the spreading of information in such a dipolar-

coupled system. While the information spreads with not apparent limits in the case of ideal dipolar

couplings, additional perturbations limit the spreading, leading to localization. In a previous work

[Phys. Rev. Lett. 104, 230403 (2010)], it was found that the system size reaches a dynamic

equilibrium that decreases with the square of the perturbation strength. This work examines the

impact of a disordered Hamiltonian with dipolar 1/r3 interactions. It shows that the expansion of

the cluster of spins freezes in the presence of large disorder, reminiscent of Anderson localization of

non-interacting waves in a disordered potential.
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SHORT ABSTRACT AND "EYE-CATCHING" ABSTRACT FIGURE

Using nuclear spins as qubits, we implement a quantum simulator and study the spreading

of information in a system of coupled qubits. The spreading is driven by magnetic dipole-

dipole interactions between the qubits. Adding perturbations to the ideal couplings limits

the distance over which the information can spread and leads to localization. The localization

size is a dynamic equilibrium and decreases with the square of the perturbation strength.

This effect can be compared to Anderson localization.
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I. INTRODUCTION

The control of quantum mechanical systems is continuously gaining interest in recent

years [1–8], mainly triggered by the pursuit of quantum information processing and quan-

tum simulations, which both have the potential of solving computational problems more

efficiently than classical computers [9–11]. The realization of this potential requires precise

control of large quantum systems [12]. Controlling small quantum systems has been explored

extensively over the last years [1–8, 13], but control of large quantum systems is still very

challenging. The simulation of large quantum systems on classical computers is limited to

about 20 qubits if only pure states are considered [14, 15]. The typical classical algorithms

can be also extended to calculate the dynamics of mixed states if the initial state or the

observables are localized in a region smaller than the complete system. This approach uses

quantum parallelism of a single pure state evolution [16, 17]. Present quantum technologies

do not allow complete control of large quantum states. Large quantum systems of thousands

of qubits were used for ensemble quantum simulations in nuclear magnetic resonance (NMR)

experiments on solid state systems [18–20] and with beryllium ions stored in a Penning trap

[21], and superconducting flux qubits [22, 23].

The main difficulties for controlling large quantum systems are the lack of individual

addressing of qubits, with important efforts in progress with samples of ultracold atoms

[24, 25]. For large systems decoherence is known to degrade the information contained in

the quantum state [26]. Its rate increases with the size of the quantum system, making the

largest systems the most susceptible to perturbations [13, 18, 19, 27–32]. While these effects

are known to affect the survival time of quantum information, they also affect the distance

over which quantum states can be transmitted [20, 32–41]. Imperfections or disorder of

the spin-spin couplings that drive the state transfer can induce localization of the quantum

information [33, 35, 36, 38] in a process related to Anderson localization [42, 43]. Whereas

disorder induced inhibition of transport of non interacting waves has been studied in various

physical systems [44–48], the role of dipolar interactions is under theoretical investigation

[49]. Here we study a 3D spin-network and demonstrate experimentally a similar behavior by

studying the localization effects induced by the finite precision of quantum gate operations

used for transferring quantum states [20, 39].

Reducing decoherence is a main step towards implementing large scale quantum comput-
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ers. Several techniques have been proposed for this purpose, including dynamical decoupling

[50], decoherence-free subspaces [51], and quantum error correction [52, 53]. These meth-

ods perform very well for small quantum systems [54–60], but they can be very challenging

to implement in large quantum systems. However, based only on global manipulations of

spins, some of these methods were successfully implemented in large quantum systems with

thousands of qubits [19, 30, 31]. The decoherence times were extended by almost two orders

of magnitude. Therefore, understanding the decoherence effects and their sources on large

quantum systems would help to optimize the control techniques for fighting decoherence.

In this paper, we focus on understanding the impact of perturbations with dipolar disorder

on large quantum systems by quantum simulations with solid state nuclear spin systems.

These interactions depend on the distance r between the spins as 1/r3. In particular we

study the length scale of localization induced by perturbing the Hamiltonian that drives the

spreading of the information. Based on our previous results and methods developed in Refs.

[20, 39], we prepared a system of nuclear spins 1/2. Starting with uncorrelated spins we let

them evolve into clusters of correlated spins with increasing size. By introducing a controlled

perturbation to the Hamiltonian that generates these clusters, we find that the size of the

system tends towards a limiting value determined by a dynamic equilibrium [20, 39]: if the

cluster size is initially larger than this equilibrium value, it decreases under the effect of the

perturbed Hamiltonian, and it increases while its size is below the stationary value. The

equilibrium size decreases with increasing strength of the perturbation.

The paper is organized as follows. Section II describes the quantum simulator, the system

and the initial state preparation. Section III shows the quantum simulations. It is divided in

two parts: III.A. contains the unperturbed evolutions that drives the growth of the clusters,

and it desribes the technique for measuring the size of the clusters. In section III.B., we

discuss the perturbed evolutions, we describe the perturbations and how we create them.

In section IV, we discuss the dynamical equilibrium with stationary cluster-size, which is

independent of the initial states with different cluster-sizes. Lastly, section V gives the

conclusions.
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II. THE QUANTUM SIMULATOR

A. System

We consider a system of equivalent spins I = 1/2 in the presence of a strong magnetic

field and subject to mutual dipole-dipole interaction. The Hamiltonian of the system is

�H = �Hz + �Hdip, (1)

where �Hz = ωz

�
i Î

i
z represents the Zeeman interaction with ωz = �γB0 as the Larmor

frequency, and

�Hdip =
1

2

�

i<j

�µi · �µj

r3ij
−

3 (�µi · �rij) (�µj · �rij)

r5ij
(2)

is the dipolar interaction [61], typically found also in dipolar quantum gases [62] and Rydberg

atoms [63] of growing interest in the context of quantum information science. The dipoles

are �µi = �γ(Î ix, Î iy, Î iz) with Î ix, Î
i
y and Î iz the spin operators and �rij is the distance vector

between �µi and �µj. In the presence of a strong magnetic field, (ωz � dij), it is possible to

truncate �Hdip with respect to �Hz. The part that does not commute has negligible effect on

the evolution of the system [61], while the secular part can be written as

�Hdd =
�

i<j

dij
�
2Î iz Î

j
z − (Î ixÎ

j
x + Î iy Î

j
y)
�
. (3)

The coupling constants are

dij =
1

2

γ2�2
r3ij

�
1− 3 cos2 θij

�
, (4)

with θij the angle between the vector �rij and the magnetic field direction [61]. In a frame

of reference rotating at the Larmor frequency ωz [61], the Hamiltonian of the spin system

reduces to �Hdd. This kind of Hamiltonians can be also simulated with quantum gases [62].

In our system, the spins are the protons of polycrystalline adamantane and we performed

all experiments on a home-built solid state NMR spectrometer with a 1H resonance frequency

of ωz = 300 MHz in Dortmund. As shown in Fig. 1, the adamantane molecule is nearly

spherical and contains 16 protons. The molecules tumble rapidly and isotropically in the solid

phase. This fast tumbling averages the intramolecular couplings to zero, but the interaction

between the molecules remains. However, the couplings between molecules are averaged to a
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nonzero value that depends only on the relative position of the molecules to which the spins

belong. They are not isotropic, and they have the normal orientation dependence of dipolar

couplings of Eq. (4), but the distance vector is between the positions of the molecules, not

of the nuclei. “Position” would in fact not be the center of mass of the molecules, but an

effective position that is the result of the averaging process. Figure 1b shows a scheme of

the interaction between two molecules, where the spins do not interact with spins within the

molecules but they interact with all spins of the neighbor molecules. All coupling strength

are averaged to the same value. However, in Fig. 1c, the coupling strength between molecules

depends of their separation, as shown by arrows with different color tones, and on their the

polar angle θij with respect to the magnetic field. The randomness of the dispersion of the

distance vector �r between molecules will be the source of disorder on dij. The molecules

are in a face-centered-cubic lattice, where each adamantane molecule has 12 first neighbor

interactions with a distance of 6.6Å, then 6 second neighbors with a distance of 9.34Å, then

16 at a distance of 11.4Å and etc. The resonance width of the NMR resonance line, is 7.9

kHz.

B. Initial state preparation

In NMR experiments, one deals with ensemble of states that are usually describe by

a density operator. We perform quantum simulations starting from the high-temperature

thermal equilibrium [61]. Using the notation Îz =
�

i Î
i
z, we can write the density operator

of the thermal equilibrium state as

ρ0 = exp

�
−
�ωz

kBT
Îz

�
/Tr

�
exp

�
−
�ωz

kBT
Îz

��
(5)

≈

�
1̂ +

�ωz

kBT
Îz

�
/Tr

�
1̂
�
. (6)

It is convenient to exclude the unity operator 1̂ since it does not evolve in time and does not

contribute to the observable signal. The resulting density operator is ρ̂0 ∝ Îz. In this state,

the spins are uncorrelated and the density operator commutes with the Hamiltonian �Hdd.

In order to prepare a different initial state, we wait a time longer that T1 to reinitialize the

system state to ρ0. In the following, when we mention the state of the system, we refer to

its density operator unless it is explicitly stated that a different class of state is considered.
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Figure 1. (Color online) Spin system. (a) Adamantane molecule with 16 protons (small gray

spheres). The big green spheres are mostly 12C and 13C in natural abundance (1.1%). (b) The

intramolecular interactions are averaged to zero due to very fast molecular tumbling, but the in-

termolecular interactions average to a non-zero value that depends of the distance between the

molecules. The spins interacts with spins of the other molecule with the same averaged coupling

strength, as shown with arrows. (c) Schematic representation of the interactions between the

molecules. The color tones of the arrows represent the variation of the coupling strength with the

intermolecular distance, which varies as 1/r3ij .
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III. QUANTUM SIMULATIONS

A. Unperturbed evolution

1. Generating clusters

The initial density operator ρ0 of the uncorrelated spins commutes with �Hdd. Therefore,

to generate spin clusters we use an NMR method developed by Pines and coworkers [64, 65].

It is based on generating an average Hamiltonian �H0 that does not commute with the thermal

equilibrium state

�H0 = −

�

i<j

dij
�
Î ixÎ

j
x − Î iy Î

j
y

�
. (7)

= −
1

2

�

i<j

dij
�
Î i+Î

j
+ + Î i

−
Îj−

�
. (8)

This Hamiltonian drives an evolution that converts the thermal initial state into clusters of

correlated spins whose density operator contains terms of the form Î iu...Î
j
v Î

k
w (u, v, w = x, y, z),

where the indexes i, j, k identify the spins involved in the given cluster. The cluster-size

K corresponds to the number of terms in this product, which is equal to the number of

spins. The cluster size is related to the volume occupied by those spins. Experimentally,

the Hamiltonian �H0 is generated with the pulse sequence [64, 65] shown in Fig. 2a.

In the usual computational or Zeeman basis |α1, α2, ..., αK� (αi =↑, ↓) for a system

of K spins, we write the states as |Mz, nM� where Mz is the total magnetic quantum

number, i.e., Îz |Mz, nM� = Mz |Mz, nM�, and nM distinguishes different states with the

same Mz. Figure 3a shows a summary of these states, whose degeneracy is max {nM} =

K!/ [(K/2−Mz)! (K/2 +Mz)!].

The Hamiltonian �H0 flips simultaneously two spins, which are separated in space and

have the same orientation. Accordingly, the z-component of the magnetization Mz changes

by ∆Mz = ±2. This is shown with a curved solid arrow in Fig. 3a. At the same time, the

number K of correlated spins changes by ∆K = ±1. Therefore, starting from the thermal

equilibrium state, the evolution generates a density operator where only elements ρij with

∆M = Mz(i)−Mz(j) = 2n, n = 0, 1, 2 . . . are populated. Such elements ρij are called ∆M

quantum coherences and they are represented by colored straight arrows in Fig. 3a. The

different colors represent different multiple-quantum coherence (MQC) orders ∆M . Off-
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Figure 2. (Color online) Pulse sequence for the quantum simulations. The effective Hamiltonian �H0

is generated by a periodic sequence of π/2 pulses.Panel (a) shows the basic cycle, where ∆� = 2∆+τp,

∆ = 2µs and τp = 2.8µs is the π/2 pulse duration [65]. The cycle time is then τ0 = 57.6µs. Panel

(b) shows the complete sequence of evolutions.

diagonal elements of the density matrix with ∆M = 0 represent zero-quantum coherences

and diagonal elements correspond to populations. Then, a MQC spectrum A(∆M) can be

described by the number of coherences of the density matrix for a given ∆M . A typical

MQC spectrum is shown in Fig. 3b. The initial density operator ρ0 is diagonal and then

A(∆M) �= 0 only for ∆M = 0. However, as time evolves, different spins interact with

each other and other coherence orders are excited. Then A(∆M) starts to spread as a

manifestation of the increasing cluster-size. If we measure the evolution of the operator Iz

as a function of time, �Iz(t)� = Tr {Izρ(t)}, its expectation value decays as a consequence

of the excitation of the coherences of the density matrix that do not contribute to the

observable �Iz(t)�. The black squares in Fig. 4 show the evolution of �Iz(t)� driven by the

Hamiltonian �H0. The data show a fast decay on a time scale of ≈ 100µs, which is followed

by a quantum beat at about 400µs. Then the signal saturates at a value of about 4% of the

initial value at least up to 2ms. We expect that it decays at longer times.
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Figure 3. (Color online) Energy level scheme for a cluster of K spins. (a) The different rows

correspond to Zemman states |α1, α2, ..., αK� (αi =↑, ↓) with different energy determined by the

quantum number Mz. The degeneracy of the levels in a row is given on the rhs of each row. The

solid curved arrows show those transitions induced by the Hamiltonian H0 that do not conserve

Mz. The dotted curved arrows show the effect of the Mz-conserving dipolar Hamiltonian Hdd.

The straight colored arrows show the possible coherences generated by H0. (b) The number of

coherences of a cluster of size K are plotted as a function of ∆M . The colored bars gives those

numbers and their color code corresponds to that of panel (a).

2. Measuring cluster sizes

To determine the average number of correlated spins in the generated clusters, we use

the NMR technique developed by Baum et al. [65]. In a system of K spins, the number of
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Figure 4. Time evolution driven by H0 of the total magnetization �Iz(t)� of the system as a function

of time.

transitions with a given ∆M follows a binomial distribution

n (∆M,K) =
(2K)!

(K +∆M)! (K−∆M)!
. (9)

For K � 1, the binomial distribution can be approximated with a Gaussian

n (∆M,K) ∝ exp

�
−
∆M2

K

�
, (10)

whose half width at e−1 is σ =
√
K . Thus, the width of the MQC spectrum reflects

the cluster-size. We can determine the effective size of the spin clusters in a given state

by measuring the distribution of the MQCs of its density operator ρ as a function of the

coherence order ∆M . They can be distinguished experimentally by rotating the system

state around the z−axis: a rotation φ̂z = e−iφÎz by φ changes the density operator to

ρ̂ (φ) = φ̂zρ̂φ̂
†

z =
�

∆M

ρ̂∆Mei∆Mφ, (11)

where ρ̂∆M contains all the elements of the density operator involving coherences of order

∆M .
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By following the sequence of Fig. 2b, the system evolution is first described by an

evolution period of duration Nτ0 under the Hamiltonian
�
�H0

�

φ
= φ̂z

�H0φ̂†
z, i.e.,

ρ̂0
( �H0)

φ
Nτ0

−−−−−−→ ρ̂φ (Nτ0) = φ̂zρ̂ (Nτ0) φ̂
†

z

= φ̂ze
−i �H0Nτ0 ρ̂0e

i �H0Nτ0φ̂†

z

=
�

∆M

φ̂zρ̂∆M (Nτ0) φ̂
†

z

=
�

∆M

ρ̂∆M (Nτ0) e
i∆Mφ. (12)

The next part of the sequence of Fig. 2b is an evolution of the same duration Nτ0 under

− �H0. This causes an evolution backward in time that gives the following density operator

at the end of the sequence

(− �H0)Nτ0
−−−−−−→ ρ̂f (2Nτ0) = ei

�H0Nτ0 ρ̂φ (Nτ0) e
−i �H0Nτ0

=
�

∆M

�
ei

�H0Nτ0 ρ̂∆M (Nτ0) e
−i �H0Nτ0

�
ei∆Mφ. (13)

If Îz is the NMR observable, then the signal becomes
�
Îz
�
(φ,Nτ0) = Tr

�
Îzρ̂f (2Nτ0)

�

= Tr
�
e−i �H0Nτ0 ρ̂0e

i �H0Nτ0 ρ̂φ (Nτ0)
�

= Tr {ρ̂ (Nτ0) ρ̂φ (Nτ0)}

=
�

∆M

eiφ∆MTr
�
ρ̂2∆M (Nτ0)

�
(14)

=
�

∆M

eiφ∆MA (∆M) , (15)

where A(∆M) are the amplitudes of the MQ spectrum shown in Fig. 3b. To extract these

amplitudes from the experimental data, we measure the signal
�
Îz
�
(φ,Nτ0) as a function

of φ at a fixed time Nτ0 and then perform a Fourier transform with respect to φ as shown

schematically in Fig. 5. The cluster size is then determined by the half-width at e−1,

σ =
√
K, of A(∆M).

3. Growth of the clusters

Figure 6 shows the time evolution of the measured cluster size K (Nτ0) as a function of

the total evolution time Nτ0. For the unperturbed Hamiltonian, the cluster size appears to
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Figure 5. (Color online) Scheme for determining the MQC spectrum based on the sequence of Fig.

2. The left panel is the measured �Iz� signal as a function of the encoding phase φ for Nτ0 = 230.4µs.

After doing a Fourier transform the MQC spectrum A(∆M) is obtained (right panel). In the left

panel, the black squares are the unperturbed signal (p = 0), while the other colored symbols are

the signal observed for a given perturbation strength p.

grow indefinitely [20, 39]. The figure also shows two examples of the A(∆M) distributions at

different times. We can see that for long times K ∝ (Nτ0)
4.3 (solid red line). The estimated

cluster size K can contain uncertaintity. However, the profile of the MQC spectrums is

the same for the range of times explored on the experiments, and thus we expect only to

have a systematic error that could be a multiplicative factor. Then, if we assume that the

cluster-size K is associated with the number of spins inside a volume whose size is scaled by

an unknown factor of order unity, it is seen that the associated length � grows faster than

in the case of normal diffusion, where � ∝ (Nτ0)
3/2.

This evolution can be reversed completely by changing the Hamiltonian from �H0 to

− �H0. Experimentally, this is achieved by shifting the phase of all RF pulses by ±π/2 [64].

The signal �Iz� (φ,Nτ0) at the end of the sequence of Fig. 2b is a time reversal echo for

φ = 0. This means that under ideal conditions
�

M A(∆M,Nτ0) = const and we will write

E (Nτ0) for this quantity. The indefinite growth of the cluster size, as well as the complete

reversibility of the time evolution are no longer possible if the effective Hamiltonian deviates
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Figure 6. (Color online) Time evolution of the cluster size of correlated spins with the unperturbed

Hamiltonian �H0 (black squares) in log-log (top) and log-lin (bottom) scales. Distributions of the

squared amplitudes A∆M of density operator components as a function of the coherence order ∆M

are shown for two different cluster sizes. The solid red line is a fitted power law function in the

long time regime and the dashed blue line is an exponential fitted to the range 0.2-0.9 ms.
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from the ideal form (7).

B. Effect of perturbations

1. Intrinsic perturbations

Experimentally, the Hamiltonian �H0 is generated as an effective Hamiltonian by the

pulse sequence of Fig. 2a. Because of experimental imperfections, it always deviates from

the ideal Hamiltonian (7). As a result, the actual dynamics deviates from the ideal one

and, in particular, we cannot invert exactly the perturbed Hamiltonian and thus reverse

the time evolution perfectly. The quantity
�

∆M A(∆M) is no longer conserved, but decays

with increasing evolution time. In this section, we study the effects of these imperfections to

address the possible impact of them onto the quantum simulation of the localization effects.

The ideal form of the effective Hamiltonian (7) can only be created if the dipolar couplings

di,j are time independent and the pulses are ideal and rotate globally all the spins. However,

if these couplings are time dependent, or the pulses are not ideal, the effective Hamiltonian

(averaged over the pulse cycle) contains additional terms. We have partly characterized the

spectral density of local spin-spin fluctuations driven by �Hdd in Ref. [58, 66] and found a

correlation time τd = 110µs. Since the imperfections of the generated �H0 are driven by �Hdd,

we can use τd to estimate the correlation time of these imperfections.

In Fig. 6 the cluster size grows faster for times shorter than τd (this is best seen in the

lower panel). After τd the growth of the clusters continues at a slower rate that appears to

become exponential (blue dashed line) [20, 39]. After 1ms, the growing law again changes

its behavior and the cluster size grows as a power law (red solid line) [20, 39]. We cannot

contrast this regime with the spectral density determined in Ref. [66] because it was not

determined for the corresponding range of frequency fluctuations. The exponential growth

agrees with the behavior expected by theoretical predictions for this kind of system [67, 68].

The power law behavior may be related to the prediction by Lacelle [69] that after a certain

number of spins (around 1000 in adamantane) the effective spin-network topology turns

into a 3D spin-coupling network, which leads to a power law growth. The borders between

these regimes cannot be rigorously determined. However, the results clearly show that the

cluster-size keeps growing for a long time, at a rate that is faster than in normal diffusion.
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Figure 7. Time-reversal echo probability. The black squares are the unperturbed (p = 0) echo

decay E(N0τ0), measured with the sequence of Fig. 2, as a function of the evolution time N0τ0.

The y-axis gives the time-reversal probability normalized with respect to the signal at N = 0.

This ‘super-diffusion’ deserves further studies since there are no quantum mechanical models

describing this behaviour and they may be a result of the of the complex long range nature

of the dipolar interaction in our system [70, 71].

In previous works [20, 39] and in Fig. 6, we determined the cluster growth by isolating the

intrinsic decay generated by an imperfect effective Hamiltonian (7). The imperfection effects

are manifested in the overall decrease of the echo signal E (Nτ0) and we isolated them by

normalizing the MQ spectra such that the total signal
�

∆M A(∆M) for φ = 0 is constant in

time. Now, we measured the decay of E (Nτ0) =
�

∆M A(∆M,Nτ0). The results are shown

in Fig. 7. If we consider the imperfections on �H0, the effective Hamiltonian during the first

part of the sequence of Fig. 2a will be �Hfwd = �H0 + �He, and �Hbwd = − �H0 + �H�
e during

the time reversed part, where �He is a representative average error Hamiltonian. The echo

decay is then E(N0τ0) = Tr
�
ρ̂Hfwd (Nτ0) ρ̂Hbwd (Nτ0)

�
and it quantifies the time reversal

probability as a kind of Loschmidt echo [27, 28, 72].

The echo decay E(N0τ0) shown in Fig. 7 starts as a Gaussian for times shorter than

N0τ0 � 288µs≈ 2.6 τd. For longer times it decays exponentially until ≈ 920µs where a differ-
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ent decay law arises. These transitions between different decay laws seems to be correlated

with the growing law transitions discussed in the previous parragraphs. This resembles the

typical behavior of nuclear spins of a solution diffusing in a inhomogeneous magnetic field

with a given standard deviation [73] or in restricted spaces in the presence of a magnetic field

gradient [74]. If the spins only interact with the magnetic field, due to the diffusion process,

they feel a different magnetic field at different times causing dephasing of the spin signal.

The frequency fluctuations have a correlation time given by the time needed to explore the

standard deviation of the changes of the magnetic field that is related with the inhomogenity

of the magnetic field or to the restriction length. By applying a spin-echo sequence -a time

reversion of the spin precession by an inversion pulse that changes the sign of the magnetic

field interaction- one can partly reverse the effects of the diffusion-driven dephasing [75, 76].

The echo sequence is analogous to the one of Fig. 2. If the inversion pulse inducing the time

reversal is applied at times shorter than the correlation time of the frequency fluctuations

of the spins, the signal decay depends of the spatial displacement of the spins and the signal

decays faster as the time passes because the dephasing rate increases with the displacement

length. However, for times longer than the correlation time of the frequency fluctuations

the decay rate becomes independent of the displacement and becomes exponential, similar

to the time reversal echo behavior shown in Fig. 7.

We clearly see correlations between the characteristic time when the cluster-size growing

laws (see Fig. 6) and the time-reversal echo decay E(N0τ0) laws (see Fig. 7) change their

behaviour compared with the correlation time τd = 110µs of the local spin-spin fluctuations

driven by �Hdd studied in Ref. [58, 66]. However, we do not observe localization effects

generated by the intrinsic imperfections of the generation of �H0 within the dynamic range

of evolution times of our experiments. In the following we study the effects of a controled

perturbation proportional to �Hdd, relative to the effects of the intrinsic imperfections of �H0.

2. Controlled perturbation

The echo decay in Fig. 7 depends of perturbation �He. In order to study the sensitivity

to the perturbation strength, we introduced a perturbation �Σ, whose strength we can con-

trol experimentally and study the behavior of the system as a function of the perturbation

strength. We choose the raw dipole-dipole coupling for this perturbation, �Σ = �Hdd, which
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Figure 8. (Color online) Sequence for generating a perturbed evolution. It is achieved when τΣ �= 0,

where �Σ = �Hdd is the free evolution Hamiltonian.

has long range interactions with coupling strengths decaying as 1/r3. We add this Hamilto-

nian to the ideal Hamiltonian �H0 by concatenating short evolution periods under �Hdd with

evolution periods under �H0. We label the durations of the two time periods τΣ and τ0, as

shown in Fig. 8. When the duration τc = τ0 + τΣ of each cycle is short compared to the

inverse of the dipolar couplings dij, the resulting evolution can be described by the effective

Hamiltonian

�Heff = (1− p) �H0 + p�Σ, (16)

where the relative strength p = τΣ/τc of the perturbation �Σ = �Hdd can be controlled

by adjusting the duration τΣ. For the quantum simulations, we compared the artificially

perturbed evolution of �Heff with the �H0 evolution with its intrinsic errors. While the intrinsic

errors reduce the signal or the overall fidelity, they do not cause localization on the time

scale of our experiments (see Fig. 6).

Starting from thermal equilibrium, now the density operator of the system at the end of N

cycles is ρ̂Heff (Nτc) = e−i �HeffNτc ρ̂0ei
�HeffNτc . Taking into account now the complete sequence

of evolutions given by Fig. 8, the experiment is thus a perturbed forward evolution and an

unperturbed backward evolution. The density matrix at the end of the sequence is then
�

M

�
ei �H0Nτ0 ρ̂Heff

M (Nτc) e−i �H0Nτ0
�
eiMφ as derived in [20, 39]. Thus the NMR echo signal,

which is measured after the last backward evolution exp
�
i �H0Nτ0

�
, can be written as

�Iz� (φ,Nτc) = Tr
�
Îzρ̂f (Nτc +Nτ0)

�

= Tr
�
ρ̂H0 (Nτ0) ρ̂

Heff
φ (Nτc)

�
. (17)
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In terms of the individual MQ coherences, this may be written as

�Iz� (φ,Nτc) =
�

∆M

eiφ∆MTr
�
ρ̂H0
∆M (Nτ0) ρ̂

Heff
∆M (Nτc)

�
(18)

with the MQ coherence amplitudes A(∆M) = Tr
�
ρ̂H0
∆M (Nτ0) ρ̂

Heff
∆M (Nτc)

�
. For the ideal

evolution (p = 0), Eq. (14) is recovered, where A(∆M) correspond to the squared am-

plitudes of the density operator elements ρ̂H0
∆M (Nτ0) with coherence order ∆M . For the

perturbed evolution, (p �= 0), they are reduced by the overlap of the actual density opera-

tor elements ρ̂Heff
∆M (Nτc) with the ideal ones. We extract these amplitudes by performing a

Fourier transformation with respect to φ. Figure 9 shows a comparison between the distri-

butions A(∆M) for different evolution times for an unperturbed evolution (panel a) and a

perturbed evolution with p = 0.108 (panel b). The main difference is that the MQC spec-

trum of the perturbed evolution does not spread indefinitely but its width reaches a limiting

value [20, 39].

As discussed in section III A 2, we determine the cluster size for different evolution times

and perturbation strengths from the width of the measured MQC distributions. Figure 10

shows the cluster size (the number of correlated spins) as a function of the evolution time

Nτc. The main difference of the perturbed time evolutions (colored symbols in Fig. 10)

compared to the unperturbed evolution (black squares) is that the cluster size does not

grow indefinitely [20, 39], but saturates. It remains unclear if the cluster growth for the

weakest perturbation p = 0.009 also saturates. We consider this saturation as evidence of

localization due to the perturbation and the localization size decreases with increasing the

perturbation strength p.

C. Quantum dynamics from different initial cluster sizes

We have shown that time evolution of the cluster size under perturbations reaches a

dynamical equilibrium state [20, 39], i.e. for a given perturbation strength, the size of the spin

clusters tends toward the same limiting value, independent of the initial condition. In order

to show this, we prepared a series of initial conditions corresponding to different clusters sizes.

Figure 11 shows the corresponding pulse sequence: The initial state preparation, consisting

of an evolution of duration N0τ0 under the unperturbed Hamiltonian �H0, generates clusters

of size K0.
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and panel (b) for p = 0.108. In panel (b), the width of the MQC spectrum remains constant for

N ≥ 7, indicating that the spreading of information stops.
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During the subsequent perturbed evolution of duration Nτc, these initial clusters evolve

and Eq. (17) becomes

�Iz� (φ,N0τ0 +Nτc) =

Tr
�
ρ̂H0 (Nτ0, N0τ0) ρ̂

Heff
φ (Nτc, N0τ0)

�
. (19)

This method allows us to study the growth of the clusters by starting from different sizes

K0 = K(N0τ0) and following the evolution as a function of time and perturbation strength.

Based on Eq. (19), we determined the MQC spectra A(∆M) for different evolution times.

The insets of Fig. 12, shows two examples of them. From such curves, we determined the

evolution of the cluster size shown in Fig. 12. The figure shows the evolution of the cluster

size for two perturbation strengths, starting from different initial sizes. The dynamical

equilibrium is clearly manifested in the figure. The two insets show the A(∆M) spectrums

starting from K0 = 141, for different evolution times. We can see that if K0 is lower than the

localization size, the MQC spectrum spreads until it localizes (manifested by the parallel

slopes), however if K0 is larger than the localization size, it shrink until saturation. We

found that the localization size vs. the perturbation strength is roughly proportional to

1/p2 [20, 39]. During our experiment, the magnetization is uniform throughout the sample,

so the process does not lead to a spatial redistribution of magnetization. Note however

that here we measure the cluster size of correlated spins that is associated with a coherent

length. Therefore, this technique allows to investigate the localization size, even when the

magnetization density profile of the excited cluster size would exceed the localization length.

IV. CONCLUSIONS

As a step toward the understanding of the quantum evolution of large quantum systems,

we have studied the spreading of information in a system of nuclear spins. Decoherence has

long been recognized to limit the time for which quantum information can be used. Spatial

disorder also limits the distance over which quantum information can be transferred. We

have studied the role of a disordered dipolar interaction Hamiltonian and shown that for

larger values of the perturbation, the coherence length of the cluster size reaches a limit
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strengths.

23



value. Even though we do not measure directly the spatial extent of the cluster size, one

might speculate that the spatial extent and the number of correlated spins are related with

Volume∼ K. Investigation of a connection of our results with Anderson localization of spins

with dipolar 1/r3 interactions and the interplay with competing interactions could thus be

explored [33, 35, 36, 38, 42, 43]. We also note that for lower values of the perturbation,

the size of the cluster grows faster than expected for a diffusive model. We will investigate

possible connections to Levy flights and Levy walks induced by the long range dipole-dipole

couplings of our Hamiltonians.We developed a method that allows one to quantify the time

evolution of the cluster size of correlated spins starting with single qubits. As we have

shown, the information can spread to clusters of several thousand qubits. We have observed

that the combination of an information spreading Hamiltonian and a perturbation to it

results in a quantum state that becomes localized. The localization size decreases with

increasing strength of the perturbation and the resulting size appears to be determined by

a dynamic equilibrium [20, 39], a feature which might be adapted to other communities

studying Anderson localization.

The results presented here provide information about the spatial bounds for transferring

quantum information in large spin networks and indicate how precise manipulations of large

quantum systems have to be. The sample used in this study can be also an interesting

system for studying fundamental aspects of Anderson localization in the presence of long

range interactions.
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