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Resumen Corto

El control de los sistemas cuántico representa uno de los principales de-

saf́ıos en la actualidad. Los efectos de relajación y decoherencia inducidos

por el entorno cuántico son el principal Obstaculo. A lo largo de esta tesis

usaremos tecnicas analiticas y numericas para estudiar los procesos de de-

caimiento y decoherencia tanto en la dinámica de sistemas de espines como

en modelos de enlaces fuertes (tight binding por su nombre en Ingles), ambos

en presencia de distintos tipos de entornos cuánticos. Además, mostraremos

que los resultados obtenidos pueden ser aplicados tanto en el análisis de la

disociación molecular, como en el estudio de la sincronización de plasmones

en nanoparticulas.

Clasificación:

03.65.Yz, 73.20.Hb, 31.10.+z

Palabras Claves:

Cuántica, No-Markovianos, Espines, Decoherencia, Enlaces Fuertes (Tight

Binding), Relajación



Abstract

The control of quantum systems represents one of the main challenges nowa-

days. The technological revolution, jointly with the Quantum Information

Theory, enable the control of small systems and the manipulation of few

quantum states [Bennett & DiVincenzo, 2000]. In particular, by the use

of Nuclear Magnetic Resonance, it was possible manipulate nuclear spins

[Zhang et al., 2011] and create ad-hoc Hamiltonians (average Hamiltonian

theory) [Mádi et al., 1997, Cappellaro et al., 2007].

The main obstacles in the control of the quantum states are the relaxation

and decoherence process. In this thesis we analyze the dynamics of spin

systems and the decay of the quantum evolution in tight binding models in

the presence of several types of environments.

By the use of numerical and analytical tools we will show how the presence

of the environment could induce phase transitions in the quantum dynamics

[Dente et al., 2008]. Moreover, the technics developed in this thesis let us

study the molecular dissociation process as quantum phase transition, and,

in the other hand, the synchronization of plasmonic excitations in nanopar-

ticle arrays.

Additionally we use mappings between spin systems and fermionic systems

to analyze the decay rate in the presence of single and multiple connections

to different types of environments [Dente et al., 2011]. In this sense, we

characterize the corrections to the Fermi Golden Rule and correlate them

with the Local Density of States of the structured environments.

Following in the same line, we will analyze the decoherence process in the

presence of many-body interactions. With this purpose we compare two

decoherence quantifiers: the “Loschmidt Echo ” and the “Mesoscopic Echo”.

The first one is based on time reversal procedures and the last one use



the Mesoscopic echoes of the system [Dente et al., 2011]. With these, we

study the dynamical behavior of decoherence in spin systems by considering

different kind of interactions (flip-flop, Ising, Heisenberg). Finally, we will

analyze the decoherence rate obtained from Non-markovian systems, and

compare with Fermi Golden Rule evaluations.
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Chapter 1

INTRODUCTION

1.1 The Quantum World

For various centuries Newton’s and Maxwell’s fundamental laws of mechanics and elec-

tromagnetism, supplemented with Einstein’s relativity principle and Boltzmann’s sta-

tistical thermodynamics, have been used to successfully describe the behavior of natural

world immediately around us and much beyond, at the scale of the known universe.

However, we also have a description of the microscopic world and down under, from

nanoscopic electronic devices and chemical reactions to elementary particles in high

energy colliders. This description started to emerge at the end of XIX century when

Planck introduced the empirical constant h, representing a quantum of frequency, as a

necessary tool to describe the radiation spectrum of a heated body. A few years later,

Albert Einstein who was studying the photoelectric effect, [Einstein, 1905] gave further

reality to Planck’s quantization of the energy of light waves as photons, particles that

collide with the metal electrons pushing them away. Soon it became clear that the

Newtonian mechanics was not a complete description this atomic level and a Quan-

tum Mechanics started to emerge from a collective effort of which participated Bohr,

DeBroglie, Schrödinger, Heisenberg, Dirac, Pauli and many others.

1.2 Waves and Interferencies

The essential analytical tool of quantum mechanics is the Schrödinger Equation (SE),

which describes the evolution of a complex function ψ whose square modulus is iden-

1



1. INTRODUCTION

tified with the probability of finding the object it describes in a given state or configu-

ration:

i~
∂

∂t
ψ(t) = Ĥψ(t). (1.1)

Here Ĥ stands for the “energy” or Hamiltonian operator that defines the problem.

It also introduces the Planck constant ~ as the fundamental scale relating energy

scale and time scales. From its formal solution, one sees that for a given initial

state ψ(0), the evolved state ψ(t) = e−iĤ[t−0]/~ψ(0) has the property of time re-

versibility, i.e. it is identical to the state obtained by propagation backwards in times

ψ(−t) = e−iĤ[0−(−t)]/~ψ(0). Thus, this description does not seem to contain in an ob-

vious way the irreversibility observed in Nature at the macroscopic scale. Even more,

an effective backwards evolution can obtained if one is able to change the Hamiltonian

sign. This feature will play an important role in our work.

For a particle with mass m moving along the coordinate x in presence of the po-

tential U(x) one has a wave function ψ(x) and the Hamiltonian is

Ĥ =
p̂2

2m
+ U(x) = − ~2

2m

∂2

∂x2
+ U(x)

Thus, in a homogenous space (U(x) ≡ 0), the SE is just the diffusion equation with an

“imaginary coefficient” D = i ~
2m . It is precisely the imaginary coefficient the one which

introduces the wave-like behavior in an equation which has as only a first order in time

derivative. Indeed, its solution has particle-wave duality already build in. The linearity

of the wave equation one immediately understand the possibility of build superpositions

of any given state. This is responsible of the uncertainties between the precision one

has in defining the position ∆x and the momentum ∆p of a given particle. It also

implies the possibility of classically forbidding tunneling. These phenomena are foreign

to classical mechanics and constitute part of the conceptual challenges introduced by

quantum mechanics.

With the recent technological advances, it has become possible to observe the wave

behavior of the matter in innumerable situations. From all the possible examples

we chose to discuss the ”quantum corrals”. They consists of a number of Fe atoms

placed contiguously to form a closed shape over a Cu surface. The metal electrons are

described by a multielectron wave function that depends on the coordinate of each one

2



1.3 Dynamical Interferences

of the electrons Ψ(r1, r2, r3,···). However, electrons as indistinguishable and when they

are observed by the scanning tunneling microscope (STM), they manifests a particle

density ρ(r) showing specific interferences produced as the “density wave” collides at

the corral boundaries. These ripples have a close resemblance to those of water waves in

a swimming pool (see Fig. 1.1). With some effort we also can appreciate a granularity

in the density associated with the atomic scale of the underlying crystalline surface.

Figure 1.1: A set of 48 atoms in a circular shaped corral, made from STM-microscopy.

By the combination of several atoms it is possible to observe the quantum interferences in

the center of the corral. Figure Extracted From: http://www.almaden.ibm.com/vis/stm/

1.3 Dynamical Interferences

Every Physicist is familiar with interference phenomena in the steady state, however

dynamical interferences are mostly absent from traditional textbooks. This is because

only in recent years it has become more frequent the observation of quantum dynamical

effects in various contexts. To fix ideas, we can consider the dynamics of a particle

placed close to one edge of a one dimensional box of length L. We show this initial

density distribution ρ(x) = |ψ(x)|2 with breath ∆x0 and solve the SE to evaluate the

survival probability as function of time as:

P0,0(t) =

∣∣∣∣∣∣
L∫

0

ψ∗(x, t)ψ(x, 0)dx

∣∣∣∣∣∣
2

,

.i.e. the probability to find the particle in the initial state after a free evolution for

a time t. In Fig. 1.2 we observe how the wave nature of quantum mechanics, the

presence of different momentum in the range ∆p0 ' ~/∆x0 makes the wave packet

3



1. INTRODUCTION

to spread dispersively but there is also a component that “reflects” at the edges of

the box producing a slight revival of the initial state in a time scale of the order of

mL/∆p0. This phenomenon, is a form of quantum interference, thus absent from a

diffusion equation, associated the finite nature of the system and has been dubbed

Mesoscopic Echo by Altshuler and collaborators [Prigodin et al., 1994]. They proposed

its observation in disordered electronic systems but it has not yet been observed in this

case. However, we will see that in discrete systems this dynamical behavior is easily

observed.

Until this moment we have spoken about the wave behavior in a continuous spatial

coordinate. Indeed, in the above practical computation (see Fig. 1.2) we defined the

wave function in a grid of unit a and wrote a difference equation

[
− ~2

2m

∂2

∂x2
+ U(x)

]
ψ(x) =⇒ −V un−1 + Enun − V un+1

where ψ(na) = un is discrete wave function and ~2

2ma2 = V is the kinetic term that tends

to delocalize any local excitation among different sites in the lattice. The local energy

term En = −2V + U(na) identifies the “site” energy of a particle at a given potential

profile referred to the kinetic energy scale. This is the tight-binding representation,

which is very useful to describe a wave function at an atomic scale, where it is called

Linear Combination of Atomic Orbitals. There, the un can be interpreted as the

amplitude of an atomic eigenfuntion at atom nth. Reciprocally, the continuous SE

can be seen as an long wavelength approximation of a discrete equation. In this regime

we used to interpret the electron density waves in the quantum corral.

1.4 Quantum Dynamics in Spin Systems

In quantum mechanics there appears a new variable: the spin. For nuclei of some

elements this is a binary property assimilable to magnetic moments oriented along

(↑) or against (↓) a given direction. Since these moments interact among them, e.g

through dipole-dipole interaction, they have a dynamics which is also described by the

SE. For example, the interaction J is responsible for the exchange between ↑A↓B and

↓A↑Bwhich is quite analogous to a single particle tunneling among two potential wells

(see Fig. 1.3). Starting from one initial state, they would exchange as an periodic

function of time yielding the Rabi oscillations with frequency ω0 = 2πJ/~. These are
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1.4 Quantum Dynamics in Spin Systems

Figure 1.2: Evolution of a wave packet in a 1D box. The behavior shows how the

superposition of waves moves through the box and is reflected in the edges.

5



1. INTRODUCTION

the simplest form of the mesoscopic echo discussed above. Notice that exchange or flip-

flop interaction J plays the same role in delocalizing the spin excitation as the hopping

amplitude V does in delocalizing a charge excitation in the tight-binding version of the

SE.

Figure 1.3: Schematic representation of the Rabi Oscillations between the state A = |↑, ↓〉
and B = |↓, ↑〉. These states could represent a pair of spins with opposite orientation, or a

double wells potential where a particle is putted in one of the sites. The left panel shows

the probability of measuring the A states being that it was in the same site at t = 0.

With the advance of Nuclear Magnetic Resonance (NMR) is became possible to cre-

ate, manipulate and observe the polarization generated in an ensemble of interacting

nuclear spins. Today, the manipulation of spins of atoms in different chemical config-

urations, can also be made with a combination of specific radio frequency pulses (see

representation on Fig. 1.4).

For many years it was a discussion if NMR techniques could be used to measure the

wave behavior of the spin. In 1997, following a suggestion by Pastawski and Levstein,

the group of Ernst [Mádi et al., 1997] was able to observe this behavior by making

NMR experiments on lysine molecules (see Fig. 1.5). There, the propagation of a local

excitation behaves as a particle in a box discussed above. Evidently, the reflection is still

not perfect and we should help to understand and control the mechanisms responsible

from this imperfection.
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1.5 Environment and Decoherence

Figure 1.4: Artist representation of the quantum state controllability of single electron

spins. Figure Extracted From: http://tnw.tudelft.nl/

1.5 Environment and Decoherence

The progressive development of technology capable of creating ad-hoc states and the

design of specific Hamiltonians in different fields (NMR, cold atoms, superconducting

circuits, quantum dots, etc.) opened the expectation to manipulate quantum systems

at will. The expectation is that it would allow to exploit the potential of superposition

states to generate a form of “parallel processing”. In this sense, the recent implemen-

tation of devices performing quantum logical gates represents one of the main subjects

of investigation in the last years in the field now defined as Quantum Information

[DiVincenzo, 1995]. In this context, one is compelled to handle questions that were

overlooked in textbooks. For example: What are the requirements for an efficient

quantum manipulation? Its response is not generally obvious. First, we need to have

the full knowledge about the object we want to control. At this point it is necessary

to make our first definition: the system. For us, it is an idealized representation of the

portion of the natural world that we are able to manipulate in an experiment. Indeed,

the first step to perform a theoretical analysis is to suppose that the system is isolated.

Then their solutions will allow to get the behavior of the free evolution. This method

7



1. INTRODUCTION

Figure 1.5: Experiment on lysine made by the group of Ernst [Mádi et al., 1997]. The

spin polarization behaves as wave which jumps between the Carbon sites. In the lower

part it is represented the behavior of the polarization as a function of time.
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1.5 Environment and Decoherence

is like the “frictionless spherical horse” solution of the system [Gamow, 1971]. In this

sense, the controllability is implicit. However, there are always the uncontrolled inter-

actions within the system and in the surrounding world, all of which we denote as: the

environment. The environments represent one of the biggest limitation for the theoreti-

cian and certainly for the experimentalist, because it can not be solved or controlled.

The environmental effects can be reduced, but never eliminated. Then, all the efforts

are aimed at avoiding or compensating the effects of the environment. In this sense,

the reduction of the interaction between the system and the environment represents a

main goal in quantum information.

The first step is to think that the environment behaves perturbatively as a “reser-

voir” (a bath with an infinite number of degree of freedom), where it smoothly modify

the dynamics of the system and damping out the interference effects (see Fig. 1.6).

This is the situation is observed in the Ernst experiment shown in Fig. 1.5, where

the uncontrolled interaction and degrees of freedom produce the attenuation of the

expected mesoscopic echoes beyond the ideal spin wave description, i.e. our spherical

horse solution. The environment subtracts probability to the idealized “spin wave” so-

lution which is complemented with a probability representing a featureless background.

In other words, the environment does not seem to maintain any memory from its pre-

vious state. We may attempt to describe this attenuation of the expected interferences

as environmentally induced “decoherence”.

The “spherical horse” description for an environment is describing it through the

Fermi Golden Rule (FGR) [Facchi & Pascazio, 1999]. The FGR allows to evaluate the

transition rate, 1/τ, from a system eigenstate into the environment. The simplest form

of this approach results as a second order approximation in a perturbation theory in

presence of a continuum spectrum which appears as consequence of the thermodynamic

limit. This limit considers that the number of degrees of freedom of the environment

is infinite before any dynamics is evaluated. If we weakly connect our two spin system

to an infinite spin chain, the spin excitation is seen to decay as shown in Fig 1.6.

The decay rate can also be evaluated from the imaginary part, Γ = ~/2τ, of the

response function of open systems, i.e. a problem in which the infinite chain constituting

the environment is implicitly represented by open boundary conditions on the system.

In thermodynamics this concept is equivalent to require that the environment behaves

as a reservoir which is maintained at a constant temperature. In other words, every

9



1. INTRODUCTION

Figure 1.6: Equivalent plot to that presented in Fig. 1.3, but in this case we have

considered an infinite environment.

amount of energy that enters in the reservoir is fastly dispersed away, so the local

temperature does not change at all.

1.6 Leaving the Spherical Horse Aside: The Many-body

Problem

In this work we decided to move away from the “spherical horse” descriptions intro-

duced above. The strategy is to consider small systems where the analytical solution

is feasible and jointly with the numerical simulations we could extract the physical

properties. In our models we will try to keep our descriptions realistic enough to be

close to the experimental situations. However, the experimental system have a many-

body nature. This property complicate every theoretical approach. Despite of this,

there are specific types of many-body dynamics that could be treated in terms of a

number of independent one-body like problems which are easy to solve. An important

example of this, is the dynamics of the polarization excess in a 1D spin system with

flip-flop (or XY ) interactions. Then, with the use of Wigner-Jordan transformations

[Lieb et al., 1961], the spins chain can be mapped into non-interacting electrons prop-

agating in a 1D tight-binding chain evolution of this polarization. In that case the

polarization dynamics is the same as the dynamics of the single particle density in the

linear chain. This type of mapping is of particular interest for us, because it allows the

comparison between particle evolutions in tight-binding system with the polarization

evolution in spin arrays.
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1.7 Non Trivial Role of the Environment

As mention before it could be our “spherical horse” solution for the 1D spin arrays.

This allows us to start increasing the complexity of the problem by adding other types

of interactions (for example the Ising coupling) or changing the topology of the arrays

by including for example a lateral chain.

1.7 Non Trivial Role of the Environment

1.7.1 Decoherence and the Loschmidt Echo

The most important issue that affects the dynamics of the system, is the environ-

mentally induced decoherence. One form of measuring these effects, is by evaluating

the attenuation of the mesoscopic echoes. If we were able to vary the coupling value

between the system and the “environment” in the Ernst experiment (see Fig. 1.5),

we might be able to observe and quantify the attenuation of the mesoscopic echoes

[Álvarez et al., 2010a]. Another form to evaluate the decoherence experimentally is by

the use of a time reversal of the evolution, produced by the effective Hamiltonian H1

for period t1, of an initially localized polarization excitation. The procedure, called

Loschmidt Echo (LE), consist in the sign inversion of the system’s effective Hamilto-

nian for a period t2 (i.e. H2 ' −H1 ). Since in an ideally isolated system, the change in

the sign is equivalent to the reversion of arrow of time (see Eq. 1.1). Thus, the “back-

wards” evolution proceeds for a time t2 and at t2 = t1 a revival or Loschmidt echo

occurs. The Loschmidt echo quantifies the reversibility of the system and consequently

the coherence loss of the system.

In the terms used above, the initial local polarization amplitude can be identified

with the wave packet ψ(x, 0), and the observed local polarization (see Fig. 1.7) is

essentially:

M(t2, t1) =

∣∣∣∣∫ ψ∗(x, 0)eiĤ2t2/~e−iĤ1t1/~ψ(x, 0)dx

∣∣∣∣2 ≤ 1.

When reversion is perfect the echo reach its maximum value at t2 = t1 ≡ t. The

imperfect reversal M(t) < 1 can arrise either from limitation to precisely invert the

system’s Hamiltonian or from the fact that there is a uncontrolled environment. In

both cases,

Σ̂ = Ĥ2 − Ĥ1,

11



1. INTRODUCTION

Figure 1.7: Local polarization measurements in NMR. Ferrocene experimental data as

function of t1 + t2. In each curve represent different t1 revertion times. The maximun of

local polarization it is observed when t2 = t1.
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1.7 Non Trivial Role of the Environment

by introducing fluctuations in the quantum phase can be seen as a decoherent process.

Thus, the LE constitutes a natural quantifier for decoherent processes.

The biggest experimental puzzle left by the experiments is that even in cases where

the effective Hamiltonian is extremely well controlled, M(t) decay quite rapidly and

it does in a timescale which is an intrinsic characteristic of the inverted Hamiltonian

and does not depend on the (weak) interaction with the environment. This is what has

been called intrinsic decoherence or perturbation independent decay.

The experimentalist suggest the this is a manifestation of a sort of intrinsic insta-

bility of the many body systems. Thus it is an objective of this work to present the first

steps to account for decoherence as one moves continuously from one body dynamics

to actual many-body systems.

1.7.2 Quantum Dynamical Phase transition and Synchronization

In the previous paragraphs (see Sec. 1.5) we discussed how the environment could be

treated as a reservoir, and that it smoothly modifies the dynamics of the system. There

are cases where the environment is still considered in the Markovian approximation,

but where their interaction produces drastic changes in the dynamical behavior of the

system. Our group was able to report on of such Quantum Dynamical Phase Transition

(QDPT), in this case, this is observed in the Swapping dynamics between spins of

13C and 1H (see Fig. 1.8 ). This transition appears when the interaction time scale

between the system and the environment is of the order of the internal coupling Js. As

we will show in the next chapter, the simple Markovian environments could produce

non-analytic changes (non-perturbatives) in the dynamics of Rabi oscillators. Even

more, this non-analytic behavior could only be reached if the environmental spins are

considered in the thermodynamic limit, otherwise the non-analytic discontinuity that

identifies the phase transition does not occurs [Sachdev, 2011].

The first report of a phase transition in the a systems dynamics is connected to

classical mechanics. C. Huygens in the XVII century, by observing the motion of

two pendulum clocks (which could have different natural oscillation frequencies), real-

ized that they become synchronized if they are imbedded in the same wooden beam

[Huygens, 1673]. In this case the wood beam acted as an infinite reservoir that is ca-

pable of steal energy from one of the oscillations modes. Thus, the other mode is the
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Figure 1.8: Swapping dynamics between 13C and 1H. a) Experimental 13C polarization

in Fe(C5H5)2 as a function of the contact time t and spin-spin coupling b. b) Numerical

simulations of the 13C polarization. Projection plots in the b-t plane show a canyon where

the oscillation period diverges indicating a quantum dynamical phase transition. Figure

extracted from Ref. [Álvarez et al., 2006].
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1.7 Non Trivial Role of the Environment

surviving and defines the phase of synchronization. Depending on the value of the dif-

ference between both natural frequencies, the oscillations could become synchronized

or not.

Another interesting case in the classical mechanics is the Coupled Motion of Piano

Strings [Weinreich, 1979]. In this case with the use of some approximations it is pos-

sible to analytically describe the synchronization induced by the wood bridge which

couples the piano strings. Here the wood bridge also plays the role of the environment

in the quantum systems as it is capable of absorbs energy mainly from oscillation modes

corresponding to the symmetrically coupled strings while it lets the antisymmetric os-

cillation mode to survive. In Fig. 1.9 it is plotted the “complex frequencies” solutions

of a pair of strings. There, the real part corresponds to the “observable frequency”

and the imaginary part is associated with the decay rate of each mode of oscillation.

In this simplest case, it is observed that one of the those solutions have bigger decay

rate than the other. Thus if we analyze the evolution of each piano string for long

times, we see that they become synchronized with a fixed relative phase defined by the

mode which has the lower decay rate. The transition between the synchronized and the

non-synchronized dynamics is then defined by a non-analytical critical point in the real

frequencies. There, as we observe in Fig. 1.9, the synchronization only occurs if the

mistuning between the strings is sufficiently small. It is important to remark that the

presence of the infinite number of degrees of freedom in the environment is responsible

for the non-analytical behavior of the solutions. For example, if the environment is

finite, the solutions becomes reals and the collapse of frequencies is avoided (see the

outer curves in the upper part of Fig. 1.9)

This last example has a direct connection with the propagation of plasmonic ex-

citation in metallic nanoparticles, where each particle sustains an specific plasmonic

oscillation which is coupled with that of its neighboring particles. The fast damping of

these modes will require an energy restoration processes in analogy to the mainspring

in the Huygens’ clocks. Although these examples are drawn from the realm of classical

mechanics, we will observe that the phase transition in the quantum dynamics of Fig.

1.8 is equivalent to that presented here. It is induced by the “infinite” environment

which selectively steal energy from some of the oscillation modes.
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Figure 1.9: Figure with the caption extracted from Ref. [Weinreich, 1979]. We added two

new curves over the real part of the frequencies that represent a typical avoided crossing

of the solutions.
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1.7.3 Non Markovian Effects

If we now move away from the usual Markovian approximations we will find new types

of behavior. All this dynamical effects are denoted as Non-Markovian Dynamical evo-

lutions. In Fig. 1.10 we show a simple example of these effects. The first difference that

we observe from the previous cases, is the appearance of deep and sudden depletion in

the survival probability: the survival collapse. It appear when the return probability

amplitude interferes destructively with survival amplitude. This is followed for a diffu-

sive regime. Here, the decay is governed by a power law where the exponent depends

on the spectral structure of the environment. This diffusive regime is observed if the

environment is “slow”, i.e. the structure of the environment is not capable of spread

energy as rapidly as it steals it from the system.

The survival collapse and diffusive evolution may appear as if the environment is

finite or infinite. If the system is finite, we also expect the formation of mesoscopic

echoes where probability returns after a reflection in edges of the environment (see Fig.

1.10-b).

Figure 1.10: Non-Markovian effects in linear tight binding systems. The survival

probability for a model of one site couple to a semi-infinite chain, as a function of

time. a) The cuadratic, exponendial and the difussive decay. b) The Mesoscopic

Echo appear for longer times if the environment is finite. For more details see Ref.

[Rufeil-Fiori & Pastawski, 2006].

1.8 Organization of this Thesis

Along this work we explored several model Hamiltonians in which we incorporate spe-

cific structures in the environment that allow to analyze the Non-Markovian effects on
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the system dynamics. We will show that the “environment” (in its more general form) is

capable of produce phase transitions in the quantum dynamics, molecular dissociations,

plasmonic synchronization, and corrections to the usual forms of evaluate decoherence.

The combination of analytical tools with the numerical solutions, will allow us to make

deep analysis of each problem and obtain numerous physical interpretations.

The first chapter (Chap. 2) introduces the “leitmotiv” of this work. There, we

present the simplest form of a Rabi oscillator and couple it to a structured environ-

ment. We start analyzing the Rabi oscillations in spin systems, but then we quickly

move to the one-body dynamics in tight binding systems. In this scenario we study

the evolution of a single particle jumping among two potential wells where the vari-

ation of the tunneling amplitude and the coupling with the a specifically structured

environment, leads to several phase transitions in the quantum dynamical behavior.

In this context we will show the collapse of eigen-frequencies in the complex plane

assimilable to the exchange narrowing introduced by P.W. Anderson [Anderson, 1954]

as well as a appreciable dynamical effects resulting from the appearance of “Virtual

States”, which corresponds to the unphysical pole of the response function. We will

analyze how their properties differ from those of the typical resonant or localized states.

From the models presented in Chap. 2 we will observe that the evolution of the survival

probability can be separated in three kind of decays: quadratic, exponential (as the en-

velope of the internal dynamics) and polynomial (diffusive). They will result equivalent

to those presented in Fig. 1.10. The quadratic decay, which appears in shorter times,

is related to the weak interaction limit, where the environment is weakly coupled to

system. The next time scale, is defined by the exponential decay of the dynamics. The

decay rates of this exponential behavior can be evaluated from the Fermi Golden Rule

(FGR) if the environment is considered in the Wide Band Approximation (WBA).

In this first chapter we also include most of the analytical and numerical tools that

we will use in nexts chapters. In particular, the analysis of the Green function poles

represent one of the central strategies used along this work. Their relation with the

Local Density of States (LDoS) and the dynamics, this last evaluated from diagonaliza-

tion procedures and Trotter-Suzuki algorithms, let us make a complete study of each

one of the considered systems.

The understanding of the physical properties involved on the quantum dynamical

phase transitions (i.e. phase transition in the quantum dynamics) gave us the tools
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to analyze other related problems like the molecular dissociation in catalytic reactions

in Chap. 3 and plasmonic synchronization in nanoparticle arrays in Chap. 4. In the

first case the analytical properties of the Green function theory and its relation with

the Local Density of States (LDoS) are used to explain the Molecular Bond Breaking

observed in catalytic processes. There, we will show that the abrupt molecular dissoci-

ation, which occurs in the proximity of a transition metal, is generated by the presence

of phase transitions in the quantum dynamics previously analyzed in Chap. 2.

In the other case, with the knowledge of the QDPT and the dynamical behavior of

the Rabi oscillations in presence of a common environment, we will analyze how the

surface plasmons in nano-parcicle arrays could become synchronized. We will apply the

Green function formalism to shed light about the dynamical behavior of the plasmonic

systems. The use of several types of dynamical simulations allows us to confirm our

results and conserve realistic parameters for the nano particle arrays. Additionally

the study of these plasmonic systems helped us to increase our experience on how the

systems behaves in the presence of different types of environments.

In the second half of this thesis (Chapters 5, 6 and 7) we will focus on the analysis

of the quantum coherence degradation in presence of several types of S-E interactions.

In these chapters we will use the ”Loschmidt Echo” as a decoherence quantifier to

measure the degradation of the interferences produced by the coupling with different

environments. In Chap. 5 we used a one-body version of the LE to evaluate the

decoherence in one-body like spin systems. There, we also use the Green’s Function

formalism to compare the decoherence rate with its usual evaluation from the Fermi

golden rule.

In chapters 6 and 7 we add another ingredient to the interaction between the system

and the environment: the Ising Coupling. The consideration of this coupling converts

the one-body solvable problem into a complex problem with not analytical solutions.

The numerical simulation of the spin dynamics, was our first approach to the problem.

We begin by considering a spin ladder in which we take one of the chains as the system

and the other as the environment. From those simulations we will be able to compare

results with previous measurements of the decoherence rate by the evaluation of the

Mesoscopic echoes attenuation (see Chap. 6).

In Chap. 7 we will analyze the dynamical effects of including environments with

small number of spins. In that cases we will study how the decoherence rates depart
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from the WBA approximation in the presence of small environments. With the use

the Keldysh formalism we will be able to interpret each of the decoherence rates and

connect them with the cases analyzed in the previous chapters.

The organization of the thesis is presented in Fig. 1.11.

Figure 1.11: Diagram of the chapters.
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Chapter 2

Phase Transitions in the

Quantum Dynamics

2.1 Introduction

It is well known that processing information using quantum mechanics makes possible

communication procedures and computational tasks that could outperform classical

devices in terms of security or speed [Bennett & DiVincenzo, 2000]. There are extensive

experimental efforts to realize implementations of the necessary building blocks for

Quantum Information Processing (QIP).

The Swap gate is one important building block in QIP, where a “particle” jumps

between two degenerated states, A and B, when a the coupling VAB between them

is turned on. In cases where a initial state is put in A, then the return probability

oscillates with the Rabi frequency given by the inter coupling: ω0 = 2VAB/}.

As we mentioned in the introduction, the isolation of any real system can not

be made completely reached. In the practice, the interactions with an environment

[Zurek, 2003, Zurek et al., 2007, Myatt et al., 2000] perturb the evolution, smoothly

degrading the quantum interferences and producing a “decoherence” rate 1/τφ. This

rate is usually identified with the system-environment (SE) interaction rate 1/τSE,

typically evaluated from the Fermi Golden Rule (FGR).

In spin systems, it is possible to represent A and B with the ↑↓ and ↓↑ spin

configurations respectively. In this kind of system it is expected that for weak interac-

tions (1/τSE � 2ω0), the environment produce a slightly degradation of the oscillation,
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which decays at the rate 1/τφ = 1/(2τSE). There are experimental conditions, however,

where the observed frequency shows a dynamical transition on its dependence of the

SE interaction [Álvarez et al., 2006]. In fact, the swapping frequency results to be a

non-analytic function of the interaction rate. At a critical strength 1/τ cSE = 2ω0, the

oscillation freezes indicating a transition to a new dynamical regime. The initial state

now decays to equilibrium at a slower rate 1/τφ ∝ ω2
0 τSE, which vanishes for strong

SE interactions.

This last regime can also be seen as a Quantum Zeno regime, where the internal

dynamics is inhibited by the frequent “observations” [Misra & Sudarshan, 1977] of the

environment. Such quantum freeze can arise as a pure dynamical process, governed by

strictly unitary evolutions (see Ref. [Pascazio & Namiki, 1994], [Pastawski & Usaj, 1998]).

Indeed, some of the phenomenology of that transition was not foreign to spectroscopists.

The collapse of the independent resonance lines leads to the exchange and motional nar-

rowing addressed by Van Vleck [Van Vleck, 1948] and Bloembergen, Purcell and Pound

[Bloembergen et al., 1948] in the 40’s and synthesized in the analytic properties of a

phenomenological classical probabilistic model, by P. W. Anderson [Anderson, 1954].

The quantum description of the phase transition [Álvarez et al., 2006] required a

self-consistent calculation of the oscillation in presence of the SE interaction. There,

the environment was described in the “fast fluctuations”approximation where it has no

memory of its previous state [Álvarez et al., 2007].

In this chapter we present a simple and exactly solvable quantum model that

presents the dynamical transitions. Although we describe the coherent part of a spin

SWAP dynamics [Danieli et al., 2005], we will show that essence of the dynamics is

maintained when the incoherent part is taken into account.

A complementary vision for the dynamics under the action of a given Hamiltonian

is, of course, the spectral representation which can be studied as function of the SE

interaction strength. However, the energy representation hides much useful dynami-

cal information in subtle spectral properties, such us resonances that collapse at the

”Exceptional Points” (EP) [Müller et al., 1995, Rotter, 2009, Rotter, 2010] in the com-

plex plane. Other unusual properties involve resonances that shrink and jump into the

non-physical Riemann sheet to become virtual states. Ultimately, these resonances can

transform themselves into isolated singularities on the real axis, accounting for localized

states.
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In our model all of these transitions appear naturally through the variation of a sin-

gle control parameter. There are a number of physical systems that show some of these

delicate spectral properties: The EP or collapse of resonances has been observed in crys-

tals of light [Oberthaler et al., 1996], electronic circuits [Stehmann et al., 2004], prop-

agation of light in dissipative media [Shuvalov & Scott, 2000, Berry & Dennis, 2003],

vacuum Rabi splitting in semiconductors cavities [Khitrova et al., 2006], in microwave

billiards [Dembowski et al., 2001], [Dembowski et al., 2004], [Dembowski et al., 2003],

[Dietz et al., 2007], and there are a number of examples drawn from electron-paramagnetic

resonance [Napolitano et al., 2008, Costa-Filho et al., 1999, Calvo, 2007], and solid state

NMR [Álvarez et al., 2006]. It also appears in many theoretical models: e.g., describ-

ing the decay of superdeformed nuclei [Stafford & Barrett, 1999], phase transitions

and avoided level crossings [Heiss & Sannino, 1991, Keck et al., 2003, Heiss, 2000], geo-

magnetic polarity reversal [Stefani & Gerbeth, 2005], tunneling between quantum dots

[Cardamone et al., 2002, Danieli et al., 2007], optical microcavity [Longhi, 2006a], vi-

brational surface modes [Calvo & Pastawski, 2006], and in the context of the crossing

of two Coulomb blockade resonances [Weidenmüller, 2003]. On the other hand, the

Virtual-Localized transition has been addressed in the context of the n−p singlet system

[Taylor, 2006], models of stabilization of quantum mechanical binding by potential bar-

riers [Hogreve, 1995], Feshbach resonances [Marcelis et al., 2004, Pupasov et al., 2008],

stability of atomic and molecular states [Serra et al., 2001, Yamashita et al., 2002] and

also in virtual bound states in photonic crystals [Inoue & Ohtaka, 2004].

In section 2.3 the model is presented and with the use of the Green’s function for-

malism [Pastawski & Medina, 2001], the solution is obtained in section 2.4. In section

2.5 we analize the parametric regions and associate them with the analytic properties

of the local density of states and the different dynamical regimens:

• Region I) collapsed resonances 7→ Overdamped

• Region II) resolved resonances 7→ damped oscillations

• Region III) out of band resonances 7→ environment controlled quantum diffu-

sion

• Region IV) virtual states 7→ anomalous diffusion

• Region V) pure point spectrum 7→ localized dynamics.
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2.2 The Spin-Fermion Mapping

In this section we will introduce the spin-fermion mapping which let us solve ana-

lytically the spin polarization dynamics (details can be found in Appendix A). This

map, also called as the Jordan-Wigner transformation (JWT) [Lieb et al., 1961], has

been extensively addressed in the literature [Mádi et al., 1997, Pastawski et al., 1995,

Danieli et al., 2004, Danieli et al., 2005, Álvarez et al., 2007, Álvarez et al., 2010a] in

the context of dynamical properties of spin systems. This JWT establish that the

relation between spin and fermions operators at a given site n is given by:

Ŝ+
n = ĉ†n exp

{
iπ

n−1∑
m=1

ĉ†mĉm

}
, (2.1)

where ĉ†n and ĉn are the common creation and annihilation fermionic operators, and

Ŝ±n the spin rising and lowering operators.

With the purpose of applied this transformation to our model, let us first define an

arbitrary linear model. Then, the spin system is ruled by,

Ĥspin =
∞∑
n=1

Jn(Ŝxn+1Ŝ
x
n + Ŝyn+1Ŝ

y
n), (2.2)

Ĥspin =

∞∑
n=1

Jn
2

(Ŝ+
n+1Ŝ

−
n + Ŝ−n+1Ŝ

+
n ), (2.3)

(2.4)

This system represents a linear spin chain couple through XY interactions. Then,

if we applied the JWT, we obtain:

Ĥspin −→ Ĥfermionic =

∞∑
n=1

Vn(ĉ†nĉn+1 + ĉ†n+1ĉn). (2.5)

where Vn = Jn/2 is related to the Rabi frequency ω0 = 2Vn/~ between the sites n

and n + 1. Eventually, one can include appropriate energies En for the local states n,

but it is not relevant for the present analysis.

It is important to note that in this model we let outside the Ising interactions. This

kind of interactions, jointly with the interactions beyond the 1D systems, give rise to
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2.3 The Model

many-body interactions in the fermionic picture. In our first approach we neglect this

kind of interactions, but we will discuss about them in the Chapters 6 and 7.

In summary, we are now interested in an electron jumping between tight binding

sites arranged as a linear chain. The specific selection of the Vn couplings will give us

the opportunity of study different dynamical properties.

2.3 The Model

Our first model is the two-spin system couple to an semi-infinite linear chain of spins.

As we mention before, we can map this problem into a tight-binding scheme, and obtain

what we observe in Fig. 2.1. Then, the Hamiltonian for this problem can be arranged

in three parts: The system, the environment and the interaction between them,

H = HS +HE + VSE , (2.6)

where,

HS = −VAB (|A〉 〈B|+ |B〉 〈A|) (2.7)

HE = −V
∞∑
n=1

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) (2.8)

VSE = −V0 (|B〉 〈1|+ |1〉 〈B|) , (2.9)

and |n〉, with n ≥ 1, is the state localized at the n-th site of the chain. VAB, V0 and V

are the positive hopping amplitudes between two contiguous sites. The first two sites,

linked by VAB, are what we denote as the System. The rest of the chain is what we

take as the environment.

Figure 2.1: Representation of the system and the environment. The first two sites are

connected through VAB , while in the environment the hopping is V . The interaction

between the system and the environment will be defined by the parameter V0.
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2. PHASE TRANSITIONS IN THE QUANTUM DYNAMICS

At this point it is necessary to remark that the local excitations in spin chains with

XY interaction can be transformed into single fermions moving in a tight binding chain

(in the high temperature limit) [Mádi et al., 1997]. Thus, if put a local polarization in

a spin system in the high temperature limit, and then we map it, we will see that the

evolutions is dominated by the coherent term, i.e. the evolution of only one particle in

the tight binding systems. The rest of the particles (or the up spins) will contribute to

the incoherent contribution.

Let us show how the presence of these incoherent contributions do not change the

essential behavior that we want to present. To do this, we will compare the dynamics

of the coherent and incoherent part for one specific case. In Fig. 2.2 we show the

dynamical behavior for an spin system and its mapped fermionic system. Later on we

will enter in the details on how we evaluate those dynamics, but for the moment, we

want to focus on their physical solutions.

In the spin case, we considered the evolution of the initial state ↑A↓Bconnected to

a “thermal state” for the rest of the spins. This notation represents that the A spin is

in the up (↑) configuration and B in down (↓) state. The “Thermal state” for the next

N = 18 spin means that all these spins are in the infinite temperature limit, where

each one has the same probability of been ↑ or ↓.

On the other hand, we have decomposed the fermionic evolution into two contribu-

tions: the coherent and the incoherent part. The first one is the survival probability of

seen one particle in the site A given that it was there at t = 0. However, the incoher-

ent part represents the “Thermal state” contribution, which involves the sum over the

dynamics of all the environmental spins which contributes to the A site at time t. The

presence of the ensemble, introduces an extra weight of 1/2 which has to be considered

in the sum. This factor appears because the infinite temperature limit makes that

each spin has 1/2 of probability of been in the ↑ state. This incoherent sum can be

summarized as follows:

Pincoh(t) =

N∑
n=1

1

2
PAn(t), (2.10)

where PAn(t) is the probability of observing a particle in A at time t, given that it was

in the site n at t = 0.
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2.3 The Model

Figure 2.2: Comparison between the Spin and the Fermion evolutions of a 2 + 18 spin

system. a) Survival probability PAA(t) (black) for the fermion system and Pspin(t) for spin

an system with initial condition ↑A↓B! (ThermalState). b) PAA(t) and the incoherent

contribution in the fermionic model. c) the superposition of a) and b). d) Pspin(t) and the

coherent+incoherent part in the fermionic model.
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2. PHASE TRANSITIONS IN THE QUANTUM DYNAMICS

Taking into account these definitions, we can observe from Fig. 2.2-d that the sum

of the coherent and incoherent part, evaluated from fermonic evolutions, is just the

exact spin dynamics. Additionally from Figs. 2.2-a,b and c, it is possible to infer that

the incoherent part only makes that the sum tends to the final state of 1/2, but no

modify the structure of the dynamics. In this way, with the analysis of the coherent

part we can obtain the main dynamical properties without having to evaluate all the

incoherent dynamics.

One last question that may arise in this context is why, if we have put N particles

(with half probability), sum is lower than 1 in the site A in the evaluation of Pincoh(t)?

This apparent inconsistency is solved once we think on what happens when we applied

an unitary evolution into two orthogonal vectors. In Fig. 2.3 we can observe that the

sum of each component of the vectors over each axe is never greater than 1. In our

model, the initial condition of one “half” particle on each site defines N orthogonal

initial states. Then, the sum of all those initial states over any site will be always lower

than 1, because the mesure over each site is equivalent to evalu the contribution over

each axes of Fig. 2.3. This fact ensures the conservation of the number of particles

over all the system.

Figure 2.3: Schematic representation of orthogonal vectors under unitary evolutions.

Here it is possible to observe that the sum on each component is never greater than 1.
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2.4 Analytic Solution.

2.4 Analytic Solution.

Let’s start solving the Hamiltonian presented in Eq. 2.6. The solutions for this problem

and for almost all the cases presented in this thesis will be obtained within the Green’s

Function (GF) formalism [Economou, 2006]. For the case of an isolated system HS , we

can define the GF matrix as follows, G,

G(0) (ε) = (HS − εI)−1 . (2.11)

From this equation it is shown that the poles of the GF represent the eigen energies

of the system. Thus, the search for this poles will give us information about the

energy spectrum of the system and also the decay rate in cases where the system have

resonances.

In order to make a fully consistent definition of Gn,m(ε) as the Fourier transform of

the retarded propagator, Gn,m(t), we assume that each site n has an intrinsic de-

cay process En → En − iηn. This solves the Gutzwiller objection on this aspect

[Giannoni et al., 1991]. However, since these imaginary parts are considered infinitesi-

mal, they are not written explicitly in what follows.

The first diagonal component of G (ε) gives us information about the system dy-

namics. This component becomes,

G
(0)
AA (ε) =

1

ε− V 2
AB
ε

. (2.12)

Here, we can see that the poles of G
(0)
AA (ε) are ẼA,B = ±VAB, just the system

energies as we say before. If we consider an isolated system of two sites, and excite

the first one; the system evolves oscillating between the states |10〉 and |01〉 with a

characteristic Rabi frequency ω0 = 2VAB
~ . This oscillation is used to generate the

SWAP gate by letting the Hamiltonian act during a time tswap = 5π
2

1
ω0

.

When we take into account the environment, the first diagonal component of the

GF becomes,

GAA (ε) =
1

ε− V 2
AB

ε−
V 2

0
V 2 Σ(ε)

. (2.13)

Typically the Self Energy Σ ' ∆− iΓ is evaluated within a Fermi Golden Rule ap-

proximation [Facchi & Pascazio, 1999] as an ε independent complex number. Since
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2. PHASE TRANSITIONS IN THE QUANTUM DYNAMICS

this would imply neglecting all dynamics and memory effects of the environment,

such procedure could miss some subtle behaviors [Khalfin, 1958, Fonda et al., 1978,

Garćıa-Calderón et al., 1995]. Our model enables the evaluation of the exact self-

energy of an environment represented by the Semi-Infinite Chain, and hence accounts

precisely for these “memory effects”. According to the continued fractions solution

[Pastawski & Medina, 2001] of the Renormalized Perturbation Expansion [Economou, 2006],

Σ (ε) =
V 2

ε− V 2

ε− V 2

ε− . . .

(2.14)

=
V 2

ε− Σ (ε)
. (2.15)

which sums up to the form:

Σ (ε) = ∆ (ε)− iΓ (ε) , (2.16)

with

∆ (ε) =


ε
2 −

√(
ε
2

)2 − V 2 ε > 2V
ε
2 |ε| ≤ 2V

ε
2 +

√(
ε
2

)2 − V 2 ε < −2V,

(2.17)

and

Γ (ε) =


0 ε > 2V√

V 2 −
(
ε
2

)2 |ε| ≤ 2V

0 ε < −2V.

(2.18)

At this point, a brief commentary on the complex self-energies, i.e. the non-

Hermitian terms, is necessary. Its appearance, either in a FGR calculation or in the

exact solution of Eq. 2.15, relays on the fact that the new eigenstates are completely

orthogonal to the unperturbed ones. In our case they are extended states enabled

by taking the thermodynamic limit of an infinite number of states before η reach 0

[Pastawski, 2007]. As discussed above, adding this small imaginary part means putting

the system in contact with an additional environment. In this situation, Eq. 2.15 pro-

duces a self-energy containing a square root function of the energy instead of a ratio

among polynomials that results when Eq. 2.14 is applied to a finite system. The sign

in front of the square root in Eqs. 2.17 and 2.18 is chosen to ensure the physical (i.e.
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2.4 Analytic Solution.

decaying) behavior when η < 0. As discussed in Ref. [Pastawski, 2007] the presence

of non-Hermitian terms is fundamental in allowing a dynamical phase transition. In

the general context of non-Hermitian quantum mechanics a similar conclusion holds

[Narevicius et al., 2003].

In summary, the poles of Eq. 2.13, control the dynamics of the system and can be

obtained analytically as,

ε2
r =

V 2
AB

(
2V 2 − V 2

0

)
− V 4

0 ± V 2
0

√(
V 2
AB + V 2

0

)2 − 4V 2
ABV

2

2
(
V 2 − V 2

0

) . (2.19)

( b )

1 , 5 0 1 , 5 5 1 , 6 0 1 , 6 5 1 , 7 0 1 , 7 5- 0 , 2

- 0 , 1

0 , 0

0 , 1

0 , 2
V A B

I V V
I I I I IIm
(ε)

V A B

1 , 5 0 1 , 5 5 1 , 6 0 1 , 6 5 1 , 7 0 1 , 7 51 , 9

2 , 0

2 , 1

2 , 2
Re

(ε)

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5

- 1 , 2
- 0 , 8
- 0 , 4
0 , 0
0 , 4
0 , 8
1 , 2

V A B

VI I I

Im
(ε)

V A B

0 , 0 0 , 5 1 , 0 1 , 5 2 , 0 2 , 5

- 2

- 1

0

1

2

Re
(ε)

( a )

Figure 2.4: a) Real and imaginary part of the Green function poles vs. VAB for V0 = 0.8.

All energies are in V units. The dashed line represent the poles for an isolated system.

Different colors identify the poles. The non-physical ones are represented with dotted lines.

The vertical dotted lines divide the dynamical regions. b)Zoom of a) in the limit of regions

III and IV .

Equation 2.19 has four solutions which are plotted in Fig. 2.4. When they have

an imaginary part, only the negative one represents a decaying response to an initial

condition. This imaginary part is precisely the exponential decay rate in the Self-

Consistent Fermi Golden Rule [Rufeil-Fiori & Pastawski, 2006]. When the four poles

are real, the physical ones approach to the isolated system poles shown with dashed

lines. In Figure 2.4, the real and imaginary part are shown as a function of the system
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2. PHASE TRANSITIONS IN THE QUANTUM DYNAMICS

hopping VAB for fixed values of V0 = 0.8V . The solutions not satisfying the above

conditions are indicated with dotted lines. Hereafter, we will refer as “the Poles” of

the GF only those indicated by the continuous line.

The Local Density of States (LDoS) describes the number of states per interval of

energy at each energy level in the local state we are measuring it. This LDOS, which

defines the dynamical properties of the system, can be evaluated as

NA (ε) = − 1

π
lim
η→0+

ImGAA ({En − iηn}∀n , ε) . (2.20)

This definition is equivalent to the standard one, − 1
π limη→0+ ImGAA(ε+ iη), for most

practical purposes.

An advantageous feature of the present model is that LDoS for |ε| ≤ 2V can be

factorized as

NA (ε) = N1 (ε)× L1 (ε)× L2 (ε) . (2.21)

Here, L1 and L2, are Lorentzian Functions (LFs), and N1,is the density of directly

connected states (i.e. the LDoS of the first site of the semi infinite-chain).

N1 (ε) =
1

πV 2

√
V 2 − ε2

4
. (2.22)

The LFs L1 (ε) and L2 (ε) are related with the real and the imaginary part of the

GF’s poles. Their centers move with the real part of the poles, and their widths are

determined by the imaginary part.

In Fig. 2.4 it is observed that there are regions with different analytical behaviors,

some of them separated by abrupt changes that are consequence of the non-analytical

points of the GF poles.

The difference between real parts of the physical poles is ω̃ = |Re (εr1)− Re (εr2)| =

2 |Re (εr1)|, which represents an effective Rabi oscillation frequency. The imaginary part

is associated with the decay rate toward the environment. Hereafter we will focus on

the study of ω̃ behavior, as the parameter that characterizes the dynamics.

The relation between GF’s analytic properties and the dynamics is clarified by

writing the survival probability in the energy-time representation:
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PAA (t) =
∞∫
−∞

dε
∞∫
−∞

dω

2π
GAA(ε+ 1

2~ω)G∗AA(ε− 1
2~ω) exp (−iωt) (2.23)

=

∣∣∣∣∣ ∞∫−∞dεNA(ε) exp (−iεt/~)

∣∣∣∣∣
2

. (2.24)

This function measures the probability to find a particle in the site A at time t,

provided that the system has had a particle at the same site at time t = 0. When

the system is isolated, PAA (t) oscillates with frequency ω0, which coincides with ω̃.

When the environment is taken into account PAA (t) evolves in a more complex way.

However, in spite of this complexity, the evolution at short times can be described by

an exponentially decaying oscillation with frequency ω̃.

In the next section we will present a deeper analysis of all spectral regions and their

main dynamical characteristics.

2.5 Parametric Regions

By analyzing the qualitative features of the Local Density of States (LDoS) as function

of the control parameter VAB we find five parametric regions separated by well defined

critical values. We enumerate them from I to V as they are appearing by increasing

the value of VAB and we name them according to the main features in the LDoS and

the behavior of the GF’s poles in the complex plane.

The most common situation occurs when the two states of the isolated system are

mixed with the environment continuous and hence acquire a finite mean-life. This is

Region II) of Resolved Resonances, a regime typically described by the FGR. When

the interaction with the environment becomes strong enough, at the exceptional point

appears the non trivial transition to Region I) of Collapsed Resonances. This is the

regime where the exchange narrowing occurs [Anderson, 1954]. In the other extreme,

we may consider that the internal interaction of the system is much stronger than the

bandwidth of the environment’s continuous spectrum. Hence, the system’s bonding and

anti-bonding states are pushed away from the band according to perturbation theory

and they will remain localized. This is Region V) Pure Point States. Region III)

Out-of-Band Resonant States and Region IV) Virtual States, would go almost
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2. PHASE TRANSITIONS IN THE QUANTUM DYNAMICS

unnoticed unless the internal and external interactions are very similar (see Fig. 2.5).

In these cases the separation between system and environment becomes very delicate.

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,4

0,8

1,2

1,6

2,0

I

II
III
IV

 

 

V
A
B
/V

V0/V

V

Figure 2.5: Phase diagram of the different regimes as a function of VAB/V and V0/V .

The vertical dash-dotted line represents the condition used in Figs. 2.4, 2.7, 2.6 and 2.8.

The main features of these regions can be identified if we follows the behavior of

the GF’s poles into the complex plane as represented in Figs. 2.4-a and zoomed in Fig.

2.4-b. We notice that poles in Region III and IV have a real part extending outside the

band edges (indicated with an horizontal dotted line). However, as they enter region IV

they loose their imaginary part. At this point the poles jump up to the second Riemann

sheet, as represented in Fig. 2.7, and they become virtual states [Hogreve, 1995]. This

is manifested because they are poles of Eq. 2.13 using the unphysical branch of the

self-energy, i.e. which opposite sign in imaginary part of Eq. 2.16. Hence, they do not

show up as peaks or deltas in the local density of states as it was expected if there were

localized states. Indeed, the LDoS given by Eq. 2.21 integrates to 1 within the band

support. Only when the poles reach the band edge again, see Fig. 2.7, they return to

the first Riemann sheet and become localized states.
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1 , 5 0 1 , 5 5 1 , 6 0 1 , 6 5 1 , 7 0 1 , 7 53 , 8

3 , 9

4 , 0

4 , 1 V

I VI I I

I I
ω

V A B
Figure 2.6: Solid line: frequency ω̃ evaluated from the poles distance (in units of V/~)

vs. VAB (in units of V ). Blue dots: frequency fitted from the dynamics. The value for V0

is the same as in Fig.2.4.

Figure 2.7: Paths of the two poles (Black and Red) of the GF as VAB decreases. They

go from the localized bonding and antibonding states into respective resonances that even-

tually collapse at the exceptional point. The bottom Riemann sheet contains the physical

poles, while the upper sheet has the non-physical poles. The broader horizontal line in the

center represents the continuous band of environment states. Notice that localized states

transform into virtual states and out-of-band resonances before becoming well defined res-

onances.
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Notice that if in Fig. 2.5 we move along the parameter space with a horizontal

line, which means to keep VAB constant, we are not going to past through all the

regions. At least one region would escape the analysis. From the experimental point

of view this implies that it is preferable to vary the system frequency instead of the

system environment interaction, in order to find all the regimes by controlling only one

parameter. For that reason, hereafter in the plots we only vary the parameter VAB

while keeping V0 and V constant at 0.8 and 1 respectively.

In order to ensure consistency, we also studied the behavior of PAA(t) by evaluating

the dynamics through the exact diagonalization of the Hamiltonian of a finite system.

In this case the environment size is taken large enough so the mesoscopic echoes (in-

terferences due to the finiteness of the system) do not show up at times of interest

[Rufeil-Fiori & Pastawski, 2006]. Then, the evaluation of PAA(t) allows us to univo-

cally identify the localized states and the different decay laws of the whole regimes. In

next sub-sections we will show details about the system dynamics in each region.

2.5.1 Region I: Collapsed resonances (overdamped decay)

This region is found for:

|VAB| <
∣∣∣V − (V 2 − V 2

0

)1/2∣∣∣ . (2.25)

Under this condition, PAA (t) decays exponentially and without oscillations until

the survival collapse time [Rufeil-Fiori & Pastawski, 2006]. At this moment the return

amplitude from the environment starts to be comparable with the survival amplitude

(see Fig. 2.8(I-b)). If we set V0 = V we arrive to the case already treated in Ref.

[Rufeil-Fiori & Pastawski, 2006] where it is analyzed the decay of a surface spin exci-

tation when it interacts with a spin chain.

The real part of both poles of the GF coincide with the site energy, which means

that the effective frequency is zero. However, their respective imaginary parts differ

substantially (see Fig. 2.7). One of them moves away from the real axis as the SE

interaction increases while the other approaches the real axis. This means that one

states is captured by the environment while the other becomes isolated by cause the

Quantum Zeno Effect[Álvarez et al., 2006].
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Figure 2.8: (a)-Left side panels: Black solid line: LDoS for the different regions

[VAB = 0.35 (I), 1.0(II), 1.58 (III), 1.62 (IV) and 1.9 (V)]. Blue dotted line: L1 (ε) and

L2 (ε). Black Dash-Dotted line: N1 (ε). The right side scale corresponds to the L1 and L2

plots.(b)-Right side panels: Survival probability PAA (t) in logarithmic scale except for

(V-b), which is in normal scale.
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In this region L1 and L2 are two LF centered at 0, but with different widths,

L1,2 (ε) = C
2Γ1,2

ε2 + Γ2
1,2

, (2.26)

where,

C2 =
V 2

0 V
2
AB

4Γ1Γ2
(2.27)

Γ2
1,2 =

V 4
0 − V 2

AB

(
2V 2 − V 2

0

)
2
(
V 2 − V 2

0

) ∓

√(
V 4

0 − V 2
AB

(
2V 2 − V 2

0

))2 − 4V 2V 4
AB

(
V 2 − V 2

0

)
2
(
V 2 − V 2

0

) .

(2.28)

Fig. 2.8(I-a) shows the behavior of NA, N1 and the Lorentzians functions: L1 and

L2. The centers and the linewidth of L1 (ε) and L2 (ε) are exactly equal to the real and

imaginary part of the poles of the GF respectively.

When VAB reaches zero, Γ1 vanishes, which is consistent with the fact that the

first site becomes completely isolated and the second site behaves exactly as the case

treated in Ref. [Rufeil-Fiori & Pastawski, 2006], where only one site remain interact-

ing with the environment. On the other hand at the value VAB =
∣∣∣V − (V 2 − V 2

0

)1/2∣∣∣
the system presents an EP. In this point both Lorentzians are equal and beyond this

point ω̃ starts to grow up (see Fig. 2.4). This kind of behavior was observed pre-

viously for different physical systems [Álvarez et al., 2006], [Oberthaler et al., 1996],

[Stehmann et al., 2004], [Shuvalov & Scott, 2000], [Dietz et al., 2007], [Müller et al., 1995],

[Dembowski et al., 2001], [Dembowski et al., 2004], [Dembowski et al., 2003],

[Berry & Dennis, 2003, Khitrova et al., 2006]. In our case, we can interpret this as a

change of model from one with two sites interacting with an environment, to other with

only one surface site coupled to a semi-infinite chain.

Before moving to the next region let us make a briefly comment about the relation

of the region the the Synchronization phenomena observed in the Introduction of this

thesis. If we compare Fig. 1.9 and Fig. 2.4 we can observe that the behavior in

both cases is equivalent, but remember that in one case we were working with couple

strings and in the other with fermionic systems. Along this year we analyze these tight

binding models as a possible case for quantum synchronization. However, there were an

ingredient that fermionic systems do not have: the self-sustained evolution of each site.
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Along this years we searched this type of self-sustained evolution in quantum systems

but we did not found how to introduce it in a simple way.

Despite this, if we only consider the transient period, we can observe that there is

one state that decay faster than the other. Thus the dynamical evolution will show that

only one normal mode survives for long times, inducing a fixing of the relative phases.

Indeed it is possible to observe that the model presented in Fig. 2.9-a can be mapped

(through a change of basis in the system) to the model presented in this chapter (see

Fig. 2.9-b). Therefore, the long living mode is equivalent to the survival of the anti-

symmetric mode of 2.9-a. Hence, this case can be connected with the synchronization

showed with the pendulums of Huygen [Huygens, 1673].

Figure 2.9: a) A tight binding system in which is possible to observe the “synchronization”

in fermionic system. b) the mapped problem which is equivalent to that presented in Fig.

2.1. The energy shift δ is the control parameter that moves the problem from a non-

synchronized state (region II) to the synchronized one (region I).

This type of links and the more “realistic”connections between the tight binding

system and the evolution of coupled plasmon oscillators, led us study the how the

surface plasmon in nano-particles could become synchronized. Their results will be

presented in Chap. 4.

39



2. PHASE TRANSITIONS IN THE QUANTUM DYNAMICS

2.5.2 Region II: Resolved Resonances (damped oscillations)
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Figure 2.10: Local dynamics in Log-Log scale for different regimes. The curve II and V

represent evolutions inside the region II and V respectively. Curves II-III, III-IV and IV-V

represent the survival probability at the transitions between regimes.

This regime occurs for values of VAB satisfying:

∣∣∣V − (V 2 − V 2
0

)1/2∣∣∣ < |VAB| , (2.29)

and

|VAB| <

∣∣∣∣∣
√(

1 + 16
V 2

V 4
0

(
V 2 − V 2

0

))((
2V 2 − V 2

0

)
− 2
√
V 2
(
V 2 − V 2

0

))∣∣∣∣∣ . (2.30)

This parametric region is characterized by the oscillatory-exponential decay of

PAA (t) at short times, Figs. 2.8(II-b), followed by a quantum diffusive regime (t−3)

that is better appreciated in Fig. 2.10. The power law decay is consequence of the

environment memory effects and corresponds to quantum diffusion from a 1− d edge.

This is verified by making a Fourier Transform of a LDoS of the form N1(ε) ∝ ενθ [ε]

which leads to a survival probability of the asymptotic form P (t) v t−(2ν+2). In a bulk

of d dimensions ν = deff./2 − 1 with deff. = d. Notably, our case corresponds to a
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2.5 Parametric Regions

survival probability of a state in a surface or edge. This one decays as being in a higher

effective dimension, deff. = d + 2n with n ≤ d the order of the surface. In our case

n = d = 1.

The poles in this region have both real and imaginary parts. At shorts times,

the real part controls the oscillatory behavior (ω̃ = 2Re (ε)) and the imaginary part

determines the rate of the exponential decay. On the other hand, at long times the

excitation decays with a t−3 law and oscillates with a frequency determined by the

environment band width 4V .

Here, the critical time tc is the time scale at which the quantum pathways returning

from the environment starts to be comparable to the pure survival amplitude. Hence,

tc, which decreases with VAB, divides the exponential decay from the diffusive decay.

The LDoS can be expressed in the same way as Eq. 2.21, but in this regime the LF

are centered at symmetric points and have the same width (see Fig. 2.8(II-a)),

L1,2 (ε) = C
2Γ

(ε∓ εr)2 + Γ2
, (2.31)

with,

C2 =
V 2

0 V
2
AB

4Γ2
(2.32)

Γ2 =
V 4

0 − V 2
AB

(
2V 2 − V 2

0

)
4
(
V 2 − V 2

0

) +

√
V 2V 4

AB

4
(
V 2 − V 2

0

) (2.33)

ε2
r =

V 2
AB

(
2V 2 − V 2

0

)
− V 4

0

2
(
V 2 − V 2

0

) + Γ2. (2.34)

It is interesting to notice that the Rabi frequency could either be slower than the

unperturbed one, when VAB � V, or faster, when VAB & V. The precise cross over

results from Eq.2.34 when εr = VAB.

2.5.3 Region III: Out-of-Band Resonances (environment controlled

quantum diffusion).

This region is found for VAB satisfying:

∣∣∣∣∣
√(

1 + 16
V 2

V 4
0

(
V 2 − V 2

0

))((
2V 2 − V 2

0

)
− 2
√
V 2
(
V 2 − V 2

0

))∣∣∣∣∣ < |VAB| , (2.35)
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and

|VAB| <
∣∣∣V +

(
V 2 − V 2

0

)1/2∣∣∣ . (2.36)

If we only take into account the poles of the GF the system resembles the Resolved

Resonances regime. However, if we compare their LDoS and PAA (t), we conclude that

this is a new regime.

In this region, it is no longer possible to distinguish an exponential decay in PAA (t)

(see Fig. 2.8(III-b)). This is because the time tc is too short. This implies that the

oscillations are a direct consequence of the environment. In Fig. 2.6 it is observed that

the frequency obtained directly from the numerical solutions remains constant at 4V

while ω̃ (poles effective frequency) continues growing, confirming our analysis.

The expression for the LDoS presented in Eq. 2.21 is still valid, but the LF are

centered outside the band edges (see Fig. 2.8(III-a)). If we analyze the dynamics in

term of the LDoS, we see that the tails of the LF decay as ε−2, which means that

the LDoS will have a Van Hove singularity as ε1/2 × ε−2,which implies that the local

excitation will decay as t−3 at long times (see Figs. 2.8(III-b) and 2.10).

2.5.4 Region IV: Virtual States (anomalous diffusion)

This region corresponds to the range,∣∣∣V +
(
V 2 − V 2

0

)1/2∣∣∣ < |VAB| <√2
(
2V 2 − V 2

0

)
. (2.37)

The poles in this region do not have imaginary part. For this reason it might be

expected that poles were localized states[Economou, 2006]. However, both the LDoS

of Fig. 2.8(IV-a) and the dynamics shown in Fig. 2.8(IV-b) and Fig. 2.10 probes that

this is not the case. The reason is that the poles had moved to a second Riemann sheet

[Hogreve, 1995, Marcelis et al., 2004] (see Fig. 2.7). In such case only the use of the

unphysical sign of the self-energy could provide poles. The dynamics in this regime

presents a striking transition between a t−3 decay (at VAB =
∣∣∣V +

(
V 2 − V 2

0

)1/2∣∣∣) to a

t−1 behavior (at VAB =
√

2
(
2V 2 − V 2

0

)
). This is shown in Fig. 2.10.

Once again, we can express the LDoS as in Eq. 2.21, however its interpretation is

different. In this region εr is still outside the band edges and yet the value of Γ becomes

imaginary. The fact that Γ is transformed into an imaginary number implies that L1

and L2 are no longer LF. If we now analyze the tails of these functions, we observe

42



2.6 Concluding Remarks of the chapter

that they decay as ε−1. This leads to a LDoS with a Van Hove singularity of the form

ε1/2 × ε−1.Therefore, we can achieve a t−1 behavior of PAA at long times. This fact

is indeed confirmed by the observed dynamics (see Fig. 2.10). As in the previously

analyzed section, ω̃ do not follows the observed oscillation frequency (see Fig. 2.6 and

2.8(IV-a)). Instead, it is fixed by the environment band width 4V .

When VAB reaches the value
√

2
(
2V 2 − V 2

0

)
, there is a change in the nature of

the Van Hove singularities from ε
1
2 to ε−

1
2 . Consequently, PAA(t) decays exactly as a

t−1(see Fig. 2.10). From this point on, the states become localized.

It is interesting to note that while the presence of the virtual states is not clearly

distinguishable in the observable LDoS, the anomalous diffusion, where PAA(t) moves

gradually between t−3and t−1, should enable its experimental identification.

2.5.5 Region V: Pure Point States (localized)

Finally, the last region appears when,

|VAB| >
√

2
(
2V 2 − V 2

0

)
. (2.38)

Two localized states emerge from the band edges as shown in Fig. 2.8(V-a). The

poles are real. Fig. 2.6 shows that ω̃ recovers it interpretation as the effective system

frequency. In this region the environment renormalization is almost negligible and its

only effect is to slightly correct the value of the effective frequency. If VAB becomes

large enough ω̃ reaches ω0.

The dynamics in this region, Fig. 2.8(V-b) is characterized by an oscillatory PAA(t)

that only decays at very short times, after which the amplitude of the oscillation remains

constant.

2.6 Concluding Remarks of the chapter

By considering an exactly solvable model for two spin system (SWAP gate) in presence

of an environment of spins, we discussed how the bath’s memory affects the dynamics

when treated beyond the Fermi Golden Rule. The unperturbed Rabi frequency sweep

through different dynamical and analytic regimes when moving continuously a single

parameter.
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We have shown that depending on the value of the internal time scales of the system,

the environment can induce multiple phase transitions in the system dynamics. Our

model shows uncommon regimes as the exchange narrowing starting at the Exceptional

Point and the Virtual States by moving a single parameter. The fact that all the

dynamical phases appear in the same system, offered the opportunity to study the

transitions between them and hence to determine the precise points where the transition

occurs. Through the dynamics, we have characterized the difference between collapsed

resonances, resolved resonances, out-of-band resonances, virtual states and the pure

point states. In particular, we have shown that in the virtual state regime there is an

anomalous quantum diffusive law, which at long times is observed as a change in the

decay law from t−3 to t−1. From the observation of this anomalous diffusion, Butos-

Marún et al. in Ref. [Bustos-Marún et al., 2010], deduced that the highest plasmonic

excitation transfer does not occur when the system has a well defined extended resonant

state but just at the virtual-localized transition, where the main plasmonic modes have

eigenfrequencies at the passband edge. Thus the detailed analysis of these regions

helped to understand the underlining physics.

In this sense, we have also found an expression for the LDoS which explicit the

presence of the resonances. This LDoS results factorized in three terms. A density

of directly connected states ( i.e. the LDoS at the environment’s surface) and two

Lorentzian Functions, whose widths, become imaginary in the virtual state regime.

The edges of the LDoS determine the behavior at long times. It is then clear that the

anomalous diffusion is related to the fact that the Van Hove singularities at these edges

are modified. This change occurs when the Lorentzian widths become imaginary.

Note that the complexity of the dynamics for this relatively simple system, emerges

as a consequence of the explicit way in which the environment is modeled. Details

like Out-of-band Resonant States and Virtual States could not have been observed

in simpler representations of the environment as the usual broad-band or the self-

consistent Born approximations. The results of our model system shows that a zero

imaginary part of the poles is not enough as a localization criteria [Economou, 2006].

In particular, virtual states have zero imaginary part, but any local excitation in this

parametric regime shows a complete decay to the environment.

Another parameter that characterizes the dynamics, is the oscillation frequency.

First, in the Region I (collapsed resonances), before the system reaches the EP, there
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2.6 Concluding Remarks of the chapter

is an overdamped decay as expected [Rotter, 2009]. When the unperturbed Rabi fre-

quency ω0 exceeds the critical value, at the EP, the resonances become resolved (Region

II). PAA(t) show an exponentially attenuated oscillation with a frequency ω̃ given by

the poles difference. This frequency, ω̃, goes from 0, at the EP, to a value higher than

ω0. In the region III (out-of-band resonances) and IV (virtual states) the observed

frequency is fully determined by the environment bandwidth and not by the GF poles,

while the decay follows different power laws. These are particularly stable regimes for

a swap gate since the effective Rabi frequency does not depend on the internal param-

eter. Further increase of ω0 leads to Region V of localized states where the observed

frequency is always higher than ω0 but tends to it as VAB →∞.
An interesting message that we can extract from the phase diagram of Fig. 2.5 is

that by changing VAB/V one can always move between all five regimes. However, for

small values of the interaction with the environment (V0/V ) the transition to localized

states occurs within a very small range of VAB/V and hence most chances are that it

goes unobserved. Within this parametric setup it its possible to describe the system

evolution as an smoothly decoherent dynamics mediated by the environment.

The diagram of Fig. 2.5 also indicates that a clear numerical or experimental

observation of the full dynamical wealth would only be possible for V0/V . 1.

As a final remark, we again mention that because of its simplicity, our model can be

arranged to describe various physical systems such as spin chains [Álvarez et al., 2006],

microwave devices [Luke A. Sweatlock & Atwater, 2003], arrays of tunneling coupled

optical waveguides [Longhi, 2006b], periodic elastic arrays [Gutiérrez et al., 2006], or

acoustic time reversal cavities [Calvo et al., 2007]. Reciprocally, most of them should

present the variate dynamical phenomena discussed here, provided that one focuses in

the proper parameter range. These examples also suggest possible experimental setups

where the parameters found in this work can be used as a knob enabling to store and

exchange energy.
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Chapter 3

Molecular Dissociation as an

Environmental QDPT

3.1 Introduction

When are two individual atoms no longer interacting units and must be considered a

new entity, a molecule...? This question is very relevant for chemistry and its applica-

tions, and it seems to involve the sort of elements we have developed in the previous

Chap. 2 (quantum phase transitions). There, we been able to describe analytically the

infinite portion of the quantum system that constitutes “the environment”. Thus, the

finite portion that constitutes “the system”, can have a discontinuous or non-analytic

behavior, i.e. we have been able to describe a phenomenom the is not readily ob-

tainable from finite size numerical calculation. Those phenomena are ubiquitous in

Nature, and one might wonder whether the atom/molecule discontinuity might be one

of them. Thus, in this chapter we will attempt to use the analytical tools we developed,

to describe the molecule formation/dissociation. We will study the bond-breaking or

molecule forming reactions observed when a diatomic molecules get close to certain

metallic surfaces. By the end of this chapter we will be able to describe this bond

breaking reaction as an quantum phase transition.

The work developed in this chapter was made in collaboration with Andrés Rud-

erman and Elizabeth Santos, who had an interest on this problem because its impli-

cations for heterogeneous electrocatalysis. Some details of the calculations presented

in this thesis can be found in the Licenciado degree thesis of A. Ruderman (see Ref.
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3. MOLECULAR DISSOCIATION AS AN ENVIRONMENTAL QDPT

[Ruderman, 2011]).

Let us first introduce a few concepts about electrochemical reactions and how this

topics are related to our field. The understanding of electrocatalytic reactions is one

of the big challenges for theoretical electrochemistry. It traditionally has constituted a

cornerstone for petrochemistry and nowadays it is crucial for the development of fuel

cells and artificial photosynthetic systems. There are two different approaches to study

this kind of problems. One approach emphasizes on the conceptual framework and

extends the theory of electron transfer to catalytic processes, the other approach is

mainly computational and relies on a density-functional theory (DFT) to describe elec-

trochemical reactions. The theoretical line started with the pioneering works of Marcus

[Marcus, 1956] and Hush [Hush, 1958], makes use of the symmetry considerations intro-

duced by Roald Hoffmann [Hoffmann, 1988] and was then taken up by the Soviet school

[Levich, 1970], to which Alexander Kuznetsov made so many important contributions

[Kuznetsov, 1995]. In this case many of the analysis are based on the qualitative fea-

tures of the Local Density of States at the relevant atoms. The other approach relies

on computational experiments seeks to reach conclusions from a first principle calcula-

tion with as few approximations as possible, e.g. DFT calculation complemented with

molecular dynamics. In recent years, both schools focused on bond-breaking or forming

reactions.

Our effort lines up with the first alternative, and in order to get more motivation

let’s refresh a paragraph of P. W. Anderson written in Ref. [Anderson, 1978],

“One of my strongest stylistic prejudices in science is that many of the facts Nature

confronts us with are so implausible, given the simplicities of nonrelativistic quantum

mechanics and statistical mechanics, that the mere demonstration of a reasonable mech-

anism leaves no doubt of the correct explanation. . . . Very often such a simplified

model throws more light on the real workings of nature than any number of ab initio

calculations of individual situations, which even where correct, often contain so much

detail as to conceal rather than reveal reality. It can be a disadvantage rather than

an advantage to be able to compute or to measure too accurately, since often what

one measures or computes is irrelevant in terms of mechanism. After all, the perfect

computation simply reproduces Nature, it does not explain her.”

In this quotation Anderson emphasizes how the “realistic” calculations, focus too

much in specific details and parameters and often miss the generality of physical phe-
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3.2 Electrocatalysis and the quantum model

nomena. Thus, a simplified model tends to be better as long as it does not become so

complex to prevent analytical solutions.

Previous theoretical works made by Anderson and Newns [Anderson, 1978],

[Newns, 1969] initiated the investigation of hydrogen chemisorption at metal surfaces.

Recently, the work from the group of Schmickler extended this theory to include the

solvent role and combined it with DFT in order to investigate electrochemical reactions.

Thus, the Santos-Schmickler group, together with M. Koper, proposed a simple model

Hamiltonian that, being a variant of the Anderson-Newns model, could describe bond-

breaking reactions [Santos et al., 2008, Santos et al., 2006], which served as a basis to

explain the general principles of electrocatalysis [Santos & Schmickler, 2007a].

In order to apply this work to the hydrogen evolution reaction, the group of E. San-

tos used DFT calculations to obtain the system parameters [Santos & Schmickler, 2007b,

Santos et al., 2009] and also analyzed the Hamiltonian for bond-breaking in symmet-

ric cases [Santos et al., 2008, Santos et al., 2006] and systems made of heteronuclear

molecules [Santos et al., 2011]. A good example for the latter process is the Heyrowsky

reaction, in which initially one hydrogen atom is absorbed on the surface while the

other approaches in the form of a solvated proton, then the two combine to form a

hydrogen molecule that leaves the surface.

We will show examples of how the hydrogen molecule formation can be interpreted

as an a phase transition in the quantum dynamics. Generally, we will work from the

opposite case, where a molecule approaches to the surface of a transition metal crystal,

and then it breaks forming two separated systems: the isolated atom and the surface

plus an added atom.

Through this chapter we will study two particular molecular approaching cases:

The parallel and the perpendicular configurations (see. Fig. 3.1).

The model Hamiltonian proposed by Santos et al. [Santos et al., 2006] represents

our starting point to begin the analysis.

3.2 Electrocatalysis and the quantum model

Electrocatalysis is any one of the mechanisms which produce a speeding up of reactions

at electrode surfaces. Thus, a basic description of this process involves a set of atoms (or

molecules), a metallic surface and the surrounding solvent. In particular we considered
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Figure 3.1: Parallel and Perpendicular on-top configurations for Molecular Bond-

Breaking problem.

transition metals whose d band constitutes an electron reservoir responsible for its useful

properties. As we mention before, we consider a diatomic molecule which approaches

to the metal. On each atom, we keep with only one valence orbital explicitly, and

describe the bonding in a tight-binding or extended Hückel scheme.

We introduce the indices A and B for the valence orbitals of each of the two atoms,

and denote by EA and EB their corresponding energies. The Hückel coupling constant

VAB can be taken as real, and the model Hamiltonian for the isolated molecule can

then be written in the form:

HS = EA |A〉 〈A|+ EB |B〉 〈B|+ VAB (|A〉 〈B|+ |B〉 〈A|) , (3.1)

where VAB is the coupling between the atoms in the molecule. The site energies EA

and EB are the electronic energies corresponding to the valence orbital of the atoms.

The solutions for HS are the well known bonding and anti-bonding states with energies

E± =
EA + EB

2
±

√(
EA − EB

2

)2

+ V 2
AB

.

If we set the energies EA,B ≡ 0 and consider that the fermi energy is Ef = 0, then

the bonding solution E− is always below Ef and it seems that the molecule would never

break. However, if we consider the presence of the transition metal, the dissociation
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3.2 Electrocatalysis and the quantum model

of the molecule can occurs. In order to explore this possibility, we have to evaluate

different topologies and the transition metal structure by itself.

The metal can be represented by two different electronic configurations: the sp-

band and the d-band. In Fig. 3.2 is schematized the typical interaction between

one atom (a localized state) and the metal through the sp and d bands. There, it

is possible to observe that the sp-band is wider than the d-band, and in the region

of interest (approximately |ε− Ef | ≤ 5) the sp-band behaves almost constant. Thus

as we saw in the Chap. 2, this only adds a small component in the lifetime, but the

renormalized energies are essentially similar than before the interaction with the sp-

band. Therefore neglecting the sp-band interaction is a good approximation for treat

this problem. For details on this argument one can follows the work made by D. Newns

in ref. [Newns, 1969], where he has showed that relevant contribution to the catalysis

process comes from the neighboring metal d orbitals. Hence, for the rest of this chapter

we will work only with the d-band interaction.
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Figure 3.2: Schematic representation of one localized states interacting with the sp and

d bands. The energies are refered to the Fermi energy Ef . In the region of interest,

|ε− Ef | ≤ 5, the sp-Band is almost constant. Thus it can be neglected.

Let us now focus on the d-band. In the previous chapter (Chap. 2) we have seen that
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the semi-infinite linear chain has the following Local Density of states in the surface:

Nd (ε) =
1

πV 2

√
V 2 − ε2

4
. (3.2)

This is just the local density of states corresponding to the d-band at the surface of

the metal. The question that arises is how to get the linear chain from the 3d metral?

The solution comes with the Lanczo‘s method [Haydock et al., 1972, Lanczos, 1950].

This is a recipe that provides a reduction transformation of a 2D metal into a 1D

is presented in Fig. 3.3. The 3d metal is reduced with the same tridiagonalization

procedure. To understand how this method works on this problem, we will use the

labeling presented in Fig. 3.3. From the left picture, we observe that the first neighbor

interactions define successive layers of interaction represented with the numbers 1, 2 ,

3, etc. to be connected only with the next nearest diagonals. Thus the net interactions

between the capital letters becomes: 1↔ 2, 2↔ 3, 3↔ 4, etc. By construction there

are no other types of interactions. Therefore, if we apply the decimation procedure

shown in the central picture of Fig. 3.3, we obtain the expected 1D linear chain. It is

important to notice that the site 1 will be the one that will interact with the molecule.

Figure 3.3: Lanczo’s method. Decimation from the 2d system of first neighbors interac-

tions, to the 1d linear chain. The same procedure can be applied to the 3d metal.

With the reduction of the 3D problem to the 1D problem we now can start studying

the bond-breaking in electron transfer from a metal to diatomic molecule. Remember

that in equation 3.1 we have already presented the 2-atoms system (the molecule).

By adding the interaction with the metal we complete the whole problem. Thus the
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Hamiltonian becomes,

H = HS + VSM + HM , (3.3)

where

VSM = V0 (|B〉 〈1|+ |1〉 〈B|) , (3.4)

and

HM =
∞∑
n=1

En |n〉 〈n|+
∞∑
n=1

Vn (|n〉 〈n+ 1|+ |n+ 1〉 〈n|) . (3.5)

The interaction between the metal and molecule is controlled by V0. The hoppings

inside the tight binding chain are Vn, connecting the effective sites n with the contiguous

n+1. The kets |n〉 are the localized states at the effective nth site of the metallic chain.

In order to simplify the problem we will set Vn = V ∀n ≥ 3. The values for V1 and V2

have to account the fact that in the surface of the metal, the coupling between atoms

is weaker than in the bulk. Thus we will assume V1 < V2 < V .

3.3 Perpendicular Molecule on-top of the metal

The perpendicular on-top configuration is conformed by a molecule of two atoms which

approach to the metal in a perpendicular on-top position respect to the metal surface

(see Fig. 3.1). This model shows two different schemes depending on the distance to

the metal surface. If the atoms are far away, the electrons occupy the bonding level

and form the molecular bond. In the other extreme, when the molecule is close enough

to the surface, it is expected that the molecule dissociates, producing an isolated atom

plus an atom absorbed by the metal. In this situation the electrons stay in a bonding

state between one of the atoms and the metal surface. In Fig. 3.4 the inverse behavior

evaluated from DFT calculations made by the group of E. Santos.

The tight binding model Hamiltonian for this problem is represented in Fig. 3.5-a.

With the purpose to define an optimum configuration for the molecular dissociation

we use will base our model in the Marcus-Hush theory and assume EA = EB = En = 0.

This setup put the Fermi energy level (Ef ) in the center of the d-band and produce

a symmetric splitting around the center of the band. Additionally, we will set the

coupling elements V1/V = 0.8, V2/V = 0.9, and VAB/V = −2.5eV to work with a
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Figure 3.4: DFT calculations of the perpendicular approach to the metal surface. In V)

it is observed the abrupt transition from two separated atoms to the molecular formation.

(Frames extracted from a Video belonging to E. Santos).

useful case. The V0 coupling accounts for distance between the molecule and the metal

surface.

At this point it is necessary to list some of the approximations hidden in the the

model:

� The fixed value of VAB neglects the variation of the distance between the molecules

(A) and (B). Despite that this restriction do not allows the rupture of the molecu-

lar binding, we still define the bond-breaking point by thinking that the dissociation

occurs in two steps. First, the molecule moves close enough to the surface and the

electrons occupied the lower energy level. Then, we free the coupling VAB, and allow

the dissociation.

� The atoms in the metal are also consider fixed in the whole the problem. In

this approach we do not allow the surface to be modified by the interaction with the

molecule.

� By assuming a null coupling between the site A (the furthest) and the metal

surface neglects an exponentially small interaction between the distant atom and the

catalyst.
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3.3 Perpendicular Molecule on-top of the metal

Figure 3.5: Perpendicular On-top configuration. a) Tight binding model for the system

and the metal. b) New representation through the symmetric and anti-symmetric basis

change. c) Simplified model with the decimation procedure.
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3. MOLECULAR DISSOCIATION AS AN ENVIRONMENTAL QDPT

3.3.1 An effective model: a very useful approximation

In order to proceed with our analysis and obtain information about the system prop-

erties we use again the matrix form of the Green‘s function,

G = (εI−H)−1. (3.6)

The complete solution for the problem involve the analysis of several number of

poles and their interpretations could become cumbersome. Instead of attack the original

system, we first prefer to explore an effective model which will show the approximate

behavior of the poles and then we proceed to explore the full problem.

The first step to reach the effective model, consist in a unitary transformation that

change the basis of the sites (B) and (1). This kind of transformation will be useful

along the whole thesis, so we decide to denote it as the Symmetric Transformation

between the sites (B) and (1):

|±〉 =
1√
2

(|B〉 ± |1〉) (3.7)

The original Hamiltonian in the site basis was,

Ĥ =



|A〉 |B〉 |1〉 |2〉 |3〉 · · ·

〈A| EA VAB

〈B| VAB EB V0

〈1| V0 Ed V1

〈2| V1 Ed V2

〈3| V2 Ed Vd
... Vd Ed

. . .

...
. . .

. . .


(3.8)

After the transformation it becomes,
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3.3 Perpendicular Molecule on-top of the metal

Ĥ =



|A〉 |+〉 |−〉 |2〉 |3〉 |4〉 · · ·

|A〉 0 VAB/
√

2 VAB/
√

2 0 0 0 · · ·

|+〉 VAB/
√

2 V0 0 V1/
√

2 0 0

|−〉 VAB/
√

2 0 −V0 −V1/
√

2 0 0

|2〉 0 V1/
√

2 −V1/
√

2 0 V2 0

|3〉 0 0 0 V2 0 V

|4〉 0 0 0 0 V 0
. . .

...
...

. . .
. . .


(3.9)

In figure 3.5-b it is represented this basis change.

The next step is to perform a decimation process over the sites |+〉 and |−〉. This

method, explained in Ref. [Pastawski & Medina, 2001], rewrite the Hamiltonian in a

new version where properties of the sites |±〉 are introduced in the energies of |A〉 and

|2〉,

∆A (ε) =
|VAB|2

2

(
1

ε− V0
+

1

ε+ V0

)
, (3.10)

∆2 (ε) =
|V1|2

2

(
1

ε− V0
+

1

ε+ V0

)
, (3.11)

and the new coupling between the sites |A〉 and |2〉,

Veff (ε) =
VABV1

2

(
1

ε+ V0
− 1

ε− V0

)
, (3.12)

In Fig. 3.5-c it is possible to observe the form of the hamiltonian after the last trans-

formation. Until this point, all the performed transformations were exacts. The ap-

proximation emerge once we evaluate Eqs. 3.10, 3.11 and 3.12 at ε = (EA + E2) /2 = 0

(remember that EA = E2 = 0), which give us

∆B (EB) = 0, (3.13)

∆2 (E2) = 0, (3.14)
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3. MOLECULAR DISSOCIATION AS AN ENVIRONMENTAL QDPT

Veff

(
EB + E2

2

)
=
VABV1

V0
. (3.15)

This approximación behaves better as it gets larger V0 [Pastawski & Medina, 2001].

After all the steps, the effective system becomes

Heff = Veff (|A〉 〈2|+ |2〉 〈A|) + V2 (|2〉 〈3|+ |3〉 〈2|) +

∞∑
n=3

V (|n〉 〈n+ 1|+ |n+ 1〉 〈n|) .

(3.16)

This Hamiltonian is equivalent to that treated in the Chap. 2. This fact allows us to

use the results derived there and applied all the knowledge about the poles behavior.

For completeness we show again the first diagonal element of the Green function:

GAA =
1

ε−
V 2
eff

ε− (V2/V )2 [∆ (ε)− iΓ (ε)]

. (3.17)

By comparing and replacing the variables in Eq. 2.19 we obtain the next four

solutions (only two of them are physicals),

ε2
r =

V 2
eff

(
2V 2 − V 2

2

)
− V 4

2 ± V 2
2

√(
V 2
eff + V 2

2

)2
− 4V 2

effV
2

2
(
V 2 − V 2

2

) . (3.18)

If we again reproduce the analysis developed in the previous chapter, we found that

the final solutions to Eq. 3.18 are those plotted in Fig. 3.6. There, we can observe that

in the value of

V c
0 =

VABV1

V 2
2

[
V +

√
V 2 − V 2

2

]
, (3.19)

we found a critical point which represent the first evidence of the presence of a

quantum face transition. By using the parameters applied in Fig. 3.6, we obtain

V c
0 ' 3.545. If V0 < V c

0 the model shows up a bifurcation of the resonances in the form

of bonding and anti-bonding states. In the other case (V0 > V c
0 ) the energy levels are

superposed in the real part, but bifurcated in the imaginary part. This means that the

one atom will be absorbed by the metal (red curve in 3.6-b), while the other becomes

isolated. This is the first clue about the bond-breaking transition.
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3.3 Perpendicular Molecule on-top of the metal
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Figure 3.6: Poles from the perpendicular approach: a) The real part of the poles versus

the V0 hopping which is related to the inverse of the distance between the molecule and

the metallic surface. The d-band goes from -2 to 2. b) The Imaginary part of each pole.

The Quantum phase transition can be observed at V0 ' 3.545.
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3. MOLECULAR DISSOCIATION AS AN ENVIRONMENTAL QDPT

The bonding and anti-bonding states observed for V0 < V c
0 can be understand by

applying again the Symmetric Transformation between (A) and (2), and evaluating

the LDoS for the |±〉A,2 states. In Fig. 3.7 the results shows that the bonding and

anti-bonding resonance energies correspond to the anti-symmetric and symmetric state

between (A) and (2) respectively. We will denote them as: b(A − 2) for the bonding

case and a(A − 2) for the anti-bonding. This interaction is generated by the effective

coupling Veff between (A) and (2).
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Figure 3.7: Local Density of States of the Symmetric and Anti-Symmetric states between

the sites (A) and (2). This LDoS indicates that the bonding and anti-bonding resonances

correspond to the anti-Symmetric and Symmetric states respectively.

3.3.1.1 Complete solution to the perpendicular topology

The approximation used above help us to get an intuition about the emergency of the

molecular bond-breaking. Now we want to analyze the full solution, which gives the

exact value of V c
0 and completes the whole scheme.

This particular problem has eight 8 solutions (in the square form), thus the analytic

solution could not be easily found. Thus, to perform the evaluation of the poles, we

appealed to numerical tools (Maple and Fortran), and once we obtain the solutions, we

choose the physical ones. With this purpose we first drop those which have a positive

imaginary part and later on, we re-evaluate the rest of the solutions in the Green

Function, verifying which of them are real poles. This method for selecting the poles

will be repeated several times in this chapter.

In Fig. 3.8 we show the complete set of solutions. There we observe the emergence

of two new states respect to the approximated case (see Fig. 3.6). These new energies

are localized states outside the d-band. When the molecule is far away from the metal,
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3.4 Parallel Molecule on-top of the metal.

it is known that the atoms form two localized states with values ±VAB = ±2, 5. This is

just shown in Fig. 3.8 when V0 = 0. Insofar as V0 increases, the states suffer a smooth

change. For example, when V0 = 6, the outside band energies becomes into bonding

and anti-bonding states between (B) and (1). This can be proof by looking the LDoS

in the sites |±〉B,1 (with the exact model). In the Fig. 3.9 is the results of such an

evaluation, and there we can see that for V0 > V c
0 the LDoS of the |+〉B,1 has a higher

weight over the bonding state while the |−〉B,1 has over the anti-bonding.

3.4 Parallel Molecule on-top of the metal.

Let now start the analysis of the parallel configuration (see Fig. 3.1). The solutions to

this model will have different properties compared with the previous case. This model

will show up new types of quantum phases transitions.

The model Hamiltonian for this problem is defined in the site basis as follows,

H =


|A〉 |B〉 |1 +Metal〉

|A〉 0 Vab V0

|B〉 Vab 0 ±V0

|1 +Metal〉 V0 ±V0 Σ(ε)

 . (3.20)

where the ket |1 +Metal〉 represent the first site of the metal plus the rest of the

metal bulk (through a decimation procedure). The interaction with only one surface

atom implies that the molecule has a strong coupling with the first site of the metal, but

the it is weak with the nearest d orbital. Despite of this, in this model we introduced the

minus-plus sign (±) to explore different types of topologies: the symmetric and anti-

symmetric configurations. The choice of this sign correspond to the kind of electronic

state presented in the surface of the metal (see Fig. 3.10). For example, if it is an

”d” state in the z direction, the interaction will be symmetric, i.e. HA,1 = HB,1 = V0

(see Fig. 3.10-b). In the other hand, if the surface has a ”d” quadrupolar state, it will

interact anti-symmetrically with A and B, i.e. HA,1 = V0 = −HB,1 (see Fig. 3.10-b).

These symmetries properties in the connections, naturally induce the symmetric
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Figure 3.8: Poles of complete solution for the Perpendicular topology. a) The real part

of the poles versus the V0 hopping. The gray area represents the d-band, which goes from

-2 to 2. b) The Imaginary part of each pole. In the critical value V0 ' 2, 6 appears the

Quantum phase transition that represent the dissociation transition.
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Figure 3.9: Local Density of States for the symmetric and anti-symmetric states between

the sites (B) and (1). Here it is observed that the symmetric state correspond to the

bonding energy observed in Fig. 3.8.

Figure 3.10: Parallel interaction of two atoms with one of the metal surface. a) Tight

binding model for the system and the metal. b) and c) are the possible types of interaction

with the metal surface. If the surface has a dz state we obtain the b) configuration. On

the other hand, if a quadrupolar state is in the surface the interaction is like the c) form.
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3. MOLECULAR DISSOCIATION AS AN ENVIRONMENTAL QDPT

transformation between sites (A) and (B),

Htrans =


|+〉 |−〉 |1 +Metal〉

|+〉 +VAB 0 (1±1)√
2
V0

|−〉 −VAB (1∓1)√
2
V0

|3 +Metal〉 (1±1)√
2
V0

(1∓1)√
2
V0 Σ(ε)

 . (3.21)

In Fig. 3.11 it is schematized the the transformation for this system. As we can

observe, for the symmetric case, the (−) site becomes isolated while the (+) is absorbed

by the chain with a coupling constant of
√

2V0. The opposite situation occurs when

the coupling to the metal is anti-symmetric (see Fig. 3.11-b).

Figure 3.11: Symmetric Transformation applied to the parallel topologies. Here it is

possible to observe how one of the state, in each case, remains isolated, while the other is

absorbed by the metal.

The absorbed-atom model obtained from the transformation results equivalent to

that treated in Ref. [Rufeil-Fiori & Pastawski, 2006]. Thus, we use the solutions from

that paper to obtain the behavior of the poles. The result is the following,

εpoles=1,2 =
(±VAB)(2V 2 − 2V 2

0 )

2
(
V 2 − 2V 2

0

) ± V 2
0(

V 2 − 2V 2
0

)√(±VAB)2 − 4
(
V 2 − 2V 2

0

)
. (3.22)

εpoles=3 = (∓VAB) (3.23)

In Fig. 3.12 we plotted the behavior of the poles as a function of V0. For both cases

it is possible to observe the presence of virtual states (red dotted lines). Remember

that this kind of states are solution of the non-physical Green function.
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3.4 Parallel Molecule on-top of the metal.

Figure 3.12: Poles of the Parallel Configuration. a) Real part of the poles for the case of

symmetric connection to the metal. All the poles have null imaginary part. b) Same as a)

but for the anti-symmetric interaction case.
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3. MOLECULAR DISSOCIATION AS AN ENVIRONMENTAL QDPT

For the symmetric case (see Fig. 3.12-a) appears two localized states at low values

of V0 (at ≈ ±VAB). One correspond to the bonding between (A) and (B), and the

other to the anti-bonding. Due to the topology of the interaction one of the states

remains constant for every value of V0, while the other becomes absorbed by the metal

as far as V0 increases. At the value of V0 ≈ 1.5 appears the quantum phase transition

which mixture the (+) state with the metal, thus forming two new states: b((+)-M)

and a((+)-M). For this system we will denote this transition as the one on which the

system is absorbed by the metal. However this phase transition do not induce any

molecular dissociation. This is because the energy of this new localized state is above

the Fermi level.

In the anti-symmetric topology this transition is more clearly, because the new

energy level appears below the fermi energy. It emerge as a bonding state between the

(−) and the Metal: b((−)-M), at the same critical point as before (V0 ≈ 1.5). In the

other side of the band, the (+) site transforms smoothly into the a((−)-M) state as far

V0 crosses the critical value.

3.5 Conclusions

In this chapter we analyzed the Heterogeneous Catalysis process from a quantum point

of view. We could associate the dissociation phenomena to the quantum dynamical

phase transitions previously studied in the Chap. 2. Through the analysis of several

geometrical forms of approaching a molecule to the metal surface, we have found that

the mechanism of dissociation differs depending on the type of topology considered.

In the first part of this chapter we focus our analysis on the perpendicular on-top

problem. We founded that the dissociation occurs through the collapse of resonances

in the center of the d-band. Each of them is formed from the bonding and antibonding

interaction between the furthest atom and the second layer of the metal broadened by

the rest of the metal.The inclusion of the V1 and V2 (different from V ) in the metal

surface is crucial to facilitate this interpretation. We have seen there is an abrupt

transition at the center of the band into a “isolated” atomic state and an collective

state centered in the second layer. We also observe a smooth change in the localized

out of the band states from a molecular bonding state into the bonding combination
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3.5 Conclusions

between the closes atom an its host metal orbital. This analysis is corroborated with

the use of the Local Density of States.

In the second part of this chapter we analyzed two parallel on-top topologies, with

symmetric or anti-symmetric interactions. There we found that the transition is differ-

ent from the previous one. Now there is one virtual state that comes from high energy

and transforms into a localized state at some critical value of V0 (studied in Chap. 2).

This local state corresponds to a bonding combination between the antibonding molec-

ular state and metal orbital. This lead to the occupation of the antibonding molecular

state with consequent molecule breaking.

As a final remark in this chapter, we have to mention that the use of the symmet-

ric transformation between pair of sites helped us to understand the results obtained

along this work. This technique which represents a useful tool to analyze this kind

of tight binding models and will be applied in the following chapters to explore the

synchronization process of surface plasmon in Nano-particles arrays.
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Chapter 4

Seeking the Synchronization of

Plasmonic Oscillators in

Nano-Particle Arrays

4.1 INTRODUCTION

In this chapter we will explore the synchronization phenomenon in Nanoparticles (NP)

arrays in terms of the quantum phase transition developed in Chap 2. We will analyze

this type systems by combining the analytical tools developed in the chapters 2 and 3.

The work performed along this chapter was made in collaboration with Raúl. Bustos-

Marún, which is interested in the dynamical behavior of nanoparticles arrays.

By using the specific design of plasmonic systems we will able, at the end of this

chapter, to control the Localized Surface Plasmons (LSP) and make them evolve syn-

chronously. Depending on the NP material and their lengths, the system will end

oscillating in phase or in anti-phase.

The definitions of Synchronization (see Ref. [Pikovsky et al., 2003]) requires that

the sub-systems (in our case, the NP) has to evolve with a fixed relative phase and

additionally they have to oscillated self-sustained. If one evolve the LSP, one can see

that they can not maintain oscillating by them self. Thus, in principle the self-sustained

condition is not a property of the NPs systems. However the presence of active mediums

around the nanoparticles injects the enough amount of energy in such a way that the

NP keep oscillating with the same amplitude. Then, the use of active medias plus the
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specific designs of the NP produce the desired synchronization.

In this chapter we will work with the synchronization phenomena without looking

for a non-analytic point which separates the non-synchronized region from the synchro-

nized one. Due to the use of realistic values for the parameters, this phase transition

could not been seen as a non-analytical point, however we still can observe if the system

is synchronized or not.

Before starting with the work, let us made a brief introduction about nanoparti-

cles system. In the past decades, the advances in fabrication and characterization of

nanometric devices have given rise to a revolution in many field of science fueled by

the intriguing new properties of matter in this nanometric scale. Among the new fields

that rapidly became central, emerged plasmonics with its promises that go from ul-

tra sensitive nano-sensors to plasmonic circuitry [Maier, 2007, Novotny & Hecht, 2006,

Coronado et al., 2011, Halas et al., 2011, Ebbesen et al., 2008]. Currently new ideas

are emerging in this field by combining plasmonic devices with active media that com-

pensate in part or totally their losses. [Kottos, 2010, Krasavin et al., 2011, Li & Xia, 2010,

Citrin, 2006, Wuestner et al., 2010, Noginov et al., 2009, Bergman & Stockman, 2003,

Stockman, 2008, Stockman, 2009, Stockman, 2010] Active media are created by dye

molecules or semiconductors where the population inversion is optically or electrically

produced. The concept of spaser (surface plasmon amplification by stimulated emission

of radiation) is an example of that and it is basically a source of electromagnetic fields,

containing both propagating and evanescent waves, formed by the interaction of sur-

face plasmons with an active media that fully compensate the losses of the plasmonics

system [Bergman & Stockman, 2003], [Stockman, 2009], [Stockman, 2010]. This work

is another example of the new effects that arise form combining plasmonic devices

with active media. In particular, we studied plasmonic systems consisting of metal-

lic nanoparticle arrays where losses are partially or fully compensated by an active

medium. We not only found that localized surface plasmons of individual NPs keep

oscillating with a fixed amplitude and relative phase, becoming a new example of syn-

chronization, but we also understood the mechanism behind it and propose a way of

controlling the relative phases of the LSP.

The phenomenon of synchronization, defined as the adjustment of rhythms of self-

sustained oscillating objects because of their mutual interaction, has been observed in

many physical and biological systems [Pikovsky et al., 2003],

70



4.2 COUPLED DIPOLE APPROXIMATION FOR ELLIPSOIDS WITH
RADIATION DAMPING.

[Stein et al., 2011, Goldstein et al., 2011, Lai et al., 2011, Mertens & Weaver, 2011],

[Wójcik et al., 2011, Huygens, 1673, Stein et al., 2011, Goldstein et al., 2011, Buck, 1938]

from coupled pendulums clocks first described by Christian Huygens[Huygens, 1673] to

the chemical [Stein et al., 2011, Goldstein et al., 2011] or biological examples, such as

fireflies that flash in unison [Buck, 1938]. However, up to our knowledge, this is the

first time that synchronization is described in the context of plasmonics.

The aim of this chapter is on one hand, to increase the menu of available tools to

design new nano-metric devices and on the other hand, to bring the phenomenon of

synchronization to the nano-world by presenting a feasible example and contributing

to its general understanding.

4.2 COUPLED DIPOLE APPROXIMATION FOR EL-

LIPSOIDS WITH RADIATION DAMPING.

The systems studied are basically different arrays of metallic NPs which are mod-

eled through the well known coupled dipole approximation [Bustos-Marún et al., 2010,

Hernández et al., 2005, Park & Stroud, 2004, Zou & Schatz, 2004, Garćıa de Abajo, 2007,

Markel & Sarychev, 2007, Malyshev et al., 2008, Citrin, 2004, Brongersma et al., 2000].

In this model, each ith-NP is described by a dipole Pi induced by the electric field pro-

duced by the others dipoles, Ej,i, and the external source, E
(ext)
i . We assume a generic

ellipsoidal shape for the NPs whose polarizabilities α are described in a quasi-static ap-

proximation, [Jones, 1945, Kelly et al., 2003] α = ε0V (ε−εm)
[εm+L(ε−εm)] , where V is the volume,

ε0 is the free space permittivity, εm is the dielectric constant of the host medium, and

L is a geometric factor that depends on the shape of the ellipsoidal NP. The dielectric

constant of the NP, ε, is described by a Drude-Sommerfeld model ε = ε∞ −
ω2

P
(ω2+iωη)

,

where ε∞ is a material dependent constant and take into account the contribution of the

bound electrons to the polarizability, ω
P

is the plasmon frequency, and η the electronic

damping factor. We assume for simplicity a near field approximation, Ei,j =
−γT,LPj
4πε0εmd3 ,

where d the distance between NPs, and γ is a constant that depends on the orientation

of NPs relative to the direction of E, γT = 1 if they are perpendicular and γL = −2

if they are parallel. Taking into account all these consideration, Pi and E
(ext)
i can be
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arranged as vectors P and E resulting in:[Bustos-Marún et al., 2010]

P =
(
Iω2 −M

)−1 RE = χE, (4.1)

where χ is the response function, M is the dynamical matrix and R is a diagonal matrix

that rescales the external applied field according to local properties:

Ri,i = −ε0Viω2
Pi
f, (4.2)

with f =

[
1−(ε∞−εm,i)(ω2+iωηi)/ω2

Pi

]
[εm,i+Li(ε∞−εm,i)] .

Let us make a little parenthesis to observe the connection with the previous chapters.

If we have no electrical field, we can re-arrange Equation 4.1 as follows,

(
Iω2 −M

)
P = 0. (4.3)

This last equation is equivalent to the time independent Schrödinger equation, where

ω2 is associated with the eingenvalues, M with the Hamiltonian, and P with the eigen-

vectors. Moreover, the problem can be framed within the general problem of couple

oscillators, where we can interpret the electric field as the external force which acts

over each oscillator. Within this associations it is possible to observe that the Green

function formalism can be used to solve the dynamical evolution of the LSP. Thus, we

exploit all the techniques learned in the chapters 2 and 3 to perform the full analysis

of the synchronization problem.

Returning to the system of Nanoparticles, we observe that the cubic dependence

of E on d, makes small contributions beyond nearest neighbors, thus we neglect this

terms [Bustos-Marún et al., 2010, Brongersma et al., 2000]. The coupling constants,

Mi,j = ω2
Xi,j

, and the LSP complex square frequencies, Mi,i = ω2
SPi
− iΓi(ω), are given

by:[Bustos-Marún et al., 2010]

ω2
Xi,j

=
γT,LViω

2
Pi

4πεmd3
i,j

f, (4.4)

ω2
SPi

=
ω2

Pi
Li

[εm,i + Li(ε∞ − εm,i)]
, (4.5)
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RADIATION DAMPING.

and

Γ(ω) = ηω + ηRω
3. (4.6)

where η is the electronic damping and ηR the radiation damping. The electronic

damping η can be evaluated from the Fermi velocity vf , the bulk mean free path

lbulk, the volume V , and the surface S of the NP by using the Matthiessen’s rule

η = vf (1/lbulk − C/leff ), with C ≈ 1 and the Coronado-Schatz formula leff = 4V/S

[Coronado & Schatz, 2003].

On the other hand, the radiation damping ηR can be calculated from the ellipsoid’s

radius a, b, and c, ηR = 2/9(abc/v3)ω2
P f , where v is the speed of light in the host

medium. This extra damping term appears when the polarizability α is corrected by

using the modified long-wavelength approximation, α′3α−1[Kelly et al., 2003]. In the

examples analyzed here, dynamic depolarization is negligible and thus not included in

the equations for simplicity.

4.2.1 Temporal Evolution.

The temporal evolution of dipolar moments of individual NPs can be evaluated in two

different ways: First, by using the Fourier transform, and second by directly solving

the set of coupled differential equations. In the first case, one should transform the

response function χ(ω) into χ(t) and then evaluate the contributions to the i site due

to the presence of the external field and the whole system. Additionally, as in any

dynamical problem, it is necessary consider the contributions from the initial time

t = 0. Thus the final equation for the polarization evolution becomes,

Pi(t) =
∑
j

∫ t

0
χi,j(t− τ)E

(ext)
j (τ)dτ. (4.7)

In this work, we used the fast Fourier transform algorithm to obtain the functions

χ(t)i,j from χ(ω)i,j . In the case of using active medias, one must be careful in not to

get so close to the “loss compensation condition”, because the solution could not be

square integrable.

Another alternative is to directly solve the set of differential equations associated

with each Pi(t). They can be deduced from Eqs. 4.1-4.6 by using Pi(t) = Pi(ω)e−iωt.
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In the present work, a simple version of these equations were used in section “Gain-Loss

Compensation” just to show an illustrative example. The simplification comes through

the f factor of Eqs. 4.2 and 4.4. There we used the wide-band approximation which

assumes that ω is constant in the whole range of interest. Thus we set f(ω) ≈ f(ωSP ),

and obtain the following equations:

P̈i(t) + ω2
SPi
Pi(t) + ηṖi(t)− ηR

...
P i(t) (4.8)

= Ri,iE
(ext)
i (t)−

∑
j 6=i

ω2
Xi,j

Pj(t),

The resulting equations are the equivalent to those used for the chain of Hertzian dipoles

(see Ref. [Brongersma et al., 2000, Hernández et al., 2005]). Due to the complexity of

the equation we decided to solve them by using numerical algorithms like the 4th order

Runge-Kutta method [Press, 1992].

4.3 RESULTS.

Figure 4.1: The three examples of Nano-particles arrays used in this chapter. The first

two are formed by equivalent NPs. The last one has a bigger NP in the middle of the array.

Remembering that the size is related to the damping factor, one obtain a bigger radiation

damping for the central nanoparticle.

In the present chapter we developed a systematic way of constructing synchronized

system at the nanoscale by carefully designing losses and gains of plasmonic structures.

74



4.3 RESULTS.

In order to understand the proposed strategy we will first analyze three simply examples

of linear arrays of metallic NPs in order to understand the meaning of their solutions.

These systems are represented in Fig. 4.1. The first one consist of two equivalent

nanoparticles, in the second case, are three, and the last one are three NP but the

middle one is bigger than the others two. The fact that the nano particles are equivalent,

means that their frequencies are exactly equals. In our problems we will assume that

the NP could have little fabrication defects and thus they have a δ = ω2
SP1
− ω2

SP3
shift

between their frequencies. This δ parameter will let us to explore the solution of these

systems.

We will start the analysis by studying the isolated problem, i.e. when the electrical

field is not acting. For this problem, we need to obtain the square eigenvalues of M

(we will denote as ω2
eig) as function of the square frequency difference, δ = ω2

SP1
−ω2

SP3
,

between the NPs of the ends.
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Figure 4.2: Real and imaginary part of the square eigenvalues of M corresponding to

each system plotted in the upper part (and in Fig. 4.1), as function of the frequency

shift δ between the first and the last NPs. Only nearest neighbors couplings is considered.

ω2
X = 0.2/ω2

SP and Γ = 0.03/ω2
SP for all NPs except for case C where Γ of the middle NP

is 0.1. All the frequencies are referenced to the unperturbed frequency ω2
SP .

In this case the interaction frequency ω2
X

and the intrinsic decaying rate Γ were

taken in a wide band approximation for simplicity and all the frequencies referenced

to ω2
SP

, see caption of Fig 4.2 for more details. Fig 4.2-A corresponds to two NPs with
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the same Γ, 4.2-B to a system of three NPs with the same Γ, and 4.2-C to systems of

three NPs with the middle one having a bigger value of Γ. In the A case, the results

indicate the presence of an avoided crossing for the real part of ω2
eig and a constant

(and equal) imaginary part for both eigenmodes. Evaluating ωeig instead of ω2
eig, just

adds some distortion to the above plots, and put small differences to the imaginary

parts of the two normal modes splitting them. Here, it is important to remember that

the imaginary part of the poles is associated with the decay rates of the normal modes.

The avoided crossing is the region where the interaction between the nanoparticles tend

to repel the crossing of the two eigenfrequencies. However the imaginary part of the

solutions are equal in the ω2 plot and little different in a ω plot.

This implies that both solutions will decay almost with the same rate. For this case,

the two solutions correspond with normal mode of oscillation for a two site system: the

Symmetric and Anti-symmetric modes. Thus, the fact that both of them decay with

the same rate, implies that if one put any initial state, the evolution for long times

will be a mixture of modes with no fixed phase. Hence, this system will tend not to

be synchronized. However, as we will see later, the small difference on the imaginary

part, still make them to synchronize at very long times. In this case, the longest living

mode is the antisymmetric. Therefore any evolution will tend to evolve in anti-phase

for enough long times.

A similar situation is found for the second example (see Fig. 4.2-B). The difference

on this case is that we are only concerned in the two nanoparticles of the ends. Be-

tween those two NP, we can still define the Symmetric and Anti-symmetric modes and

associate their decays with the imaginary parts observed in Fig. 4.2-B.

For the third case, where the middle site has a greater decay component, we observe

that the imaginary parts are different even for the ω2 plot. For this case we observe

that the Anti-symmetric mode of oscillation, which correspond to the central energy

in Fig. 4.2-C, is the state that has the lower value in the imaginary part. Thus, as we

will further check with the simulations, the Anti-symmetric mode is the longest living

mode.

At this point it is important to mention that our first intention was to find a phase

transition where the synchronization drastically disappear with the variation of one

parameter. This behavior for example is observed in Fig. 4.3 where the higher value

for the damping Γ, in the central nanoparticle, enables the collapse of the frequencies
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just like the case studied by Weinreich in Ref. [Weinreich, 1979]. However, this set

of values, is not experimentally accessible. Thus, to keep our analysis within realistic

parameters, we relax the search for a non-analytical transition and only observe the

phase-synchronization within experimental values.

- 1 0 1- 0 . 6

- 0 . 3

0 . 0

Im

δ

- 1 0 10

1

2

Re

δ

Figure 4.3: Equivalent to Fig. 4.2, but for with 3-particle system where the damping Γ

for the central nanoparticle is high enough.

After these three examples we have seen how the number and the form of the

nanoparticles allows us to obtain synchronization with different types of fixed phases.

It is important to note that the essential key in all this model is the intrinsic decay

suported by each nano-particle. The NP material and the form of each one, determines

the decaying rate of the polarization. This enables the survival of only one mode of

oscillation for long times. However, the amplitude of the oscillations of the LSPs decays

so fast that it would be impossible to measure this phenomenon in experimental setups.

Therefore, two thing are desirable in order to use it for concrete applications. First,

it should be possible to control how the LSP will remain oscillating at long time and

second, the amplitude of the oscillation should be kept constant over time. This last

subject will be solve in the next sections by the introduction of active medias which

inject energy to the system in such a form that it not force the system to oscillate in a

specific mode.
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4.3.1 Phase Synchronization

The key to fixing the relative phase is a careful designing of the damping factors of

the NPs in such a way that it leaves one normal mode with zero weight over the sites

with the largest damping factors. In the problem of Fig. 4.2-C, it has been shown that

the middle NP has a larger damping factor. There, the three normal mode are the

following:

Mode-1 (totally Symmetric): (P1 +
√

2P2 + P3)/4,

Mode-2 (Anti-Symmetric): (P1 + 0× P2 − P3)/2,

Mode-3 (partially Symmetric): (P1 −
√

2P2 + P3)/4.

The only mode which has zero weight over the nanostructrure is second one (Anti-

Symmetric). For δ = 0, this state will have a smaller decay rate compared with the

other two which have finite weights over the highly dispersive nanostructrure, the 2nd

NP in this example. In this respect it should be mentioned that there are several

ways of increase the damping factor of a NP. One is to change the shape or material

of the NP but there are other alternatives like connecting the NP to a waveguide

[Bustos-Marún et al., 2010]. After the analysis of several models, we decided, in this

chapter, to use the shape of the NPs to control the damping factors, being the radiation

damping term the dominant one for the highly dispersive NPs, and the electronic

damping term the dominant one for the other NPs.

In order to complete the analysis of what we explained, we calculate the temporal

evolution of Pi(t) by using Eq. 4.7. In the three concrete examples of Fig. 4.1 we show

how changing the shape of a NP can be used to control phase fixation. In Fig. 4.4 it is

shown the dynamical evolution for those examples. It is important to note that here we

consider the full dependence of ω2
X

and Γ with the frequency (ω). Also, we use realistic

values for the constant by taking into account explicitly the material used (Ag: Silver)

and shape of NPs (Ellipsoidal NP: between 8 and 90 nm of diameter).

In the lower inset of each plot in Fig. 4.4 it is shown the amplitude of the normal

modes. There we observe that, for the first two cases, the symmetric and the anti-

symmetric mode have little differences, but at the end only one survives. On the other

hand, for the third case, the anti-symmetric mode has the shortest decay rate, and its
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Figure 4.4: A: Dipolar moment in arbitrary units vs time in units of ω−1
SP for two NPs (1

and 2) of Ag of 30x30x8 nm, separated 32nm in water, εm = 1.77. Between t = 0 and 62 an

external field of frequency ω = ωSP is applied locally at NP 1. B: The same but for three

NPs (1, 2, and 3) with the middle one, NP 2, having a different size and shape 90x90x8

nm. Upper insets: Detail of the main figure. Bottom insets: Detail of the decay rate

of different modes of oscillation. Mode S is (P1 + P2)/2, mode S1 is (P1 +
√

2P2 + P3)/4,

mode A is (P1 − P3)/2, and mode S2 is (P1 −
√

2P2 + P3)/4. In all the cases, we exited

the system with an external field during the period of texitation = 2Pi ∗ 10. After that, we

let the system evol without any electrical field.
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evolution separates very much from the others modes. Thus, for long times, the upper

inset of Fig. 4.4, shows a clear anti-phase synchronization between the first and the

last site of the system 3.

Another important aspect to analyze is the effect of δ, the difference in frequency

of the NPs, on phase synchronization. A non zero δ has two consequences, the first one

is that in general it changes the imaginary part of the eigenvalues of M and thus the

relative decay rates, see Fig. 4.2-C for example. The other one is that it also changes

the eigenfrequencies of the system (the real part of the poles). Then, if the objective

were to make NPs of the ends to oscillate in anti-phase as in the case shown in 4.4-C,

a δ different form 0 will allow a transfer the excitation from the mode A, to modes S1

(totally symmetric) and S2 (partially symmetric) of the inset. However, if δ is not so

large (δ . 0.1 in the third case), the only appreciable effect is a small fluctuation in

the relative amplitude of P1, P2 and P3 which no affects the overall behavior.

4.3.2 Active Media.

As mentioned above, there is a problem with the synchronization phenomenon. The

SP dynamics occurs extremely fast, making it very difficult to measure and limiting its

possible applications. Note that the time scales are in units of the unpertubed frequency

ωSP , which for the used NPs, is around 0.2 fs. This imply that all the process start

and finish in less than 0.1 ps approximately. At present there is no capable devide of

measure such faster dynamics. Hence, it is mandatory to keep the system oscillating

for longer periods of time in order to have a chance of measuring the synchronization

phenomena. The first idea that ones has in mind, is to put a permanent external

field, but this is no longer synchronization. It would be more like the forced coupled

oscillator, where the eigen-frequencies, are equal to the external frequency.

One experimental feasible option to maintain the amplitude, was embedding the

system in an optically active medium. If the gain of the active medium is below

the loss compensation threshold, its effect can be modeled phenomenologically on

the basis of classical electrodynamic without taking into account explicitly the quan-

tum dynamics of the chromophores. This is done by considering the active medium

as a dielectric material with a negative imaginary part in the refraction index n,

n = n0 − iκ [Kottos, 2010, Krasavin et al., 2011, Citrin, 2006, Wuestner et al., 2010,

Noginov et al., 2009, Stockman, 2008, Li & Xia, 2010, Stockman, 2009]. A priori it is
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not obvious how it will affect the synchronization mechanism depicted in Fig. 4.4,

because the evaluation of the dielectric constant εm = n2 enters not linearly in all the

equations (see Eqs. 4.1 and 4.6).

In order to explore the effects of incorporate the active media, we proceeded to

numerically evaluate (with the fourier transform of Eq. 4.7) the full dynamics for the

three systems of Fig. 4.1. In Fig. 4.5 we show that such incorporation of optical

gain mediums do not change what we have seen in Fig. 4.4. In the evaluation of the

dynamics we have used a value for κ that almost completely compensate the losses

produced by the NP damping. Thus, at least for these cases, the incorporation of the

active medion do not change synchronization of the SP neither the final relative phase.

The only difference, apart of keeping the system oscillating for longer periods of times,

is that active media increase even further the differences in the decaying rates, making

the fixing of the phases to occurs even earlier.

As the system remains oscillating for longer periods of time, it is easier to see the

final relative phase and how it is affected by tailoring the damping factors. For the

system 1, the NPs end oscillating in anti-phase, in case 2 the NPs of the ends finish

oscillating in phase, while, if we increase the damping factor of the middle NP as

in case 3, the NPs oscillate in anti-phase for longer times. As mentioned before the

reason of that is simply that the anti-phase oscillation of the NPs of the ends interfere

destructively over the NP of the middle, which has the largest damping factor. The

other two normal modes due to their weight over the middle NP, have a faster decay

rate.

4.3.3 Gain-Loss Compensation.

At this points it is important to bring light into the limiting value of κ, i.e. the value

of κlim for which all the losses are compensated. The value of κlim can be evaluated

from the poles of Eq. 4.1 by looking for pole with have the smallest imaginary part.

Thus, κlim is the value of κ for which the imaginary part of this pole reach zero. It is

important to remark that the imaginary part is associated with the decay rate, therefore

its zero value implies that the state will survive forever. In some cases, it can be easy

to analytically obtain the value of κlim, but in other cases one must resort to numerical

evaluations.
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Figure 4.5: Same than Fig. 4.4 but considering an optically active medium with κ = 0.1.
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In the third example (see the C plots of Figs. 4.2 and 4.5), the eigenvalue of the

Anti-symmetric eigenmode ω2
eig−A, can be obtained by assuming δ ≈ 0 , and using the

wide band approximation:

ω2
eig−A ≈ ω2

SP
− iΓ. (4.9)

By remembering that ω2
SP

is the SP resonant frequency of the unpertubed NPs of

the ends, and Γ is its damping factor, we can obtain the value of κlim by using: Eq.

4.5, εm = n2, and assuming a small value of κ. The result is the following:

κlim ≈
Γ[n2

0 + L(ε∞ − n2
0)]

2n0ω2
SP

(1− L)
(4.10)

For the first two examples of Fig. 4.1, the equations become more complex, due to the

presence of ω2
X

(which depends of κ) in the whole calculation. Despite of this, they

can be evaluated by numerical method and the results are,

System 1: κlim = 0.113, (4.11)

System 2: κlim = 0.112,

System 3: κlim = 0.117.

This values, obtained for κlim, should be accessible experimentally based on Refs.

[Pisignano et al., 2002, Noginov et al., 2009], [Carre‘re et al., 2006, Seidel et al., 2005,

Noginov et al., 2008].

The value of κ, related with the amplification coefficient g = 4πκ/λ, is a phe-

nomenological coefficient that represent the property of some media of coherently am-

plify electromagnetic fields. Gain media in plasmonics are made of chromophores that

overlap spatially and spectrally with the surface plasmon modes of the nanostructure.

This chromophores may be semiconductors nanocrystals, dye molecules, rare-earth

ions, or electron-hole excitations of a bulk semiconductor [Bergman & Stockman, 2003,

Stockman, 2009, Stockman, 2010]. In general, the gain coefficient depends on the

stimulated emission cross section σe and the concentration of electron-holes pairs N ,

or the concentration and the inversion population of the dye molecules, g = Nσe

[Li & Xia, 2010].
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This leads to another important aspect: what happens when κ > κlim? If we follows

the above reasoning, we found that P (t) should grow exponentially at infinitum, which

is not realistic. At some point the pumping mechanism that keeps the inversion popu-

lation must be overcome by the decay rate of the molecules in the excited state toward

their fundamental state. The realistic situation is that the amplitude of the surface plas-

mon oscillations should stabilize at some point, and this is the reason of why it is difficult

to build plasmonic amplifiers based on active media [Stockman, 2009, Stockman, 2010].

A complete treatment would require to solve the quantum mechanics dynamics of each

chromophore under the influence of the electromagnetic field corresponding to its po-

sition and the coupled equation of motion of the surface plasmon dynamics. This

was done by Stockman (in Ref. [Stockman, 2009]) in the context of spasers and the

important result, for our work, is that the system evolved in a complex way until a

stationary regime is reached. This stationary regime corresponds to the situation in

which all the dampings are just compensed by the amplification of the active medium

[Stockman, 2009, Stockman, 2010], a condition expressed in our case by Eq. 4.11.

Essentially, the convergence towards a stationary regime where losses are compen-

sated, implies the fixing of the amplitude. The evaluation of the final value for the

amplitude could be difficult to evaluate, however the important thing is that it exist

and it is non zero for κinitial > κlim.

The other important issue is that once the stationary state is reached, the inversion

population freezes at the value of κ = κlim. Then, independently of the value of κinitial,

the evolution should have the same behavior at long time as for the case of κinitial = κlim.

Just as an illustrative example, lets assume that the dynamics of the population

inversion is much faster than the dynamic of the surface plasmons, i.e population in-

version adapts instantaneously to a given value of the dipolar moments Pi. Under this

assumption we can think in the existence of a function κ(|P |) which governs the evo-

lution of κ as a function of the instantaneous modulus of the dipolar moment P . This

function should be maximum for |P | = 0, κ(P ) = κ0, because at this point the system

should have the maximum gain of the media, however, when |P | increases, the have to

decrease somehow in order to cross the κlim value.

Which the purpose of observe the effect of this dependence of the active media, we

will use some hypothetical model for κ(P ) and then numerically evaluate P (t) by means

of Eq. 4.8. We have tried several ad-hoc models for κ(P ) and obtain similar results for
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all the cases. Fig. 4.6 just shows one example of that for κ(P ) = κ0 exp{−(|P |/P0)2/2}
with κ0 = 0.2 and P0 = 0.75 applied over the system 3 of Fig. 4.1. The results show

that after a transient regime, that of course depends on the particular model of κ(P ),

the evolution reaches a stationary state characterized by a fixed amplitudes different

from zero. It is also observed that the phases remains fixed as in Fig. 4.5 and they are

still determined by the slowest decaying normal mode.

The behavior observed in all the evolutions of the hypothetical models is that in-

dependently of the initial conditions or the particular model of κ(P ), the value of κ

always evolves until it asymptotically reaches the same and fixed value of κlim, given

by Eq. 4.11. After that point, the dynamics of P corresponds to that governed by the

fixed value of κlim.

0 2 0 0 4 0 0- 4

- 2

0

2

4

8 0 0 8 2 0 8 4 0
- 1
0
1

0 1 0 0 0 2 0 0 01 E - 8

1 E - 4

1

 

 P 1 ( t )
 P 3 ( t )

Di
po

lar
 m

om
ent

 (a
.u.)

T i m e       (  1/ωS P )

  

 

 

 

 

 

 

  S 1
  A
  S 2

Figure 4.6: Same than Fig. 4.5-C but considering an explicit dependence of κ(P ). It is

observed that the evolution reach and stationary amplitude value, while the oscillations

still correspond with the Anti-symmetric mode.

4.3.4 Generalization to More Complex Structures.

The proposed synchronization mechanism can be easily extended to more complex

nano-structures. The key ingredient is that all normal modes except one, must have

some weight on the highly dispersive NPs, for example the middle Nanoparticles in
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Fig. 4.5-C. Then, if the damping factor of the highly dispersive NP is large enough,

the slowest decaying normal mode which will control the longtime relative phases of

the LSP, is that which has zero weight over these NPs.

In Fig. 4.7 we present a set of possible examples in the nearest neighbor approxi-

mation, of how to extend our proposal to more complex nanostructures. The light blue

NPs represent equal NPs with large damping factors while the golden ones represent

equal NPs with small damping factors. In this cases, there is always one eigenvalue

of M that has zero weight over the light blue NPs. This normal mode corresponds to

the one where the LSP of the golden NPs oscillates in anti-phase with respect to their

nearest golden NPs neighbors. Then, this mode will have the slowest decay rate, and

thus controlling the phase fixation at long time, for a sufficiently large damping factor

of the light blue NPs. Furthermore, as mentioned in the previous section, amplitude

fixation should be achievable by embedding the system in an optical active medium.

Therefore, the system will be a source, of arbitrary nano-metric size, of evanescent

electromagnetic fields with a predetermined interference pattern.

Figure 4.7: Scheme showing how to generalize that shown in Figs. 4.1 to arbitrary

large nano-structures with nearest neighbors interactions. The blue Nanoparticles have

the largest damping factors. The oscillation mode which have zero weight over this sites,

is the one that most will survive.
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4.4 CONCLUSIONS.

In this chapter we have shown a way of controlling the phase final relative phases of

the localized surface plasmons of different NPs in a array. The specific tailoring of the

damping factors allows us to control the phase of the synchronization. Furthermore,

we have shown that is should be possible to keep the system oscillating with constant

amplitude by including an optically active media properly tuned. We interpret that this

as a new example of synchronization as we are in presence of self sustained oscillating

objects, clearly separable, that present the fixing of the phases as consequence of their

mutual interaction and also maintain their amplitude for long times. The ability of

controlling the asymptotic state of these NP arrays, allows the designing of interference

patterns in the subwavelength scale which could have applications in optoelectronic,

nanoscale lithography and probing microscopy.
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Chapter 5

Simple Models for

Non-Markovian Structured

Environments

5.1 INTRODUCTION

In this chapter, we recover the analysis of decoherence processes in spin system pre-

viously introduced in Chap. 2 and start analyzing the effects of multiple connection

between the system and the surrounding spins (the environment). By the moment we

will continue working within the fermionic models, in order to get a full understand

of the XY dynamics, but in the following chapters, this analysis, will help us to get a

deep understanding on the full many-body spin dynamics.

The work developed in this and the following two chapters was made in collaboration

with Pablo R. Zangara, who is also studying decoherence process in spin systems.

Let us start remembering that the interaction rate 1/τS−E between a quantum sys-

tem S and its environment E is typically evaluated from a Fermi Golden Rule (FGR),

which assumes that the environment has a Markovian nature. Thus, it neglects any

trace of memory becoming from the environmet. However, as we have seen in Chap.

2, the interplay between the system time scales (e.g. 1/ω0) and that of the interac-

tion (τS−E) could result in striking effects. While weak interactions (1/τS−E � 2ω0)

simply degrade dynamical interferences at a rate 1/τφ ∝ 1/τS−E, stronger ones may

change the system’s response radically, leading to a quantum dynamical phase transi-
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tion in its dependence on 1/τS−E [Álvarez et al., 2006]. Indeed, the possibility of a non-

analytic behavior appears because the system’s effective Hamiltonian is non-Hermitian

[Rotter, 2009, Pastawski, 2007]. This, in turn, can be traced back to the fact that the

environment has a number of degrees of freedom N which can be considered infinite.

As P.W. Anderson put forth: “more is different”, and new physical phenomena may

appear when this thermodynamic limit (N −→ ∞) is properly taken [Anderson, 1972].

Indeed, there are several models of both non-Markovian and Markovian environments

[Chakravarty & Leggett, 1984, Danieli et al., 2007, Álvarez et al., 2007, Pastawski, 2007]

which show that the frequency spectrum is a non-analytic function of the interaction

strength [Anderson, 1954].

While the Markovian approximation is sufficient for most traditional applications,

it leaves aside important memory effects and interferences in the time domain. These

result from the coherent interaction between S and E, and are becoming a topic of

increasing interest [Taylor et al., 2003]. The system-environment dynamics may go

through different temporal regimes, passing from a quadratic short time decay to the

usual exponential FGR decay and then to an inverse power law behavior that appears

for very long times (see Chap. 2 and Ref. [Rufeil-Fiori & Pastawski, 2006]). Here,

we will focus on the more relevant exponential (or intermediate) regime, treated with

a Self-Consistent (SC) FGR, which gives rates different from the standard FGR due

to the bath memory effects. Once again, a deep understanding of the environment

dynamics is central to identify the different regimes and to foresee possible dynamical

transitions.

A natural way to quantify the decoherence time τφ is through the degradation of

specific interferences, e.g. Rabi oscillations [Müller et al., 1974, Danieli et al., 2005]

or mesoscopic echoes [Mádi et al., 1997, Álvarez et al., 2010a, Pastawski et al., 1995,

Pastawski et al., 1996]. Alternatively, the implementation of a time reversal procedure,

the Loschmidt Echo (LE) [Jalabert & Pastawski, 2001], allows the evaluation of the

decoherence time by measuring the reversibility of the system’s dynamics in presence of

an uncontrolled environment. The LE can be accessed experimentally in spin systems

[Pastawski et al., 2000, Levstein et al., 1998], confined atoms [Andersen et al., 2006],

microwave excitations [Schäfer et al., 2005], etc., and has become a powerful tool for

quantifying decoherence, stability and complexity in dynamical processes in several

physical situations [Gorin et al., 2006, Jacquod & Petitjean, 2009].
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In this chapter we consider again the evolution of two coupled spins in the ↑↓ and ↓↑
configurations (as was made in Chap. 2) in the presence of different spin environments

with a fully characterized coherent dynamics [Dente et al., 2008]. It is important to re-

member that the Rabi oscillations presented in that system [Cohen-Tannoudji et al., 1998]

can act as a SWAP gate, and after appropriate mappings, this boils down to an ex-

citation that jumps between two degenerate states A and B according to a coupling

VAB, which can be switched at will. Starting on state A, the return probability os-

cillates with ω0 = 2VAB/~, the Rabi frequency. In order to understand the incidence

of environmental memory effects in the rate 1/τφ, two different issues are considered.

First, the relation between the system’s time scale (typically ruled by ~/VAB) and the

bath’s inner excitation spreading time scale as determined by the density of directly

connected states (Local Density of States, LDoS) ~N1. Second, and closely related to

the first one, the specific form in which the system couples to the bath (see Fig. 5.1):

Each site coupled to a different environment: Private bath, or
Both sites coupled to the same environment: Public bath.

This allows a quantitative comparison between rates and a qualitative interpre-

tation in terms of the bath’s spectral structure. The comparison of the effects of

public and private S− E interaction should deepen our understanding about how the

involved correlations modify the degradation rate 1/τφ. Indeed, if the system’s and

the bath’s time scales are similar, then the problem cannot be treated within the

Markovian paradigm of a “slow variable interacting with a fast equilibrating back-

ground”. It requires to be carefully addressed beyond the FGR. Memory effects arising

not only from the structured environment but also from collective S− E interaction

are expected. This last mechanism of correlated coupling (public) has been previ-

ously pointed in the literature of open quantum systems, particularly in terms of the

spin-boson models [Palma et al., 1996, Breuer & Petruccione, 2007]. It can be shown

[Breuer & Petruccione, 2007], at least for a simple model of a N−qubit register, that

the decoherence increases linearly with N for independent reservoirs, while it grows

with the square N2 for a collective environment. This example suggest that such a

public interaction may lead to a strong amplification of decoherence. On the other

hand, it has been pointed in the literature of error correction protocols that symmetric

(public) S− E coupling can be exploited to design states that are hardly corrupted

by such a coherent environmental noise [Zanardi & Rasetti, 1997]. Finally, in recent
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years it has been explored the role of a common environment in the correlations (en-

tanglement) within a system [Buchleitner et al., 2007, Paz & Roncaglia, 2009], and the

possibility of creating and manipulating those correlations by environment-mediated in-

teractions [Hor-Meyll et al., 2009]. Notice that spectral correlations in the bath would

be quite cumbersome in attempts to describe them in statistical terms. However, real-

istic Hamiltonian models of the bath should allow a simple and natural description of

such correlations.

Figure 5.1: Representation of the public and private environments. In the left picture it

is observed the single connections to individual environments, while in the other side, we

shows the multiple connections to the single environment with the correlations inside the

bath.

The cases we analyze can be casted directly to 1-D spin systems interacting by means

of a planar (XY or flip-flop) as well as double-quantum (flip-flip / flop-flop) effective

Hamiltonians. Indeed, the spin-fermion mapping provided by the Jordan-Wigner Trans-

formation (JWT) [Lieb et al., 1961] has been successfully exploited to predict spin po-

larization dynamics in linear chains and rings [Pastawski et al., 1995] and results in full

agreement with the experiments [Pastawski et al., 1996, Mádi et al., 1997]. It further

allowed to address polarization dynamics in homogenous chains [Danieli et al., 2004,

Danieli et al., 2005, Rufeil-Fiori & Pastawski, 2006] and multiple spin coherence dy-

namics [Fel’dman & Lacelle, 1997, Rufeil-Fiori et al., 2009, Cappellaro et al., 2007],

[Doronin et al., 2000] by mapping them to fermionic excitations. In both cases, the
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local excitation is identified with a single fermion propagating in a tight-binding linear

chain, and one can assume that the environment is described by an identical chain.

Another interesting application of the tight-binding model, is that their results can be

mapped, sometimes quite straightforwardly, to describe the propagation of excitations

in several scenarios, like classical and quantum coupled oscillators [Economou, 2006],

plasmonics [Bustos-Marún et al., 2010], sound propagation [Calvo & Pastawski, 2010],

spin-boson interactions and other models used for decoherence in quantum information

[Hu et al., 1992, Bartels, 2011].

Another important issue about the integrability of the chosen model is that it

enables an analytical expression valid in the thermodynamic limit of an infinite number

of spins. Thus, we are certain when ruling out a phase transition. In fact, an analytically

tractable bath means the capability to sum up an otherwise divergent perturbation

series into a complex self-energy through the Dyson Equation, which is considered in the

FGR approach. Additionally, having a smooth LDoS, which arises from a continuous

spectrum (N −→ ∞), avoids spurious resonances that might appear in finite systems.

Besides, we will see that a defined curvature of the LDoS will be central to modify the

FGR.

This chapter is organized as follows. In Sec. 5.2 we present the S− E tight-binding

models that yields a fully solvable quantum dynamics (the underlying spin-fermion

mapping is summarized in the Appendix A). In Sec. 5.3, the notions of Survival

Probability and local Loschmidt Echo are presented on the face of their numerical

implementation. We deal analytically with every case by a Green’s Function approach.

Further details related to the Green’s function poles are discussed in Appendix B.

In Sec. 5.4, the analytical decay rates obtained with the FGR and the SC-FGR are

presented for each case under consideration. These rates are compared with those

computed by numerical solution, contrasting the results of the Survival Probability

(SP) and the Loschmidt Echo (LE) of the local excitation. All these magnitudes are

analyzed taking into account that the environmental memory effects are provided by

its spectral structure (LDoS). In the last section, further discussions and conclusions

are presented to argue how the public bath is more effective to depart the decay process

away from the usual Fermi Golden Rule (energy independent rate).

93



5. SIMPLE MODELS FOR NON-MARKOVIAN STRUCTURED
ENVIRONMENTS

5.2 TIGHT BINDING MODEL FOR EXCITATION DY-

NAMICS

As pointed above, while our motivation relies mainly on spin dynamics under flip-flop

interactions, we use the spin-fermion mapping to cast it in terms of tight-binding models

that apply to a wide variety of systems. Thus, we leave to Appendix A a brief outline of

how this mapping is achieved. Here, we present the models and analyze them in terms

of straightforward single particle physics. These are basically variations of tight-binding

infinite linear chains where the bath’s memory can be fully characterized. Of course,

the cases where the interactions network topology has branching points or loops would

preclude the simple back transformation into spin systems. However, even in these

situations some of the physics of the memory would remain. The general situations are

sketched in Fig.5.2.

SYSTEM ENVIRONMENT
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Figure 5.2: Non interacting fermion modelization. I) A single site state connected to a

semi infinite chain. II) One site coupled to an infinite chain. Since V0 � V , both cases

can be treated by a simple decay process, given by the FGR. III) Two sites; the initial

configuration is given by a particle in the site A. The sites are coupled to a semi infinite

chain by only one of them. IV) Same as III), but with an infinite linear chain standing

for the bath.V) Two sites coupled both to different infinite chains (private environments).

VI) Two sites coupled to the same infinite chain (public environment).

For the cases considered in this chapter, the whole Hamiltonian can be written as:

Ĥ = ĤS + ĤE + ĤS−E, (5.1)
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where:

ĤS = EAĉ
†
AĉA + EB ĉ

†
B ĉB − VAB(ĉ†AĉB + ĉ†B ĉA), (5.2)

with ĉ†s and ĉs (s ∈ {A,B}), the creation and destruction operators for fermions. The

hopping amplitude VAB defines the isolated system dynamical time scale. The bath Eν

(where ν=1,2), with a spectral bandwidth of 4V , is described by the Hamiltonian:

ĤEν =

∞∑
n=nν

Eν,nĉ
†
ν,nĉν,n − V (ĉ†ν,n+1ĉν,n + ĉ†νnĉν.n+1). (5.3)

Choosing the site energies with identical values: Eν,n = 0 ensures a continuum spec-

trum, while the election EA = EB = 0 will further simplify the analysis. Two different

alternatives for the spectrum dynamics arise when nν = 1 (semi-infinite linear chain)

and nν = −∞ (infinite linear chain). The system-bath Hamiltonian ĤS−E depends on

how we couple our two-site system to the environment (linear chain), but in general it

will be of the form:

ĤS−E = −V0

(
ĉ†Aĉν,i + ĉ†ν,iĉA + ĉ†B ĉµ,j + ĉ†µ,j ĉB

)
, (5.4)

where ν, i and µ, j label sites i and j in the environments ν and µ respectively. Here it

is important to note that the problem could have several environments. Despite of this,

we decided only to work with one or two environments. This will reduce the complexity

of the problems, but not the underlaying physics.

It is crucial to stress that VAB, V0 and V determine the relevant time scales of

the whole problem. The first two give the rate of hoppings from site A to site B

and to the environment, respectively. The third is the jumping rate between sites in

the environment. An “irreversible” decay to the environment, and hence the Fermi

Golden Rule, implies that the unperturbed isolated system state has zero overlap with

eigenstates of S + E. For this perturbation theory break down, the interaction with

each environment eigenstate, V0/
√
N must be much greather than the spacing between

adjacent levels, of about V/N, i.e. the interaction time scale ~/V0 must be greater

than the environment’s Heisenberg time ~N/V . Imposing V0 � VAB for all the cases

we treated (weak coupling regime), we ensure the smooth degradation of the system’s

coherent evolution. When V ≈ VAB the memory effects characterizing a non-Markovian
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situation lead to a very rich dynamical behavior. In the opposite limit, if V � VAB then

the validity of the FGR (Markovian situation) is expected to be recovered. Typically,

this last situation will be represented in this work by a hopping V = 5VAB.

5.3 NUMERICAL AND ANALYTICAL TOOLS

5.3.1 SURVIVAL PROBABILITY AND LOSCHMIDT ECHO

Two kind of measures for dynamical degradation are employed in this work: the Sur-

vival Probability (SP) PAA(t) and the local Loschmidt Echo. The SP which has been

previous defined in Chap. 2, is:

PA,A(t) =
∣∣∣〈A| exp

[
−iĤt/~

]
|A〉Θ(t)

∣∣∣2 , (5.5)

where Θ(t) is the Heaviside step function, and the Hamiltonian Ĥ is defined by Eq.

5.1. It is important to remember that it measures the probability of finding a particle

in site A at time t, provided that the system has had a particle in the same site at time

t = 0. In spin systems, this is a spin autocorrelation function (see Eq. A.3 and A.6

in Appendix A). The whole evolution of the system as reflected in the SP, is affected

by a decay process, which is not trivial to separate from the intrinsic dynamics. Thus,

to quantify decoherence, one relies on the observation of specific features as natural

recurrences (Rabi oscillations or mesoscopic echoes) that appear at specific times. This

limits the used time windows and limits the detailed assessment of S− E dynamics.

Although it is not the perfect tool to quantify the effects of the environment, the SP

behaves as a probe that reflects the overall dynamical process.

With the purpose of get a continuous access to the S− E dynamics that bet-

ter reflects the environmental memory effects, we focus our attention over the LE.

This type of measure has been used in the last years in different physical scenarios

(both experimental [Levstein et al., 1998, Pastawski et al., 2000, Schäfer et al., 2005,

Andersen et al., 2006] and theoretical [Cucchietti et al., 2003, Gorin et al., 2006],

[Jalabert & Pastawski, 2001]) in order to explain the behavior of the decoherence char-

acteristic time. In general, the LE provides a direct measure of the decoherence process

due to the environment, and even though it depends on the nature of the system’s in-

trinsic dynamics, it does not depend much on its details. Its usual dynamical behavior
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presents an exponential decay regime 1, which will be used to characterize the destruc-

tion of the system’s coherent dynamics.

The LE relies on the time reversal of the system’s evolution and, in the present sce-

nario, it has a direct physical interpretation. The LE can be understood as the measure

of the amount of polarization returned to local site where it started. The controlled

quantum dynamics is separated in two stages. First, the initial local excitation (parti-

cle in site A) evolves during a time t1, and then a time reversal procedure is applied

during a period time (T − t1) which reverses the system’s dynamics (ĤS → −ĤS). It is

important to note that the bath’s dynamics and the S− E interactions (ĤE and ĤS−E

respectively) remain unreversed during the backward evolution. This partial control

results in a non-reversed perturbation Σ̂ = (ĤE+ĤS−E) acting in both periods. Finally,

the probability of finding the particle in site A forms the Loschmidt echo provided that

t1 = T/2:

MLE(T ) =
∣∣∣〈A| exp

[
−i(−ĤS + Σ̂)(T − t1)/~

]
exp

[
−i(ĤS + Σ̂)t1/~

]
|A〉
∣∣∣2 . (5.6)

Clearly, in the case where the system is isolated, the local LE will have a steady value

of 1. This means that the system is fully reversible. On the other hand, if the system

is coupled to the infinite and continuous environment’s spectrum, both the forward

and backward effective Hamiltonians, ĤS + Σ̂ and −ĤS + Σ̂ respectively, become non-

Hermitian. Thus, the LE decays with a characteristic rate, i.e., our reversal procedure

has not been able to recover the excitation spread to the environment. The net decay

of the norm of the state simply means the decay of the coherent part and then describes

the non-trivial part of the Loschmidt Echo.

For the evaluation of both survival probability and Loschmidt Echo, we diagonalize

the Hamiltonian and obtain the evolution for every time. We use sufficiently large

chains to approximate the nature of infinite ones (just like we do in Chap. 2 and in

Ref. [Dente et al., 2008]). Indeed, the evolution times considered in this work are short

enough to ensure that the presence dynamical finite-size effects (e.g. mesoscopic echoes

appearing at the environment’s Heisenberg time) do not build up. A typical system is

presented in Fig. 5.3-a.

1Notice that the systems we are considering do not have enough complexity to warrant a pertur-

bation independent (i.e. Lyapunov) decoherence rate.
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In all the cases, we are interested in studying the rates as a function of the S− E

coupling parameter (V0). In order to obtain those rates for the local LE, we fit the

dynamics by a exponential decay function, which for the case plotted in Fig. 5.3-b, it

turns to be the envelope of the SP Rabi oscillations and has the advantage of having

a monotonous behavior. This mach between the LE and the envelope of the SP is not

always true, one should be aware that for an arbitrary system, the characteristic rates

obtained by te LE and the SP could be different.

Remembering that every obtained rate is related to a particular choice of V0, we

have ploted the decay rates as a function of V 2
0 /~V (Fig. 5.3-c). This was made with

the objective of verify the validity of a FGR regime:

1

τφ
' 2π

~

(
ĤS−E

)2
N1, (5.7)

where
(
ĤS−E

)2
is a characteristic second moment of the S− E interaction and N1

represents an appropriate density of directly connected states. It is interesting to

comment that because of the linear chain topology the second moment coincides with

V 2
0 , and N1 can be identified with a local density of state at the first site of the

chain. In a general environment this correspondence can be assigned through a Lanczos

transformation [Lanczos, 1950, Rufeil-Fiori & Pastawski, 2006].

5.3.2 ENVIRONMENT’S EFFECT IN A SELF-CONSISTENT FERMI

GOLDEN RULE

For the study of the analytical solutions we use the Green’s Function (GF) formalism in-

troduced in the Chap. 2. In this framework it is possible to obtain the overall dynamics

of the system by looking at the behavior of the GF poles [Rufeil-Fiori & Pastawski, 2006,

Dente et al., 2008]. Any element of the retarded GF results a Fourier transform of the

full propagator:

GRAA(ε) = lim
η→0

∞∫
−∞

〈A| exp
[
−i
(
Ĥ − iηÎ

)
t/~
]
|A〉Θ(t) exp [+iεt/~] dt

=
1

ε− EA − Σ(ε)
=

1

ε− EA − (∆(ε)− iΓ(ε))
, (5.8)
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Figure 5.3: Non interacting fermion modelization. I) A single site state connected to a

semi infinite chain. II) One site coupled to an infinite chain. Since V0 � V , both cases

can be treated by a simple decay process, given by the FGR. III) Two sites; the initial

configuration is given by a particle in the site A. The sites are coupled to a semi infinite

chain by only one of them. IV) Same as III), but with an infinite linear chain standing

for the bath.V) Two sites coupled both to different infinite chains (private environments).

VI) Two sites coupled to the same infinite chain (public environment).
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where Σ(ε) is the appropriate self-energy with real and imaginary parts ∆(ε) and

−Γ(ε) respectively. The self-energy operator is diagrammatically presented in Fig. 5.4.

The bath memory is contained in their dependence on ε, which arises from the bath’s

exact Green’s Function G
R
11(ε) at the directly connected site. Indeed, Σ (ε) is given by

|V0|2G
R
11 (ε), see Fig. 5.4-b. All the environments considered in this work (see Fig. 5.2)

are 1d chains, which can be reduced to the self-energy of a semi-infinite (or infinite)

linear chain (nν = 1, see Eq. 5.3), i.e.

Σ(ε) =
V 2

0

V 2

[
ε

2
− i

√
V 2 −

(ε
2

)2
]

for |ε| ≤ 2 |V | . (5.9)

For the infinite linear case (nν = −∞), the previous expressions must be multiplied by

2.

Notice that Σ(ε) plays the role of the influence functional in the Feynman path inte-

gral formulation usually used to deal with memory effects for bosonic baths [Ingold, 2002].

However, in such cases there are many more free parameters than in our case, i.e. the

bath spectral density, the coupling strength with each mode and the temperature that

fixes the bath occupation. In our spin environment model however, the last is simpli-

fied by the high temperature limit, while the two first become naturally determined by

specific sum rules arising from the physical Hamiltonian we select.

We have to remember that the complex GF poles are consequence of the unbounded

nature of the system which prevents mesoscopic echoes [Pastawski et al., 1995] and

Poincare’s recurrences. Also it is important to point out that in the region where we

are working (V0 � V, VAB), the Hamiltonian holds a continuous spectrum where no

localized modes appear.

To get a better understanding of the connection between the dynamical behavior

and the poles of the GF, we expand the initial condition in the Survival Probability

(see Eq. 5.5) in terms of the energy eigenstates:

PAA(t) =

∣∣∣∣∣Θ(t)

∞∑
k=1

|〈ψk|A〉|2 exp [−iεkt/~]

∣∣∣∣∣
2

=

∣∣∣∣∣∣Θ(t)

∞∫
−∞

dε

[ ∞∑
k=1

|〈ψk|A〉|2 δ(ε− εk)

]
exp [−iεkt/~]

∣∣∣∣∣∣
2

. (5.10)
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Figure 5.4: a) Diagrammatic representation for the retarded GF at site A, in the form of

a Dyson’s equation. The interaction with the environment is to infinite order in the self-

energy given in (b) (see Eq. 5.8). Simple lines with arrows are exact GF in absence of S− E

interactions. b) Self-energy diagram sums all orders in the hopping to the environment.

Thick line with arrows is the exact propagator at a point of the isolated bath, denoted by

G
R

11 (see text).

The term in brackets is identified as the Local Density of States (LDoS) NA(ε) at the

site A:

NA(ε) = − 1

π
Im

∞∫
−∞

dtGRAA(t) exp [−iεt/~]

= − 1

π
ImGRAA(ε). (5.11)

Therefore, we can identify Eq. 5.5 as the LDoS Fourier transform:

PA,A(t) =

∣∣∣∣∣∣Θ(t)

∞∫
−∞

dε

2π~
NA(ε) exp [−iεt/~]

∣∣∣∣∣∣
2

. (5.12)

The last expression can be numerically and analytically computed once we know the

GF in the energy representation (remember that this procedure has been made in the

Chap. 4). As a matter of fact, since we have Σ(ε), and hence NA(ε), explicitly, we

can compute the dynamics from the Fourier Transform mentioned. But, we prefered

to obtain the numerical evolution (by exact diagonalization, as explained in previous
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section) of a finite environment. The interest in this last method arises from the fact

that its use can be directly generalized to more complex systems (many-body), where

an exact analytical solution is not accessible. The analytical alternative based on

the evaluation of the GF poles will enable to summarize the decay rate in a simple

expression, as it is shown below.

The characteristic decay of PA,A(t) is determined by the bath’s LDoS, N1 (ε). This

last can be obtained from the isolated bath’s exact GF at site 1 (i.e. G
R
11),

N1 (ε) = − 1

π
ImG

R
11 (ε) . (5.13)

Hence, we recall that N1 (ε) plays the most relevant role in S− E dynamics as was

quoted in Ref. [Dente et al., 2008]. In some systems the LDoS can be factorized as

NA(ε) = N1(ε)×L1(ε)×L2(ε) (result obtained in Chap. 2), where Li(ε) are Lorentzian

functions (LFs) related to the real and imaginary parts (denoted by ∆0 and Γ0 respec-

tively) of the GF poles. Hence, the convolution theorem applied to Eq. 5.12 leads

to a characteristic decay of PA,A(t) ruled by Γ0. In fact, the decay parameter of the

exponential regime is given by 1/τ = 2Γ0/~. This is what we call self-consistent Fermi

Golden Rule (SC-FGR) [Rufeil-Fiori & Pastawski, 2006].

With the purpose of finding Γ0, we focus on the Hamiltonian of Eq. 5.1, and follow

the continued-fraction procedure described in Ref. [Pastawski & Medina, 2001]. For

each type of S− E coupling (see Fig. 5.2), it was necessary to recalculate the poles

of the GF. Due to the small number of poles of the systems, it was feasible to obtain

the analytical solutions for all the cases presented in this work. Also, we address the

behavior of Γ0 as a function of V0 � 1. Indeed, we proceed to expand the solution near

V0 ' 0.

It is important to notice that in the Taylor expansion, the linear and zero order terms

vanish. Therefore, the imaginary part has V 2
0 as the first non trivial term. As expected

for a FGR, this is in strong agreement with Eq. 5.7, where we identify the order V 2
0 as

the second moment of the S− E interaction (in general denoted by
∥∥∥ĤS−E

∥∥∥2
). In the

next section, we present the corresponding values for 1/τ = 2Γ0/~, expressed in the

first non trivial order (as we said, the 2nd one), for each case considered.

The usual alternative (easier and cheaper) to the presented scheme (SC-FGR) is

the simple FGR, which is equivalent to evaluate the Green’s function in a first pole
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approximation:

[
GRAA (ε)

]−1 ' ε− EA − Σ(EA) (5.14)

= ε− EA −∆(EA) + iΓ(EA) (5.15)

Since this yields an ε-independent rate, it can be understood as a Wide Band Approxi-

mation (WBA) [Facchi & Pascazio, 1999]. This approximation would imply neglecting

any signature of dynamics and memory effects in the environment. Also, it misses

some striking dynamical behaviors appearing at long times as the survival collapse

[Rufeil-Fiori & Pastawski, 2006, Dente et al., 2008] and the subsequent power law de-

cay [Khalfin, 1958, Fonda et al., 1978, Garćıa-Calderón et al., 1995].

As a matter of fact, the WBA is represented by the condition of V � VAB. Under

this assumption, the environment acquires fast dynamics and the system does not

receive any return from it (Markovian limit). In general, the common FGR has the

form expressed in Eq. 5.7. There, the last factor (N1) stands for the LDoS of the

directly connected states, and by the application of the WBA, it is evaluated in the

middle of the band spectrum (in our case, ε = 0).

In this work it is important to remember that the LDoS varies from the semi-infinite

chain (nν = 1, surface state) to the infinite chain (nν = −∞, bulk state) as follows,

N1s (ε) =
1

πV 2

(
V 2 − ε2

4

)1/2

Θ [2V − |ε|] , (5.16)

N1b (ε) =
1

2π

(
V 2 − ε2

4

)−1/2

Θ [2V − |ε|] . (5.17)

From the previous spectral structures, we stress the presence of van Hove singulari-

ties, which play an important role for long time dynamical behavior [Khalfin, 1958,

Rufeil-Fiori & Pastawski, 2006, Dente et al., 2008]. Indeed, the critical exponent char-

acterizing the van Hove singularity can be related to the dimensionality of the space

where the quantum excitation diffuses. Also, the two different convexities in the LDoS,

near the middle of the band spectrum, will be of great relevance in the following dis-

cussions.
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Table 5.1: Degradation rates for all the methods analyzed (Survival Probability and local

Loschmidt Echo degradation, Wide Band Approximation, and Self Consistent FGR). The

cases are described in Fig. 5.2. If the system’s and bath’s time scales are equal, the physical

situation is strictly non-Markovian. We point to restore Markovianity in cases where both

scales differ by a factor of five.

System SP degradation rate
[
V 2

0
~V

]
Local LE degradation rate

[
V 2

0
~V

]
WBA

[
V 2

0
~V

]
SC-FGR

[
V 2

0
~V

]
I 2.04± 0.05 2.04± 0.05 2 2

II 1.00± 0.02 1.00± 0.02 1 1

III - (V = VAB) 0.88± 0.05 0.88± 0.05 1 0.87

III - (V = 5VAB) 1.00± 0.02 1.00± 0.02 1 0.995

IV - (V = VAB) 0.56± 0.02 0.56± 0.02 0.5 0.577

IV - (V = 5VAB) 0.50± 0.02 0.50± 0.02 0.5 0.502

V 1.16± 0.03 1.16± 0.03 1 1.15

VI - (V = VAB) 1.71± 0.04 1.20± 0.04 1 1.732(forward) and 0.577 (backward)

VI - (V = 5VAB) 1.11± 0.03 1.02± 0.03 1 1.106(forward) and 0.904 (backward)

5.4 DECAY RATES: FGR AND BEYOND

In this section we expose the main results of this chapter. They are summarized in

Table 5.1, where the decay rates are presented as function of V 2
0 /~V , for every case

analyzed (Fig. 5.2) and each approach employed (SP degradation, local LE degradation,

WBA-FGR, and SC-FGR).

The rates predicted in the WBA column of Table 5.1, correspond to the direct

evaluation of Eq. 5.7, i.e.:

1

τφ
' 2π

~
V 2

0 N1λ(ε = 0), (5.18)

where λ stands for s (surface, for semi infinite chains) or b (bulk, in the case of

infinite chains), in accordance to Eq. 5.16 and Eq. 5.17 respectively. Also, the details

on the analytic calculation of the rates (SC FGR column, obtained by means of the

GF poles) are presented in the Appendix B.

Systems I and II involves only one site. The difference between them is that I has

a semi infinite chain acting as environment and II has an infinite one. The decay rates

for these cases can be directly evaluated within the WBA, and agree exactly with the

numerical solutions.

From the cases III to VI, the system acquires his own time scale (~/VAB). For these

cases, we consider two time scales for the environment, as compared to the system’s
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time scale. The first one, in which the time scales are equal (V = VAB) and the second

in which the environment is “accelerated” by five times (V = 5VAB).

Quite obviously, when the environment has the same time scale as the system,

the WBA rate does not works at all. However, the rates computed by SP and LE

degradation agree with the SC-FGR perfectly (except for the public environment, case

VI, which will be analyzed below). This last quantity can be interpreted as the LDoS

of the bath being evaluated in the exact solution for the eigen-energies of the whole (S

and E), and not in the middle of the band spectrum (see Fig. 5.5-a). Indeed, the rate

of the SC-FGR is obtained by evaluating the LDoS at the real part of the GF poles.

Figure 5.5: Local Density of States for: a) Semi-Infinite chain (Surface) and b) Infinite

chain (Bulk). The horizontal dashed lines are the values VAB/V which stand for the system

energies (renormalized with V ). The vertical dashed lines together with their numerical

values are the LDoS for each system in the normal (V = VAB) or the fast (V = 5VAB)

configuration.

It is important to notice that the rate obtained for the SC-FGR are higher or

lower than the predicted by the WBA, depending if the bath is infinite or semi-infinite

respectively. We can interpret this result by looking at Fig. 5.5. Once we evaluate the

LDoS in Re (εpole) ' ±VAB/V , we observe that the values are lower for the SC-FGR

than the WBA in the semi-infinite LDoS, otherwise it is higher if the infinite LDOS is

considered.

At this point, for the two level system, we are able to link the convexity of the

bath’s LDoS to the observed decay rate. We notice that if the LDoS is convex, the

exact rates are greater than the WBA prediction (see Fig. 5.5-b), but instead if it is
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concave, the rates are smaller (see Fig. 5.5-a). In other words, it depends on the shift

away from the middle of the band spectrum, moving along the LDoS slope.

In order to point to the strictly Markovian case, where any return from E to S

is suppressed, we examine accelerated environments. For these cases, all the rates

converge to the same value. From Fig. 5.5-a we can see the convergence of the exact

solutions towards the middle of the band spectrum, as long as the condition V � VAB

is better fulfilled.

So far we have only considered a single and private environment, and in the following

cases we address the private-public discussion. As we mentioned before, private baths

act over each site individually, and a single public bath acts over two (or eventually

more sites) of the same system (see Fig. 5.1). This public S− E interaction induce new

types of correlations, increasing the dynamical complexity of the physical process.

For case V we explore the possibility of two private baths (i.e. two infinite environ-

ments each one connected to one site). Since here both sites, instead of only one, are

affected by the environment, it is expected a double rate compared to the case IV (this

is because we have doubled the sources of decoherence). In Table 5.1 we found that

the simulations agree with the analytical prediction and again, the rates are greater

than the WBA value, which means that we are moving with the exact eigen-energies

through a convex LDoS, away from middle of the band.

Finally we analyze a very interesting case, where the system is in presence of a

public bath (VI). For these cases it is observed that the SP rate differs from the

local LE. This behavior shows a certain asymmetry between the forward and backward

evolutions. Using the SC-FGR approach it can be shown that the imaginary part of

the poles depends on the relative value of VAB and V (see Appendix B),

1

τ
=

2

~
Γ0 '

√
4V 2 − V 2

AB

2V − VAB
V 2

0

~V
. (5.19)

This dependence induces a different decay rate whenever the system evolves forward

(VAB > 0) or backward (VAB < 0). Thus the SP and the local LE are not equivalent for

the this case (see Table 5.1). It is worth mentioning that the asymmetry (dependence

on the relative sign) in the rates for the forward and backward evolutions, can arises

only when the bath is public.
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The analytical prediction for the local LE rate is obtained by observing that the

total evolution for the reversed dynamics is proportional to a product of two exponential

evolutions (the forward and the backward),

MLE(T = 2t) ∝ exp(− t

τf
) exp(− t

τb
) (5.20)

= exp

[
−t
(
τf + τb
τfτb

)]
= exp

[
−T

(
τf + τb
2τfτb

)]
, (5.21)

where τf and τb correspond to the forward and backward degradation rates (see also

case VI in Table 5.1). Eq. 5.20 shows that the mean rate for a single time-reversed

evolution should agree with the LE decay (1/τLE = 1.20 ± 0.04 V 2
0 /~V ). In fact, this

is true, since the two SC-FGR rates (1/τf and 1/τb) yield a mean value 1/τ = 1.15

V 2
0 /~V . Moreover, and quite obviously, the forward rate agrees with the SP decay.

Let us now link the decay process to an appropriate LDoS. As it is shown in Ap-

pendix B, we can transform the original model of case VI to an equivalent one by

performing the symmetric transformation analyzed in Chap. 3 (see Fig. 5.6). If the

suitable change of basis is applied (basically turning pairs of sites into the symmetric and

anti symmetric basis), then it is only necessary to analyze two semi infinite linear chains.

Which just are the particular cases treated in Ref. [Rufeil-Fiori & Pastawski, 2006,

Rufeil-Fiori & Pastawski, 2009]. Since the initial condition has equal weight on both

effective chains, the corresponding rates for them have to be added. Further details on

the symmetrization transformation are explained in Appendix B.

From the LDoS considered in Fig. 5.7 we can explain why the rate 1/τf is always

above the WBA limit, and the 1/τb rate is always below it. Moreover, as long as the

forward rate agrees with the SP decay, this also supports the SP rate being greater

than the WBA value (see the ”Forward” points in Fig. 5.7).

Once more, if we make the bath’s dynamics faster, leading to a better applicability

of the WBA, then the rates converge again to the traditional FGR description (middle

of the band spectrum).

In order to generalize our analysis, we will make a briefly characterization of the

local LE decay times for a “highly public” bath (See Fig. 5.8). This case is of interest for

studying spin dynamics in ring and ladder like systems (see Ref. [Álvarez et al., 2010a]).

In particular, this type of systems will be studied Chap. 6.
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Figure 5.6: The schematic symmetrization procedure of the 2-sites system interacting

with the public environment. The original problem can be casted as two independent semi

infinite linear chains.

Figure 5.7: LDoS for the equivalent problem of the public case, after symmetrization

transformation. Forward and backward stages of the evolution are indicated. The horizon-

tal lines dashed lines are the values VAB/V which stand for the system energies (renormal-

ized to V ). The vertical dashed lines together with their numerical values are the LDoS

for the system VI in the normal (V = VAB) or the fast (V = 5VAB) configuration.
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Figure 5.8: Fermion model. A five-site system laterally coupled to an infinite chain.

In this system we considere three different relations for the time scales: V = Vs,

V = 5Vs and V = 8.75Vs (we also assume V � V0). For these cases the decay rates

(local LE degradation rate measured in units of V 2
0 /~V ) computed by the numerical

solution are (2.66 ± 0.07), (1.54 ± 0.05) and (1.16 ± 0.04), respectively. Therefore, we

observe that the first two results do not match with that expected by WBA. Moreover,

as we have seen before, the convexity of the bulk LDoS, induce bigger values. By setting

V = 8.75Vs (approximately one order of magnitude of difference) we are near the WBA

validity and thus it almost reproduce the expected result: an energy independent rate,

of value 1.00 V 2
0 /~V , in accordance to Eq. 5.18. We stress here that the strong

sensibility on the relation between time scales, is enhanced by a highly public S− E

interaction.

5.5 FURTHER DISCUSSIONS AND CONCLUSIONS

Traditionally, the first approach to evaluate decay rates is the FGR based on an un-

derlying WBA. We have shown several variations of a simple SWAP gate interacting

with an environment (or several ones) where this scheme is not as good a one might

assume. This failure, which can be understood as non-Markovianity, is build up by two

contributions (which should not be considered as well separated effects).

First, if the WBA limit (V � VAB) is not well fulfilled, then it is quite obvious

that the energy independent rate will not be representative as it would oversimplify

the decay process. When the system’s time scale becomes comparable to that of the

environment (i.e. VAB ' V , non-Markovian situation), the decay rate departs from the

usual FGR approximation evaluated at single energy level. Depending on the bath’s

spectral structure (LDoS) the actual rate can be greater or lower. We have shown that

if the LDoS is a convex function of the energy, then any shift away from the middle

of the band spectrum will produce a greater decay rate. But if the LDoS is a concave
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energy function, then the rate would be lower. In general, we have seen that dynamical

complexity (understood as how much the decay departs from the WBA validity) arises

when the time scales of the system, the environment and the S− E interactions, are

commensurable.

Second, when the dynamics is non-Markovian due to similar time scales, the pos-

sibility of interaction through the environment becomes appreciable. In a public bath,

the correlations generated by the multiple connections between different parts of the

system and the bath, are more effective to depart the physical process away from the

WBA validity, for a given relation of time scales. In general this leads to too subtle

correlations to be treated in spectral models for the bath which here becomes quite

natural through the use of specific Hamiltonian models of the environment.

In order to address the question on the private and public nature of the S− E

interaction, we confront the cases of two independent baths (case V) and one common

bath (case VI).

In cases, where S− E interaction is private there is no dependence of the rate on

the relative sign of V and VAB. On the other hand, if the S− E interaction is public,

the forward and backward evolution will change the decay rates and will produce a

mean value for the local LE decoherence rate. It is important to stress here that we

are comparing cases where S and E have similar time scales. In this condition, it is

observed that decay rates for the public case are greater than for the private. In this

sense we interpret (at least for this cases) that the private bath is ”less harmful” than

a public one. Strictly speaking, this a consequence of moving along the LDoS in the

effective FGR (see Figs. 5.5 and 5.7). A public scenario produces an enhancement in

the alteration of the FGR away from the WBA limit, as compared to the private one.

As a matter of fact, private bath is less efficient for correlated memory-like returns

to the system. As it has been previously stated in a general sense, and based on

complete formal grounds, the feedback of information from E to S is the central issue

for quantifying a non-Markovian bath [Breuer et al., 2009].

On the other hand, we have shown how Markovianity is restored by changing the

relation between S and E time scales. In fact, for all the cases treated in this work,

we have found that once we move towards the WBA limit (represented by a bath

dynamics 5 times faster than the system), the effects of a public or private bath are

no longer relevant. For both cases the environment is fast enough to wash out all the
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memory effects, since any inner excitation is rapidly spread. At this point the rate for

both situations become equal and agree with the one predicted by the common FGR.

This means that when the system’s and the bath’s time scales are well differentiated

(specifically when the bath’s is very short as compared to the system’s), then the

public-private reservoir discussion becomes irrelevant.

In many physical situations, when addressing 1-D and 1-D+ systems (see, for ex-

ample [Álvarez et al., 2010a]), a coupled environment behaves with a convex LDoS.

Therefore, memory effects and complexity in the structure of the S− E interaction pro-

duce an enhancement of the coherent dynamics degradation. Additionally, we stress

here the wider “spectral exploration” of the Loschmidt Echo as compared to the Sur-

vival Probability (a difference clearly shown in the public S− E interaction case, where

the global LE rate is a mean value of two non symmetric processes).

Even though we do not claim full generality for the results discussed here, there are

some interesting universal issues to remark. The use of the Wide Band Approximation

(simple FGR) can easily lead to quantitative and qualitative wrong results if the time

scales and the physical structure of S and E are similar. Also the way they are coupled

to each other (public or private), plays a fundamental role. In general, dynamical

complexity grows up when those characteristic times are similar and when there is no

privacy in the S− E interaction.
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Chapter 6

Loschmidt Echo Evaluation of

Environmental Induce

Decoherence in Spin Systems

6.1 Introduction

In this chapter we start to explore the many body problem of decoherence in spin

systems. We will numerically analyze the decoherence process in spin ladder systems,

where each chain has 1/2 spins with XY interaction. One of them constitutes the con-

trolled system S whose dynamics is degraded by the weak coupling with the uncontrolled

second chain, i.e. the environment E. The employ of the Loschmidt Echo quantifier,

i.e. the signal recovered after the reversal of an evolution, let us to identify and quan-

tify the processes contributing to decoherence. This procedure, which has been used

in the single particle fermion model of the previous chapters, is now successfully ap-

plied in this many-body system, where their excitations would sustain a one-body like

propagation. The perturbative System-Environment (SE) coupling is swept through

arbitrary combinations of XY and Ising like interactions, that contain the standard

Heisenberg and dipolar ones. The fact that the isolated chains have a simple internal

dynamics allows the comparison with previous analytical and numerical evaluations

of decoherence based on the attenuation of specific interferences described in terms of

the Fermi golden rule. The contributions of the different SE terms to decoherence are

individually evaluated and analyzed. The results will shows that the Loschmidt Echo is
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a good decoherence quantifier as it yields a meaningful description of the decoherence

processes at any time independently of the S internal dynamics.

One of the first questions that arises, is why the choice of the spin ladder problem?

In the literature we found that, least for short distance communications, spin chains

can be used to transfer information [Bose, 2003]. Several selective polarization tech-

niques have been developed in NMR experiments to set up an initial local excitation

in one edge of a spin chain and transfer it to the other edge by means of an effective

XY Hamiltonian (i.e. S+
i S
−
j + S−i S

+
j or polarization conserving ”flip-flop” processes)

[Mádi et al., 1997, Cappellaro et al., 2007]. Additionally, Multiple Quantum Coher-

ence spectroscopy has allowed the study of quasi-one-dimensional spin systems under

the influence of spin environments [Zhang et al., 2009, Rufeil-Fiori et al., 2009]. In par-

ticular, the Double Quantum (DQ) Hamiltonian (i.e. the polarization non-conserving

processes S+
i S

+
j + S−i S

−
j ), can be mapped to an XY Hamiltonian allowing the design

and control of the excitation transfer in a broader family of solid-state spin structures

[Fel’dman & Lacelle, 1997, Cappellaro et al., 2007, Doronin & Fel’dman, 2005],

[Doronin et al., 2000]. Thus, our work is intended to deepen the analysis of decoher-

ence process in such 1-D systems. This kind of studies are crucial to improve the de-

gree of control available for NMR-based state transfer protocols [Álvarez et al., 2010b,

Cappellaro et al., 2011].

As we have seen in the Chap. 5, a natural way to quantify the decoherence time τφ is

through the degradation of the contrast of interferences. This requires the identification

of specific coherence “witnesses”. Particularly useful are the excitations in the local

polarization, as their reflections on the boundaries can be observed as well defined Meso-

scopic Echoes (ME) [Pastawski et al., 1995, Pastawski, 1996, Prigodin et al., 1994]. Re-

cently, the ME intensity has been used to quantify decoherence of spins arranged in

a ladder topology [Álvarez et al., 2010a]. Alternatively, the evaluation of τφ can be per-

formed by a time reversal procedure, the Loschmidt Echo (LE) [Jalabert & Pastawski, 2001],

where one evaluates the reversibility of the system’s dynamics in presence of an un-

controlled environment. The LE can be accessed experimentally in many situations,

such as spin systems [Pastawski et al., 2000, Levstein et al., 1998, Sánchez et al., 2009],

confined atoms [Andersen et al., 2006], microwave excitations [Schäfer et al., 2005], etc.

Also, it has become a standard way to quantify decoherence, stability and complexity
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in dynamical processes, in several physical situations involving non-interacting particles

[Gorin et al., 2006, Jacquod & Petitjean, 2009].

The quantitative study of the LE degradation, characterizes the decoherence due

to the interplay between the system (S) and the environment (E). Indeed, the many-

body nature of the S-E interaction yields a very rich behavior in the dynamical regimes

of decoherence. Additionally, the non Markovian nature of the S-E interaction will be

quantitatively analyzed in terms of the environment’s spectral structure or local density

of states (LDoS).

In the next section, we describe our system S as a spin chain or ring, the envi-

ronment E as a second chain, and the perturbative interactions linking them side by

side. Within this model we discuss the relevant time scales and the requirements for

a Markovian behavior. In this many-body context, we introduce a local (many-body)

version of the Loschmidt Echo evaluated from an experimentally accessible observable:

the local polarization. We analyze its role as a decoherence quantifier. In Section

6.3, we perform a numerical study of the physically relevant parameter regimes. In

Section 6.4 we analyze the obtained rates and show that these account for corrections

to the Fermi golden rule (Markovian regime) arising from finite size and memory ef-

fects [Álvarez et al., 2010a, Dente et al., 2011]. We further argue that, for short times,

certain environment fluctuations reduce the decoherence rate as measured by the LE.

This is because the LE reverses the phases arising from the S-E Ising interaction thus

rebuilding original interferences. In the last section we conclude that the LE compares

favorably with the evaluation of interference contrast (ME attenuation) as a tool for

decoherence quantification.

6.2 QUANTUM DYNAMICS OF SPIN-CHAIN SYSTEMS

6.2.1 THE MODELS

The spin models analyzed in this article are schematized in Fig. 6.1. In the first one,

the system S is an m-spin chain (Fig. 6.1-a), which could constitute a quantum channel,

that interacts with a second chain E. This chain, stands for the “environment” which

perturbs the dynamics of S. The second model (Fig. 6.1-b) is obtained from the first

one by imposing a periodic boundary condition that transforms the chains into rings.
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Figure 6.1: The spin system. (a) Open boundary conditions. (b) Closed boundary

conditions (ring-like). Continuous (green) connections represent interactions that can be

inverted to obtain the Loschmidt echo. Dash (blue) lines represent non-controllable inter-

actions. The first spin (black circle) is initially polarized. The rest of the spins are in the

high temperature regime.
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For both models, the spin Hamiltonian is given by:

Ĥtotal = ĤS + ĤE + V̂SE, (6.1)

where the first and second terms represent the system and the environment re-

spectively, and the third one is the interaction between them. In particular, for both

ν = S or E, we use an effective “planar” or XY Hamiltonian [Mádi et al., 1997], that

describes the homogenous flip-flop interaction between first neighbor spins. In the first

model, i.e. the chain:

Ĥν =

m−1∑
n=1

Jν(Ŝxν,n+1Ŝ
x
ν,n + Ŝyν,n+1Ŝ

y
ν,n)

=
m−1∑
n=1

Jν
2

(Ŝ+
ν,n+1Ŝ

−
ν,n + Ŝ−ν,n+1Ŝ

+
ν,n). (6.2)

Here Ŝxν,n and Ŝyν,n are the x and y components of the spin operator in the n-th site

in the ν chain respectively, while Ŝ+
ν,n and Ŝ−ν,n are the raising and lowering operators.

If one wants to consider the second model, i.e. spins in a ring, an extra XY coupling

appears between the 1-st and m-th spins.

The interchain coupling is:

V̂SE =
m∑
n=1

JSE[2αŜzS,nŜ
z
E,n − (ŜxS,nŜ

x
E,n + ŜyS,nŜ

y
E,n)] (6.3)

=

m∑
n=1

JSE[2αŜzS,nŜ
z
E,n −

1

2
(Ŝ+

S,nŜ
−
E,n + Ŝ−S,nŜ

+
E,n)], (6.4)

where the first term is an Ising interaction. The α parameter determines the nature

of the coupling (see Ref. [Pastawski et al., 1995]). For typical NMR scenarios: XY in-

teraction [Mádi et al., 1997] is represented by α = 0, the standard isotropic Heisenberg

interaction corresponds to α = −1
2 , while α = 1 is the truncated dipolar interaction.

In order to extend and systematize our analysis we also consider several other values

for α. It is important to notice that for finite α the S-E interaction always has an XY

component. This allows a polarization exchange which, in a Fermionic representation,

117



6. LOSCHMIDT ECHO EVALUATION OF ENVIRONMENTAL
INDUCE DECOHERENCE IN SPIN SYSTEMS

can be seen as a “single-particle tunneling”[Danieli et al., 2004]. In such a picture,

the Ising term corresponds to a nearest neighbor Hubbard term which is a two-body

interaction.

It is crucial to stress that the real constants JS, JE and JSE determine the relevant

time scales of the whole problem. As introduced above, the first two give the homoge-

nous XY coupling within the S and E respectively, while JSE stands for the interchain

coupling between them. With the purpose of ensuring a smooth degradation of S’s

coherent dynamics, we set JSE in the weak coupling limit, i.e. JSE � JS, JE.

The Fermi golden rule, which involves the thermodynamic limit of infinite degrees

of freedom, describes the “irreversible” decay of a pure state in S into collective S⊗ E

states. This implies that the unperturbed eigenstates of S have negligible overlap with

the eigenstates of S⊗ E. For example, in a tight-binding picture of non-interacting

fermions, the breakdown of the time independent perturbation theory occurs when the

interaction with each environment eigenstate, JSE/
√
m, becomes of the order of the

spacing between contiguous energy levels, which is about JE/m. In other words, the

decay time, τSE, associated with the Fermi golden rule

1/τSE '
2π

~

∣∣∣∣ JSE√m
∣∣∣∣2 mJE , (6.5)

must be shorter than the bath’s recurrences at the Heisenberg time tH ' ~m/JE.

Additionally, as we have seen in the Chap. 5, when both S and E have similar time

scales, the coherent memory effects may produce decay rates that differ appreciably

from those provided by the FGR [Dente et al., 2011]. These are well described by a

self-consistent Fermi golden rule (SC-FGR) [Rufeil-Fiori & Pastawski, 2006]. Thus, one

should remember that JS ' JE may lead to a non-Markovian scenario. On the other

hand, when JS � JE the environment fluctuations are much faster than those in the

system and the Markovian approximation becomes satisfactory [Dente et al., 2011].

As we will see below, the evaluation of spin dynamics and decoherence can become

more complex in a many-body systems. A chain of m spins corresponds to 2m energy

levels where as many as
(
m
m/2

)
of them can be coupled by an interaction conserving spin

projection.
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6.2.2 MEASURING DECOHERENCE IN SPIN SYSTEMS: MESO-

SCOPIC AND LOCAL LOSCHMIDT ECHOES

A natural question that arises for the spin models introduced above, is how to quan-

tify decoherence of S in the presence of E. The first answer relies on finding an

appropriate decoherence rate 1/τφ through the quantification of the attenuation of

system’s specific interferences. As in the experiments, one can starts evaluating the

evolution of an injected local polarization through the spin autocorrelation function

[Danieli et al., 2004, Danieli et al., 2005]:

P1,1(t) =

〈
Ψeq

∣∣ ŜzS,1(t)ŜzS,1(0)
∣∣Ψeq

〉〈
Ψeq

∣∣ ŜzS,1(0)ŜzS,1(0)
∣∣Ψeq

〉 . (6.6)

This function gives the local polarization at time t along the z direction in site 1

provided that at time t = 0 the system was in its thermal equilibrium state plus a local

excitation in site 1. In fact, it is precisely the experimentally observed magnitude after

the excitation is created by a special pulse sequence [Pastawski, 1996]. Here, Ŝzν,1(t) =

eiĤtotalt/~Ŝzν,1e
−iĤtotalt/~ is the spin operator in the Heisenberg representation. The many

body state
∣∣Ψeq

〉
corresponding to high temperature thermal equilibrium represents a

mixture of all states with amplitudes satisfying the appropriate statistical weights and

random phases. Then, the local excitation can be defined in the computational (Ising)

basis{|Ψr〉} as

ŜzS,1
∣∣Ψeq

〉∣∣∣〈Ψeq

∣∣ ŜzS,1ŜzS,1 ∣∣Ψeq

〉∣∣∣1/2 =
∑
r

cr |Ψr〉 , (6.7)

In the regime of NMR spin dynamics, the thermal energy kBT is much higher than any

other energy scale of the system [Ernst et al., 2004, Abragam, 1986] , then all statistical

weights result identical, i.e. |cr| = 1/
√

22m−1 . It turns out that each contribution to

the locally polarized initial state can be written as :

|Ψr〉 = |↑1〉 ⊗ |βr〉 , (6.8)

where the basis for the remaining 2m− 1 spins is

|βr〉 = |s2〉 ⊗ |s3〉 ⊗ |s4〉 ⊗ ...⊗ |s2m〉 with |sk〉 ∈ {|↑〉 , |↓〉} . (6.9)

The computation of the time dependent observable in Eq. 6.6 requires evolving each of

these pure states to evaluate the ensemble averaged observable. This is implemented
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using a Trotter decomposition [Rieth & Schommers, 2006] assisted by quantum paral-

lelism [Álvarez et al., 2008] (See appendix C for further details).

Once the initial excitation is created, a first physical picture about its evolution

may be obtained from the Wigner-Jordan spin-fermion mapping (see Appendix PVP-

Apendice-1), i.e. we can start by thinking in models like those analyzed in Chap. 5.

According to it, an m spins chain with XY interaction where N of them are up is

mapped to a chain with N non-interacting fermions (See details in Chap. 2). Thus, if

we only consider the isolated chain S, a polarization excitation has the same dynamics

as a single fermion in a tight-binding linear chain [Pastawski, 1996, Mádi et al., 1997,

Rufeil-Fiori & Pastawski, 2006]. Indeed, the observed autocorrelation function in the

limit of infinite temperature is precisely described by the evolution of a single spin up

in a chain of down spins:∣∣∣ΨS
1

〉
= |↑1〉 ⊗ |βr=1〉

= |↑1〉 ⊗ |↓2〉 ⊗ |↓3〉 ⊗ ...⊗ |↓m〉 , (6.10)

and

P S
1,1(t) =

∣∣∣〈ΨS
1

∣∣∣ exp[−iĤSt/~]
∣∣∣ΨS

1

〉∣∣∣2 , (6.11)

where
∣∣ΨS

1

〉
belongs to the S sub-space. Thus, exp[−iĤSt/~]

∣∣ΨS
1

〉
, is a one-body wave

function which accounts for the dynamics isolated dynamics of the system chain.

Once we add a weakly coupled second chain (E), we can think that the dynamics of

the first chain remains approximately valid. Hence, the revivals observed in by P S
1,1(t)

(the isolated S dynamics) which characterize the system finite size, should still show

up. In fact, it is possible to observe this constructive interference reappearing after

every Heisenberg time tH ∼ ~/∆, with ∆ being the typical mean energy level spac-

ing. Such polarization revival is called Mesoscopic Echo (ME) [Prigodin et al., 1994,

Pastawski et al., 1995]. In the particular cases treated in this work (spin chains with

XY interactions), one may safely use ∆ ' JS/m. Then, the Heisenberg time becomes:

tH ∼ ~m/JS.

The effect of coupling the E bath becomes in a progressive attenuation of the ME

(compared to the isolated dynamics). In a previous work (see Ref. [Álvarez et al., 2010a]),

this attenuation has been used to quantify the environmentally induced decoherence.

It is interesting to mention that in the many-body problem analyzed in this chapter,
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the FGR evaluation of decoherence time remains valid for times much longer than the

isolated system’s Heisenberg time tH . This may seem paradoxical as the Heisenberg

time of the isolated environment would be comparable to that of the system. Also, it is

in apparent contradiction with the validity range of the Fermi golden rule stated above.

However, these bounds were given for a single particle picture which is no longer valid

once the S-E interaction is considered. This is indicative that the whole S⊗E is a fully

many-body system where most of the degeneracies of the decoupled finite XY chains

have been broken. Thus, the situation resembles that of a single particle propagating

in presence of the environment represented by a much larger tight-binding chain as

considered in Fig. 7 of Ref. [Dente et al., 2011] and in Chap. 5.

Let us now explain the essence of the experimental protocol that uses the Loschmidt

Echo to quantify decoherence in a spin system using a LOCAL spin as an observable

[Levstein et al., 1998]. This relies on the controllability of the chain S, whose Hamilto-

nian’s sign can be switched at will as is often the case in NMR. The reversibility of the

dynamics within the channel is perturbed by the interaction with a non-controlled spin

chain E (a similar scenario can be found in Ref. [Petitjean & Jacquod, 2006]). There

are two stages in the evolution. First, a spin excitation is created and the chains evolve

according to the Hamiltonian of Eq. 6.1, during a time tR. At tR the internal inter-

actions within S are reversed (i.e. ĤS is replaced by −ĤS during a second period tR).

However, neither S-E coupling nor interactions within chain E are reversed, resulting

in a non-reversed perturbation,

Σ̂ = ĤE + V̂SE, (6.12)

acting in both periods. Thus, in analogy with Eq. 6.6, we define the observable Local

Loschmidt echo as the local recovered polarization:

MLE(2tR) =

〈
Ψeq

∣∣ ŜzS,1(2tR)ŜzS,1(0)
∣∣Ψeq

〉〈
Ψeq

∣∣ ŜzS,1(0)ŜzS,1(0)
∣∣Ψeq

〉 . (6.13)

The spin operators, expressed in the Heisenberg representation, are now:

Ŝzν,1(2tR) = e
i
~ (Ĥ

S
+Σ̂)tRe

i
~ (−Ĥ

S
+Σ̂)tR Ŝzν,1e

− i
~ (−Ĥ

S
+Σ̂)tRe−

i
~ (Ĥ

S
+Σ̂)tR . (6.14)

At this point it is important to remark that the Loschmidt echo introduced above is

a local observable which acts over the first spin. If we compare with other definitions
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of that measure in the literature (for example in Ref. [Petitjean & Jacquod, 2006]),

we will found that the here we make a local proyection (i.e. we trace over the system

and enviromental variables), while in other cases the proyection is made with only one

global state of the whole controlled system S.

Figure 6.2: Representation of the ”equivalence” between the Ising like problem and the

”random chemical shift” problem. a) The particular case of V̂SE restricted to the ising form

and a fixed state in the environment. b) ”Equivalent” model for the a) system. Smaller

and bigger circles represent the random chemical shift which depends on the instantaneous

spin configuration of the system.

Continuing with the analysis, it can be useful to think in the particular case where

V̂SE is restricted to an Ising interaction and ĤE has no dynamics at all but remains

quenched in a random configuration. In such case, Eq. 6.13 reduces to the time-

reversed dynamics of a spin in the presence of an oriented chain. There we can reduce

the problem by considering only one spin chain with a set of non-reversed random

chemical shifts (see Fig. 6.2). Here, we have ”transformed” Σ̂, a operator with acts

over the full Hilbert space, into Σ̂S, a operator of random potentials with only acts over

the S Hilber space. Thus if we restrict our analysis to the S system, in analogously to
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Eq. 6.11, we found that the Loschmidt echo becomes:

MS
LE(2tR) =

∣∣∣∣〈ΨS
1

∣∣∣ exp{− i

~
(−ĤS + Σ̂S)tR} exp{− i

~
(ĤS + Σ̂S)tR}

∣∣∣ΨS
1

〉∣∣∣∣2 , (6.15)

where one can recognize the LE definition as the overlap of two wave functions intro-

duced in Ref. [Jalabert & Pastawski, 2001].

Despite of this simplification for one specific case, we still have to compute the

Loschmidt Echo (presented in Eq. 6.13) to evaluate the decoherence lost in a system

with a general interaction. Thus, it necessarily requires a full many-body evolution.

As we mention above the initial state of Eq. 6.7 is composed by a set of |Ψr〉 states

belonging to the S ⊗ E space. For each of these states, the resulting wave function at

time t = 2tR, after the whole time-reversal procedure, is

|Ψr(2tR)〉 = exp{− i
~(−ĤS + Σ̂)tR} exp{− i

~(ĤS + Σ̂)tR} |Ψr〉 . (6.16)

In analogy with the discussion above, the probability of finding the first spin up-

polarized is:

P
[r]
1,1(t) =

∑
j

|(〈↑| ⊗ 〈βj |) |Ψr(t)〉|2 , (6.17)

where the sum runs over the 22m−1 configurations of the 2m−1 remaining spins. After

the summation over all |Ψr〉 contributions to the initial state, and expressing the result

as a local polarization [Pastawski et al., 1995], we obtain the local LE:

MLE(t) = [
22m−1∑
r=1

|cr|2 P [r]
1,1(t)− 1

2
]× 2. (6.18)

Here again, the statistical weight |cr|2 is the inverse of 22m−1, the number of initial states

in the ensemble that satisfy the “1st spin up polarized” condition. Notice again that,

except for the fact that the evolution operator contains a partially reversed dynamics,

this quantity refers to the same physical observable as Eq. 6.6.

Clearly, in the case where S is isolated, the local LE will have a constant value

of 1. This means that S is fully reversible. On the other hand, if S is coupled to E,

the local LE should decay, i.e. our reversal procedure fails to recover the excitation

spread to the environment. Then the local LE decay rate is directly identified as the
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decoherence rate 1/τφ [Petitjean & Jacquod, 2006]. Naturally, in the present situation

this rate should be a function of the S-E coupling parameter JSE. Since we are interested

in the regime of weak coupling with the fluctuating environment, in what follows we

numerically analyze the conditions of validity of a FGR [Rufeil-Fiori & Pastawski, 2006,

Jacquod et al., 2001, Cucchietti et al., 2006] as applied to the many-body context:

1

τφ
'
∑
δ

2π

~

∣∣∣V δ
SE

∣∣∣2N0δ, (6.19)

where
∣∣V δ

SE

∣∣2 is the local second moment of the process δ (e.g. Ising or XY ) contributing

to the S-E interaction and N0δ represents the appropriate density of directly connected

states or LDOS [Rufeil-Fiori & Pastawski, 2009].

6.3 DECOHERENCE EVALUATION BASED ON THE

LOSCHMIDT ECHO DECAY

In this section we present the results obtained for the local LE MLE(t) (see Eq. 6.18)

in the spin models represented in Fig. 6.1. Even though our major concern lies on the

exponential decay ruled by the FGR, we can also identify other regimes, as shown in Fig.

6.3. It is noticeable that the Loschmidt echo yields results for a wide range of parameters

and times scales. This feature contrasts with the study of interferences through the

mesoscopic echoes whose observability restricts the quantification of decoherence, i.e.

the decoherence can not be evaluated in any time. Thus, it is clear that the LE provides

a privileged access to the decoherence processes.

In Fig. 6.3-b the short time dynamics displays the expected quadratic decay (inset),

which should appear in any quantum evolution at short times. Indeed, the plot of

1−MLE (in log-log scale) shows that MLE can be fit by a quadratic function in t:

MLE(t) = 1− [
JSE
2~

]2t2. (6.20)

This confirms that the short time decay is given by the local second moment of the

perturbation. For very long times, the LE shows a saturation plateau (see Fig. 6.3-

a). Such observation is consistent with the expectation that, with these parameters,

the whole spin system behaves ergodically under the Loschmidt Echo dynamics, and
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Figure 6.3: Time regimes of the local Loschmidt echo. Numerical results for a ring of

5 spins weakly coupled to an identical one, by an XY interchain interaction (α = 0).

a) MLE as a function of the total evolution time t = 2tR. Notice that the stronger

the interchain coupling JSE, the faster the saturation regime is reached. b) At short

times, the quadratic decay law is confirmed, showing excellent fit to Eq. 6.20, in the form

log(1 −MLE) = δ log(t) + ν log(JSE/(2~)). For (a) and (b) the coupling parameters JSE
are: 0.001, 0.01, 0.025, 0.05, 0.1, 0.25 and 0.5, in units of JS.

thus the polarization spreads uniformly along all the spins. At long times, each site

is polarized by the amount 1/(2m) (1/10 for the particular case plotted). Different

couplings JSE produce a rescaling of the time in which the saturation is reached.

In order to asses the exponential regime, we plot the characteristic rate 1/τφ in

Fig. 6.4-a, as a function of J2
SE/~JE. This quantity is appropriate to verify the FGR

validity (Eq. 6.19), as long as J2
SE is the typical scale for the second moment of the S-E

interaction and 1/JE that of the density of directly connected states. Although several

forms of the interchain Hamiltonians were considered by varying the parameter α in

Eq. 6.3, we show only those more relevant to NMR experiments: XY (α = 0), isotropic

(α = −1
2), and truncated dipolar interaction (α = 1). We observe that the boundary

conditions play a non-trivial role [Danieli et al., 2004]. For the case of open boundary

conditions (Figs. 6.1-a), some oscillations appear mounted on the decay which also

depend on the parity of m, the number of spins in each chain. Below we present the

results using closed boundary conditions (rings) where these effects are much weaker.

The linearity in Fig. 6.4-a evinces the validity of Eq. 6.19. The rates obtained from

the different interactions are summarized in Fig. 6.4-b, where the rates derived from

ME attenuation [Álvarez et al., 2010a] are also included. The characteristic time 1/τφ

(expressed in units of J2
SE/~JE) is represented as a function of α2. From the slopes of

125



6. LOSCHMIDT ECHO EVALUATION OF ENVIRONMENTAL
INDUCE DECOHERENCE IN SPIN SYSTEMS

Figure 6.4: a) Decay rates for the interchain coupling given by the three most typical

NMR interactions, in units of JS/~. The slopes clearly depend on the value of α, i.e. on the

relative weight between the Ising (dephasing) and XY (polarization transfer) contributions

to the interchain coupling. The first data points were not considered in the fitting. b)

Loschmidt Echo decay rate as a function of α2 in units of ~JE/J2
SE. Varying α allows to

cover the region of physical interest. For comparison, Mesoscopic Echo degradation data

obtained in Ref. [Álvarez et al., 2010a] are also plotted.

that plot we derive the contributions to the global decay rate 1/τφ, arising from XY

and Ising processes in the interchain interaction:

1

τφ
=

1

τXYφ

+
1

τZZφ
. (6.21)

This contributions, for the local Loschmidt Echo measure, are:

LE :
1

τXYφ

= (0.92± 0.04)
J2
SE

~JE
, (6.22)

LE :
1

τZZφ
= (1.12± 0.04)α2 J

2
SE

~JE
. (6.23)

In order to compare with the numerical results of Ref. [Álvarez et al., 2010a], we adapt

their variables to our inner notation (−a/b ≡ 2α) and write the rates contributing to

the ME degradation:

ME :
1

τXYφ

= (1.00± 0.06)
J2
SE

~JE
, (6.24)

ME :
1

τZZφ
= (2.0± 0.3)α2 J

2
SE

~JE
. (6.25)
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The most striking effect evinced by the comparison is that while the XY contri-

butions are essentially the same in both methods, the Ising contribution (i.e. pure

dephasing) in the ME (Eq. 6.25) is almost twice the value obtained from the local LE.

In the following section we analyze the possible origin of such result.

6.4 DECOHERENCE RATE ANALYSIS

The first non-trivial issue is that there is always an exponential regime in MLE(t),

whose parametric dependence follows that of the FGR (Eq. 6.19), which also gives

the correct order of magnitude. This is not obvious a priori since, within the model

adopted for the S and E interaction (V̂SE), and having both equivalent internal time-

scales (JS = JE), the physical situation is strictly non-Markovian. Thus, one should

expect both memory effects and environment mediated interactions, i.e. the second

chain behaves collectively as a “public” environment [Dente et al., 2011], just like in

Chap. 5.

As discussed in previous chapters, one can often approximate a many-body problem

as a one-body system plus a decoherent process [Danieli et al., 2002, Pastawski, 1991,

Pastawski, 1992]. Therefore, it turns out that even when such one-body picture is not

rigorously valid, some of its physical insights can be retained (e.g. memory effects).

According to this argument, we interpret the equivalence of the XY rates for ME

[Álvarez et al., 2010a] and LE using the mapping into a one-body evolution either in S

or E. The dynamics along the chains is only weakly affected by the tunneling process,

(i.e. in a single particle picture, the kinetic energy along X commutes with that along

Y ). Thus, the rate 1/τXYφ should coincide with the tunneling rate and we expect that

it should not be affected by a time-reversal procedure within S.

Memory effects relying on the time scale relation (JS ' JE) inevitably appear in the

simulations and they must be considered to achieve a satisfactory analytical descrip-

tion (see, for instance [Rufeil-Fiori & Pastawski, 2006]). Thus, we recall the discussion

already presented in Ref. [Dente et al., 2011] and in Chap. 5, where the degradation

rates are determined within a self-consistent Fermi golden rule (SC-FGR), by the ap-

propriate LDoS (i.e. the density of directly connected states) at the precise energy of

the excitation. Hence, a reliable analytical prediction would require more sophistication

than the energy-independent bath’s spectral weight (LDoS) used for the FGR in a wide
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Band Approximation (WBA). Specifically, in [Álvarez et al., 2010a] a semi-infinite lin-

ear chain was used to describe the numerical data because the more appropriate infinite

chain seems to lead to a divergent FGR. While this issue remains open, our recent work

[Dente et al., 2011] showed that corrections to the FGR rates depend on the convexity

of the bath’s spectral structure (LDoS). In the next chapter we will focus our attention

on the appropriate LDoS for the evaluation of the FGR for this kind of system.

In contrast to the simple decay induced by theXY component of the S-E interaction,

the Ising part is expected to add a diffusion-like process within the system through the

energy fluctuations it induces. This tends to blur out the dynamical recurrences (i.e.

MEs). Thus, the smaller decoherence rate observed from the LE indicates that the time

reversal procedure is at least partially effective to reverse such processes. In fact, the

rates for the pure Ising interaction observed here from the LE are about half of those

obtained from the ME [Álvarez et al., 2010a]. This means that the ME attenuation

overestimates the phase degradation induced by the environment. As stated before,

the displacement of a spin excitation in presence of a quenched spin environment plays

the role of an Anderson’s disorder degrading the wave packet dynamics that produces

the ME, and is computed as decoherence. The reversal of the internal XY interaction

would not be able to reverse such disorder. However, if the environment has an inner

dynamics there would be certain fluctuations that allow a perfect reversal of the system

dynamics. i.e. both the hopping and the site energy signs are inverted. Such specific

E-fluctuations are those needed to unravel the phase shifts produced during the forward

evolution (see Fig. 6.5). One may say that in the presence of a fluctuating environment,

the LE is able to reconstruct the phases in some of the local configurations. Since such

arguments rely on a single particle picture where local dynamics on short time steps

is crucial, it is not clear whether it is enough to fully justify the striking factor of two

observed numerically.

6.5 Conclusions

We presented an approach to characterize decoherence for a spin chain in realistic

many-body scenarios. It consists of the evaluation of a Loschmidt Echo, i.e. the local

polarization recovered after an imperfect time reversal procedure. The attenuation

of such echoes yields a first hand estimate of the decoherence rate. As a specific
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Figure 6.5: The Ising interchain interaction as a single particle in a binary alloy. A full

circle is a spin up or a fermion, and an empty circle represents a spin down or a hole. All

the processes are considered in the short time scale given by a single Trotter time step.

a) Forward dynamics within S, in presence of “random site energies”. b) The backward

evolution in S is imperfect because the environment E remains constant and “site energies”

are not inverted. c) A particular evolution of E provides a perfectly reversed dynamics for

S. Here, all the “site energies” around the excitation that determined its forward evolution

are reversed.
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realization for a structured environment we used a second spin chain. This Hamiltonian

for the bath leads to a non-Markovian scenario where the typical time scales are not

well separated and S-E interaction is public [Dente et al., 2011], in the sense that it

implies E-mediated interactions. Thus, we obtain decoherence rates with no ad-hoc

assumptions about spectral functions [Chakravarty & Leggett, 1984, Weiss, 2008] or

stochastic noise operator [Blanchard et al., 1994, Machida et al., 1999].

Our computational technique involves a Trotter decomposition assisted by a recently

developed algorithm that relies on quantum parallelism to evaluate local observables

[Álvarez et al., 2008]. The decoherence rates could be separated in two contributions.

In spite of some subtleties that already appear in the corresponding single particle prob-

lem [Dente et al., 2011], in this many-body context both contributions to decoherence

are fairly well described by the Fermi golden rule.

The XY contribution to the decoherence rate coincides with that resulting from

the ME attenuation. The reason is that the single particle picture for linear chains

is approximately retained for weak interchain interactions. The Ising contribution to

the rate obtained for the LE is about half that computed from the ME attenuation.

Dynamics of the system in the presence of a random environment, produce phase

shifts associated with the S-E Ising interaction and contribute to the ME attenuation.

However, when the imperfect LE procedure attempts to reverse dynamics inside S, it

may also benefit from some favorable fluctuations of the S-E energy to fully reconstruct

the phases in S. The numerical simulation confirms that the Loschmidt Echo, is a better

decoherence quantifier as it recovers information that escapes a standard analysis based

on interference degradation. Also, by subtracting the intrinsic dynamical interferences

of the system through time reversal, it gets rid of most of the trivial part in the S

dynamics that conceals the decoherence effects. Thus the LE provides a smooth and

continuous access to the decoherence processes that involve the environment.
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Chapter 7

Effects of the Structured Spin

Environment in Rabi Oscillators

7.1 Introduction

In this last chapter we will back to the problem of rabi oscillation in a two spin system,

analyzing the decoherence process in the presence of a laterally couple spin chain (with

XY interactions). The difference between the previous works and this one, is that here

we focus in the analysis of Non-markovian dynamics produced by the Ising coupling

and how the size of the environment affects the internal dynamics. We will use results

from the non-equilibrium Keldysh formalism and compare with numerical simulations

to understand the decoherence rates observed in equivalent systems like those treated

in the previous chapter.

Along this thesis we have seen that the spin system S interacts with a spin environ-

ment E, that perturbs it, smoothly degrading its quantum dynamics with a decoherence

rate, 1/τφ, proportional to the system-environment (S− E) interaction rate 1/τS−E. In

fact, the inclusion of the E degrees of freedom may straightforwardly become an un-

solvable problem and requires approximations usually not fully quantified.

A standard framework for dealing with open system dynamics is a Lindblad-type

quantum master equation (QME), i.e. a generalized Liouville-von Neumann differential

equation for the reduced density matrix [Abragam, 1986, Slichter, 1990]. In most of the

cases, this approach is based on a fast fluctuation regime within E, i.e. a Markovian

approximation. In addition, S − E interactions occur at a rate given by the Fermi
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Golden Rule (FGR), which is usually evaluated as an energy-independent variable.

While these assumptions may be sufficient for most traditional applications, we have

seen that they leave aside important memory effects and interferences in the time

domain produced by a coherent S−E interaction. An alternative to the previous QME

approach is provided by the Keldysh non-equilibrium formalism [Keldysh, 1964], in the

integral representation proposed by Danielewicz [Danielewicz, 1984]. The strategy uses

perturbative expansions to infinite order in selected Feynman diagrams. Such integral

representation also allows the manipulation of the energy-time domain in a similar way

to the well known Wigner representation. In particular, for the fermionic case, the

Danielewicz integral equation can be transformed into a generalized Landauer-Büttiker

equation (GLBE) [Pastawski, 1991, Pastawski, 1992].

In this chapter we exhibit a systematic (both qualitative and quantitative) study of

decoherence applied to a two-spin system S, interacting with a one-dimensional spin set,

which plays the role of the environment E. This last is introduced by the specific XY

(planar) Hamiltonian model (similar to the Public vs Private Chapter), which enables

the access to its spectral structure or Local Density of States (LDoS). The many-body

nature of the S− E interactions yields a very rich behaviour in the decoherence rate

1/τφ, that will be addressed with numerical methods and some analytical results.

A stricking point in the rate analysis relies on the effective LDoS or density of

directly connected states (DDCS), when one tries to evaluate a FGR. In Chap. 5

we have seen that decoherence rates are evaluated from a self consistent (SC) FGR

calculation [Rufeil-Fiori & Pastawski, 2006] in order to obtain a better approximation.

Furthermore, if S and E are coupled by means of a public interaction, which enables

possible E-mediated interactions, then more quantitative and qualitative corrections to

the FGR rate are expected [Dente et al., 2011]. Additionally, the nature of the S− E

Hamiltonian (for example XY or Ising) could change radically the DDCS considered.

Indeed, we will distinguish here two DDCSs that correspond to two different physical

processes in the S− E interaction.

It is important to notice that spectral correlations within E, as described above, may

become cumbersome to describe in statistical terms. However, realistic Hamiltonian

models for the bath, as proposed here, should allow a natural description of such

correlations. This is the main reason for choosing an XY Hamiltonian for E, which
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is not only understood by its single particle mapping [Lieb et al., 1961], but also it is

experimentally accessible [Mádi et al., 1997].

Another important question in this context, is how to range from a Markovian de-

scription towards a non-Markovian scenario. In order to address such issue, we perform

a numerical analysis, in which the non Markovian regime arises from many different

contributions. These are: the time scale relation between S and E, the public coupling

between them, and the finite size of E. Concerning to this last factor, we analyze how

the degradation of S coherent evolution depends on the number of degrees of freedom

in E. A long-standing computational challenge shows up here: an efficient simulation

of the evolution of N interacting spins. Thus, we employ both physical and numerical

strategies to achieve such simulation. The first, relies on the use of the quantum par-

allelism for spin ensemble calculations [Álvarez et al., 2008], while the second consists

on the implementation of the Trotter-Suzuki algorithm in General Purpose Graphical

Processing Units (GPGPU).

In the next section, we describe the spin system S, the environment E (linear chains),

and the way they interact. We also introduce the discussion on the time scales, Marko-

vianity and how to quantify decoherence in many-spin systems. In Section 7.3, we deal

with non Markovian cases by means of a numerical analysis. In Appendices C and D

we present a description of the techniques involved in an efficient simulation of a many-

spin evolution. In Section 7.4, the comparisons between the numerical and analytical

rates (this analysis is not going to be developed in this thesis) will show the relevance

of finite size and memory effects, environment-mediated interactions, the role of the

bath spectral structure, among others. Finally, further discussions and conclusions are

presented.

7.2 QUANTUM DYNAMICS OF SPIN-CHAIN SYSTEMS

7.2.1 THE MODEL

In Fig. 7.1 the spin model of interest is shown, i.e. a two-spin system S interacting

with a ring-like environment E. The number of spins within E is crucial to determine

the dynamics and the approximations made to describe it. If that number is large

enough, it can be thought as an infinite linear chain, enabling an attainable analytical

treatment.
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Figure 7.1: Two spin system couple to an environment of mE spins. The rabi oscillations

presented in S will decay at different rates depending on the number of spins of E and the

type of coupling between S and E.

The whole spin Hamiltonian is given by:

Ĥtotal = ĤS + ĤE + ĤS−E, (7.1)

where,

ĤS = JS(ŜxAŜ
x
B + ŜyAŜ

y
B), (7.2)

ĤS =
JS
2

(Ŝ+
A Ŝ
−
B + Ŝ−A Ŝ

+
B ), (7.3)

represents the Hamiltonian for S, typically understood as a Rabi oscillator between the

↑↓ and ↓↑ configurations. Also,

ĤE =

mE−1∑
n=1

JE(Ŝxn+1Ŝ
x
n + Ŝyn+1Ŝ

y
n), (7.4)

represents the Hamiltonian in E, that describes the homogenous XY interaction be-

tween first neighbors spins within a linear chain of mE spins. Notice that the closed

boundary condition implies an extra XY coupling between spins 1 and mE. One should

be aware that the typical energy scales for S and E are given by JS and JE, respectively.

The S− E Hamiltonian is:
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ĤS−E =
∑
i=A,B

JSE[2αŜ
(S)z
i Ŝ(E)z

ni − (Ŝ(S)x
n Ŝ(E)x

ni + Ŝ(S)y
n Ŝ(E)y

ni )] (7.5)

=
∑
i=A,B

JSE[2αŜ
(S)z
i Ŝ(E)z

ni −
1

2
(Ŝ

(S)+
i Ŝ(E)−

ni + Ŝ
(S)−
i Ŝ(E)+

ni )]. (7.6)

Where ni indexes the spin in E coupled to the i spin in S. The parameter α (see Ref.

[Pastawski et al., 1995]) determines the nature of the interaction. For the ordinary

NMR experiments: XY interaction is represented by α = 0, isotropic -Heisenberg- by

α = −1
2 , and α = 1 for the truncated dipolar. In order to systematize our results,

we will range the values for α from 0 to 1. Thus, the S− E interaction has always

a ”single-particle” component (XY process), i.e. polarization interchange, and the

two-body Ising interaction is progressively turned on by increasing α.

It is crucial to stress that JS, JE and JSE determine the relevant time scales of the

whole problem. As introduced above, the first two give the homogenous XY coupling

within the system and the environment, respectively, while JSE stands for the transver-

sal coupling ”constant” between S and E. With the purpose of a smooth degradation

of the S coherent dynamics, we set JSE in a weak coupling regime, i.e. JSE � JS, JE.

Such an irreversible degradation or decay to the environment, and hence the FGR, im-

plies that the unperturbed isolated system state has zero overlap with the eigenstates

of S + E. This breakdown of the time independent perturbation theory occurs when

the interaction with each environment eigenstate, JSE/
√
mE, is much greater than the

spacing between adjacent levels, of about JE/mE. In summary, the interaction time

scale ~/JSE must be shorter than the bath’s Heisenberg time ~mE/JE. Additionally,

memory effects modifying appreciably the FGR rates are expected when both S and

E have the same time scales. Thus JS ' JE, leads to a non-Markovian scenario. On

the other hand, for the fast fluctuation regime, JS � JE, the Markovian approximation

becomes satisfactory [Dente et al., 2011].

7.2.2 MEASURING DECOHERENCE: MESOSCOPIC AND LOSCHMIDT

ECHOES

A natural question that arises for the spin model introduced above, is how to quan-

tify the destruction of the S coherent evolution in the presence of E.In chapters 5
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and 6 we started solving this question analytically and numerically. In particular, in

Chap. 6, we compared the attenuation Mesoscopic Echoes (ME)[Pastawski et al., 1995,

Álvarez et al., 2010a] and the Loschmidt Echo [Jalabert & Pastawski, 2001],

[Levstein et al., 1998] as two possible decoherence quantifiers.

For completeness we will write down the Loschmidt echo measure,

M(2tR) =

〈
Ψeq

∣∣ Ŝ(S)z
1 (2tR)Ŝ

(S)z
1 (0)

∣∣Ψeq

〉〈
Ψeq

∣∣ Ŝ(S)z
1 (0)Ŝ

(S)z
1 (0)

∣∣Ψeq

〉 . (7.7)

with the spin operators expressed in the Heisenberg representation:

Ŝ
(ν)z
1 (2tR) = ei(Ĥ

S
+Σ̂)

tR
~ ei(−Ĥ

S
+Σ̂)

tR
~ Ŝ

(ν)z
1 e−i(−Ĥ

S
+Σ̂)

tR
~ e−i(Ĥ

S
+Σ̂)

tR
~ .

Here, Σ̂ = ĤE + ĤS−E, is the perturbation which acts in both periods and tR is the

time for the forward and backward evolution time. The system Hamiltonian ĤS can

we switched into −ĤS in backward evolution.

The computation of the Loschmidt echo in Eq. 7.7 for a spin system with arbitrary

interactions, requires a full many-body evolution. We discuss the details on how to

perform such a numerical evolution in Appendices C and D.

It is important to remember that the LE procedure have intrinsic advantage over the

ME counterpart, since as discussed in previous chapters, it filters the relevant dynamics

[Dente et al., 2011, Zangara et al., 2011].

Clearly, in the case where S is isolated, the local LE will have a steady value of

1. This means that the system is fully reversible. On the other hand, if the system is

coupled to E, the local LE should decay, i.e. our reversal procedure fails to recover the

excitation spread to the environment. The LE decay rate is directly identified as the

decoherence rate 1/τφ [Petitjean & Jacquod, 2006]. Naturally, this rate is a function of

the S− E coupling parameter JSE (from Hamiltonian of Eq. 7.6). Since we are inter-

ested in the regime of weak coupling with the fluctuating environment, we analyze the

conditions of validity of a FGR [Rufeil-Fiori & Pastawski, 2006, Jacquod et al., 2001,

Cucchietti et al., 2006]:

1

τφ
' 2π

~

(
ĤS−E

)2
N0, (7.8)

where
(
ĤS−E

)2
is a representative value of the S− E coupling, and N0 represents an

appropriate density of directly connected states [Rufeil-Fiori & Pastawski, 2009].
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7.3 NON-MARKOVIAN EVOLUTION OF SPIN SYS-

TEMS

In order to address the non-Markovian regime for the model introduced in Section

7.2.1, we perform a numerical approach for the spin dynamics. Here, the decoherence

rate 1/τφ is obtained by both decoherence-) quantifiers previously introduced, i.e. the

ME attenuation and the LE decay. As we mentioned before, every decay rate will be

understood as function of J2
SE/~JE. This quantity is indeed appropriate to verify the

FGR validity (Eq. 7.8), as soon as J2
SE is the typical scale for the S− E interaction’s

second moment, and 1/~JE has the units of a DDCS.

It is interesting to note that, in most of the cases, the equivalence of time scales

between S and E (setting JE = JS), forbids the assumption of a fast fluctuation regime.

Thus, in principle there should not be expected a smooth monotonous decay FGR-like.

However, it turns out that the exponential regime is still present, but the rates are

corrected by memory effects (typically understood as feedback from E to S).

As in any other many-body quantum evolution, the computational time scales ex-

ponentially in the total number of spins N . Hence, one has to define an upper limit for

N and a temporal window or evolution time. In our case, the maximum Nmax is 20,

and the evolution time depends on whether the observable is the ME or the LE. The

numerical solution includes the use of the quantum parallelism and the Trotter-Suzuki

algorithm implemented on Graphical Processing Units. Details on such physical and

technical issues are presented in Appendix C.

7.3.1 NUMERICAL RESULTS

The spin system we analyze is schematized in Fig. 7.1. Here we deal with the non-

Markovian version where the environment E is strictly finite. Additionally, we stress

that for the spin model, S and E have the same time scale (JE = JS). The type of

interaction between S and E presented in Fig. 7.1 made the system to have a ”public

interaction”: both spins are coupled to the same reservoir (see Chap. 5).

We start analyzing the simplest case, which corresponds to a XY (α = 0) S− E

Hamiltonian. Each spin in S is coupled to non-consecutive spins within the ring E

(indeed, they are coupled to opposite spins in the ring). In Fig. 7.2, the Rabi oscillations

(the most simplified version of a ME) and the LE are plotted. When the coupling is only
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with an XY interaction, its dynamics keeps the essential physics discussed in Chap.

5 and in Ref. [Dente et al., 2011], as long as the single-particle picture underlies its

dynamical behavior (even though an exact mapping does not hold). Thus, one could

perform the an equivalent analysis on time scales, Markovianity and public-private

reservoirs as be made in that chapter.
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Figure 7.2: Rabi oscillations and Loschmidt Echo for the two spin system S coupled to

the spin ring E (Fig. 7.1) by means of a pure XY Hamiltonian.

In Fig. 7.3 we used the LE quantifier to measure the total decoherence rate 1/τφ

as a function of α2. This was obtained by using the same methods of Chap. 6, but we

now applied it to the Rabi system of Fig. 7.1.

The XY decoherence rate obtained (from the interception of the linear equation of

Fig. 7.3 and its abscissa), 1/τXYφ ' 0.68
[
J2
SE/~JE

]
, is almost in agreement with the case

analyzed in Chap. 5. Remember that there we only used a fermionic (tight binding)

model to evaluate the decoherence. The hypothetical rates derived in that chapter in

spin units, are 1/τXYφ ' 0.58
[
J2
SE/~JE

]
for private environments, and 1/τXYφ ' (0.60 ∼

0.85)
[
J2
SE/~JE

]
for a public one (depending on the quantifier we use: ME or LE). Notice

that the non-consecutive coupling to the ring bath may attenuate the correlations in

138



7.3 NON-MARKOVIAN EVOLUTION OF SPIN SYSTEMS
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Figure 7.3: Total decoherence rate 1/τφ as a function of α2 evaluated from the LE. Each

point correspond to a particular α-election in Hamiltonian 7.5, and in expressed in units

of J2
SE/~JE.

139



7. EFFECTS OF THE STRUCTURED SPIN ENVIRONMENT IN RABI
OSCILLATORS

the environment or any E-mediated interaction, thus the rates becomes in the range of

the expected for the tight-binding case, but not equal.

We stress here the role of the LE as a filter for relevant dynamical processes, as

previously pointed in Ref. [Dente et al., 2011]. In fact, it can be seen from Fig. 7.2 how

the reversal procedure within the S-degrees of freedom may reveal directly the smooth

degradation due to the environmental degrees of freedom.

In order to study the role of a genuine many-body S− E interaction, we coupled S

and E by means of a pure Ising Hamiltonian. In principle, a Rabi oscillation perturbed

by a phase fluctuation does not decay in amplitude unless several ”decoherent” stories

or trajectories are averaged (this is a well known fact from the quantum jump theory

[Plenio & Knight, 1998]). However (and quite surprisingly), even though we are using

few entangled states to represent the whole ensemble evolution (see Appendix C), the

dynamics is self-averaging and the Rabi oscillations indeed attenuate. Such degradation

is shown in Fig. 7.4, where the attenuation of the typical oscillations in the two-spin S

are plotted for different mE (spins within the bath). The strong influence of mE in the

decoherence process, can be interpreted as a direct consequence of a finite (discrete)

spectrum within E. These relevant non-Markovian effects evidenced in Fig. 7.4 justify

our initial premise: every S− E interaction must be built up from a single-particle base

(XY ) plus a gradually increased two-body interaction (Ising). The anisotropy (α) is

increased from zero (XY , i.e. pure polarization transfer) up to one (Dipolar truncated

Hamiltonian), with the purpose of smoothly mount the many-body physics over a one-

body dynamics. Additionally, Fig. 7.4 allows to determine a suitable temporal window

for analyzing the LE decay, in general situations. Therefore, we choose mE = 18, and

a maximum reversal time tR of approximately 30~/JE, to obtain the decoherence rate

for as a function of J2
SE/~JE. Then, we range over the anisotropy α and summarize the

obtained rates in Fig. 7.3.

It is important to remark that the dependence of the dynamics as a function of mE,

as in Fig. 7.4, tell us how far are we from simulating an infinite environment. This

kind of example pushes us to search efficient numerical methods capable of compute

bigger spin systems.

Summarizing this section, have found that the whole analysis (fitting of Fig. 7.3)
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Figure 7.4: Peaks in the Rabi oscillation for site A, from a two spin system coupled to a

XY ring (Fig. 7.1). Finite size effects (and discretness) in the ring spectrum is evidenced

varying the number mE.
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yields that the total decoherence rate 1/τφ can be written as:

1/τφ = 1/τXYφ + 1/τZZφ . (7.9)

Hence:

1/τXYφ ' 0.68
[
J2
SE/~JE

]
, (7.10)

and

1/τZZφ ' 0.77
[
J2
SE/~JE

]
. (7.11)

We again observe that this rate has the contribution of two different process, one

corresponding to the flip-flop interactions and the other to the Ising couplings.

7.4 DECOHERENCE RATE ANALYSIS

By numerically studying the Non-Markovian dynamics over the Rabi system, we were

capable of subtract the contributions to the decoherence rate. The XY contribution

(see Eq. 7.10) obtained could be understood by the one body problem of the Chap.

5. Even though our spin problem cannot be mapped directly into a one-body problem

(not even for a pure XY S− E interaction), one has the confidence that the XY

contribution may have many dynamical effects retained from the single particle picture

[Dente et al., 2011]. The reason relies on an usual strategy: a many-body evolution

understood as a one-body evolution plus a decoherent process. Thus, it shows up here

the question on understanding this decoherence rate 1/τφ properly. At this respect we

recall that in Ref. [Álvarez et al., 2010a] (and in Ref. [Alvarez, 2007]), the authors

propose a model to analytically obtain this decoherence rate. There, they used an

environment modeled by a semi-infinite tight binding chain (accordingly, a surface

LDoS), which is connected to every site of the system. Although they could solve

it, this model departs from the actual spin environment: a finite chain with periodic

boundary conditions.

In this work we used similar analytical approach to that made in Ref. [Alvarez, 2007],

but we now consider infinite chains (bulk LDoS) as a more realistic model for the en-

vironment. This model hamiltonian is presented in Fig. 7.5.
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Figure 7.5: Fermionic model. Two sites coupled to two independent -private- infinite

chains (Bulk LDoS must be employed).

With the use of the non-equilibrium Keldysh formalism [Keldysh, 1964, Pastawski, 1991]

and similar methods to that included in Refs. [Álvarez et al., 2010a] and [Alvarez, 2007],

we obtained that the decay rate is,

1

τSE
=

1

τV
+

1

τU

= |V |2 1

~2

 ∞∫
−∞

J0(
2VEδti

~
)dδti


+ |U |2 fs [1− fs]

1

~2

 ∞∫
−∞

[J0(
2VEδti

~
)]2dδti

 , (7.12)

where J0(t) denotes the Bessel function of first kind and zeroth order and fs is the

occupation factor, which at infinite temperature is 1/2.

Remember that J0 is the solution obtained from the Fourier transform of,

∫
N0(ε) exp{−iεδti}

dε

2π~
=

1

2π~
J0(

2VEδti
~

), (7.13)

where N0(ε) is the bulk LDoS of a linear tight binding chain,

N0(ε) =
1

2πVE

1√
1− ( ε

2VE
)2
. (7.14)
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It is important to remark that J0(t) is just the survival probability for an state

in the bulk of a tight binding chain. Thus the intrinsic dynamics of the environment

appear in the solutions for the decoherence rates. In addition, we can observe that in

Eq. 7.12 the total decay rate is separated into two contributions, 1/τU and 1/τV , which

stand for the Coulomb and Hopping decay rates, respectively.

The condition to solve Eq. 7.12 with the inclusion of the Ising interaction required

a self-consistent self-energy calculation, which we will be left aside of this thesis. From

such self-consistent condition, we can computed an analytical S− E interaction rate

which otherwise would diverge (because the integral of [J0(
2VEδti

~ )]2 diverges).

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 00

1

2

3

  

 
1 / t S E
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Figure 7.6: Characteristic rate as a function of α2, in units of ~JE/J2
SE, obtained by the

ΣSC calculation.

In Fig. 7.6 have plotted the equivalent analysis to that presented in Fig. 7.3, but

in this case the points becomes from the analytical solutions of the problem presented

in Fig. 7.5. By fitting the linearly dependence on α2, we obtain:

1/τV = 1/τXYSE

= 0.5×
(JSE)2

~JE
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and

1/τU =
1

τZZφ
(7.15)

= (1.06± 0.03)α2 (JSE)2

~JE
. (7.16)

If we compare these rates with those presented in Eqs. 7.10 and 7.11, we observe

that they are similar but not equals. These differences are mainly due to the presence

of Non-Markovian elements in the system evolution.

Figure 7.7: Horizontal dimension stands for particle coordinates in the 1-D system, and

vertical for hole coordinates. A pair particle-hole is created and propagates (black and

blue circles), thus the excitation moves through the 2-D lattice (green circle). In order to

be mutually annihilated, the pair must be in the same site, i.e. the excitation must start

and finish at the same site the diagonal (red crosses).

In what follows, let us make a discussion about the decay mechanism for the Ising
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process. In our interpretation, this is formed by terms where a particle-hole excitation

is created at the contact site in the reservoir, and then it propagates to finally mutually

annihilate upon returning to the original site. In the Fock space representation, the

independent propagation of a particle and a hole, each along a 1-D lattice, can be

thought as a single particle excitation that returns to the original site in a 2-D lattice

(see Fig. 7.7). In fact, we stress that Eq. 7.16 is indeed a convolution of two 1D LDoS,

which must yield a 2D LDoS [Pastawski & Wiecko, 1987]. Such a convolution can be

explicitly performed as follows:

N�(ε) =
1

4π2V 2
E

∫
θ(2VE − |έ|)√

1−
(

έ
2VE

)2

θ(2VE − |ε− έ|)√
1−

(
ε−έ
2VE

)2
dέ

=
1

2π2VE

1∫
−1+x0

dx√
1− x2

√
1− (x0 − x)2

,

with x0 = ε/(2VE). After some manipulation [Abramowitz & Stegun, 1964],

[Gradshteyn & Ryzhik, 2007], the last expression can be written in the form:

N�(ε) =
1

2π2VE
K

√1−
(

ε

4VE

)2
 , (7.17)

which is exactly the 2D square LDoS in the Tight Binding approximation [Economou, 2006].

Note also that the quantity N�(ε) has a logarithmic divergence in ε = 0, due to the

divergence of the Elliptic Integral K(ξ) at ξ = 1. Therefore, the origin of the singularity

in the FGR calculation is directly associated with the bath spectral structure; i.e. a

2D square lattice LDoS should stand for the corresponding DDCS (See Fig. 7.8).

The usual procedure in a FGR estimation is evaluation of the energy independent

rate WBA, also understood as a first pole approximation:

ε− E0 − Σ(E0) = 0, (7.18)

where Σ(E0) is the self-energy evaluated at the center of the band. Concerning to our

problem, that approximation is equivalent to take the limit of VE →∞ in Fig. 7.5. By

taking this limit we found that the rate 1/τU can be casted in such a standard FGR
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Figure 7.8: Local Density of States for an infinite linear tight binding chain (red dashed)

and for a square lattice (blue dotted). The first plays the role of the DDCS for the XY

contribution in the FGR, while the second is the DDCS for the Ising process. For this last

DDCS, the regularization procedure would remove the singularity as it is shown (straight

black line).
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form by writing:

1/τU = (2π/~)
∣∣Ū ∣∣2N�(ε = 0) with

∣∣Ū ∣∣2 = |U |2 × fs(1− fs)

where N�(ε = 0) is the DDCS and
∣∣Ū ∣∣2is the effective second moment for the Ising

interaction. In this sense, as we mention before, the evaluation of N�(ε) at ε = 0

diverges, thus to perform an correct evaluation, we have to renormalize N�(ε) in such

a way that it becomes finite in ε = 0 (see Fig. 7.8). The method used for this

regularization consist on the introduction of an extra exponential decay in the integrals

of Eq. 7.12. This ansatz implies an exponential decay within the bath correlation

function, whose characteristic time is the same as the system’s. This the procedure

leads to a slight shift in the complex plane that moves the singularity away and let us

evaluate the Ising contribution with a self consistent calculation. This method is what

we call the self-consistent evaluation of the self-energy (ΣSC).

In order to connect the Markovian discussion with the non-Markovian situations,

the results from the numerical simulations deserve a careful attention. The explanation

of how the rates are corrected by memory effects relies mostly on the time scale relation

imposed by such simulation of the many-spin dynamics. As before, theXY contribution

appears to have an easier interpretation, since it is naturally linked to one-body physics.

Thus, we recall the discussion already presented in the Chap. 5 (also found in Ref.

[Dente et al., 2011]). First, we stress that the S− E interaction is collective, or public,

due to the double connection between S and E. In such a situation, memory effects grow

up considerably, and the analytical prediction should be more sophisticated than an

energy-independent rate model (WBA). Indeed, as claimed in Ref. [Dente et al., 2011],

a self-consistent Fermi Golden Rule (SC-FGR) would yield satisfactory predictions (not

possible to compute here because it would involve the whole solution of the many-body

problem). The bath’s LDoS plays here a crucial role, since the SC-FGR involves its

evaluation in the exact S− E poles. For a convex LDoS (Eq. 7.14), the WBA value

in a first pole approximation lies at the bottom of its valley. The evaluation of the

LDoS at the exact poles (SC-FGR) moves the rate away from this first estimation, thus

yielding a greater rate. As pointed in Ref. [Dente et al., 2011], this shift is enhanced if

the environment is “public” as it introduces E-mediated interactions.

The obtained results point to verify the previous statements for the XY contribu-

tion. The associated rate 1/τXYφ ' 0.68
[
J2
SE/~JE

]
for the simulated pair of spins
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(Fig. 7.1), evidences the overestimation of the WBA approach. As discussed in

[Dente et al., 2011], we expect to recover the (Markovian) rate 1/τXYφ ' 0.50
[
J2
SE/~JE

]
in a fast fluctuating environment. However, accelerating the bath’s dynamics will di-

rectly enhance finite-size signatures within E. In Ref. [Dente et al., 2011], due to the

low computational complexity of that single-particle physics, such acceleration was able

to be performed, explicitly showing the appearance of the Markovian decay.

On the other hand, the numerical results obtained for the Ising contribution deserves

again carefull attention. The first striking point on the Ising component is influence of

the number of degrees of freedom in E, i.e. the number of spins mE. Obviously, it is

not possible to perform a simulation which includes a thermodynamical limit in such

number of spins, as soon as the computational capabilities are limited. Thus, one should

be aware of the dependence on mE, and find an appropriate temporal window in order

to reveal an exponential decay (Fig. 7.4). Moreover, our strategy relies on mounting

the Ising process over the well-understood XY component. Hence, the Ising 1/τZZφ

contribution is computed systematically as a correction to the first 1/τXYφ contribution,

by smoothly increasing the α parameter.

The non-trivial DDCS identified for the Ising component implies that the compari-

son between the WBA (regularized) rate and the numerical one cannot be straightfor-

ward performed. The regularization procedure (ΣSC) for the WBA rate, precludes a

similar analysis on the DDCS convexity and the location of the exact eigen-energies (as

in Ref. [Dente et al., 2011]). However, if the shift from the singularity is small enough,

one expects that the evaluation in the middle of a band spectrum yields a rate greater

than the exact energy-dependent rate (Fig. 7.8). Thus, the decoherence contribution

1/τZZφ ' 0.77
[
α2J2

SE/~JE
]

appears to be in well agreement with the analytical value

1/τZZφ ' 1.06
[
α2J2

SE/~JE
]
.

7.5 Conclusions

We have studied the decoherence introduced in a quantum spin system (S) by an

environment of interacting spins (E) in different scenarios, both Markovian and non-

Markovian. With this purpose we employed numerical evolutions with up to 20 spins

and many-body analytical techniques. The first involves a Trotter decomposition as-

sisted by a recently developed algorithm that relies on quantum parallelism [Álvarez et al., 2008]
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to evaluate local observables, implemented on GPGPU. In this case the measurable

observable is the local polarization which is evaluated at the specific times when Meso-

scopic Echoes, i.e. finite size recurrences, show up. Alternatively, this local polarization

is evaluated after a time reversal procedure that produces Loschmidt Echoes. In both

cases, the attenuation of the echoes yields an estimate of the decoherence rate. The an-

alytical approach (not shown in this thesis) involves the evaluation in a self-consistent

calculation where the environment suffers as much decoherence as the system itself.

The self-energies are calculated within a Markovian approximation (WBA), which re-

lies on a fast fluctuation regime for environment, as a Fermi Golden Rule. The Keldysh

calculation of the dynamics in a Rabi oscillator let us obtain the decoherence rates:

1/τZZφ and 1/τXYφ .

The analytical rates and those obtained by numerical evolution of finite spin sets

reveal a well defined exponential decay (FGR), where the corresponding rates differ by

the presence of memory effects. These become important when the time scales between

S and E are naturally similar, and they are further enhanced when the S− E coupling

structure induces a form of “public” E. A striking point shown by the calculation is that

the same environment behaves very differently depending on the specific interaction.

For example, it can provide a finite DDCS (Eq. 7.14) for the XY interaction while for

the Ising interaction it results in a divergent one (Eq. 7.17). The many-body nature

of the interaction is the origin of this wealth of possibilities. In the case of the XY

contribution, the shape and convexity of the DDCS justifies the why the WBA rate is

greater than the numerically computed. On the other hand, for the Ising contribution,

the regularized WBA rate has given a well estimation for the general (non Markovian)

situation.
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Chapter 8

Conclusions

In this thesis we were interested on the quantum dynamical effects produced by the

presence of a surrounding environment. In particular we were interested in the those

effects which are beyond the perturbation theory and those where the memory (non-

Markovian) effects in the bath play a significant role.

In Chap. 2 we begin analyzing the simplest dynamics possible in spin systems: Rabi

oscillations. There, we showed how the presence of an semi-infinite array of spins, as

the environment, produce several types of phase transitions in the quantum dynamics.

One of the first observed transitions (which also correspond to that observed in Ref.

[Álvarez et al., 2006]) is the collapse of two resonances into a single one (actually two

overlaping resonances of different widths). There we observe that the effective ener-

gies of the system have a non-analytical behavior a point in the complex plane called

exceptional point [Rotter, 2009]. In this sense, the observed frequency shows a dynam-

ical phase transition which makes that the previously oscillating survival probability to

become an overdamped decay.

Another important result of that chapter was the discovery of new regime in this

kind of problems: The virtual states. In the literature it is common to find that the

localized states transforms into a resonant states without any surprises. However in this

work, we have found that appear a very rich dynamical behavior just at this transition.

The virtual states, which are poles of the non-physical Green functions, can be seen as

precursors of the localized states. In this region, we found that the states associated

with the out-of-band poles maintains a finite weight in the edge of the Local Density of

states, while the poles themselves are outside this limit. Remember that these poles,
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which represent effective energies with complex values, served to deduce the dynamical

behavior in the short, medium, and long time dynamics. In addition, our analysis

also showed that the LDoS could be written as a product of three functions: one is

the LDoS of the semi-infinite chain and the other two are Lorentzian functions whose

positions and widths are defined by the GF poles. This separation, not previously

reported, allowed us to show that the virtual states still have weight over the LDoS,

and this weight defines the behavior of the survival probability for long times. Indeed,

we showed how the power law regime [Khalfin, 1958] is obtained from the evaluation

of the LDoS at their band edges. The deep analysis of this regime jointly with the

numerical simulations allowed us to evaluate the exact way in which the resonances are

transformed into a localized state, and how the power law is converted in a constant

oscillation without decay.

The full understanding of the Exceptional Points and the Virtual States in this

kind of systems, enabled the consideration of new kind of problems. Indeed it was our

“leitmotiv” for the rest of the thesis. In Chapters 3 and 4, we present two of those

problems, where we exploit what we learned about phase transitions in the quantum

dynamics.

In the first of those chapters (Chap. 3) we applied the Green function formalism and

its relation with the Local Density of States to explain the molecular bond-breaking in

the catalysis process. There, we found that the dissociation process occurs as different

types of quantum phase transitions. In particular we analyzed two different forms in

which a molecule can approach to the metal surface: the perpendicular on-top and

the parallel on-top configurations. In the first one, we found that the bond-breaking

is determined by a form of “resonance collapse” transition. There, the internal atoms

of the metals produce bonding and antibonding states with the farthest atom, that

collapse at a given value of the distance between the molecule and the metal forming

an almost isolated atomic state and a fully metallic state. In the other case, where the

molecule approach in parallel to the metal surface, we observe that the virtual states are

the prelude for the molecular dissociation which occurs when a localized state favoring

the occupation of the molecular antibonding states occur. These interpretations were

corroborated with the analysis of the LDoS as a function of the distance to the transition

metal (i.e. with variation of the coupling between the molecule and the first atom of

the metal surface).
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In the other work (see Chap. 4), we used the analysis of the behavior at the

Exceptional Point to determine the dynamics of surface-plasmon polariton excitations

in nano-particle arrays. In this work, we started looking for a phase transition that

clearly defines the separation between the synchronized plasmonic oscillations from the

non-synchronized ones. However, after the analysis of several types of realistic models

we finish finding that the relative phase between the oscillations of the surface plasmons

become fixed despite the fact that it does not occur as the phase transition but as a

smooth crossover. Indeed, we show that in arrays of two and three nano-particles, their

size (directly related to the damping rate) defines if they synchronize in phase or in

anti-phase. The changing of the damping of one of the particles also allowed us to

control the final phase. In addition we found that embedding the nano-particles in a

active media could improve the survival of the oscillations. With the analysis of the

GF poles and the numerical simulations we were able to obtain the critical value for the

active media that maintains the surface plasmons oscillating forever. It is important to

remark that all the parameters used in this chapter are derived from experimental data.

Thus, the experimental observation of this phenomena could be possible provided that

one has devices capable of measure such oscillating frequencies.

In the second part of this thesis we focused on the study of how the type of cou-

pling between the system and the environment affects the decoherence of the dynamics

of finite spin systems. Particularly, we analyzed the effects of coupling the system

through multiple connections and the influence of the Ising interaction in the decay

rate. The analysis of several non-Markovian environments enabled us to find how the

environmental correlations modify the rates evaluated from the Fermi Golden Rule.

One of the first approaches to evaluate the effects of the environment is the Fermi

Golden Rule. There, the environment is thought as a ”reservoir” with has so fast

dynamics that it is capable of absorb any amount of energy that it receives from the

system. This approach is not realistic if the environment and the system have simi-

lar time scales. Then, the quantum system could sense the discrete structure of the

environment, and then, the memory effects and the correlations created within the

environment could interfere with its inner dynamics. This yields decay rates (dubbed

as Self-Consistent Fermi Golden Rule) that differ from those evaluated in the stan-

dard FGR. In Chap. 5 we have focused on this topic and analyzed several types of
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coupling between the system (Rabi oscillator) and the environment (infinite or semi-

infinite tight-binding chains). There, we found that the convexity of the Density of

Directly Connected States determines the correction to the FGR decoherence rate: it

will be lower when the DDCS is convex or higher otherwise. Another important result

in that chapter is that in the public environment ( i.e. where the system has multiple

connections with the environment that provide new interaction channels), the evalu-

ated decoherence rate is conformed from the two different FGR rates evaluated from

the Hamiltonian acting during the forward evolution and that manifesting in the back-

wards one. Each of this dynamics have different decay rates. In the case where the

environment is Non-Markovian we demonstrated that the forward and backward deco-

herence rates have to be evaluated from different LDoS. For all the cases treated in this

chapter, including the private environments (i.e. system states can not be connected

through the environment) checked that in the Wide Band Limit, the decoherence rates

tends to those predicted by the FGR.

In last part of this thesis (chapters 6 and 7) we considered the incorporation of

an Ising coupling between S and E. There we have shown that the combination of

small system and Ising interactions could lead to surprises in the dynamical behavior.

Once we systematized our analysis, and realized the importance of the Non-Markovian

dynamics in this kind of systems, we began to understand its effects. The combination

of analytical results with the use of advance simulations in spin systems let us made a

deep analysis of the decoherence rates in this type of systems.

In Chap. 6 we increased the complexity of the problem and introduced the Ising

interaction. Our first approach was the numerical study of this problem and the careful

analysis of their decoherence rates. In this chapter we started testing the Loschmidt

Echo (LE) as a decoherence quantifier in spin systems. We take advantage of previ-

ous works [Álvarez et al., 2008] and develop new algorithms using of General-Purpose

Computing on Graphics Processing Units (GPGPU) that allowed us to improve the

computational time of the numerical simulations. To give and idea, a typical simu-

lation of the Loschmidt echo in a 18-spin system, using the common Trotter-Suzuki

algorithm and only one computer, could take more than three months to obtain the

results. However, with the new algorithms based on the GPGPU we can evaluate them

in less than 4-days (see appendixes C and D). This improvements allowed us to simulate

much bigger systems in reasonable times.
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In what concerns to the physics of results, we were able to compare the LE with the

Mesoscopic Echo [Álvarez et al., 2010a], as decoherence quantifiers. We showed that

the LE is capable of recovers information that escapes a standard analysis based on

interference degradation. With the use of this quantifier we found that the decoherence

rate is formed by two contributions: 1/τφ = 1/τZZφ + 1/τXYφ (at least in the parametric

regimes where we worked). By the moment that we were analyzing these rates, we found

unusual results coming from the combination of Ising interactions and small systems.

With the advances of the numerical algorithms, we were able to study how the Ising

interaction modifies the system evolution in the presence of finite environments.

This study prompted us to analyze how the decoherence rates depart from the WBA

approximation in the presence of small environments (see Chap. 7). We have showed

that for the case where there is only XY interactions, the rates evaluated from the FGR

approach to the numerical rates if we consider that the non-Markovian effects produce

shifts equivalent to those analyzed in chapters 5. In cases where we consider the Ising

coupling between the system and the environment we have shown that the effective

DDCS is equivalent to the local density of state for a bulk square tight-binding chain.

Then, the correction to the decoherence rate due to the convexity of this function (see

Chap. 5) makes that the numerical rates were in agreement with the analytic ones.

In summary, through these years of work, we have found several examples of non-

Markovian models that we solved analytically and which serve to test for new numerical

tools. We were able to understand almost every dynamical behavior and put them

in terms of simple physical situations. The incorporation of specifically structured

environments in our analysis may also serve as a testground the decoherence theories

that model the environments through their correlation functions. In turn our models

are susceptible to be applied to many physical systems, both classical and quantum.

155



8. CONCLUSIONS

156



Appendix A

Excitation dynamics in 1-d

systems and the Spin-Fermion

mapping

In this thesis we developed a scheme that could be used to treat spin polarization dy-

namics [Mádi et al., 1997, Pastawski et al., 1995], under certain assumptions. In that

sense, the well-known mapping between spins and fermions [Lieb et al., 1961] has been

used for formulating the spin problems in terms of the non-equilibrium Keldysh for-

malism [Keldysh, 1964, Danieli et al., 2004, Danieli et al., 2005]. We briefly present

here the Spin-Fermion mapping, and how the tight binding models discussed along this

thesis arise.

A simple case that can be treated in this context is a linear chain of M spins in

an external magnetic field. They interact with their nearest neighbors through XY

coupling:

Ĥ =

M−1∑
n=0

~ΩnŜ
z
n −

M−2∑
n=0

Jn+1,n[Ŝxn+1Ŝ
x
n + Ŝyn+1Ŝ

y
n] (A.1)

=
M−1∑
n=0

~ΩnŜ
z
n −

M−2∑
n=0

1

2
Jn+1,n[Ŝ+

n+1Ŝ
−
n + Ŝ−n+1Ŝ

+
n ], (A.2)

where Ŝ±n are the rising and lowering operators Ŝ±n = Ŝxn ± iŜyn. The dynamics of

the M -spin system, evolving under the Hamiltonian Ĥ, is usually described by means
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of the two site spin correlation function,

Pf,i(t) =
〈Ψeq| Ŝzf (t)Ŝzi (t0) |Ψeq〉
〈Ψeq| Ŝzf (t0)Ŝzi (t0) |Ψeq〉

. (A.3)

The quantity of Eq. A.3 gives the amount of local polarization in the z component at

time t on the fth site, provided that the system was, at time t0, in its equilibrium state

with a spin up (↑) added at ith site. Also, Ŝzf (t) = eiĤtŜzfe
−iĤt is the spin operator

in the Heisenberg representation and |Ψeq〉 =
∑

N aN

∣∣∣Ψ(N)
eq

〉
is the thermodynamical

many-body equilibrium function constructed by states with different number N of spins

up with the appropriate statistical weights and random phases.

The Jordan-Wigner transformation (JWT) links spin and fermion operators at each

site [Lieb et al., 1961], by the following relation :

Ŝ+
n = ĉ†n exp

[
iπ

n−1∑
m=1

ĉ†mĉm

]
(A.4)

where ĉ†m, ĉm are the canonical fermionic operators. The use of the JWT on the

Hamiltonian A.2 yields:

Ĥ =
M−1∑
n=0

εn(ĉ†nĉn −
1

2
)−

M−2∑
n=0

Vn+1,n[ĉ†n+1ĉn + ĉ†nĉn+1], (A.5)

where εn ≡ ~Ωn are the site energies and Vn+1,n ≡ 1
2Jn+1,n are the hoppings. Due to

the short range interaction (first neighbors), the application of the JWT only leads to

non-zero coupling terms between spins which are proportional to ĉ†n+1ĉn = Ŝ+
n+1Ŝ

−
n .

Each subspace with
(
M
N

)
states of spin projection

〈∑M
n=1 Ŝ

z
n

〉
= N −M/2 is now a

subspace with N non-interacting fermions. The eigenfunctions
∣∣∣Ψ(N)

γ

〉
are expressed

as a single Slater determinant built up with the single particle wave functions ϕα of

energy εα. Under these circumstances, and setting |i〉 ≡ ĉ†i |∅〉 (with |∅〉 the fermion

vacuum), Eq. A.3 reduces to:

Pf,i(t) =
∣∣∣〈f | exp

[
−iĤt/~

]
|i〉Θ(t)

∣∣∣2 (A.6)

= ~2
∣∣GRf,i(t)∣∣2 ,
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where GRf,i(t) is the retarded Green’s function for a single fermion that connects sites

f and i.

While similar steps lead to description of excitations in Double Quantum (DQ)

Hamiltonian [Fel’dman & Lacelle, 1997, Doronin et al., 2000, Cappellaro et al., 2007,

Rufeil-Fiori et al., 2009]:

ĤDQ =

M−2∑
n=0

Jn+1,n

2
[Ŝ+
n+1Ŝ

+
n + Ŝ−n+1Ŝ

−
n ], (A.7)

those will not be detailed here. The fundamental issue is the underlying one-body

dynamics, which for the DQ Hamiltonian is revealed by a unitary transformation

ĤDQ = U †ĤXY U [Doronin et al., 2000, Rufeil-Fiori et al., 2009] that links it to an

XY Hamiltonian.

Hence, for one dimensional (1D) chains of spins with first neighbors XY or DQ

interactions, and in the high temperature regime, the dynamics of an excitation (either

an injected local polarization or multiple quantum coherence) is completely equivalent

to the evolution of a single particle wave function, ruled by a tight-binding Hamiltonian

(this also was corroborated in the Chap. 2). Therefore, it turns out that the analysis

of Hamiltonians like the one in Eq. A.5, can be casted for treating and studying

several effects in spin chains [Cappellaro et al., 2011] (a typical scenario in quantum

information processing).
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Appendix B

Green’s Function Poles.

Here we present the detailed analytical derivation of the GF poles and further approx-

imations for the cases presented in Chap. 5. The results from this appendix have been

summarized in the Table 5.1 showed in Sec. 5.4.

The first model under consideration (see Fig. 5.2-I) is given by one site coupled to

a semi-infinite chain. In this case the GF pole results purely imaginary,

εpole = −i
V 2

0√
V 2 − V 2

0

. (B.1)

Even though this is indeed the exact solution, we span it for V 2
0 /V � 1 and obtain:

εpole '
V 2

0

V
. (B.2)

Thus the theoretical decay rate for this model can be expressed as:

1

τ
=

2

~
Γ0 =

2

~
Im(εpole) '

2

~
V 2

0

V
. (B.3)

If we change the environment to an infinite chain (Fig. 5.2-II) the pole is,

εpole = −i

(
2V 2(1−

√
V 4

0

4V 4
+ 1)

)1/2

' −i
V 2

0

2V
(B.4)

The case III, which corresponds to two sites coupled to a semi-infinite chain, has been

solved previously in Ref. [Dente et al., 2008] and in the Chap. 2,

ε2
pole =

V 2
AB

(
2V 2 − V 2

0

)
− V 4

0 ± V 2
0

√(
V 2
AB + V 2

0

)2 − 4V 2
ABV

2

2
(
V 2 − V 2

0

) . (B.5)
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B. GREEN’S FUNCTION POLES.

Using the solutions of Eq. (26) and (27) in Ref. [Dente et al., 2008], we can directly

evaluate the real and imaginary parts of the poles,

∆0 = ±

(
V 2
AB

(
2V 2 − V 2

0

)
− V 4

0

2
(
V 2 − V 2

0

) + Γ2
0

)1/2

' ±VAB
(

1− 1

4V

V 2
0

V

)
(B.6)

Γ0 =

(
V 4

0 − V 2
AB(2V 2 − V 2

0 )

4(V 2 − V 2
0 )

+

√
V 2V 4

AB

4(V 2 − V 2
0 )

)1/2

' −1

4

√
4V 2 − V 2

AB

V

V 2
0

V
. (B.7)

Now, we change slightly the geometry of these systems and consider again an infinite

chain as environment instead the semi-infinite. For these cases we will write only the

first non trivial terms of their Taylor expansion instead of the full solution. For the

model of Fig. 5.2-IV, the solution is:

∆0 ' ±VAB +O(
V 4

0

V 4
) (B.8)

Γ0 ' −
1

2

V√
4V 2 − V 2

AB

V 2
0

V
+O(

V 4
0

V 4
). (B.9)

The next case (Fig. 5.2-V) is a two-site system coupled to two private baths. In

this case, the solution is,

∆0 ' ±VAB +O(
V 4

0

V 4
) (B.10)

Γ0 ' −
V√

4V 2 − V 2
AB

V 2
0

V
+O(

V 4
0

V 4
). (B.11)

At this point we observe that the imaginary part for the case V is twice of the sys-

tem IV. This behavior is consistent with the count of the “number” of private baths

connected to the system, and the proportion affected by those private baths.

Finally, for the case of Fig. 5.2-VI, the model involves a two-site system coupled

to a common bath. For this case the solution is expressed in the following form,
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∆0 ' ±
(
VAB −

1

2

V 2
0

V

)
+O(

V 4
0

V 4
) (B.12)

Γ0 ' −

√
4V 2 − V 2

AB

4V − 2VAB

V 2
0

V
+O(

V 4
0

V 4
). (B.13)

At a first glance of the last equation, it is possible to notice that the imaginary part

of the pole is linear on VAB (in the sense of sign dependence, which is not present in

the previous cases). This linearity translate into a different value for Γ0 depending on

the sign of VAB. As a matter of fact, the local LE indeed relies on the change of sign

to revert the dynamics. To understand the physics below this difference we have to

identify the LDoS involved in the decay process. Accordingly, we symmetrize the basis,

as shown in Fig. 5.6, so dimmerizing the system, and build a new basis. We take pairs

of site states and map them into symmetric and anti symmetric states. Therefore the

tight binding Hamiltonian for this case changes in the form of Eq. B.14.
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B. GREEN’S FUNCTION POLES.

Ĥ =



|A〉 |B〉 |1〉 |−1〉 |2〉 |−2〉 · · · · · ·

〈A| VAB V0

〈B| VAB V0

〈1| V0 V V

〈−1| V0 V V

〈2| V
. . .

〈−2| V
. . .

...
. . .

...
. . .



−→ Ĥ ′ =



· · · |2S〉 |1S〉 |ABS〉 |ABA〉 |1A〉 |2A〉 · · ·
...

. . .

〈2S |
. . . V

〈1S | V V V0

〈ABS | V0 VAB

〈ABA| −VAB V0

〈1A| V0 −V V

〈2A| V
. . .

...
. . .



(B.14)

where |nS〉 = (|n〉+ |−n〉) /
√

2, |nA〉 = (|n〉 − |−n〉) /
√

2, n = 1, 2, 3..and |ABS〉 =

(|A〉+ |B〉) /
√

2, |ABA〉 = (|A〉 − |B〉) /
√

2. From the Hamiltonian Ĥ ′ (Eq. B.14) it is

easy to identify the splitting of the original problem into two semi infinite tight binding

chains, with only the first two site energies non zero. This problem has been previously

addressed in Refs. [Rufeil-Fiori & Pastawski, 2006] and [Rufeil-Fiori & Pastawski, 2009]

and we recall the LDoS computed there. Thus in Fig. 5.7 we identify the energy exci-

tation on the spectral structure of the environment, which is relevant during the decay

process.
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Appendix C

MANY-SPIN DYNAMICS: AN

EFFICIENT SIMULATION ON

GPGPUs.

In this appendix we specify several details on the numerical methods employed to

simulate de spin dynamics introduced in chapters 6 and 7. Let us first assume we deal

with a general system of N spins, which we want to evolve. The first approach to

solve this evolution is the use of exact diagonalization methods. However their are not

suitable for two reasons. First this methods require enough memory to store the full

density matrix (which scale as 22N ). Due to the memory capability of computers today,

this issue could becomes a problem if the system has N > 20. The other, and more

important, issue is the computational time spent to diagonalize the full Hamiltonian.

Typical methods scale as m3 where m×m is the size of the matrix. This makes that the

computational time for evolving a general Hamiltonian, scales as 23N , implying that

usual computers will take months to solve a system of N = 20. Generally speaking,

the evolution N interacting quantum spins, is classified as a NP (non polynomial)

problem, which scale with an exponential factor. Thus, it is necessary to implement

other methods which take advantage of some particular symmetries (like the Wigner-

Jordan mapping does) or make use of approximations which reduce the number of

numerical operations.

In order to perform a reasonable fast algorithm, we employed the 4th order Trotter-

Suzuki decomposition [Rieth & Schommers, 2006]. This approximated method reduces
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GPGPUS.

the computational efforts in the dynamics calculation, while at the same time it ensures

unitarity. According to section 7.2.2, an initial equilibrium state
∣∣Ψeq

〉
in the high tem-

perature regime implies that one has to evolve the whole basis of pure states satisfying

certain initial conditions. For example, in most of the cases presented in this thesis,

we set the A-spin in the up state. In our numerical simulations we found that, it is

only necessary to evolve few pure entangled states, to obtain a self-averaging evolution

equivalent to the ensemble evolution [Álvarez et al., 2008]. A typical initial state can

now be written as:

|Ψinitial〉 = |↑〉A ⊗


2N−1∑
j=1

1√
2N−1

eiϕj |βj〉

 , ϕj = aleatory phase, (C.1)

where |βj〉 is a state of the product base. In this from, the computation a time

dependent observable now requires an evolution of few states which exploits the quan-

tum entanglement over the whole spin set. Notice that the efficiency in this physical

strategy depends strongly on the kind of observables we are interested in. This method

can be implemented if we use only local observables, i.e. restricted to a set of spins.

Then, global or non-local magnitudes should not be straightforward computed by this

parallelism-based technique.

Beyond this, its implementation for large systems, soon becomes quite expensive

in computational resources. Thus, we decided to boost this method with the use of

a recent technology of massive parallel computing: the General Purpose Graphical

Processing Units (GPGPU). This advanced tool can enhance the efficiency in the com-

putational times provided that the algorithm does not require huge amount of memory,

e.g. the whole density matrix (we believe that this restriction will be lifted soon). The

main requirement relies on an accurate manipulation of the information to perform the

parallel task distribution (physical parallelization), in order to avoid possible lost of

coherences.

The Trotter Suzuki algorithm has already been implemented by us in problems of

one-body dynamics in discrete lattices [Bederián & Dente, 2011]. In comparison with

such implementation, the present algorithm has to cope with the many-body nature of

multi-spin systems. This implies that in each time step of the evolution, a fully set of
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correllations appear bewteen almost every state of the product base. The skecht of the

algorithm is presented in Appendix D.

An evolution Trotter-Suzuki algorithms implemented on GPGPUs has allowed us

to deal with sets of up to 20 spins, in reasonable computational times. In Fig. C.1

we show the comparison between the computational times for the CPU and the GPU

algorithms, as a function of the size of the system. The GPU implementation results

approximately 22 times faster than the CPU when the number of spins is near 20.

However if the number of spins is lower than 10, the CPU is faster because the massive

parallel computation of the GPU is not fully employed. Indeed, if we observe in detail,

the GPU performance scale linearly up to 14 spins. This indicates that there are

processors not yet occupied. This effect is only due to form of parallelizing the program.

4 8 12 16 20
10-1
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101

102

103

104

22x
 CPU with 8 Threads
 CPU with 12 Threads
 GPU (Tesla C2070)

C
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tin
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m
e 

(s
)

Spin system size N

Figure C.1: Computational time for the CPU (black circles) and GPU (blue triangles)

implementation of the Trotter Suzuki Algorithm for a system of N spins. The continuous

line is the extrapolation for the CPU computational time. For a system of N = 20 the GPU

performance is greater than the CPU in at least 20x.
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Appendix D

The Trotter-Suzuki Algorithm

implemented on GPGPUs

In this appendix we will present an sketch of the algorithm used to implement the

Trotter-Suzuky dynamics on GPGPU. We will start following the numerical method de-

tailed in Ref. [De Raedt & Michielsen, 2004] (see Sec. Suzuki-Trotter Product-Formula

Algorithms). There they consider the general evolution operator,

U(t) = e−itH = e−it(H1+...+HK) = lim
m→∞

(
K
Π
k=1

e−
itHk
m

)m
.

This last equation suggest that U(t) can be approximated by,

Ũ1(t) = e−itH = e−
itH1
m ...e−

itHK
m ,

if t is sufficiently small. This approximation is called the first-order approximation.

From the analysis of the following approximations, it is possible to observe that Ũ2(t)

and Ũ4(t), corresponding to the second and fourth orders, can be written in terms of

Ũ1(t):

Ũ2(t) = Ũ†1(−t/2)Ũ1(t/2),

Ũ4(t) = Ũ2(at)Ũ2(at)Ũ2((1− 4a)t)Ũ2(at)Ũ2(at),

where a = 1/(4 − 41/3). In this form, by only implementing Ũ1(t) we can easily

obtain the fourth order.
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D. THE TROTTER-SUZUKI ALGORITHM IMPLEMENTED ON
GPGPUS

In our algorithms we have separate of the total evolution time t into small ∆t steps,

and then we use Ũ4(∆t) to complete the full evolution. The crucial issue that we have

to consider now is how to choose the Hermitian Hn such that the matrix exponentials

e−itH1 , ..., e−itHK can be calculated efficiently.

If there are external time-dependent fields, it is expedient to decompose the Hamil-

tonian into single-spin and two-spin contributions. Suppose we consider a Hamiltonian

of the form,

H =
N∑
j=1

∑
α=x,y,z

hαj S
α
j +

N∑
j,k=1

∑
α=x,y,z

Jαj,kS
α
j S

α
k .

Then, the single-spin evolution operator can be written as follows,

exp

−it

 N∑
j=1

∑
α=x,y,z

hαj S
α
j

 =
N
Π
j=1

exp

(
−it

∑
α=x,y,z

hαj S
α
j

)
. (D.1)

The evolution determined by the jth factor of Eq. D.1, which rotates the spin j

about the vector hj =
(
hxj , h

y
j , h

z
j

)
, can be easily deduced. Then to perform a full step

evolution we have perform N spin rotations.

We now consider the XYZ decomposition of the two-spin terms [De Raedt et al., 1999].

There we start considering the Hz evolution (Hz =
N∑

j,k=1

Jzj,kS
z
jS

z
k). The evolution of

this type of operators only chain the phases of each of the basis operators. As Hz is a

sum of pair interactions, it is trivial to implement this operation as a sequence “phase

operators”. Now we still have to solve the Hx and Hy Hamiltonians. The strategy

consist now in perform single spin rotations (Xj or Yj) to convert Hx (or Hy) into Hz.

Writing X =
N
Π
j=1

Xj and Y =
N
Π
j=1

Yj we have,

e−itHx
= Ȳ Y e−itHx

Ȳ Y = Ȳ exp

−it

 N∑
j,k=1

Jxj,kS
z
jS

z
k

Y,

e−itHy
= XX̄e−itHy

XX̄ = X exp

−it

 N∑
j,k=1

Jyj,kS
z
jS

z
k

 X̄. (D.2)

From this equations. it is easy observed that the evolution of Hx and Hy can be

wrote in term of Hz evolution which we have already decomposed.
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Then all the operations can be reduced to single spin rotations and phase shift. In

what follows we will describe how the algorithms works. Due to technical applications

we decided to implement directly the second order evolution operator Ũ2(t).

This is implemented by performing the following evolutions: Hy/2 → Hx/2 →
Hz → Hx/2→ Hy/2.

We will show only the Hy/2, because the other operations are similar. This consist

in three steps:

Rotation X90 → Phases in Z → Rotation X-90

Where X90 and X-90 are the rotations in 90 or −90 degrees (respectively), of each

spin about the vector X and “Phases in Z” is the application of the Hz like evolution

(see Eq. D.2) jointly with the single-spin evolutions of Eq. D.1. Thus, our program,

essentially has two “building blocks”: “Rotations” and “Phases corrections”.

To understand their implementations let us first describe how we store the states. In

our programs we use the product base to describe each state. Each of them is denoted

by a binary number which represent the polarization of the spins. For example the

state ↓↑↓↑↑↓↓ is written as: 0101100 (in binary notation) or 44 (in decimal notation).

Then, with a single state of length 2N we can define the state we are evolving.

In the “rotation blocks” we first start selecting spin by spin and performing the

rotation exp
(
−itSαj

)
. Each individual rotation implies operations over pair of states

that have the jth spin up (↑) or down (↓). Here we perform our first parallelization.

Each pair of states (one which the jth spin up and the other with the spin down) are

completely independent. Thus, we can send each of these “pair-rotations” to each core

we have available.

Let us make an example of this with a four spin system. Suppose we want to rotate

the second spin. Thus the “pair-rotations” we have to made are the following,

↓↓↓↓
↓↑↓↓ ,

↓↓↓↑
↓↑↓↑ ,

↓↓↑↓
↓↑↑↓ ,

↓↓↑↑
↓↑↑↑ ,

↑↓↓↓
↑↑↓↓ ,

↑↓↓↑
↑↑↓↑ ,

↑↓↑↓
↑↑↑↓ and

↑↓↑↑
↑↑↑↑ .

Where we can observe that there are no repetitions in any of the states. Thus, each

operation is independent and the parallelization can be made without any problem.

Here, it is important to mention that we have implemented this algorithm on a

GPGPU processor. This type of processors could handle more than 500 operations
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at the same time (depending on the number of cores of the video card). The only

restriction is the available memory, which nowadays is no more than few Mb per core.

Therefore, our calculations, which only implies small 4x4 matrix operations, no require

higher amounts of memory.

Turning back to the algorithm implementation, the next step is to applied the

“Phases” operations. This operations is completely independent for each state of the

product base. Thus it is fully parallelizable.

Now suppose we choice on state of the product base. Them we only have to correct

the phases due to the single and the double-spin operations in the form of Eqs. D.1

and D.2.

In this form, combining all the building blocks we can obtain the evolution for a

∆t period. The rest of the evolution only consist in the successive application of these

steps.
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[Mádi et al., 1997] Mádi, Z. L., Brutscher, B., Schulte-
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