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porte magnético, y con todo el capital humano del LANAIS de RMS, por
su simpat́ıa y cordialidad.

Agradezco al jurado de esta tesis: Cristián Sanchez, Gonzalo Usaj y
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Abstract

Keywords: Electronic transport, decoherence, conductive poly-
mers, polyaniline, carbon nanotubes, magneto-transport.

PACS: 72.80.Le, 72.10.d, 73.20.Jc, 72.15.Rn

Quantum transport at the nanoscale is a blooming field where we can ex-
plore the properties of matter in a realm where quantum effects become crucial.
The control of quantum interference phenomena and their interplay with the
electronic structure offers fascinating opportunities for escaping from the usual
constraints of the classical world. However, environmental degrees of freedom
might also play a crucial role at the nanoscale, where the presence of both,
classical and quantum behavior is expected. Therefore, a proper approach to
decoherence in these kind of systems is a matter of fundamental importance
with practical applications of recent interest. Generally, the effect of decoher-
ence on quantum transport is expected to be negative, with inhibitory effect on
constructive interference of quantum waves propagation. Although electronic
coherent quantum transport in disordered materials leads to destructive inter-
ference of electron wave function, the role of decoherence in disordered systems
might be crucial, since decoherent events are able to suppress interferences,
which in this kind of systems are destructive. In this case, this is reflected as
an increased quantum transport efficiency due to system-environment interac-
tions.

The present work is devoted to the impact of decoherence effects in elec-
tronic transport, with particular interest in multi-terminal devices. The mod-
eling of decoherence and its computational approach is presented with special
emphasis in the use of efficient algorithms. With this methodology, the case
of conductive polymers is analyzed through one of the paradigmatic examples:
polyaniline (PAni). In spite of the important experimental results that in the
XXI century led to adjudicate the Nobel prize to the field of conductive poly-
mers, there is still an absence of consensus in the scientific community on a con-
ceptual description with predictive capacity of the physical processes involved.
With the use of realistic parameters electronic transport is computed for the
disordered lattice model of PAni, which represents its stable structure at room
temperature, and we show that it becomes highly conductive when the effects
of decoherence are properly accounted. Furthermore, this results prove to be
robust, not depending critically on variations in the polymer preparation. Also,
results for transport in carbon nanotubes, a discussion on electron-phonon in-



teractions, transport under the influence of periodic time-dependent potentials
and magneto-transport are presented.



Resúmen

Palabras clave: Transporte electrnico, decoherencia, poĺımeros
conductores, polianilina, nanotubos de carbono, transporte magnético.

PACS: 72.80.Le, 72.10.Xd, 73.20.Jc, 72.15.Rn

El transporte electrónico a escalas nanométricas es un campo floreciente,
en el que pueden ser exploradas las propiedades de la materia en un ámbito
en el cual los efectos cuánticos resultan cruciales. El control de los fenómenos
de interferencia y su papel en la estructura electrónica ofrece oportunidades
novedosas que permiten escapar de las restricciones usuales del dominio de la
f́ısica clásica. Sin embargo, los grados de libertad del ambiente también pueden
jugar un rol sustancial en los sistemas de dimensiones nanométricas, donde se
espera la presencia de comportamientos tanto clásicos como cuánticos. Por
ello, abordar el impacto de la decoherencia en este tipo de sistemas es una
cuestión de importancia fundamental con aplicaciones prácticas de interés re-
ciente. Generalmente los efectos de la decoherencia en el transporte cuántico
se suponen negativos, con resultados inhibitorios en la interferencia cuántica
constructiva sobre la función de onda electrónica. Sin embargo, debido a que
en los sistemas desordenados predominan las interferencias destructivas, el rol
de la decoherencia en estos sistemas puede ser crucial, ya que los eventos de-
coherentes son capaces de suprimir las interferencias cuánticas (en este caso
destructivas) lo cual se ve reflejado como un incremento en la eficiencia del
transporte debido a la asistencia del ambiente.

En el presente trabajo se plantea el impacto de los efectos de la decoherencia
sobre el transporte electrónico, con interés particular en sistemas con múltiples
terminales. El modelado de la decoherencia y su abordaje computacional se
presenta con especial hincapié en la utilización de algoritmos eficientes. De
acuerdo con esta metodoloǵıa, se analizó el caso de los poĺımeros conductores a
través de uno de los ejemplos paradigmáticos: las polianilina (PAni). A pesar
de los importantes resultados experimentales que a principios del siglo XXI ll-
evaron a adjudicar el premio Nobel al campo de los Poĺımeros Conductores, se
carece aún de consenso en la comunidad cient́ıfica sobre una descripción concep-
tual con capacidad predictiva de los procesos f́ısicos involucrados. Utilizando
parámetros realistas para el cálculo del transporte electrónico se muestra que
la estructura desordenada de PAni, que es la más estable a temperatura am-
biente, se vuelve altamente conductora cuando los efectos de la decoherencia
son incluidos en la forma apropiada. Más aún, estos resultados para la conduc-
tancia prueban ser robustos, ya que no dependen cŕıticamente de variaciones



en la preparación del poĺımero. También se presentan resultados para el trans-
porte en nanotubos de carbono y se incluye una discusión sobre la interacción
electrón-fonón, el transporte sujeto a potenciales dependientes del tiempo en
forma periódica y el transporte magnético en modelos simples.
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6.3 Generalized Landauer-Büttiker approach . . . . . . . . . . . . . 112

6.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusion 121

Appendices

A Diagonal elements of the transmission matrix 127

B Nuclear Magnetic Resonance 131

B.1 Basics aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2.1 1 Pulse experiment . . . . . . . . . . . . . . . . . . . . . 134

B.2.2 Magic Angle Spinning . . . . . . . . . . . . . . . . . . . 135

B.2.3 Heteronuclear decoupling . . . . . . . . . . . . . . . . . . 135

B.2.4 Cross Polarization . . . . . . . . . . . . . . . . . . . . . 135

C Comparison to Marcus-Hush theory 137

List of Figures 141

References 147



iv CONTENTS



1
Introduction

1.1 Overview

The study of the electronic transport properties of solids is one of the corner-

stones of condensed matter physics. Over the last decades, astounding techno-

logical advances have made possible the realization of electronic devices whose

fundamental properties lie in the nanoscale, determined by collections of single

molecules. Recent progress in the measurement of electron transport in molec-

ular junctions is significant but its modeling often stands behind. The ability

to manipulate objects at nanoscopic scales has been one of the driving forces

of the science of our time, the nanotechnology. In particular, the development

of the field of molecular electronics offers a unique opportunity to lift the veil

of the quantum realm, engaging its surprising features to the design of novel

devices. This interdisciplinary field grows at the boundaries of applied chem-

istry and physics, not only with the promise of a wide variety of immediate

technological applications, but also offering important intellectual challenges

for fundamental science.

Because of their small dimensions, nanodevices constitute a playground to

study the behavior of coherent electron states under the influence of several dis-

tinctive quantum interactions. Understanding their basic transport properties

is of fundamental importance for future applications. In 1957, Rolf Landauer

1



2 Introduction

proposed that the problem of electronic conductivity can be approached as a

quantum transmission probability problem. The conductance is determined

by the coherent transmission probability of incident carriers across the sam-

ple, computed between two one-dimensional electrodes acting respectively as

current source and drain. Yet, calculations of conductance of specific samples

from their quantum transmission probabilities only became fashionable follow-

ing the work of Philip W. Anderson, David Thouless and others in the late

1970’s, where the concept appears as a key ingredient for the scaling theory

of quantum localization [KM93]. Discussions of localization and subsequently

its ramifications led to a renewed interest and more rigorous derivations of the

Landauer formula. However, early discrepancies caused confusion and contro-

versy in the physical community by the time. Throughout the 1980’s a gen-

eral framework for the treatment of mesoscopic conductance was maturated

providing a concise and final form of Landauer’s picture. This is known as

Landauer-Büttiker formalism and its development was led by the work of Rolf

Landauer, Markus Büttiker and Yoseph Imry [IL99]. Nowadays, Landauer’s

picture of electronic transport has almost no rival in the evaluation of quan-

tum coherent electronic transport at the nanoscale [HR03]. The simplicity of

Landauer’s picture and the ease of its computational approach allowed a re-

markable expansion of the implementation of these methods for the calculation

of conductance in many freely distributed computational codes which are used

in wide range of materials. However, perhaps its limitations are not always

well understood and nowadays there are many examples in which there is an

attempt to apply this simpler coherent treatment improperly, beyond its range

of validity.

A first hint emerged from the work of Markus Büttiker who address the

problem of multiprobe measurements within a scattering matrix formalism.

He soon came out with the original idea that a voltage probe acts as a sort

of inelastic scatterer. As an actual voltmeter, it should not extract net par-

ticles from the system, so it returns a particle for each one collected. Hence,

for every process of “escape” from the coherent beam due to the interaction

with the environment, a fresh incoherent particle must be re-injected into the

system. However, when inelastic events are allowed to take out electrons from

one energy channel and re-inject them at any other energy, the equations that
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govern the behavior of Büttiker probes require a self-consistent evaluation of

the chemical potentials at the voltmeters. The insight for the proper treatment

of decoherence in electron transport as described by Hamiltonian models was

developed by Jorge D’Amato and Horacio Pastawski (DP) [DP90]. The un-

derlying idea of this approach is that, in several important systems, complex

many-body interactions result in the loss of the simple interferences of a one-

body description which is described by the rate obtained from the Fermi golden

rule. Because of charge conservation, this rate should be formally equivalent to

the coupling with a voltmeter. The consequence of this assumption is that af-

ter having evaluated a matrix with transmission amplitudes among every site

in a sample, one still would need to evaluate its inverse. Despite of its rec-

ognized conceptual value, the DP strategy was rarely implemented, probably

because of its seemingly computational cost. Thus the main majority of the

work to date ignored the role of inelasticity and decoherence even for those

applications, such as room temperature transport in polymers [Hee01a], where

coherent transport should be safely ruled out. Therefore, in this work we intend

to develop the DP model to a degree where its efficiency is beyond doubt and

implement clear algorithms that could enable its widespread implementation

in the great variety of systems that require it.

1.2 Our contribution

We present an alternative derivation of the effective transmission probability

in the D’Amato-Pastawski model, specially suited for the computational im-

plementation. A new compact matricial notation is introduced allowing simple

expressions for the local chemical potentials and transmission functions. In this

sense, basic strategies for the computational are presented, with a new model

which constitutes an approximation for the introduction of decoherence into

electronic transport, the coarse-grained D’Amato-Pastawski model.

The field of intrinsically conducting polymers is extensively reviewed through

the paradigmatic case of polyanilines, and we show the crucial role of deco-

herence for electronic transport in these systems. A dramatic increase in its

conductance is explained in terms of the D’Amato-Pastawski model, where the

relevant sources of decoherent events are reveled.
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Practical applications of the D’Amato-Pastawski model remained reduced

to one-dimensional problems where it was originally formulated. Having a more

efficient method would greatly improve the prospects for better simulations at

the nanoscale in the presence of dephasing, a field of much current interest.

In this spirit we provide a generalization for the general multi-terminal case,

presenting efficient algorithms for the calculation of the self-consistent local

chemical potentials. An exemplary approach to electron-phonon interactions,

periodic time-dependent Hamiltonians and carbon nanotubes is presented in

this context.

Finally, we show that the DP model provides all the ingredients for a gener-

alized Landauer-Büttiker approach of magneto-transport in nanowires. A gen-

eralized version of this model that can be fairly applied to account for all the

basic characteristics involved in giant magnetoresistance effect, a phenomenon

that was previously described in terms of the self-consistent solutions of the

phenomenological Boltzmann equation. This DP implementation should open

the possibility to evaluate more complex quantum interference effects at the

interface which have not been addressed yet in enough detail [Fer08].

1.3 Organization of this thesis

The introduction of the basic theory in the field of molecular electronics is

presented in Chapter 2, covering the relevant analytical tools on the basis

of which the following chapters are build. As the starting point, the funda-

mental ideas behind Rolf Landauer’s picture of electronic transport are briefly

reviewed. The real space renormalization group approach provides a quantita-

tive framework that allows systematic investigation of the changes of a physical

system as viewed at different scales. Tight-binding models usually provide con-

venient approximations of the Schrödinger equation which proved very useful

to describe the relevant band structures of solids. In this way, the Green’s

function formalism becomes a powerful concept which provides an invaluable

method for the computation of transmission functions provided by the Fisher-

Lee relation. Since real solids always contain a certain amount of disorder with

their underlying lattice structure never perfectly regular, we reviewed the basic

features of transport in these kind of systems. Anderson localization and Mott’s
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variable range hopping constitute the center of our brief discussion. The final

section of the chapter is dedicated Floquet theory applied to periodic driven

quantum transport.

The question regarding the problem of decoherence and its role in one-

particle quantum transport is deemed in Chapter 3. D’Amato-Pastawski

model provides a general framework for the study of decoherene in one-electron

transport problems and is discussed in detail. We also provide the basic strate-

gies for the computational approach and a brief discussion of the coarse-grained

version of the DP model which provides a natural approximation for weakly

coupled molecular chains.

The role of decoherence in electronic transport is shown to be crucial in

Chapter 4, where the physics involved in the electronic properties of intrin-

sically conducting polymers is approached. For many years, it has been as-

sumed that conduction of polyanilines is inseparably linked to the existence

of a polaronic crystalline structure. However, although our main intention is

qualitative, we showed that decoherent processes are able to give appreciable

metallic conduction in the more entropically favorable bipolaronic lattice. For

this system, the uncertainty of energy associated with thermal processes can-

not be neglected in the study of conductance. Based in our simulations we can

estimate bulk conductivity for these chains and arrive to a remarkably good

value as compared with experimental data.

In many problems, there are certain many-body interactions suffered by

carriers in electronic devices that can not be treated within the simple Fermi

golden rule approximation, providing extra degrees of freedom that must be

accounted explicitly. Fortunately many times, in some approximation, this

extra degrees of freedom can be mapped into the one-electron picture as ex-

tended topological spaces, transferring the complexity of the many-body inter-

actions to the geometry of the one-electron transport problem. The extension

of Landauer’s picture of transport for the study of decoherence effects in multi-

terminal devices, in this sense, provides a starting point. Chapter 5 is devoted

to the discussion of electronic transport on multi-terminal molecular devices,

in the presence of decoherent events, in terms of a simple generalization of the

D’Amato-Pastawski model. The review of the computational approach is also

presented with particular emphasis on efficient recursive algorithms for solving
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this kind of problems. Some meaningful physical examples of its application

are also presented and discussed: the case of electron-phonon interactions and

Floquet theory applied to simple periodic time-dependent Hamiltonians. An

important application that deserved a separate chapter, magneto-transport in

nanowires and the giant magnetoresistance effect is discussed on Chapter 6.

Finally, important remarks and conclusion of this work is stated on Chap-

ter 7.



2
A primer on molecular electronics

Early quantum theories conceived to explain the relevant aspects of electron

transport phenomena were semi-classical. Electrons were accelerated according

to the Bloch theorem and this was partly balanced by back scattering due to

phonons and several kinds of impurities. Although scattering cross sections and

band structures were calculated according to quantum mechanics, the balancing

process were carried out in terms of occupation probabilities and purely coher-

ent processes were ruled out [IL99]. Kubo’s theory represents the first effort

widely accepted of a purely quantum mechanical transport formalism. In this

theory non-equilibrium irreversible processes are connected, by the assumption

of linear response, with the equilibrium properties of the system under study.

Until the scaling theory of localization, the complicated microscopic Kubo for-

mulation for transport in disordered conductors was mostly used loosely to

justify the purely intuitive semi-classical Bloch-Boltzmann approach. More-

over, the advent of mesoscopic physics led to a revision of the most important

ideas associated with the electron transport phenomena [Nac01].

The fact that the conductance of a single localized tunneling barrier, with

very small transmission probability, is proportional to that probability was well

understood in the early 1930’s [Fre30]. However, Landauer [Lan88] related the

linear response conductance to the transmission probability and draw attention

7



8 A primer on molecular electronics

to the subtle questions that arise when we apply this relation to conductors

having transmission probabilities close to unity.

2.1 Conductance from transmission probabil-

ity

The approach in which the current through a conductor is expressed in terms

of ‘the probability that an electron can transmit through it’ is often referred

to as the Landauer approach to electronic transport. A key ingredient in Lan-

dauer’s picture is that, besides the “sample” or device one must explicitly

incorporate the electrodes or contacts in the transport description. An ideal

conducting channel with no irregularities or scattering mechanisms along its

length is shown in Fig. 2.1. The conductor is tied to a couple of large elec-

tron reservoirs via adiabatically tapered reflectionless large contact pads. In

this context and for the remainder of the discussion, by reflectionless contacts

we mean carriers that approaching a reservoir from the conductor pass into

that reservoir with certainty. Going the other way, from the contact to the

conductor, the reflections can be quite large [IL99].

Figure 2.1: A conductor between two large reservoirs via large contact pads.

The electrons coming out of a reservoir are occupied according to the lo-

cal Fermi distribution function that characterizes the reservoir itself. For the

sake of simplicity we assume, initially, that the conductor is narrow enough

so that only the lowest of the (discrete) transverse eigenstates in the channel
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has its energy below the Fermi level. That makes the channel effectively one-

dimensional. We consider the left-hand reservoir be filled up to level µ1, higher

than that of the right-hand reservoir, µ2. We also assume ‘zero temperature’,

so that there is current flow only in the energy range µ1 > E > µ2. In this

simplified case, the current flow is just [IL99]:

I = −(µ1 − µ2)ev
dn

dµ
(2.1)

where dn/dµ is the density of states and v is the velocity component along the

conductor at the Fermi surface. It was essential in Landauer’s reasoning to note

that in a propagating channel the density of states is inversely proportional to

the corresponding group velocity [Pas92]:

dn

dµ
=

2

π~v
(2.2)

and the conductance of an ideal one-dimensional conductor is simply:

G =
I

∆V
= 2e2/h (2.3)

where ∆V is the voltage difference between the leads, V1− V2 = −(µ1− µ2)/e.

As stressed emphatically by Landauer [IL99], the voltage specification deep

inside the reservoir and the geometrical spreading are essential aspects of the

derivation of Eq. 2.3. If the conductor is not ideal, there is an average trans-

mission probability T that an electron injected at one end of the conductor will

transmit to the other end. The current will be reduced accordingly, and we

find

G = (2e2/h)T (2.4)

This is one of the most celebrated relations, in which the linear response conduc-

tance is expressed in terms of the transmission probability of electrons through

one channel across conductor.

2.1.1 Multichannel two-probe conductance

The generalization of the preceding discussion for the case of leads that in-

volve more than one transverse eigenstates with energy below the Fermi level

is straightforward [MGM86]. In leads of finite cross section we have to consider

both the motion of carriers transverse to the lead and the motion along the lead
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[B8̈6a]. Motion in the transverse direction is quantized and characterized by a

set of discrete energies, En. For each of these energies smaller than the Fermi

level, EF , we obtain two states at the Fermi energy (i.e. a ‘quantum channel’).

In general, transverse states can be considered orthogonal and the linear re-

sponse current is given by summing over all the channels, that we assume that

are connected with the same reservoirs,

Ii =
2e

h

∑
ij

(Tijδµ1 − Tjiδµ2) (2.5)

Just be highlighted that in the particular case where we have M perfectly

transmitting channels the conductance simply becomes:

G = M(2e2/h) (2.6)

One of the earliest and most significant experimental verifications of this

approach was reported independently by two groups in 1988 [vWvHB+88,

DAWJ88]. Studying narrow two-dimensional channels connecting wide reser-

voirs, where the channel width were controlled by externally applied gate volt-

ages, it was shown that as the width W of the constriction was reduced the

conductance went down in discrete steps each of height 2e2/h. This is shown

in Fig. 2.2.

2.1.2 More than two reservoirs

One step forward in the generalization of the Landauer formula is easily ob-

tained by considering the case of a multi-probe setup explicitly. Büttiker found

a simple and elegant solution noting that, since there is no qualitative difference

between the current and voltages terminals, they must be treated on an equal

footing [B8̈6a]. This results from the application of the Kirchhoff law using

Landauer’s conductance formula. For the current in the n transverse mode of

the i-th probe, we have:

Iin =
2e

h

∑
m,j

(Tni,mjδµj − Tmj,niδµi) (2.7)

In order to simplify the notation we can treat the all transverse modes and

probes in the same footing, loosing track in the notation of which are the
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Figure 2.2: Quantized conductance on a ballistic wave guide. First exper-
imental point-contact conductance measurement report as a function of the
gate voltage, by B. J. van Wees et al. [vWvHB+88].

channels that share the same chemical potential,

Ii =
2e

h

∑
j

(Ti,jδµj − Tj,iδµi) (2.8)

2.1.3 Non-zero temperature and bias

So far our discussion was simplified by the assumption of zero temperature

so that we did not have to write explicitly how the Fermi distribution func-

tions enter in Landauer’s approach. In general, transport takes place through

multiple energy channels in the energy range [Dat97]

µi + (a few kBT ) > ε > µj − (a few kBT ) (2.9)

and the transmission probability is a function of the energy ε. Each reservoir

i emits electrons with an energy availability controlled by a local distribution

function:

fi(ε) =
1

e(ε−µi)/kBT + 1
(2.10)

and the net current for a system composed by many channels (and in the spirit

of the last section we include all probes and transverse modes in the same
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footing) is [PM01]:

Ii =

∫
i(ε)dε =

2e

h

∑
j

∫
[Tji(ε)fi(ε)− Tij(ε)fj(ε)] dε (2.11)

This equation reduces easily to Eq. 2.8 when linear response is invoked.

2.2 Real space renormalization group proce-

dures

The renormalization group (RG) is a quantitative framework that allows sys-

tematic investigation of the changes of a physical system as viewed at different

scales. Basically, it consist of a decimation procedure that involves drawing a

few parameters representatives of the physics at a given length scale which are

used as basic input to obtain the physics at a next length scale [KGH+67]. At

the beginning of the 1970s, Kenneth Wilson [Wil83, Wil79] devised a specific

version of the renormalization group formalism for statistical systems for which

he was awarded the Nobel Prize in 1982. The basic scaling idea was soon ap-

plied by Thouless and Licciardello as a strategy to evaluate the localization of

quantum eigenstates in disordered discrete systems [DT74]. Their idea was to

obtain a sort of coarse-grain description of the wave function. The RG concept

was central in the Abrahams, Anderson, Licciardello and Ramakrishnan solu-

tion of the quantum localization problem in terms of the scaling properties of

the conductance [AALR79]. Crucial to the description of the localized regime

was the use of the Landauer’s formula which in turn was clearly connected

to Thouless criterion for localization. For a review we refer to the article by

MacKinnon and Kramer [KM93], who developed the first practical algorithm

for calculation of scaling functions [MK81].

2.2.1 Tight-binding models

With a long history and applied in several different contexts, the tight-binding

model can be regarded as an approach to the calculation of the electronic struc-

ture of solids. As developed by Bloch in his doctoral dissertation in 1928 under

the tutoring of Heisenberg, the idea lies in the expansion of the extended crystal

states by means of linear combinations of atomic orbitals (LCAO) of the com-

posing atoms [Sla75]. This method generally provides a reasonable description
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of the occupied states in solids and often also of the lowest lying conduction

states whose advantage for the calculation of electronic structure was discussed

by Slater and Koster [SK54]. From our point of view [PM01], it is enough to

see it as a convenient conceptual approximation to the Schrödinger equation.

It starts with a discretization of the Schrödinger equation at a subatomic scale,

which is followed by the application of one step of the renormalization group

procedure to achieve the relevant parameters at the atomic scale [Pas86]. This

is eventually follow up by subsequent renormalization or decimation procedure.

See Fig. 2.3.

Figure 2.3: Progressive decimation procedure to achieve the relevant pa-
rameters at the scale of interest. Extracted from Ref. [Pas86].

Thus, to fix ideas we consider a one-dimensional case, in which the proba-

bility amplitude ψ(x) to find a particle in a given position x is obtained as,

−~2

2m
O2ψ(x) + U(x)ψ(x) = εψ(x) (2.12)

We can discretized this equation obtaining a finite differences approach,

O2ψ(x) =
ψ(x+∆x)−ψ(x)

∆x
− ψ(x)−ψ(x−∆x)

∆x

∆x
(2.13)

where ∆x is the lattice constant, namely the minimum distance between two

possible positions. The last expression can be simplified using the following
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substitutions, ∆x = a, x = na, un = ψ(na), En = U(na) and V = ~2/2ma2,

and we obtain:

(ε− En)un − V un+1 − V un−1 = 0 (2.14)

Therefore, one is left with a discrete equation where the off-diagonal interaction

is provided by the kinetic energy terms V , and the local potential energy terms

are given by En, which in the LCAO description can be identified with the

energy of atomic orbitals. Although here V appears as a constant value, a

more general expression is often very useful (to take account, for example, of

a discretized Schrödinger equation in which ∆x is not a constant value). The

one-dimensional Hamiltonian operator in a general tight-binding representation

can be expressed as,

Ĥ =
∑
n

(
Enĉ

†
nĉn − Vn,n+1ĉ

†
nĉn+1 − Vn+1,nĉ

†
n+1ĉn

)
(2.15)

and the single particle Schrödinger equation in this discrete basis can be written

in term of the probability amplitudes un for the creation operator at each “site”

n, (
εÎ − Ĥ

)
|ψ〉 = 0 (2.16)

where

|ψ〉 =
∑
n

unĉn|∅〉 (2.17)

And Eq. 2.16 can be expressed in the matrix form:

ε


...

un−1

un
un+1

...

−


. . .

En−1 Vn−1,n 0
Vn,n−1 En Vn,n+1

0 Vn+1,n En+1

. . .




...

un−1

un
un+1

...

 = 0 (2.18)

When the site energies are taken from a random distribution in the range

[−W/2,W/2], the Hamiltonian is referred to as the Anderson model and it

is the standard model to represent disordered systems. This is discussed in

section 2.3.1.
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2.2.2 Decimations and continued fractions

Most problems in solid state physics involve complex underlying structures with

a huge number of available degrees of freedom and its study can not be carried

out without the insight of proper simplifications designed so that the original

significant physical properties are not altered. Real complex systems need to be

mapped in simpler ones with equivalent properties. This can be accomplished

with the help of renormalization procedures. In a convenient way, it allows

the decimation of the degrees of freedom that are not directly relevant to the

problem under study and then to calculate the physical quantities of interest

of the remaining effective system.

The basis of the decimation strategy consists in the progressive reduction

of the number of available variables initially provided by a discrete Schrödinger

equation represented by a matrix Hamiltonian H. Consider a small finite sys-

tem of three sites. The Schrödinger equation takes the form: ε− E1 −V1,i −V1,2

−Vi,1 ε− Ei −Vi,2
−V2,1 −V2,i ε− E2

 u1

ui
u2

 = [εI−H]−→u ≡ 0 (2.19)

obtaining ui from the second row and replacing in the first and the third equa-

tion one gets a reduced system of equations,[
ε− E1 −V 1,2

−V 2,1 ε− E2

] [
u1

u2

]
= 0, (2.20)

where
E1 = E1 + Σ1(ε) = E1 + V1,i

1
ε−EiVi,1

E2 = E2 + Σ2(ε) = E1 + V2,i
1

ε−EiVi,2
V 1,2 = V1,2 + V1,i

1
ε−EiVi,2

(2.21)

Here, Σ1(ε) and Σ2(ε) are real numbers accounting for the energy shift or

“self-energy” produced by the interaction of states 1 and 2 with the eliminated

state, i. With this procedure, states 1 and 2 were renormalized or dressed by

the presence of the eliminated state. Notice that as long as one conserves the

analytical dependence of Σ1 on ε, the actual secular equation is still cubic in

ε and provides the exact spectrum of the whole system. However, in most

cases one can obtain a good approximation to the corrected site energies by

performing the evaluation at the “old” eigenvalue [PM01]:

E1 ≈ E1 + Σ1(E1) (2.22)

E2 ≈ E2 + Σ2(E2) (2.23)
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which becomes equivalent to the second order Rayleigh-Schrödinger pertur-

bation theory. That is, we have gone from the three orbital problem to a

two-orbital effective system. The procedure of decimation of variables is very

simple and easily generalized, providing a systematic way to reduce the dimen-

sion of the Hamiltonian. This is done at the cost of transforming the linear set

of equations into a non-linear smaller set. Although this procedure is exact,

the smaller set of equations can often be linearized in the region of interest as

in Eqs. 2.22 and 2.22.

The general recipe remains very simple for the special case of a system with

a Hamiltonian that can be represented with a tridiagonal matrix. Thankfully,

this kind of situations (together with the generalization to block tridiagonal

Hamiltonians, which are dealt with some detail in chapter 5) are commonly

encountered in many physical examples. Any tight-binding chain of nearest-

neighbors interacting atoms meet this condition. If i < j, the self-energy for

site i due to the decimation of all the sites between i and j is simply [PM01]:

Σi,j(ε) = Vi,i+1
1

ε− Ei+1 − Σi+1,j(ε)
Vi+1,i (2.24)

and for the self-energy of site j we have, analogously,

Σj,i(ε) = Vj,j−1
1

ε− Ej−1 − Σj−1,i(ε)
Vj−1,j (2.25)

If the chain in consideration has N sites and all of them were decimated, except

for i and j, one gets an effective two-level system, with a Schrödinger equation

completely equivalent to Eq. 2.20, but with the renormalized energies,

Ei(ε) = Ei + Σi,1(ε) + Σi,j(ε) (2.26)

Ej(ε) = Ej + Σj,i(ε) + Σj,N(ε) (2.27)

and the effective hopping,

V i,j = Vi,j−1
1

ε− Ej − Σj,i(ε)
Vj−1,j (2.28)

The algebraic decimation procedure is closely related with matrix inversion.

This is specially shown in section 2.2.4.
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2.2.3 Self-energies for the leads

A very important example involves the computation of the self-energy of an

ordered semi-infinite one-dimensional chain. Drawing on the example below,

we assume Vj,j+1 = V and Ej = E (∀j>0) and we take i = 0 and N → ∞ in

order to obtain the renormalized energy of the site i = 0 due to the decimation

of the entire semi-infinite chain. In this case, we have that for any site j > 0

on the chain,

Σj,∞(ε) = V
1

ε− E − Σj+1,∞(ε)
V (2.29)

However, the fact that every site j > 0 sees to the right the “same” semi-infinite

chain implies that Σj,∞ = Σ (∀j>0). Inserting this into Eq. 2.29 results:

Σ(ε) = V
1

ε− E − Σ(ε)
V = ∆∓ iΓ (2.30)

The striking fact is that even when we are working with real quantities the

solution of this equation may lay in the complex plane [PM01, WP84]. The

solution of this second order equation gives:

∆ =


(ε−E)

2
−
√(

ε−E
2

)2 − V 2 if ε− E > 2|V |
(ε−E)

2
if |ε− E| ≤ 2|V |

(ε−E)
2

+
√(

ε−E
2

)2 − V 2 if ε− E < −2|V |

(2.31)

and,

Γ =

{
0 if |ε− E| > 2|V |√
V 2 −

(
ε−E

2

)2
if |ε− E| ≤ 2|V |

(2.32)

This expressions are particularly important when dealing with the elec-

trodes in systems such as the one depicted in Fig. 2.1. In this way, one can

include the effects of a whole lead in a Hamiltonian description through an

complex correction to the energy of the site connected to the lead.

2.2.4 Green’s function formalism

The Green’s function method is a powerful concept which provides an alterna-

tive framework to discuss the solutions of the Schrödinger equation. Besides the

intuitive structure of the perturbative calculations, the use of the Green’s func-

tion has the additional advantage of a clearer connection to transport properties

and a special role in quantum field theory which allows a definitive treatment of
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the many-body problems. The Green’s function gives the response at any point

due to an excitation at any other. For the case of non-interacting transport

the only relevant excitations are those due to plain waves incident from the

leads. As mentioned in section 2.2.5, the transmission probability of the Lan-

dauer formula (Eq. 2.4) can be computed with the help of the Green’s function

matrix evaluated at the sites the leads are attached. However, the real power

of the Green’s functions becomes evident when there is a need to include in

the transport description the effect of interactions, such as electron-electron or

electron-phonon couplings. This is dealt with in some detail throughout chap-

ter 2, doomed to establish how to include of decoherent events in the transport

description.

Green’s functions are named after the British mathematician George Green,

who first developed the concept in the 1830’s. The construct of Green’s func-

tions appears in many physical contexts, specially in quantum field theory, elec-

trodynamics and statistical field theory. It is a common practice to define two

different Green’s functions (retarded and advanced) that satisfy two different

boundary conditions. For the Schrödinger equation, the retarded (advanced)

Green’s function is defined as a function of the real variable ε,

ĜR(A)(ε) =
[
εÎ − Ĥ ± iηÎ

]−1

(η → 0+) (2.33)

where Ĥ is the complete Hamiltonian of the system and iη is an infinitesimal

imaginary part with the purpose of the incorporation of the boundary condi-

tions into the equation itself.

Consider the Green’s function matrix of the 3x3 Hamiltonian matrix given

in Eq. 2.19. It is given just by the inverse [εI−H]−1. After some algebra, it is

straightforward to show that:

G11 =
[
ε− E1 − V 12

1
ε−E2

V 21

]−1

=
[
ε− E1

]−1

G12 = V 12

[(
ε− E1

) (
ε− E2

)
− V 12V 21

]−1

(2.34)

That is, the elements of the Green’s function matrix of Eq. 2.19 are easily

obtained from the reduced Eq. 2.20, where the intermediate site i was deci-

mated. This, which seems a simple triviality, is a reflection of the fact that the

decimation procedure is exact if the dependence on ε is held in renormalized
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sites. Also, it shows the close connexion between decimations procedures and a

related matrix inversion algorithm. No matter how large is the matrix Hamil-

tonian, the elements of the Green’s function matrix can always be expressed in

the form:

Gnn =
[
ε− En − V nm

1
ε−Em

V mn

]−1

=
[
ε− En

]−1

Gnm = V nm

[(
ε− En

) (
ε− Em

)
− V nmV mn

]−1

(2.35)

where the over-line in every quantity means the decimation of all the elements

i 6= n,m into the elements n and m. The decimation procedures give not only

a natural way to reduce the degrees of freedom of the system when an approx-

imation is needed, but also provide a simple and exact algorithm to compute

the elements of the Green’s function (and, by extension, for the computation

of the elements of the inverse of any matrix).

The local density of states represents the weight of the eigenenergies of the

system on the basis states. The definition of the Green’s function, given by

Eq. 2.33, implies that its poles coincide with the eigenenergies of the system

and, as a consequence, the local density of states Ni at the site i of the system

is obtained from the retarded Green’s function matrix simply by [PM01]:

Ni(ε) = − 1

π
lim
η→0

Im GR
ii(ε− iη) (2.36)

2.2.5 The Fisher-Lee formula

Although the entire discussion of sections 2.1-2.1.3 is devoted to elucidate how

the conductance of a quantum system can be understood in terms of its quan-

tum transmission probability, the question of a handy formula to deal with this

transmission probability is left aside. It is clear that there is a close relation be-

tween the electronic structure of a given system, described by its Hamiltonian

and the associated Green’s function, and its electron transport properties that

are reflected in the transmission function. The original demonstration of the

connection between the transmission probability and the Green’s function, by

Fisher and Lee [FL81], is based on the properties of the scattering matrix in a

continuum model. This demonstration is reviewed in a tight-binding approach

by H. Pastawski and E. Medina [PM01].
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Figure 2.4: Sketch of the tight-binding model for a conductor attached to
two contact pads.

Consider the tight-binding model of a conductor attached to the leads as

shown in Fig. 2.4. The Landauer formulation requires to calculate the trans-

mission of the system between the sites where the leads are connecting to the

electrodes. Assuming that the sample’s Hamiltonian is known one must incor-

porate explicitly the leads. Although they are modeled as semi-infinite ordered

chains, they must be decimated and included as self-energies (computed as in

Eq. 2.30) that shift the sites energies,

E1 = E1 + ΣL(ε) (2.37)

EN = EN + ΣR(ε) (2.38)

Thus, to an original molecular orbital tight-binding Hamiltonian with N or-

bitals,

ĤS =
N∑
i=1

(
Eiĉ

+
i ĉi +

N∑
j>i

[
Vi,j ĉ

+
i ĉj + Vj,iĉ

+
j ĉi
])

(2.39)

we complete the entire effective Hamiltonian adding the self-energies of the

leads that renormalize the sites attached to them,

Ĥeff. = ĤS + Σ̂L + Σ̂R (2.40)

where Σ̂L = ΣLĉ
†
1ĉ1 and Σ̂R = ΣRĉ

†
N ĉN are the operators describing the escape

to the left and right leads respectively. This effective Hamiltonian accounts for

the entire system and allows the evaluation of the associated Green’s function.

The Fisher-Lee formula for the transmission probability for this case reads:

TRL(ε) = [2ΓR(ε)]GR
N1(ε) [2ΓL(ε)]GA

1N(ε) (2.41)

Note that the only elements of the Green’s function involved in the Fisher-Lee

transmission formula are the ones associated with the sites directly connected

to the leads. More complicated setups may involve more than two probes or
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even several leads connected to the same site. In general, whenever a site i

is connected to a lead α and a site j is connected to a lead β, the related

transmission probability between them given by the Fisher-Lee formula takes

the form:

T(α,i),(βj)(ε) = [2Γβ(ε)]GR
ji(ε) [2Γα(ε)]GA

ij(ε) (2.42)

2.3 Transport properties of disordered solids

Real solids always contain a certain amount of disorder since their underly-

ing lattice structure is never perfectly regular. Physically, the disorder can be

thought to be related with the presence of impurities, vacancies and dislocations

in otherwise ideal crystal lattices. In fact, strong disorder can be achieved if

the concentration of impurities is sufficiently large and a completely disordered

assembly of atoms will be one in which the atoms or molecules are distributed

completely independent and randomly. Many physical properties are either in-

fluenced or even mainly determined by this randomness. The understanding of

the consequences of disorder in the properties of solids is of enormous practical

importance and took a cardinal role in condensed matter physics in the last

half century.

Clearly, the common belief is that disorder prevents the electrons in a semi-

conductor to move freely. In a first approach to the problem of the disorder

effects on electronic conductivity, electrons can be imagined to be multiply

scattered by impurities and diffusing through the solid. The central concept

in the description of the diffusion is the mean free path of the electron, the

average length it travels before suffering a collision. The appearance of strong

multiple scattering correlates with a very short mean free path. The classical

Ohmic law dictates that the electronic conductivity is directly proportional to

this mean free path. However, the increase of the degree of disorder may not

just lead to a decrease of the conductivity but also may trigger profound effects

in its behavior. This issue was raised as the problem of “localization”. Being

in principle a property of the states in a random quantum mechanical sys-

tems, it presents its most striking experimental manifestation in the transport

properties of condensed matter physics [KM93].
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2.3.1 Anderson localization

In 1958, P. W. Anderson published an article [And58] where he conceived the

idea of electron localization analyzing, in a tight-binding model, the behavior

of electrons in a crystal with site impurities. In this simple model, transport

is considered in a random lattice, where diffusion is expected to take place via

quantum jumps between localized sites. The essential randomness is introduced

by requiring the energy to vary randomly from site to site. In this early work,

he established the conditions for the absence of quantum diffusion: Beyond

a critical amount of impurity scattering the diffusive motion of the electron

will freeze. It was later showed that the transition occurs when the electrons

mean free path becomes smaller than its wavelength. This mobility halt or

“localization” has dramatic consequences for the conductivity, the material

turns into an insulator. P. W. Anderson, jointly to N. F. Mott and J. H.

van Vleck received the Nobel prize in physics in 1977 “for their fundamental

theoretical investigations of the electronic structure of magnetic and disordered

systems”.

The simplest model for Anderson localization, which contains only the es-

sentials, is a linearized, random tight-binding model of non-interacting particles

[And78],

Ĥ =
∑
n

Enĉ
†
nĉn + V

∑
<n,m>

ĉ†nĉm (2.43)

where V are the hopping elements, considered only between nearest neighbors

< n,m >, and the site energies En are taken from a random probability distri-

bution of width W , [−W/2,W/2]. The Hamiltonian model given by Eq. 2.43

leads to a linear equation of motion of the form:

i~ ˙̂c†n = Enĉ
†
n +

∑
m

V ĉ†m (2.44)

If W = 0, all the site energies have the same value and this equation describes

a conventional band of extended Bloch states, with energies:

E0
k =

∑
nm

V cos[k· (Ri −Rj)] (2.45)

In the case of W � V , a possible way to investigate the solutions of the

diagonal-disordered Hamiltonian of Eq. 2.43 is by a perturbative treatment
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of disorder. The starting point is, therefore, the energy of the unperturbed

k states of Eq. 2.45. Thus, we assume that the presence of the impurities

can be accounted by a self-energy that renormalizes the unperturbed energies,

E0
k + Σk(ε). The diagonal elements of the retarded Green’s function of these

states are,

Gk,k(ε) =
1

ε− E0
k − Σk(ε)

(2.46)

The perturbative expansion of the introduced self-energy is [Pas10],

Σk(ε) =
∑
k′ 6=k

Vk,k′G
0
k′
Vk′ ,k +

∑
k′′ ,k′ 6=k

Vk,k′G
0
k′
Vk′ ,k′′G

0
k′′
Vk′′ ,k + ... (2.47)

That is, of course, k states are mixed due to the perturbation. Evaluating the

perturbative expansion to first order, Σk(E
0
k), the finite lifetime of k states can

be obtained with the Fermi Golden Rule.

In the case of W � V we are faced with the failure of the perturbative

treatment of k states. Anderson proposed to analyze this problem starting on

the opposite side of the perturbative expansion with local, impurity states as

the unperturbed ones. Thus, the diagonal elements of the retarded Green’s

function in this basis, is:

Gii(ε) =
1

ε− Ei − Σi(ε)
(2.48)

and the perturbative expansion of the impurity states is given by [Pas10],

Σi(ε) =
∑
j 6=i

Vi,jG
0
jVj,i +

∑
j,k 6=i

Vi,jG
0
jVj,kG

0
kVk,i + ... (2.49)

This expansion diverges if the states are extended, and converges otherwise.This

expression constitutes a geometric series with terms of the form,

TL = V G0 V G0 ... V G0︸ ︷︷ ︸
L times

(2.50)

for which we can take [Pas10],

lnTL ' L
〈
ln |V G0|

〉
(2.51)

and if z denotes the coordination number of the lattice, the perturbative ex-

pansion involves the terms,

zLTL ' zLV L exp
[
L ln

〈
|G0|

〉]
(2.52)
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The criterion for convergence for the series is therefore given by [Pas10],

zV exp
[
ln
〈
|G0|

〉]
< 1 (2.53)

The analysis of the convergence of this series is complex and exceeds the purpose

of this introductory approach. What emerges from this criterion is that in a 3D

system there is a critical value Wc at which a band of delocalized states begin

to appear, and at its ends a series of localized states. The greatest achievement

of Anderson was the formulation of the extended-localized transition. Non-

interacting electronic or vibrational eigenstates in solids would transform from

Bloch plane waves into exponentially localized functions whenever the strength

of a homogeneous disorder exceeds a critical value. In 1D and 2D cases the

states are localized at any disorder. A very significant result for the field of

polymeric conductors is that localization guaranties an absence of transport for

any degree of randomness in one dimension.

2.3.2 Mott’s variable range hopping

The variable range hopping theory was introduced by Mott [Mot69] to describe

the low temperature behavior of the resistivity in strongly disordered systems

where states are localized. The energies of these localized states is assumed

to be distributed statistically over a finite energy range. The hopping prob-

ability between two arbitrary states depend on two fundamental parameters,

the spacial separation r, and the energy difference ∆E of the sites. Since the

states are localized, it is natural to assume exponential decaying associated

wave functions and the tunneling probability will be proportional to a term

of the form exp(−2r/ξ), where ξ is the localization length [Mad96]. Also, in

any of these transitions between localized states the energy difference must

be provided by phonons. The number of phonons of energy ∆E in thermal

equilibrium, for sufficiently low temperatures, is given by the Boltzmann factor

exp(−∆E/kBT ). Therefore, the probability of hopping between two states has

the form:

P ∝ exp

(
−2r

ξ
− ∆E

kBT

)
= e−R (2.54)

The quantity R = 2r
ξ

+ ∆E
kBT

is usually called range of the hopping probability.

Since with longer hops, there is a better probability of reducing the activation
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energy e−∆E/kBT , this range is determined by the competition of the overlap

term, which favors short hops, and the energy activation, which favors long

hops. The maximal value for the range R will determine the final conductivity

of the disordered solid, proportional to a probability of the form 2.54, that is

σ ∝ e−R (2.55)

If we assume the density of states, g, to be constant over the range of

energies considered, the number of states between Ei and Ei + ∆E in a sphere

of radius r is equal to (4π/3)r3g∆E. Therefore we can estimate [Mad96],

∆E =
3

4πr3g
(2.56)

and the range will have the form,

R =
2r

ξ
+

3

4πr3gkBT
(2.57)

which is maximal for r4 = 9ξ/(8πgkBT ). Hence, evaluating Eq. 2.55 for this

value we obtain [Mad96],

σ ≈ exp
[
−
(
T0
T

) 1
4

]
T0 = 5/2

9πξ3kBg
(2.58)

The last expression is the famous Mott’s variable range hopping law. It is

experimentally observed in doped semiconductors at low temperatures.

2.3.3 Correlations and metal-insulator transition in 1D

As stated in section 2.3.1, the theory of Anderson localization predicts the

vanishing of the diffusion constant for an electron moving in a one-dimensional

lattice even for infinitesimal amount of disorder. The disordered site energies

were strictly statistical independent values, taken from a random distribution.

However, over the last twenty years analytical and numerical studies revealed

that current-carrying states can exist in a one-dimensional disordered lattice

with short and long range correlations.

A very interesting example, in which a simple correlation among the distri-

bution of disordered energies has profound effects in the transport properties

of the system, is the Random Dimer Model (RDM) [DWP90]. In this section

we focus on this instructive example that presents important implications for
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the field of conductive polymers [WP91]. RDM is a special case of the random

binary alloy, in which two different energies, Ea and Eb, are assigned at random

to the sites of a one-dimensional nearest-neighbor tight-binding Hamiltonian.

All states in the random binary alloy model are localized [Phi03]. The RDM

emerge from the random binary alloy replacing all clusters containing and odd

number of sites with energies Eb with the same number of sites of energy Ea.

That is, in the RDM, sites with energies Eb, although selected at random,

are forced to appear in clusters containing an even number of sites. Another

way to obtain the RDM is to consider an initial perfect chain of site energies

Ea in which pairs of randomly distributed defects with site energies Eb are

produced. The surprising result of the correlation induced in this disordered

model (where defects are forced to appear in pairs) is that
√
N states of this

system are extended over the entire sample, provided that −1 ≤ W ≤ 1, where

[Phi03]:

W =
Ea − Eb

2V
(2.59)

Is easy to show [DWP90] that the reflexion coefficient of a k state through a

single dimer in an otherwise perfect chain is given by:

R =
(W + cos k)2

(W + cos k)2 + sin2 k
(2.60)

and this implies that the reflection vanishes when W = − cos k. Then, because

the transmission through a single dimer in this range is perfect, the partic-

ular random distribution of dimers should not affect the overall transmission

probability [Phi03]. Since the time τ between scattering states is inversely

proportional to the reflection probability, then the mean free path can be ap-

proximated by

` = vF τ ∝ |R|−2 ≈ 1

(k − k0)2
(2.61)

where we expanded R around k0 = cos−1W . Taking (k − k0) = ∆N/2πN ,

assuming N sites in the chain and equating ` to the length of the system, it is

possible to predict the total number of extended states scales as
√
N .
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2.4 Periodic time-dependent transport: Flo-

quet theory

Consider a one-dimensional quantum system, subject to a time dependent pe-

riodic potential, so that the system Hamiltonian satisfies H(t) = H(t+ T ) for

all arbitrary times t, where T is the period. This peculiar symmetry of the

Hamiltonian under discrete temporal translations, t→ t+ T , allows the use of

the Floquet methodology, which simplifies enormously the description of the

behavior of the system.

The interest of this section is to introduce the Floquet method for the study

of periodic time dependent driven transport. The system under study will not

be isolated, in general, because of the presence of the contacts that connect the

sample with particle reservoirs. The quantum dynamics of this system will be

governed by a Schrödinger equation of the type:

i~
∂

∂t
|Ψ(t)〉 = [H(t)− iΣ] |Ψ(t)〉 (2.62)

where the Hermitian term Σ, or “self-energy” comes from the decimation of the

degrees of freedom of the environment (in this case constituted by the leads)

and implies that the time evolution of a given initial state of this system will

not be unitary since the full Hamiltonian is no longer Hermitian.

Notice that, due to the explicit time-dependence of the Hamiltonian, the

energy is not a constant of motion and therefore the usual separation of the type

|Ψ(t)〉 = exp (−iEt/~) |φ〉, where E is the (complex) energy of the state |φ〉, is

no longer possible. However, the periodic time dependence of the Hamiltonian

allows the use of the Floquet theory to obtain a similar description to that

resulting from the time independent Schrödinger equation [GH98].

Floquet theory states that when a Hamiltonian has a periodic dependence

on time, H(t) = H(t+ T ), there is a complete set of solutions {|Ψα(t)〉} of the

form:

|Ψα(t)〉 = e−(iεα+γα)t/~ |φα(t)〉 (2.63)

where the functions |φα(t)〉, called Floquet modes (and also Floquet states), have

a periodic dependence on time, with the same period T as the Hamiltonian:

|φα(t)〉 = |φα(t+ T )〉 (2.64)
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The quantities E = (εα − iγα) are often referred to as quasienergies, due to

the formal analogy to the quasimoments that characterize the Bloch states in

a system with spatial periodicity. Inserting the solutions 2.63 into Eq. 2.62, it

is immediately verified that Floquet modes satisfy:

HF |φα(t)〉 = (εα − iγα) |φα(t)〉 (2.65)

where the operator HF = H(t) − iΣ − i~∂/∂t, is called Floquet Hamiltonian.

The formal analogy between the last expression and the time-independent

Schrödinger equation is evident. It should be stressed that the conceptual

importance of the Floquet theory lies in the fact that it allows to separate the

long time dynamics, governed by the eigenvalues εα − iγα, from the dynamics

within a single period, determined by the Floquet modes |φα(t)〉.
Floquet modes and quasienergies are not uniquely defined, since

|φα′(t)〉 = eikωt |φα(t)〉 ≡ |φαk(t)〉 (2.66)

where k is an integer number k = 0,±1,±2, ... and ω = 2π/T , gives identical

solutions to the equation 2.63 but with quasienergies shifted as:

εα → εα′ = εα + k~ω ≡ εαk (2.67)

Hence, the label α corresponds to a complete set of solutions indexed by α′ =

(αk), for k = 0,±1,±2, .... In other words, Floquet modes and quasienergies

appear in clases from which we can select a representative one usually inside

of the “Brillouin zone” E − ~ω/2 ≤ εα ≤ E + ~ω/2, where E is an arbitrary,

but fixed, energy.

2.4.1 Extended Hilbert space

According to the basic postulates of quantum mechanics, the state of a system

is described by a vector |Ψ〉 in a Hilbert space R with the internal product

〈Ψ′|Ψ〉R. Without loosing generality, can be assumed that there is a complete

numerable set {|α〉} of orthonormal states in R:

〈α|β〉R = δαβ,
∑
α

|α〉 〈α| = 1 (2.68)
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The Hilbert space T of all complex functions periodic in T have the internal

product,

〈φ|ϕ〉T =
1

T

T∫
0

dtφ∗(t)ϕ(t) (2.69)

and the functions exp(ikωt) with k = 0,±1,±2, ... constitute the corresponding

complete orthonormal set. The decomposition of an arbitrary complex function

with periodicity in T , in this basis, is identical to the decomposition into the

standard Fourier series.

Hideo Sambe [Sam73] was the first who suggested that due to the time

periodicity of Floquet modes, they can be treated in a composed Hilbert space

of the form R ⊗ T. Its elements, denoted by |φ(t)〉, are all T -periodic vectors

|φ(t)〉 = |φ(t+ T )〉. The internal product is defined in the canonical way:

〈φ′ |φ〉 =
1

T

T∫
0

dt〈φ′
(t)|φ(t)〉 (2.70)

An orthonormal basis for the extended Hilbert space R⊗T is given by the

set of states {|αk〉}, defined by

|αk〉 = eikωt|α〉. (2.71)

since it is clear that,

〈βm|αn〉 =
1

T

T∫
0

dtei(n−m)ωt〈β|α〉 = δm,nδβ,α (2.72)

and they constitute a complete set in R⊗ T.

The decomposition of a state |φα(t)〉 in this basis is given by:

|φα(t)〉 =
∑
k

e−ikωt|φα,k〉 (2.73)

|φα,k〉 = 1
T

T∫
0

dteikωt|φα(t)〉 (2.74)

When using the extended Hilbert space formalism it should be noticed that

the solution |Ψ(t)〉 of Eq. 2.62 is not T -periodic in general and then it is not an

element of the extended Hilbert space. Also, Floquet modes are orthonormal

only at equal times.
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With the introduction of the extended Hilbert space to deal with the pe-

riodic time dependence, a mapping was performed between the computation

of the Floquet modes and a time-independent Hamiltonian with an additional

degree of freedom.

2.4.2 Green-Floquet functions

With the introduction of the Floquet methodology for the resolution of the time

dependent Schrödinger equation, in a system subject to a potential with peri-

odic time dependence, the problem is simplified to a time-independent eigen-

value equation, but in a space of higher dimensionality. According to the

sections below, the fundamental problem is reduced to find the Floquet modes

and the quasienergies

HF |φα(t)〉 = εα |φα(t)〉 (2.75)

From this equation and hereafter the notation is slightly changed, since εα

stands for a complex value (includes the imaginary part iγα, compare to Eq.

2.65). In terms of the basis introduced in the last section (Eq. 2.71), the matrix

elements of the Floquet Hamiltonian are obtained straightforwardly,

〈βm|HF |αn〉 = 1
T

T∫
0

e−imωt
[
Hβα(t)− i~δβα ∂

∂t

]
einωtdt (2.76)

= 1
T

T∫
0

ei(n−m)ωtHβα(t)dt+ n~ωδβαδnm (2.77)

Introducing the Fourier decomposition of the matrix elements of the system

Hamiltonian, Hβα(t),

Hβα(t) =
∞∑

k=−∞

H
(k)
βα e

ikωt (2.78)

one finally arrives to:

〈βm|HF |αn〉 = H
(n−m)
βα + n~ωδβαδnm (2.79)

Although there are several methods to solve the eigenvalue equation 2.75,

the most direct consists of a diagonalization of the Floquet Hamiltonian matrix

in the basis 2.71, whose elements are given by 2.79, in terms of the Fourier

components H
(k)
βα of the original periodic Hamiltonian of the problem. It is

important to stress here that HF is of infinite dimensionality and thus it must

be truncated in some value k.
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The natural strategy for the solution of the Floquet equations in the context

of transport problems is based on the computation of the Green’s functions.

Starting from the fundamental equation 2.75, the retarded Green’s function

can be defined as usual,

GF =
[
εαÎ − ĤF

]−1

(2.80)

Some useful relations for the retarded Green’s function of the system can be

obtained from the formal definition

G(t, t′) = − i
~
U(t, t′)Θ(t− t′) (2.81)

in which U(t, t′) is the time evolution operator of the system, defined by:

|Ψ(t)〉 = U(t, t′)|Ψ(t′)〉, U(t′, t′) = 1 (2.82)

where |Ψ(t)〉 is the entire wave function of the system, given by the solution

of Eq. 2.62. On the other hand, since the Floquet modes constitute (at equal

times) an orthonormal basis,

〈φ†α(t)|φβ(t)〉 = δα,β,
∑
α

|φα(t)〉〈φ†α(t)| = 1 (2.83)

the evolution operator can be written as:

U(t, t′) =
∑
α

e−iεα(t−t′)|φα(t)〉〈φα(t′)| (2.84)

This last equation can be verified immediately noting that, due to the equation

2.63, the right hand side term of this expression satisfies the original differential

equation in 2.62. Using this, we have

Uβα(t, t0) =
∑
m

∑
α

〈βm|φα(t)〉e−iεα(t−t0)〈φα(t)|αn〉ei(n−m)ωt (2.85)

=
∑
m

〈βm|e−iHF (t−t0)|αn〉ei(m−n)ωt (2.86)

Therefore, and following J. Shirley [Shi65], Uβα(t, t0) represents the amplitude

for the evolution of the system under the influence of a periodic Hamiltonian

H(t) from the initial state |α〉 at time t0 to a state |β〉 at time t. This can be also

interpreted as the amplitude for the evolution of an initial Floquet state |αn〉
at time t0 to a final Floquet state |βm〉 at time t due to a time-independent

Floquet Hamiltonian HF , summing over m with weighting factors ei(m−n)ωt.



32 A primer on molecular electronics

The essence of Floquet theory, thus, is that with the last interpretation of Eq.

2.86, problems involving time-dependent periodic Hamiltonians can be resolved

using methods applicable to time-independent Hamiltonians.

With the relation 2.81, in terms of the basis 2.68 in the Hilbert space R,

Gβα(t, ε) = − i
~

∞∫
o

dτeiετ/~Uβα(t, t− τ) (2.87)

using the expression 2.86 for Uβα(t − τ), and integrating over τ one obtains

[Tor05]:

Gβα(t, ε) =
∞∑

k=−∞

〈βk|
[
εÎ − ĤF

]−1

|α0〉eikωt. (2.88)

his expression shows the relation between the Floquet Green’s function and

the Green’s functions of the original problem. The coefficients of the exponen-

tial factors can be interpreted as the Fourier coefficients in the expansion of

Gβα(t, ε),

Gβα(t, ε) =
∞∑

k=−∞
G

(k)
βαe

ikωt (2.89)

G
(k)
βα(ε) = 1

T

T∫
0

dte−ikωtGβα(t, ε) (2.90)

2.4.3 Average DC currents in Floquet systems

Finally, for the sake of simplicity, we consider a one-dimensional molecular

system under the influence of a periodic time-dependent potential. The fun-

damental aspects of the physics involved can be accounted, as in the other

sections of this chapter, in a one-electron picture where transport is considered

as a coherent processes and, influences such as electron-electron interaction, dis-

sipation, etc, are neglected [KLH05b]. The system Hamiltonian is described,

as usual, in the form:

Ĥ(t) = Ĥs(t) + Ĥleads + Ĥcontactos (2.91)

where different terms on the right hand side of the last equation correspond,

respectively, to the leads (L and R) and the coupling to this leads. In terms

of the creation and destruction operators, the tight-binding formulation for a
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one-dimensional molecular system with N sites can be written as:

Ĥs(t) =
N∑

α=1,β=1

Hαβ(t)ĉ†β ĉα (2.92)

Note that in the absence of the periodic potential, the direct diagonalization

of the Hamiltonian leads to the stationary eigenvalues, energy levels, of the

molecular wire. The influence of an AC applied external field with frequency

ω = 2π/T results in a periodic time-dependence of the Hamiltonian: Hβα(t +

T ) = Hβα(t).

Contributions of the leads to the complete Hamiltonian and its couplings

with the system are given by:

Ĥleads =
∑
m

Em

(
ĉ†LmĉLm + ĉ†RmĉRm

)
(2.93)

Ĥcontactos =
∑
m

Em

(
ĉ†Lmĉ1 + ĉ†RmĉN

)
+ h.c. (2.94)

where the operators ĉ†Lq (ĉ†Rq) create an electron in the state |Lm〉 (|Lm〉) in

the lead L (R). Contacts to the L and R leads are attached at the sites 1 and

N respectively.

If the leads L and R are characterized, respectively, by the occupations fL

and fR, it can be proved that the average current over a period is given by

[KLH05b]:

I =
e

h

∞∑
k=−∞

∫
dε
{
T

(k)
LR(ε)fR(ε)− T (k)

RL(ε)fL(ε)
}

(2.95)

where Floquet transmission functions are given in terms of the Green-Floquet

functions of Eq. 2.89, as:

T
(k)
LR(ε) = ΓL(ε+ k~ω)ΓR(ε)

∣∣∣G(k)
1N(ε)

∣∣∣2 (2.96)

T
(k)
RL(ε) = ΓR(ε+ k~ω)ΓL(ε)

∣∣∣G(k)
N1(ε)

∣∣∣2 (2.97)

The transmission functions T
(k)
LR and T

(k)
RL represent the probabilities that an

electron can be transmitted from one lead to the other, absorbing (emitting)

|k| photons if k > 0 (k < 0).

In a static situation, the transmission probabilities T
(k)
LR and T

(k)
RL are identi-

cal and the contributions with k 6= 0 vanish. For this case, is possible to write

Eq. 2.95 as the product of a unique transmission function T (ε), independent
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of the direction of the electron path, and the difference between the Fermi dis-

tribution functions fR(ε)− fL(ε). In tis way, the best known expression for the

current is obtained.



3
Decoherence in quantum transport

Environmental degrees of freedom might play a crucial role in the nanoscale,

where the presence of both, classical and quantum behavior is expected [PH08,

RMK+09]. The interaction of a quantum system with its environment is re-

flected as a change in its dynamical behavior. Common system-environment

interactions appear similarly to an indirect measure on the open system, leading

to a collapse of the system wave function. Generally, the effect of decoherence

on quantum transport is expected to be negative, with inhibitory effect on

constructive interference of quantum waves propagation. Although electronic

coherent quantum transport in disordered materials leads to destructive inter-

ference of electron wave function, and therefore to its localization, the role of

decoherence in disordered systems might be crucial [CBMP10], since decoher-

ent events are able to suppress interferences, which in this kind of systems are

destructive. In this case, this can be reflected as increased quantum transport

efficiency due to system-environment interactions. Destruction of quantum co-

herence due to dephasing effects of the interaction with the environment might

lead to an enhancement of transport excitations.

Nowadays the term decoherence is mostly used in connection with quantum

information theory, where it denotes the (full or partial) collapse of a pure

quantum state due to usually unspecified interactions with the environment.

This might seem different from the usual language of electronic transport in

35
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the solid state. There, it is common to deal with specific interactions, such as

those with phonons, magnetic impurities or other electrons, which may involve

transitions with given selection rules, e.g. |k〉 → |k + q〉. These transition

probabilities are evaluated within a Fermi Golden Rule (FGR). In this ap-

proximation, the coupling with the extra degrees of freedom, the environment,

prevents the interference among the component remaining in |k〉 with that in

|k + q〉. Thus, with some probability the environment “measures” an electron

in the state |k〉 and “re-injects” it incoherently in |k + q〉. These processes,

which usually involve some inelasticity, are inherently different from the elas-

tic scattering with imperfections and impurities that produce the interferences

leading to localization [And78]. Quite often one realizes that, regardless of

the specific selection rule, the relevant role of interactions is just to provide

for decoherence, a mechanism that competes with the coherent scattering that

results in localization. This is precisely the spirit of the “local phonon” bath or

the fictitious voltage probes that lead to the imaginary site energies introduced

in the D’Amato-Pastawski model [Pas91, Pas92]. Thus, the idea is that de-

coherence from the system-environment interaction might provide a knob that

sweeps transport between a Mott’s variable range hopping regime and a typical

metal [Pas91, BAA06].

3.1 Environment-induced decoherence

The quantum world is described by essentially arbitrary linear superpositions

of states. Schrödinger’s cats can be thought of being in a superposition of

alive and dead “states” at the same time before the “measurement” is accom-

plished. However, our perception of “classical” states in the macroscopic world

is a comparatively small subset of the states allowed by the quantum mechan-

ical superposition principle. A cat in the limbo is a bizarre concept from the

point of view of the “classical” intuition. The question of why and how our

experience of a classical world emerges from quantum mechanics thus lies at

the heart of the foundational problems of quantum theory [Sch05]. Decoher-

ence provides an explanation for this quantum-to-classical transition. The key

insight of decoherence is that realistic quantum systems are never isolated, but

are immersed in a surrounding environment and interact continuously with it.
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The decoherence problem involves the study, within the standard quantum for-

malism, of the resulting formation of quantum correlations between the states

of the system and its environment. Often, surprising effects result of these

system-environment interactions [Sch05]. Decoherence, therefore, is the natu-

ral mechanism by which the classical world emerges out of the quantum world.

It somehow determines a sort of quantum-classical boundary, as illustrated by

the catching picture (shown below as Fig. 3.1) in a work by W. Zurek [Zur03].

Figure 3.1: “The border territory”, a catching illustration of the boundary
between the quantum and the classical world, in a work by W. Zurek [Zur03].

The assumption of the possibility of a division into “systems” and “environ-

ment” is implied in the approach to the study of quantum decoherence [Sch05].

The environmental component of the problem can be usually understood as

composed by the degrees of freedom that are typically not controlled and are

not directly relevant to the observation under consideration. The presence of

a quantum environment, requires the solution of the dynamics of open sys-

tems. In the previous chapter, specially in sections 2.2.3-2.2.5, the discussion

of the transport problem involves a general system where a sample conductor

is attached with two semi-infinite ordered chains that represent the leads. The

topology involved, therefore, corresponds to an infinite array of discrete linked
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sites, each of which being associated to an orbital electron state within the

tight-binding approximation. However, by virtue of the decimation procedures

discussed there, this infinite system was reduced to an effective finite system,

where the site energies of the sample conductor were renormalized by the pres-

ence of the leads. A crucial characteristic is that due to the infinite nature of

the leads, we obtained an effective energy with an imaginary component. In

the dynamics, this should manifest as a progressive decay of an initial state

within the reduced system. This means that the probability escapes towards

the semi-infinite chains. Hence, an electron originally localized in the conduc-

tor should eventually escape or decay toward the lead, leaving the sample. The

ordered nature and the infiniteness of the tight-binding chain representing the

lead, ensures that an electron escaping toward it can not go back into the sam-

ple. The physical meaning of the imaginary part that we introduced as the

self-energy is now evident: it represents the interaction with an environment

[Pas07].

Although the role of the environment is played by usually unspecified in-

teractions, sometimes the most relevant sources of dephasing events for the

transport problem can be properly identified, as electron-phonon couplings,

electron-electron interactions, inter-chain couplings, etc, and an explicit form

for the imaginary energy shift is evaluated through the FGR. The key in-

sight was given by D’Amato and Pastawski [DP90] who, extending an idea of

Büttiker [B8̈6b], realized that the escape to an environment is equivalent to a

escape to a chain which could act as a voltmeter. As an actual voltmeter, how-

ever, it should not extract net particles from the system, so it returns a particle

for each one collected. Hence, for every process of “escape” from the coherent

beam due to the interaction with the environment, a fresh incoherent particle

must be re-injected into the system [Pas07]. This physical picture finds its for-

mal justification when the system-environment interactions are local and the

environment spectrum is so broad that it becomes instantaneous and energy

independent [Pas07].
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3.2 Phenomenology of decoherent events

Because of the restrictions of the coherent electronic transport, many exper-

imental situations present important departures from the predictions made

throughout the previous introductory chapter. In spite of this, the simplicity

of Landauer’s picture and the ease of its computational implementation allowed

a remarkable expansion of the use of these methods for the calculation of con-

ductance in a wide range of materials. However, perhaps its limitations are not

always well understood and nowadays there are many examples in which there

is an attempt to apply this simpler coherent treatment improperly. In part this

is due to the fact that a proper generalized treatment of non-coherent trans-

port requires a more general framework with increased conceptual complexity

which, in most cases limits a straightforward applicability.

There are, however, certain wide applicable conditions under which the

Landauer-Büttiker approach can be readily extended to treat non-coherent

quantum transport, keeping intact the ease of implementation that charac-

terizes this approach. This section is devoted to elucidate this fundamental

conditions by means of a simple phenomenological insight to the problem of

decoherence in quantum transport.

3.2.1 Büttiker probes.

While accepting a quantum description of their spectra and their ability to

propagate excitations, the leads are the ultimate source of irreversibly and

decoherence [PM01]. Electrons leaving the leads toward the sample are com-

pletely incoherent with the electrons coming from the other leads. As observed

by Büttiker [B8̈6b, B8̈8], a voltage probe, which detects electron density with-

out absorbing of emitting any, acts as a phase-breaking scatterer, as any other

quantum measurement apparatus, and provides a natural source of decoher-

ence. Such a voltage probe can be readily described in the Landauer’s picture

if one uses the Kirchhoff balance equations and ensures that no net current

flows towards it. This can be easily understood by considering the current

flow from terminal L to R in a device having a voltage probe (or voltmeter)

in between, as the one depicted in Fig. 3.2. In this structure, the net current

flows with two components. In the coherent one, electrons go directly from L
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to R bypassing the voltage probe entirely. The other component to the net

current involves electrons that go from L to the probe φ and have their phases

randomized before they are re-injected incoherently into the device.

Figure 3.2: Representation of a three probe measurement. A voltage probe
in between floats to an appropriate potential ensuring no net current through
it.

The presence of a voltage probe thus introduces an incoherent component

to the overall current flow from L to R, acting as a phase-scatterer. Therefore,

phase-braking scatterers can be modeled by fictitious voltage probes. There

are, however, some important considerations that follow from the simple ex-

ample considered. The current in such a structure follows from Eq. 2.11, and

can be described in the from [Dat97]:

iR(ε) =
2e

h
TRL(ε) [fR(ε)− fL(ε)] +

2e

h
TRφ [fR(ε)− fφ(ε)] (3.1)

and the current at the fictitious probe is given by:

iφ(ε) =
2e

h

∑
n=R,L

Tφn(ε) [fφ(ε)− fn(ε)] (3.2)

Using the last equation, the distribution function at the fictitious probe is easily

isolated,

fφ(ε) =
1

TφR + TφL

[
iφ
h

2e
+
∑
n=R,L

Tφn(ε)fn(ε)

]
(3.3)

Substituting this expression into Eq. 3.1 we obtain an expression for the current

in the structure in terms of an effective transmission where the phase-braking
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probe have been decimated,

iR(ε) =
2e

h
T̃RL(ε) [fR(ε)− fL(ε)]− 2e

h

[
TRφ

TφR + TφL

]
iφ(ε) (3.4)

and the effective transmission between terminals L and R is given by:

T̃RL = TRL +
TRφTφL
TRφ + TφL

(3.5)

The next step, therefore, is to apply the voltmeter condition on the Büttiker

probe ensuring that no net current flows through it,
∫
iφ(ε)dε = 0, and we get

a generalized Landauer-Büttiker equation for the current which looks just like

the original,

I =
2e

h

∫
T̃RL(ε) [fR(ε)− fL(ε)] dε (3.6)

except for the effective transmission that comes from the decimation of the

voltage probe.

In this approach the Landauer’s picture is nicely extended to account for

decoherence in a very intuitive manner, but it has some drawbacks. To under-

stand it properly we shall look closer at the Büttiker condition:

0 =

∫
iφ(ε)dε =

2e

h

∑
n=R,L

∫
Tφn(ε) [fφ(ε)− fn(ε)] dε (3.7)

Note that the chemical potential at real leads are given while the chemical po-

tentials at the probes must be evaluated self-consistently through the functions

fφ which depend on iφ itself. The integral expression complicates enormously

the computational approach to this self-consistent equation in which every en-

ergy ε participates in all relevant available energy channels. Also, this current

per unit energy iφ(ε) of the voltage probes may depend on the Fermi functions

in the real contacts in a complicated manner due to the exclusion principle.

3.2.2 Decoherence and the exclusion principle

Throughout the first chapter, the question regarding how the Pauli exclusion

principle affects the reviewed current expressions was not considered in the

discussion. As suggested by Landauer [Lan92], the absence of the Pauli blocking

factors (1 − f) can be understood recurring to a simple thought. A typical

transition from a local state 1 to another local state 2 involves a term which

is proportional to the exclusion principle factors f1(1 − f2), where f1 and f2
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represent respective occupation probabilities. In the usual assumption, back

and forth transitions are independent, and then the net transition rate between

these states becomes proportional to:

f1(1− f2)− f2(1− f1) = f1 − f2 (3.8)

That is, as stated by Landauer [Lan92], the attention given to the Pauli prin-

ciple disappears in the end. However, the essence of Landauer’s picture is that

it is build in term of scattering states. Within a given reservoir, say L, only the

occupation of the outgoing states (those with momentum k or simply “OUT”)

is fixed by temperature through fL. The occupation of ingoing states (those

with momentum -k or “IN”), are fixed by the occupations in the other reser-

voirs and the scattering process. This picture, shown in Fig. 3.3 remains valid

in a multichannel and multiterminal description. The electronic current is car-

ried by electrons that occupy single-particle transverse scattering states that

extend across the conductor. Due that these scattering states are orthogonal

Figure 3.3: A sketch for single-particle scattering states in Landauer’s
picture.

to each other, an electron in one of these states does not compete with any

of the other occupied scattering states. Thus, the Pauli exclusion principle for

the final states in the scattering processes does not play a role in the determi-

nation of the electronic current even in the multi-channel scheme. With a little

more attention this picture applies to situations where also vertical process are

included [EK00].

Since the Büttiker insight for the introduction of inelastic events into the

Landauer’s picture of transport can be regarded as an extension of the coherent

multi-terminal problem allowing, therefore, the treatment of decoherent trans-

port in the same footing of coherent transport, at first glance it may seem that
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we do not need any additional regard for the Pauli principle when dephasing

is introduced. However, a closer look at the Büttiker’s voltmeter condition,

0 =

∫
iφ(ε)dε (3.9)

shows that scattering processes introduced by the fictitious probes are allowed

to take out electrons from one energy channel and re-inject them at any other

energy. In these incoherent re-injections, the destination states can be occupied

producing an “overflow” inconsistent with the exclusion principle. As pointed

out by Datta [Dat97], the effect of the Pauli principle in these cases cannot be

accounted for with a simple ad-hoc insertion of the blocking factors (1−f), and

a detailed microscopic theory is needed to compute the “vertical flow” of carri-

ers between different energy channels. This is a limitation of the one-electron

picture in which all the discussion so far was based. A proper description re-

quires an advanced many-body formalism. When transport in a many-electron

system is described in terms of one-electron scattering processes, the Pauli ex-

clusion principle needs to be considered since in general electrons involved in

different transitions may compete to occupy the same final state [EK00].

Although the Keldysh formalism provides a general and successful frame-

work to deal with many-body interactions it is desirable to reduce it into a

simple model where the role of decoherence results more evident. The key was

provided by the D’Amato-Pastawski model, which is discussed in the following

section. Here, we notice that, if all the multiple outgoing channels associated

with “vertical flow” are consistently transformed into an energy conserving

flow, the Pauli principle problem does not appear at all. It needs to be stressed

that circumventing vertical flows explicitly might be somewhat restrictive for

certain inelastic transport problems, but it is a valid strategy to deal with de-

coherence in electron states. The underlying idea of this approach is that, in

several important systems, complex many-body interactions result in the loss

of the simple interferences of a one-body description.

3.3 D’Amato-Pastawski model

The key insight of Büttiker proposal [B8̈6b] that a voltage probe can be used to

model local dephasing events within Landauer’s picture was taken to a new level
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by J. D’Amato and H. Pastawski [DP90]. They presented an alternative way

to model the strength of dephasing events in order to examine the conductance

of a one-dimensional system. A nearest neighbor tight-binding Hamiltonian is

employed to simulate semi-infinite perfect wires attached to the sample. The

idea is that these perfect lateral leads represent local couplings of environmental

degrees of freedom with the sample, that can be treated within the Fermi

Golden Rule approximation. In this way, the effect of local dephasing events

is to introduce an imaginary part to the energy levels at the associated sample

sites.

An important assumption, which is one of the keys of the powerful of the

computational approach that this model involves, implies that local dephasing

events at different Fermi energies are independent. Electrons “measured” by

fictitious voltage probes randomize its phases but do not alter its energies. De-

coherent events introduce energy uncertainties associated with imaginary shifts

that only modify the site energies of the tight-binding Hamiltonian that is used

to model the sample. In other words, after the decimation of the environmen-

tal degrees of freedom one is left with an effective, non-Hermitian, Hamiltonian

with which Landauer conductances are computed and the restriction that no

net current flows towards the fictitious voltages probes is imposed at every en-

ergy, iφ(ε) = 0. While this last condition is far more restrictive than Büttiker’s,

it has successfully proven to be sufficiently general and wide applicable for the

introduction of decoherence into Landauer’s picture of electronic transport.

3.3.1 Layout of the model

Consider a one-dimensional sample connected to two large contacts through

the leads L and R. The D’Amato-Pastawski (DP) model refers to a simple

way to account for the infinite degrees of freedom of the thermal bath or the

electron reservoirs. The sample’s Hamiltonian is described in a tight-binding

approach,

ĤS =
N∑
i=1

(
Eiĉ

+
i ĉi +

N∑
j>i

[
Vi,j ĉ

+
i ĉj + Vj,iĉ

+
j ĉi
])

(3.10)

where the labels i and j indicate sites on a lattice and N is the total number of

sites. Notice that interactions are not restricted to nearest neighbors, however,

for the usual short range interactions the Hamiltonian matrix has the advantage
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of being sparse. As in Eq. 2.40, the leads are included as complex self-energies

introduced at the sites in which they are attached to the sample,

Σ̂L = [∆L(ε)− iΓL(ε)] ĉ†1ĉ1 (3.11)

Σ̂R = [∆R(ε)− iΓR(ε)] ĉ†N ĉN (3.12)

Figure 3.4: A one-dimensional system attached to the L and R leads and
later perfect chains that are used to simulate fictitious voltage probes. This
figure was extracted from Ref. [DP90].

Lateral leads are used to model fictitious voltage probes as semi-infinite

ordered tight-binding chains attached to several sites on the sample. This is

shown in Fig. 3.4. As in the case of the real leads, DP probes are included

into the system Hamiltonian as self-energies that renormalize the energy of the

sites to which they are attached. Denoting with Eφ and Γφ the site energies

and hopping parameters of this lateral chains, and using Eqs. 2.31 and 2.32 we

have

Σφ =
ε− Eφ

2
− i

√
Γ2
φ −

(
ε− Eφ

2

)2

(3.13)

where the sign of the imaginary part corresponds to the retarded Green’s func-

tion. Looking this last equation one immediately sees that, adopting Eφ equal

to the Fermi energy ε under study, the self energy becomes purely imaginary:

Σφ = −iΓφ (3.14)

This is equivalent to requiring that the band center of the lateral leads should

coincide with the Fermi energy of the system. By neglecting arbitrary real
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corrections at every energy ε considered, the overall effect of these DP probes

is controlled by one real parameter, Γφ. However, notice the generality of the

model in the sense that it can represent any interaction with the environment

provided that it gives a finite lifetime to the electron state at a given site.

Therefore, we include the effects of the incoherent processes in the Hamil-

tonian, e.g. electron-phonon or through space electron-electron interactions,

simply through an imaginary correction to selected site energies. In this way,

all local dephasing fields are represented by the terms

Σ̂φ =
∑
l

− iΓφĉ
+
l ĉl. (3.15)

The effective Hamiltonian of the system, thus, incorporates the self-energies

associated with the leads and the interactions with the environment,

Ĥeff. = ĤS + Σ̂L + Σ̂R + Σ̂φ (3.16)

The amount Γφ represents an energy uncertainty associated to a decay rate

of the local state at site l described by the Fermi Golden Rule. An electron

originally localized in the site l should eventually escape or decay toward the

fictitious probe, since there is a escape rate associated with the finite lifetime

introduced by the imaginary shift in the site, τ−1
l = 2Γφ/~. The on-site chem-

ical potentials will ensure that no net current flows through fictitious channels

and this is shown in the next section.

3.3.2 Solution for decoherent transport

We adopt the notation ΓL ≡ ΓL1, ΓR ≡ ΓRN , Γφ ≡ Γφi, to emphasize that each

site can decay through different processes, e.g. α, β ε {L,R, φ} are the possible

decay processes taking place at sites i, j ε {1, ..., N}. With this notation the

generalized Fisher-Lee transmission probability can be expressed (as in Eq.

2.42):

Tαi,βj(ε) = 2Γβj(ε)G
R
j,i(ε)2Γαi(ε)G

A
i,j(ε). (3.17)

These transmission probabilities between fictitious and real leads can be com-

puted in terms of the Green’s function of the effective Hamiltonian, as discussed

in section 2.2.4. Within the DP model current conservation is imposed at each
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probe and energy ε. This requires an incoherent re-injection of every electron

that has decayed due to the finite lifetimes introduced by the terms Γφi.

If linear response is invoked, the adimensional conductances are just the

transmission probabilities. Thus, the electronic current associated with a pro-

cess α on site i is given straightforward by the balance between in and out

flow:

Iαi =
2e

h

∑
β=L,φ,R

N∑
i,j=1

(Tαiβjµβj − Tβj,αiµαi) (3.18)

Defining the total transmission from each process as

(1/gαi) =
∑

β=L,φ,R

∑
i,j

Tβj,αi (3.19)

the balance equations for the currents become:

Iαi =
2e

h

[
−(1/gαi)µαi +

∑
β=L,φ,R

N∑
i,j=1

Tαiβjµβj

]
(3.20)

This set of equations can be written in a compact matrix notation:

−→
I =

2e

h
T−→µ (3.21)

where the matrix T is composed by all the relevant transmission (and reflexion)

probabilities of the entire system, and is given by:

T =


TL1,L1 − 1/gL1 TL1,RN TL1,φ1 ... TL1,φN

TRN,L1 TRN,RN − 1/gRN TRN,φ1 ... TRN,φN
... ...

TφN,L1 TφN,RN TφN,φ1 ... TφN,φN − 1/gφN


The net current must be identically zero at any dephasing channel, Iφj =

0 ∀j, and for the real leads we have I = IRN = −IL1. Since the net current

only flows between real leads L and R, there must be an effective transmission

amplitude between them that relates this net current I with the voltage drop

µL1 − µRN in the usual form:

I =
2e

h
T̃RL (µL1 − µRN) (3.22)

Notice that the last expression defines the effective transmission probability in

this context. We solve the problem of finding an appropriate expression for



48 Decoherence in quantum transport

T̃RL in terms of the direct transmission probabilities Tαi,βj in two meaningful

complementary ways.

To obtain the first expression for the effective transmission, we refer all

voltages to the one on the right lead, δµβj = µβj − µRN so δµRN = 0. The Eq.

3.20 can be written in matrix notation, and after taking δµRN = 0 the relevant

equation looks like: 
−I
0
...
0

 =
2e

h
T


δµL1

δµφ1
...

δµφN

 (3.23)

where the over-line in T is a reminder that this is not the complete transmissions

matrix, since we eliminate the row and the column related to α = R, i = N

when δµRN = 0 in Eq. 3.20. The effective transmission is easy to obtain after

the last expression, since

T−1


−I
0
...
0

 =
2e

h


δµL1

δµφ1
...

δµφN

 (3.24)

and this implies:

−
[
T−1

]
L1,L1

I =
2e

h
δµL1 (3.25)

which finally leads to a solution to the effective transmission probability through

the sample:

T̃RL =
−1[

T−1
]
L1,L1

(3.26)

The last equation shows that the effective transmission probability is directly

related to only one element of the inverse of the matrix T. This expression for

the effective transmission is better suited for the computational approach (as

discussed in section 3.3.3) but the following gives a better insight of its nature.

To obtain the second expression for T̃RL, consider Eq. 3.21 in terms of the

complete matrix T in the form: −II
0

 =
2e

h

 TL1,L1 − 1/gL1 TL1,RN

−→
T L1,φ

TRN,L1 TRN,RN − 1/gRN
−→
T RN,φ−→

T φ,L1
−→
T φ,RN Tφφ


 δµL1

0
δ−→µ φ


(3.27)
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In this matrix representation of T we have separated explicitly the contributions

that involve real leads from the contributions that only relate fictitious probes:

the block Tφφ. This sub-matrix has the same structure of T but only includes

transmission probabilities between fictitious leads. The equations associated

to the second and third rows of the last matrix expression are:

h

2e
I = TRN,L1δµL1 +

−→
T RN,φ · δ−→µ φ (3.28)

0 =
−→
T φ,L1δµL1 + Tφ,φδ−→µ φ (3.29)

From the last one we have

δ−→µ φ = T−1
φφ

−→
T φ,L1δµL1 (3.30)

using this equation to replace −→µ φ on Eq. 3.28, we arrive to:

I =
2e

h

(
TRN,L1 +

−→
T RN,φT−1

φφ

−→
T φ,L1

)
δµL1 (3.31)

Therefore, the effective transmission can be finally expressed as:

T̃RL = TRN,L1 +
N∑

i,j=1

TRN,φi
[
T−1
φφ

]
i,j
Tφj,L1 (3.32)

The right hand side of Eq. 3.32 contains two contributions: the first one

represents electrons that propagate coherently through the sample, the second

term contains the incoherent contributions due to electrons that suffer their

first collision at site i and their last collision at site j.

Figure 3.5: Final layout of the D’Amato-Pastawski model in the case of a
linear chain.

The final layout of the DP model is depicted on Fig. 3.5. This model

was designed as a simple analytical solution for various situations ranging from

tunneling to ballistic transport. The procedure introduced in the DP model

can be summarized as follows:
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� The self-energies after the decimation of the environmental degrees of

freedom are accounted by the introduction of imaginary shifts to the site

energies of the tight-binding representation of the sample. An effective

Hamiltonian is obtained.

� The matrix elements of the retarded Green’s function (associated to the

effective Hamiltonian of the system) between sites connected to real and

fictitious probes are calculated.

� By means of the Fisher-Lee formula, the direct transmission probabilities

between all sites attached to real or fictitious probes are computed.

� The effective transmission probability T̃RL is obtained in terms of the

direct transmission probabilities using Eq. 3.26 or Eq. 3.32.

Finally, since T̃ (ε) piles up all vertical processes into the energy ε, one can

approximate the net current through the sample by:

I =
2e

h

∫
T̃RL(ε)[fL(ε)− fR(ε)]dε (3.33)

' 2e2

h
T̃RL(εF )V ≡ GV, (3.34)

where fR(L) is the Fermi distribution function at the right (left) lead and the

factor 2 accounts for spin degeneracy. Here, we assumed that an electron with

energy ε coming from the left lead arrives to the right lead with the same

energy, which is only true for very small Γφ. The second line is the linear

approximation for infinitesimal voltage V and temperature, where G accounts

for conductance.

3.3.3 Basic strategies for the computational approach

The two-probe Landauer conductance requires the computation of only one

element of the Green’s function matrix of the effective Hamiltonian of the

system, the element that connect the sites to which the leads are attached. In

the most frequent case, the element G1N (where N is the number of sites of

the system). However, the DP model adds up to the problem a given number

of fictitious probes and the extra amount of elements of the Green’s function

matrix that need to be computed scales roughly as M(M − 1)/2, where M ≤
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N is the number of phase-breaking probes. Furthermore, once that all the

transmission functions between every pair of leads is obtained, the computation

of the effective transmission requires the inversion of a M ×M matrix, Tφφ,

since it is usually expressed as in Eq. 3.32. The computational approach to

the DP model, thus, must be based in efficient algorithms and the aim of this

section is to give some guidelines.

As mentioned in section 2.2.4, any element Gij of the Green’s function

matrix can be obtained from decimation procedures as:

Gii = 1
[ε− Ei − Σi,1 − Σi,j]

Gij =
V ij[

(ε− Ei − Σ1,i − Σi,j) (ε− Ei − Σj,i − Σj,N)− V ijV ij

] (3.35)

where it is assumed that i < j. There are, hence, four self-energies that must

be computed for every non-diagonal element: Σ1,i, Σi,j, Σj,i and Σj,N . For

the diagonal elements of the Green’s function matrix, there are only two self-

energies needed. We recall that these terms are obtained by the recursion

equations given in section 2.2.2. The situation is illustrated on Fig. 3.6 for a

1D chain. As consequence, the computation of all the elements of the Green’s

Figure 3.6: Self-energies involved in the computation of the elements of the
Green’s function matrix.

function matrix in the general case involves, roughly, ∼ N2 terms Σ’s, assuming

that Gij = Gji. However, there is a handy expression that involves ∼ 2N

terms, which appeared for the first time in the context of transport (to our

known) in an article by Thouless and Kirkpatrick [TK81], and applies when

the Hamiltonian of the system can be expressed as a tridiagonal matrix. That

is, in the case of a one-dimensional system with nearest neighbors interactions.
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A generalization for quasi 1D systems is given on chapter 5. The elements of

the Green’s function can be written:

Gij = Gii

j−1∏
k=i

Σk,NV
−1
k+1,k (3.36)

Notice that, in this way, non-diagonal are obtained through diagonal elements,

and the only self-energy terms that appear in this equation are already needed

for the computation of the diagonal terms, that is, Σ1i’s and ΣiN ’s. Also, in this

way it is no necessary to compute any effective hopping V ij. For tridiagonal

Hamiltonians, therefore, the expression in Eq. 3.36 constitute the most efficient

way to go for the computation of the Green’s function matrix.

The other neuralgic point is the computation of the effective transmission

probability function. Consider the diagonal elements of the matrix T defined

in Eq. 3.21. These elements are not transmission, but reflexion probabilities.

As shown in appendix A,

(1/gαi) =
∑

β=L,R,φ

N∑
j=1

Tαi,βj = 4πNiΓαi (3.37)

where Ni is the local density of states at the site i. Therefore, using this

expression we can write

[T]αi,αi = Tαi,αi −
∑

β=L,R,φ

N∑
j=1

Tαi,βj

= 4Γ2
αi,αi|GR

ii |2 − 4πΓαiNi

= 4Γ2
αi,αi|GR

ii |2 + 4ΓαiImG
R
ii

= 4Γ2
αi,αi

(
ReGR

ii + ImGR
ii

)
+ 4ΓαiImG

R
ii

(3.38)

and is easy to see that this finally leads to:

[T]αi,αi = |i2ΓαiG
R
ii − 1|2 − 1 (3.39)

This expression relates each diagonal element of the transmission matrix with

only one element of the Green’s function.

In the previous section it is mentioned that the expression of Eq. 3.26

for the effective transmission is better suited for the computational approach.

This equation relates the effective transmission with one element of the matrix
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[
T
]−1

. With the help of the decimation procedures discussed in section 2.2.2,

is possible to construct a recursion algorithm to obtain any element of a matrix

inverse. In this case, we have

T̃
(k)

ij = T̃
(k−1)

ij −
T̃

(k−1)

i,k T̃
(k−1)

k,j

T̃
(k−1)

k,k

(3.40)

where k runs over incoherent channels, k ε {φ1...φN} and T̃
(k)

ij stands for the

matrix element i, j ε {L1...(k − 1)} of matrix T after the decimation of k

incoherent channels. If M is the number of fictitious probes, then all incoherent

channels are decimated after M steps of this recursion and we have[
T−1

]
L1,L1

=

[
T̃

(M)

L1,L1

]−1

(3.41)

and therefore the effective transmission T̃RL is given by,

T̃RL = −T̃
(M)

L1,L1 (3.42)

Although the negative sign in the last expression might seem odd, we recall

that in the T matrix sums over rows as well as over columns must be zero.

Since all non diagonal elements are of the same sign, diagonal elements must

have the opposite sign and this is reflected in the last expression. In this way,

the effective transmission probability of the DP model can be understood as

the coherent transmission TRL renormalized by the presence of the fictitious

leads.

We mention one final computational aspect that is described in much more

detail in Ref. [PM01]. The idea is to expand the inverse matrix T−1
φφ of Eq.

3.32 in series in the dephasing collisions,

T̃RL = TRN,L1 +
∑
i

TRN,iφgφiTφi,L1 +
∑
i

∑
j

TRN,iφgφiTφi,φjgφjTφj,L1 + ... (3.43)

This expression constitutes the basis for a perturbative method of calculating

the effective transmission probability.
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3.3.4 Coarse-grained D’Amato-Pastawski model

As discussed in section 3.3.2, in order to obtain the decoherent transmission

probability, the DP model requires the computation of all the direct transmis-

sions Tαi,βj that involve every pair of (fictitious or real) leads. Furthermore,

the block matrix Tφφ that incorporates all the incoherent contributions, which

is not sparse, must be inverted at the full computational cost. For large sys-

tems, this process requires large computational time since the dimension of this

matrix can grow considerably. For overcoming this difficulty, a coarse grained

version of DP model, the CGDP model, has been proposed by Daijiro Nozaki

[NBMC+].

Figure 3.7: Schematic representations of (a) D’Amato-Pastawski and (b)
Coarse-Grained D’Amato-Pastawski models.

In the CGDP approach, the fictitious leads of the DP model are considered

by groups. Probes within the same group must share the chemical potential and

the imposition of zero net current at fictitious probes is somehow relaxed. This

condition can be bypassed by single dephasing probes, but must be satisfied

by each group. The idea behind this “coarse grained” vision of the original

DP model is to reduce the number of available incoherent channels forcing
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contiguous sites to share them. A schematic representation of the CGDP and

the DP models is shown in Fig. 3.7.

In the CGDP model, N fictitious probes are divided into M groups. Each

of this groups is labeled as GPX for X = 1, ...,M . Then, the condition of no

net current at groups of fictitious probes can be expressed as:

0 = IGPX =
∑

i ∈ GPX

[
−(1/gφi)δµφi +

∑
βj

Tφi,βjδµβj

]
(3.44)

and we have also the condition that each group share the chemical potential:

δµφi = δµGPX for i ∈ GPX with X = 1, ...,M (3.45)

Although at first sight the notation may seem a little confusing, we are only

adding summations over probes that share group. Therefore, the equivalent of

the current balance equation of the DP model (Eq. 3.24), adopts the form:
−I
0
...
0

 =
2e

h
T̂


δµL1

δµGP1

...
δµGPM

 (3.46)

where we have chosen T̂ for the notation of the transmission probabilities matrix

of the CGDP model. The procedure used to obtain the decoherent transmission

is exactly the same as the one discussed in section 3.3.2, through Eqs. 3.26 and

3.32, except that the elements of T are related to those of T̂ by[
T̂
]
XY

=
∑
i∈GPX

∑
j∈GPY

[T]ij (3.47)

We can write, for example, the analogous of Eq. 3.32 for the CGDP model

as:

T̃RL = TRN,L1 +
N∑

i,j=1

TRN,φi

[
T̂−1
φφ

]
i,j
Tφj,L1 (3.48)

where T̂φφ represents the transmission probability matrix between groups of

probes. This is the coarse-grained version of Tφφ of Eq. 3.32. The advantage

of this approximation, of course, is the reduction of the dimension of the matrix

Tφφ (from N×N to M×M , N > M), which is the one that needs to be inverted.

The CGDP model can be an efficient estimate for the calculation of deco-

herent transport in weakly-coupled 1D systems. There are, as explained above,
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two approximations involved in the CGDP model. On one hand, probes within

the same group must share the same chemical potential. This is depicted in

Fig. 3.8, for two tight-binding chains of 1000 sites, one ordered and the other

with Anderson disorder, where the CGDP is obtained by grouping fictitious

probes every 100 sites. The resulting chemical potential at each site is shown

there. Since the overall potential drop does not change, the net linear response

Figure 3.8: Local chemical potentials for DP and CGDP models in a 1D
chain of 1000 sites: (a) Ordered chain, (b) Chain with diagonal disorder,
Ei ∈ [0, 1]. In both cases, CGDP is constructed with groups of 100 contiguous
probes.

current obtained should be exactly the same as the one given by the DP model.

On the other hand, the condition of zero net current by groups of probes grant

additional processes, and this is illustrated on Fig. 3.9. By allowing additional

paths in this one-electron picture, the resulting total transmission probability

in the CGDP scheme is higher. However, it should be noted that the mag-

nitude of the hopping parameter toward the fictitious probes in most cases is

not greater than kBT ∼ 0.0258eV, compared with ∼ 1eV of a typical coupling

between two sites in a tight-binding chain.

The CGDP model provides and interesting alternative to the original DP

model which under certain conditions gives an efficient approach to study of

electron decoherent transport through large molecules. The effective conduc-

tance could be calculated efficiently reducing computational time consider-

ably. This model would give an opportunity to investigate the fundamental

charge transporting process through the nanostructures such as organic semi-

conducting devices and DNAs, where system dimensions are very large and
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Figure 3.9: The electron traveling process in (a) entering into external
reservoir from one scattering probe and returning back to the molecular sys-
tem from another probe is not allowed in the conventional DP model.

dephasing effects play an important role. Anyway, the CGDP scheme grant pro-

cesses not allowed in the original DP model, where the phase-breaking probes

are local, and therefore can be thought as a different approach to the problem

of decoherence in electronic transport.

3.4 Summary

Quantum ballistic transport can be experimentally observed in metallic molec-

ular wires of nanometer lengths. Landauer’s picture of electronic transport

provides an elegant and accurate framework to understand and predict the

nature of this behavior. However, there are important departures from these

predictions which are the natural consequences of the limits of the coherent

description. Phase breaking processes are, of course, increasingly important as

the size of the system increases. In this way, environmental degrees of free-

dom might play a crucial role. The interaction of a quantum system with its

environment is reflected as a change in its dynamical behavior. The effect of

decoherence on quantum transport is usually expected to be negative, with

inhibitory effect on constructive interference of quantum waves propagation.

Although electronic coherent quantum transport in disordered materials leads

to destructive interference of electron wave function, and therefore to its lo-

calization, the role of decoherence in disordered systems might be dramatic,

since decoherent events are able to suppress interferences, which in this kind

of systems are destructive. In this case, this is reflected as increased quan-

tum transport efficiency due to system-environment interactions. Destruction
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of quantum coherence due to dephasing effects of the interaction with the en-

vironment might lead to an enhancement of transport excitations. Therefore,

the fundamentals of decoherent processes in transport and their consequences

are currently of intense interest.

While accepting a quantum description of their spectra and their ability

to propagate excitations, the leads are the ultimate source of irreversibly and

decoherence in a typical transport problem. Electrons leaving the leads toward

the sample are completely incoherent with the electrons coming from the other

leads. The key insight of Büttiker proposal that a voltage probe can be used

to model local dephasing events within Landauer’s picture was taken to a new

level by J. D’Amato and H. Pastawski. They presented an alternative way to

model the strength of dephasing events in order to examine the conductance

of a one-dimensional system. A nearest neighbor tight-binding Hamiltonian is

employed to simulate semi-infinite perfect wires attached to the sample. The

idea is that these perfect lateral leads represent local couplings of environmental

degrees of freedom with the sample, that can be treated within the Fermi

Golden Rule approximation. In this way, the effect of local dephasing events

is to introduce an imaginary part to the energy levels at the associated sample

sites. As an actual voltmeter, however, it should not extract net particles from

the system, so it returns a particle for each one collected. Hence, for every

process of “escape” from the coherent beam due to the interaction with the

environment, a fresh incoherent particle must be re-injected into the system.

This physical picture finds its formal justification when the system-environment

interactions are local and the environment spectrum is so broad that it becomes

instantaneous and energy independent.

The underlying idea of this approach is that, in several important systems,

complex many-body interactions result in the loss of the simple interferences of

a one-body description which is described by rate obtained from Fermi golden

rule. Because of charge conservation, this rate should be formally equivalent

to the coupling with a voltmeter. The consequence of this assumption is that

after having evaluated a matrix with transmission amplitudes among every

site in a sample, one still would need to evaluate its inverse. Despite of its

recognized conceptual value, the DP strategy was rarely implemented, prob-

ably because of its seemingly computational cost. Thus the main majority
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of the work to date ignored the role of inelasticity and decoherence even for

those applications where coherent transport should be safely ruled out. In this

Chapter, we developed the DP model to a degree where its efficiency is beyond

doubt and implement clear algorithms that could enable its widespread imple-

mentation in the great variety of systems that require it. In this way, a new

compact matricial notation was introduced allowing simple expressions for the

quantities of interest, and the strategies for the computational implementation

were discussed in extent. Furthermore, a new model which constitutes an ap-

proximation for the introduction of decoherence into electronic transport, the

coarse-grained D’Amato-Pastawski model, was introduced.
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4
On the nature of electronic transport in

intrinsically conducting polymers:
Polyaniline as a case study.

From the point of view of electronic materials, polymers are often considered

uninteresting, since they are typically insulators. Although this might be true

for saturated polymers, in which all the four carbon valence electrons are tied

up in covalent bonds, in conjugated polymers the situation is completely dif-

ferent. In the latter case, the sp2pz hybridization usually leads to one unpaired

electron per carbon site. As a consequence the electronic structure is deter-

mined by the chain symmetry, from which the result is that in such polymers,

electronic transport can be expected to exhibit semi-conducting or even metal-

lic properties [HKSS88]. The electronic structure of polymers and molecules

with conjugated orbitals can be conveniently described in terms of σ bonds

formed by overlap of hybrid sp2 orbitals and pz orbitals in adjacent carbons.

This description allows an useful parametrization of the electronic properties

in which the σ electrons provide the tight force for carbon bonds and the π

electrons are described by tight-binding methods.

In the late 1970’s, Alan MacDiarmid, Alan Heeger and Hideki Shirakawa

led the investigations which put conducting polymers at the center stage by

unraveling the transition from insulator to metal upon doping of polyacetylene

61
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[Hee01a]. The following decades, these materials encountered numerous tech-

nological applications [FSWL07, Con85]. As stressed by MacDiarmid at the

beginning of its Nobel lecture,

‘An organic polymer that possesses the electrical, magnetic, and
optical properties of a metal while retaining the mechanical proper-
ties, processability, etc. commonly associated with a conventional
polymer, is termed an “intrinsically conducting polymer” (ICP),
more commonly known as a “synthetic metal”. Its properties are
intrinsic to a doped form of the polymer. This class of polymer is
completely different from “conducting polymers” which are merely
a physical mixture of a non-conductive polymer with a conducting
material such as a metal or carbon powder distributed throughout
the material.’

Polyacetylene is a particularly important example, for, in this case, the π

band is half-filled, implying the possibility of metallic conductivity. Because of

the strong intra-chain bonding and weak inter-chain interactions, characteristic

of such polymers, the π electrons are delocalized principally along the polymer

chain. These systems are therefore electronically essentially one dimensional.

The most successful model for this system was developed by Su, Schrieffer

and Heeger (SSH) and involves a tight-binding scheme for the polymeric chain

with cyclic boundary conditions and neglecting electron-electron interactions

[SSH79]. The polymer chain is represented as a series of atom carbons, with σ

bonds represented as an effective spring constant between neighbor atoms. The

novelty of polyacetilene’s physical properties, e.g. transport through solitonic

excitations [SSH79], made it the most intensively studied conductive polymer.

However, the interest then shifted to polyanilines [Hee01b] and related com-

pounds because they are inexpensive, stable and easy to made.

The development of the field of conducting polymers has presented a strong

fundamental scientific challenge, and a the variety of conducting polymers and

their derivatives that have been discovered is huge. This field has been taken up

by a diverse community of scientists, with importance to a cross-disciplinary

section of researchers, chemists, electro-chemists, biochemists, experimental

and theoretical physicists, and electronic and electrical engineers and to im-

portant technological emerging applications of these materials [Mac01].
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4.1 Doping of conductive polymers

As emphatically remarked in their Nobel lectures by both, A. Heeger [Hee01a]

and A. MacDiarmid [Mac01], the process of charge injection onto conjugated,

semi-conducting macromolecular chains, commonly referred as “doping” by

analogy with the doping of inorganic semiconductors, is the responsible for the

wide variety of interesting and important features which distinguishes conduct-

ing polymers from all other types of polymers. This is an underlying central

concept with an unifying role for the field of conductive polymers. During

the doping process, an organic polymer, either an insulator or a semiconductor

with small electrical conductivity, is taken to a “metallic” or conducting regime.

There are dramatic changes in its electronic, magnetic, optical, and structural

properties which are accomplished by the controlled addition of known, usually

small non-stoichiometric quantities of chemical species. By adjusting arbitrarily

the doping level, it is possible to control the electrical conductivity of polymers

over the range from insulating (non-doped) to a highly conducting metallic

state (fully doped).

Reversible charge injection by “doping” can be introduced in several of

ways, among them by redox and acid-base chemistry. The redox doping in-

volves the partial addition (reduction) or removal (oxidation) of electrons to

or from the π system of the polymer backbone. Before the discovery of the

protonation doping by acid-base chemistry of polyaniline, during which the

number of electrons associated with the polymer chain does not change, the

doping of all conducting polymers had previously been accomplished by re-

dox doping [Mac01]. In the non redox doping of polyaniline, protonation by

acid-base chemistry leads to an internal redox reaction and the conversion from

semiconductor (the emeraldine base) to metal (the emeraldine salt).

The general hypothesis is that, in the doped state, the backbone of a con-

ducting polymer consists of a delocalized π system. On the other hand, in the

undoped state, the polymer may have a conjugated or a non-conjugated back-

bone. An example of the latter is polyaniline in its leuco-emeraldine base form,

which becomes truly conjugated only after oxidation doping. In the emeraldine

base form of polyaniline a non-conjugated structure becomes conjugated only

after protonic acid doping.
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4.2 Conjugated polymers and charged defects

The simplest conjugated polymer is trans-polyacetylene. Trans-polyacetylene

band structure was modeled in early 1980’s [Ric79, HKSS88]. The simplified

structure of this compound is shown schematically on Fig. 4.1. Due to the fact

that it has two geometric structures corresponding exactly to the same total

energy, given by the two possible directions of bond alternations, it is known as

a degenerate ground state conjugated polymer. In this case the carbon atoms are

equidistant and form a perfect one dimensional array, with strong intra-chain

bonding and weak inter-chain interactions. The π band, with one unpaired

electron per carbon site, is half-filled. This implies that this material should

behave as a 1D metal, with the π electrons principally delocalized along the

polymer chain.

Figure 4.1: Structure of trans-polyacetylene shown schematically.

A theoretical observation due to Peierls [Pei55] states that a one dimensional

equally spaced chain with one electron per ion is unstable. Atomic positions

change so that the perfect order of the crystal lattice is broken. In other words,

quasi-one dimensional metals tend to distort spontaneously and become semi-

conductors. When the band is half-filled, the tendency towards spontaneous

symmetric breaking is particularly strong, and the distortion leads to a pairing

of successive sites along the chain. This site pairing is known as “dimerization”,

and opens a gap in the Fermi surface lowering the energy of the occupied states

and stabilizing the lattice distortion. The fundamental excitations of the poly-

mer chain with a Peierls distortion and a half filled energy band are known

as phase kinks, or solitons, in the bond alternation pattern of the polymer, as

shown in Fig. 4.2. By adding electrons along the polymer backbone, by reduc-

tion doping, these soliton defects are formed modifying its optical properties,

with new allowed optical transitions. The existence of solitons is closely related

with the electronic ground state degeneration, since they allow the polymer to
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Figure 4.2: Soliton defect of a trans-polyacetylene chain.

conserve the minimum energy state at both sides of the defect. Solitons are

not localized on one, but spread over several carbons.

In polymers with non degenerated ground state, as polyaniline (see Fig.

4.3), the two possible bond alternation directions do not have equivalent energy.

In this kind of materials, a soliton can not be a stable fundamental excitation

of the system. Charge excitations in polymers with non degenerate ground

state are “polarons” and “bipolarons”. Polarons are localized electronic states

coupled with lattice distortions and bipolarons consists of two confined localized

electrons also coupled with phonons. The bipolarons are thus spin-less. The

formation of a bipolaron implies that the energy gained by the interaction

with the lattice is larger than the Coulomb repulsion between the two confined

charges of same sign.

Figure 4.3: The emeraldine base form of PAni is a non degenerate ground
state polymer.

The high conductivity increase observed upon doping organic polymers is

not simply the result of electrons removed from the top of the valence band

or added to the bottom of the conduction band, in analogy to the mechanism

of generation of charge carriers in doped inorganic semiconductors. Charge

defect states are placed inside the initial band gaps, where the valence band

remains full while the conduction band empty [BS85]. In simplified picture, the

interaction of polymer defects with all its neighbors leads to the formation of

new electronic bands that are placed inside the initial gap. In this way, solitonic

states in polyacetylene typically have energies of order of the band gap center

[SSH79]. Since polarons can be thought as a pair of confined solitons (so that
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there is no extra bond alternation after the formation of the defect), their

energies can be pictured as a result from a level splitting

The nature of the defect band formed inside the gap is of enormous impor-

tance, since these materials are rather amorphous and inhomogeneous. The ef-

fect of disorder (the importance of which can be determined from experiments)

need therefore to be properly taken into account. Strong disorder among defect

formation is a natural side effect of the polymerization and doping processes,

and as a consequence it should lead to a localized regime in which charge defects

form pseudo bands of confined states. Within this localized regime, metallic

transport properties of conductive polymers can not be properly explained,

since this leads to an exponential decay of the conductance (as discussed in

section 2.3.1). As a result, numerous modern theoretical studies of the electri-

cal properties of conductive polymers, inspired in the Landauer picture, have

to resort to lattice models with exaggerated symmetries to account for the high

conductivity properties of these kind of materials. As we will attempt to show

in the following sections, the coherent picture of electron transport in conduc-

tive polymers is unjustified, since quantum decoherence, through the effects of

dephasing events, is of crucial importance and might lead to a dramatic change

in the expected conductance and other related properties.

4.3 Polyanilines

The monomer aniline was obtained for the first time in 1826 by Otto Unverdor-

ben from a dry and destructive distillation of natural vegetable indigo and was

called Krystallin because it produced well formed crystalline salts with acids

[Ngu07]. In 1836 it was rediscovered by F. Runge but named kyanol because of

the appearance of a bright blue color whenever it was mixed with a bleaching

powder [Ngu07]. Only a few years later, in 1840, Carl Fritzsche obtained a

colorless oil from indigo, called it aniline (from the Arabic al-nil, which means

indigo), and oxidized it to polyaniline (PAni). Although it is believed that this

was the oldest paper of polyaniline, the first definitive report did not occur

until 1862, by Henry Letheby (see Fig. 4.4). From the early 20th century on,

occasional reports about the structure of PAni appeared in the literature. By

the 1960s, it was recognized that the oxidation product of aniline was a linear
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Figure 4.4: First definitive report of polyaniline, in 1862, by Henry Letheby.
“ On the production of a blue substance by the electrolysis of sulphate of
aniline” (Journal of the Chemical Society Volume 15, pgs. 161-163).

oligomer or polymer, and the effect of acid on its conductivity had been discov-

ered [Sco10]. Polyaniline is one of the oldest artificial conducting polymers and

it stands out among organic compounds due to its high electrical conductivity.

Figure 4.5: Main polyaniline structures n+m = 1, x = degree of polymer-
ization.

Polymerized from the aniline monomer, polyaniline, can be found in one of

three idealized oxidation states, represented in Fig. 4.5: Leucoemeraldine, with

n = 1, m = 0 is the fully reduced state. Pernigraniline is the fully oxidized

state, with n = 0, m = 1, and emeraldine, with n = m = 0.5, often referred

to as emeraldine base (EB). Emeraldine base is regarded as the most useful

form of polyaniline due to its high stability at room temperature and the fact



68
On the nature of electronic transport in intrinsically conducting polymers:

Polyaniline as a case study.

that, upon doping with acid, the resulting emeraldine salt form of polyaniline

is electrically conducting.

Figure 4.6: Three different forms of PAni: (a) Emeraldine base, and two
lattice models after a doping process, (b) Bipolaron, (c) Polaron

In spite of its long history, PAni became a new paradigm for polymeric

conductors as it shows a dramatic increase in conductivity either by acidic

treatment or by electrochemical oxidation. However, the physical basis of its

transport mechanism and of the insulator-metal transition proved more elu-

sive. Starting from a semi-conducting PAni in an emeraldine base form (Fig.

4.6-a), protonation leads to an internal redox reaction that converts it into a

metal (emeraldine salt). In order to account for the highly conducting nature

of this doped polymer there are two well established models that imply two

different lattice arrangements. These are associated to the appearance of two

possible charged defects upon protonation. On one hand, the polaronic lattice

(PL), which describes a lattice of Nitrogen bridged benzene rings that becomes

fully periodic in the case of 100% of protonation. Even when one of every

two Nitrogens is in the form N+ supporting a polaron, the corresponding pz

electrons form a collective band of Bloch extended states which, being half-

filled, behaves as a metal (Fig. 4.6-c). On the other hand, in a crystalline

bipolaronic lattice (BL) the protonated quinoid units (NH+ = Q = NH+)

are bridged by three benzene rings. The electron tunneling between neighbor

NH+ units, leads to a bonding basic unit that justifies a bipolaronic descrip-

tion. Natural disorder appears through the fluctuation of the bridge length
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(Fig. 4.6-b). Hence, while further tunneling between units could be possible,

within the standard wisdom, disorder ensures localized eigenstates that prevent

propagation[And78, KM93]. Galvão et al. [GdSL+89] concluded that disorder

should be an essential ingredient in these systems. They made molecular or-

bitals calculations of the electronic structure of PAni chains which showed that

disorder pulls the Fermi energy down through the localized states of the valence

band. Later on, Wu and Phillips [WP91] agreed with Galvão in the role of the

protonation, further showing that induced disorder can be identified with a

Random Dimer Model (RDM) [DWP90, Phi03]. By adopting Landauer’s view

that “conductance is transmission” [IL99], the current motto of molecular elec-

tronics [JGA00, NR03], it was proved that the short range order of the RDM

produces a set of delocalized or propagating states [DWP90, SGC91, Phi03].

This opened the possibility that Fermi energy might lie in a delocalized region.

However, Farchioni et al. [FVG99], by using an ab initio parametrization,

made a detailed tight-binding based study of PAni-HCl comparing the BL and

PL models [VFG01]. They showed that even when the BL model exhibits ex-

tended states, its Fermi energy is far from the high transmission regions. These

ideas seemed to support the PL as the only PAni emeraldine salt capable of

metallic behavior. Indeed, the observation of Pauli susceptibility on conduct-

ing samples was attributed to extended states in a polaronic lattice [SHC94].

However, first-principle energy stability calculations point into the opposite di-

rection. A BL is by far the more stable energy configuration when compared

to a PL [CCFG02] or its variants [VS08]. A picture that could unify these

conclusions is that of segregated metallic (PL) regions and insulating (BL)

domains. Transport would be mediated by hopping between metallic fibers

in the polymer backbone [GRME87, EGZ+87]. However, it is not clear that

such structures could give a lower free energy than a pure BL one. Besides, in

this model disordered islands would constitute the conductance bottle-neck for

which a microscopic description is lacking. Further emphasizing the role of BL,

it was recently suggested that susceptibility experiments could not be used to

rule out the bipolaronic structure from conducting samples. This is because an

internal chemical redox equilibrium between bipolaronic structures and a num-

ber of polaronic defects with Curie susceptibility, should manifest as an overall

susceptibility whose temperature dependence would be indistinguishable from
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the Pauli paramagnetism [PND05]. In summary, the early works associate the

conducting state of PAni with periodic order because the existence of extended

Bloch eigenstates is a condition for coherent propagation.

In order to account for the surprising frequency dependence of the dielectric

constant and of the conductivity observed on conjugated polymers [SBE+87],

Prigodin and Epstein [PE01, PE03] suggested a new mechanism of charge trans-

port. They argued that the metallic state of polymers like PAni is sustained

by a granular picture of transport where metallic islands, separated by amor-

phous material, interact through intra-chain resonant tunneling events in a

quasi 1-D variable range hopping theory. However, after an energy scale anal-

ysis, Martens et al. [MB04, Mar06] arrived to the conclusion that intra-chain

charge carrier delocalization should extend over several grains. In consequence,

there is some critical mechanism that governs the formation of truly delocal-

ized states. They propose a quasi 1-D model of weakly coupled disordered

chains with phase-breaking events that are modeled in the Landauer-Büttiker

framework. In this case the 1-D Schrödinger wave function picture for a sin-

gle chain remains essentially correct with the additions of a finite lifetime, i.e.

decoherence, due to dephasing events. Their source can be multiple, ranging

from electron-phonon coupling [PFM02, FTPM01] to through-space electron-

electron interactions between charge fluctuations [DÁLP07], or even a weak

inter-chain coupling [PU98]. Increasing the inter-chain coupling eventually will

give rise to a transition from a quasi 1-D to a fully 3-D behavior as demon-

strated by numerical simulations [Sta95, MRSU00]. However, for conjugated

polymers such as PAni, the inter-chain charge transfer is weak and a 1-D model

that includes decoherence should be a good approximation. Within this frame-

work, Martens et al. invoke dimensional arguments that explain the anoma-

lous frequency dependence of the dielectric constant and conductivity of several

polymers. However, their conclusions are based on estimations of the relevant

system quantities.

4.4 Preliminary NMR experiments

We have performed preliminary Nuclear Magnetic Resonance (NMR) experi-

ments on several PAni samples. Basic theoretical aspects of NMR are sum-
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marized on appendix B. Polyanilines used in this study were synthesized by

conventional methods at the chemical physics department at Facultad de Cien-

cias Qúımicas, Universidad Nacional de Córdoba, in the group of Rodrigo Igle-

sias. PAni emeraldine base, which is a semiconductor, exhibits a green/copper-

colored appearance. After protonation, it becomes of a strong blue color. Our

sample pills are shown on Fig. 4.7. Up to now in this work, several samples

have been measured with different dopant concentrations, from PAni emeral-

dine base up to highly conducting PAni-HCl.

Figure 4.7: Our PAni samples. Green/copper-colored corresponds to PAni-
EB, while the blue colored is the highly doped PAni-HCl sample.

All solid state NMR experiments were performed on dry powder samples

by using a BRUKER AVANCE II spectrometer operating at 300.13 MHz for

protons and 75.46 MHz for 13C. In Fig. 4.9 13C spectra of four PAni-HCl

samples are shown. Dopant concentrations and DC resistances of the samples

are shown in the table of Fig. 4.8.

Figure 4.8: Resistivity as a function of HCl concentration on several doped
PAni samples.
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In all cases the Cross-Polarization mixing time was 2ms, the magic angle

spinning speed was 8kHz and the number of scans acquired, 1600. In agreement

with previously published 13C measurements [KCRM88], for lower dopant con-

centrations the several spectra consist of three main peaks with a rich structure.

In Fig. 4.9 it can be seen that there is a slight displacement of the main peak

(120Hz = 1,6ppm aprox.) in the highly conducting sample. Meanwhile, the

other peaks became totally broadened, losing their characteristic features. In
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Figure 4.9: Initial NMR experiments. 13C measurements for PAni-HCl
samples with different dopant concentrations.

general, we are able to observe that the quality of the signal decreases with

higher dopant concentrations, until a critical value is reached, where the spec-

trum suffers an abrupt change. This results in a single 60ppm inhomogeneously

broadened unresolved resonance, in agreement with the literature.

Our goal for the next step of our research is to contribute to the develop-

ment of experimental strategies that allow the identification of the processes

that contribute to the decoherence in the dynamics of charge and spin excita-

tions by means of solid state NMR techniques. This is necessary to confirm

our recent theoretical results on the metal-insulator transition for conductive

polymers, where we propose that decoherence mechanisms play a substantial

role in the appearance of the conducting phase. This is due to charge fluc-

tuations associated with tunneling between polymer chains and ultimately to
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electron-phonon processes. In the case of PAni, charge propagation along each

polymer chain, in absence of doping, is blocked by those nitrogen sites with sp3

structure (in which the non-bonded orbital contains a lone pair of electrons)

connected to benzene rings. By increasing the doping, these nitrogens adopt

sp2 structures with a pz orbital that participates in the band of conjugated dou-

ble bonds. It is well known that the Fermi level is located in a band region of

localized states of coherent interference due to the disorder. However, accord-

ing to our hypothesis, decoherence mechanisms would enable charge mobility.

This is discussed in the following section.

4.5 Decoherent electronic transport in PAni

In the following sections of the chapter, we attempt to elucidate in some de-

tail the nature of conductivity of polymers by taking the PAni bipolaron lat-

tice structure as the case study. For that purpose, we use realistic ab initio

based tight-binding parameters which can be easily reduced to the minimal

parametrization of the D’Amato-Pastawski model. This provides a simple so-

lution to the otherwise complex Keldysh formulation of transport. Indeed, this

strategy was applied before to PAni by Maschke [MS94] and Schreiber [HS97].

However, they focused on already conducting PAni polaronic chains that are

affected by decoherence and/or inter-chain coupling. We show that quantum

decoherence can lead to a dramatic change in the expected transport properties

for the bipolaron lattice structure of PAni.

4.5.1 Model Hamiltonian

We consider a fully protonated BL, which we expect to correspond to the highly

conducting emeraldine salt. By decimation of the benzenoid rings as it is shown

in figure 4.10, we reduce the PAni emeraldine salt chain to one-dimensional

effective system [LPD90]. Each ring is replaced by the proper renormalized

sites at the place of the para-Carbon atoms.

The sample Hamiltonian results:

ĤS =
N∑
j=1

(
Ej ĉ

+
j ĉj + Vj ĉ

+
j ĉj+1 + Vj ĉ

+
j+1ĉj

)
. (4.1)
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Figure 4.10: Schematic representation of benzenoid rings decimated to
obtain equivalent renormalized units in one dimension. Incoherent channels
of D’Amato-Pastawski model also shown.

When j = 3s + 1 with s positive integer, Ej is the Nitrogen pz-orbital energy

and Vj is the π binding energy (hopping) between the nitrogen and the para-C

pz-orbitals. When j = 3s and j = 3s− 1 we have the renormalized parameters

for para-C pz-orbitals:

Vj =
VooV

2
po

(ε− Eo)(ε− Eo − V 2
oo

ε−Eo )
, (4.2)

and

Ej = Ep +
V 2
po

ε− Eo − V 2
oo

ε−Eo

, (4.3)

where Eo and Ep are bare site energies for electrons in the pz-orbitals of ortho-

C and para-C respectively; Voo is the hopping between ortho-C and Vpo is the

hopping between a para-C and ortho-C. In this work we use the tight binding

parametrization of Vignolo et al. [VFG01] for the bipolaron lattice model of

base-emeraldine doped with HCl.

We will consider decoherent sources on effective electron pz-orbitals sites

by including a constant imaginary correction to the site energy as in Eq. 3.15.

This is the most convenient choice for computational purposes. A first princi-

ples calculation of this imaginary correction is beyond the scope of this work.

Its complexity lying on the multiple effects that must be considered. In the ap-

pendix we discuss in certain detail two mechanisms: inter-chain tunneling and



4.5 Decoherent electronic transport in PAni 75

the effect of torsional modes on the crucial π bonds. However, it is enough to

resort to dimensional arguments based on spontaneous symmetry breaking of

the quantum coherent state [SGCS97]. The reasoning takes into account that

quantum bosonic modes with energies ≤ kBT should be occupied by many

quanta, indicating that Γφ should be of the order of kBT [Mar06]. In accor-

dance with this general framework, Rebentrost et al. obtain a comparable

estimation for Γφ for excitons in photosynthetic complexes interacting with a

phonon bath [RMK+09]. Indeed, experiments on DNA strands fits Γφ of this

order using the DP model [LY01]. Thus, we fix an effective Γ̃φ on each effective

site such that the energy uncertainty per orbital site is Γφ = kBT . We will see

in the next section that small variations of the precise value of Γφ have little

impact on conductance.

Right and left leads are described by Eq. 6.8 choosing E0 = 0 and V = 5eV

to observe the appropriate bandwidth of interest [−10eV, 10eV]. Furthermore,

we calculated the Fermi energy by diagonalizing the exact tight-binding Hamil-

tonian for different configurations. For all possible chain arrangements, the

Fermi level is nearly the same, around the average.

4.5.2 Sources for decoherent events in polymers

There are many sources of dephasing events for electrons in conductive poly-

mers, from electron-electron interactions, electron-phonon couplings and inter-

chain couplings. In this section we address two of the most representative of

them, inspired in the particular problem of electronic transport in PAni. More-

over, a detailed treatment of these specific models allows us to lighten their

differences and similarities with the well-known Marcus-Hush theory [Mar93]

for vibration-assisted electron transfer, which is discussed in Appendix C.

4.5.2.1 Torsional Modes for pz orbitals

Certainly, vibrational degrees of motion are natural sources of decoherence.

We analyze them by introducing a simple model for electron-phonon couplings

that enables the evaluation of the corresponding contribution to Γφ. From the

geometrical inspection of the molecular structure, it is obvious that torsional

strains on benzenoid rings disrupt π bonds between pz orbitals of para-Carbons

and Nitrogens. Their overlap depends on the angle θ between the orbital axes.
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As a result, the corrected hopping energies can be written as V = V 0cos(θ) '
V 0(1− θ2/2). The natural frequency ωθ of this torsional motion determine the

vibrational energy of benzenoid rings. A self consistent description requires

that the restoring force Iω2
θθ, written in terms of the moment of inertia I of

the benzenoid ring, should coincide with the net change in the electronic energy

described by the tight-binding model. In this case it yields

V 0 = Iω2
θ (4.4)

leading to ~ωθ ' 2× 10−2eV < kBTR.

In terms of the second quantization operators b̂ =
√
Iωθ/2~(θ + iθ̇/ωθ)

and b̂+ =
√
Iωθ/2~(θ − iθ̇/ωθθ) we get the perturbation given by the coupling

Hamiltonian:

Ĥel−ph = −1
4
~ωθ

(
b̂+ + b̂

)2

(δj′,j + δj′,j−1)× (4.5)∑
j′

(
ĉ+
j′ ĉj′+1 + ĉ+

j′+1ĉj′
)

(4.6)

A Fock-space representation of this interaction Hamiltonian is represented

in Fig. 4.11. Notice the similarities and differences with the representation

of the linear electron-phonon interaction discussed in Ref. [PFM02, FTPM01]

and the inter-chain coupling. In the present case, the effect of the perturbation

on the state on a local site j can evaluated with the FGR:

1

τj(ε)
=

∑
n

P (n)

[
2π

~
∑
j′,n′

∣∣∣〈j, n| Ĥel−ph |j′, n′〉
∣∣∣2]× (4.7)

δ [(ε+ n~ωθ)− (Ej′ + n′~ωθ)] (4.8)

where |j, n〉 = 1√
n!

(
b̂+
)n
ĉ+
j |∅〉 here |∅〉 is the electron and phonon vacuum and

n label the number of vibrational quantums whose thermal probability is P (n).

In the case of interest, we consider electrons at the Fermi level, EF . Thus, after

energy integration and using the thermal average 〈〈n〉〉 ≡ n̄ =
∑
P (n)n for the

expectation number of n, the decay rate becomes:

1

τj
= π

16~(~ωθ)2{(n̄2 + 4n̄+ 2)N(EF − 2~ωθ) (4.9)

+2n̄2N(EF + 2~ωθ) + (8n̄2 + 8n̄+ 1)N(EF )} (4.10)



4.5 Decoherent electronic transport in PAni 77

Figure 4.11: Fock-space representation of state |j, n〉 and its surroundings.
The middle row represents electronic states with n phonons in the PAni
chain. Lower and upper rows represent the same chain but with different
numbers of phonons. Black dotted lines are electron-phonon couplings.

We must highlight that the quadratic dependence on displacement in the

electron-phonon interaction is the responsible for the selection rules that can

be appreciated in the last equation. Electrons are allowed to interact with

environment only by absorbing or emitting phonon pairs. This is shown in

Fig. 4.11. However, without much loss of generality that kBT � ~ωθ, so it is

possible to approximate EF ≈ EF ± 2~ωθ and n̄ ≈ kBT
~ωθ

. As a result,

1

τj
=

π

8~
(~ωθ)2N(EF )

[
12

(
kBT

~ωθ

)2

+ 12

(
kBT

~ωθ

)
+ 3

]
(4.11)

The evaluation of the corresponding Γφ becomes trivial in this high tem-

perature regime,

Γφ =
~
2

1

τj
=

3π

4
N(EF )(kBT )2. (4.12)

Here, it is crucial to notice that for highly localized states the imaginary

self energy results mainly from the decoherent process described above. Thus

N(ε) ≈ 1

π

Γφ
(ε− E0)2 + Γ2

φ

(4.13)

≈ 1/πΓφ. (4.14)

Therefore, from Eq. 4.12,

Γφ ∼ kBT. (4.15)
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Thus, any low frequency modes yielding a quadratic dependence of the elec-

tronic energy on the displacement, which can be more general than expected,

leads to an important consequence: for localized regime, it would tend to pro-

vide an energy uncertainty (decoherence) of the order of the thermal energy.

A similar behavior remains valid if one relaxes the localization requirement to

that of a sharply peaked resonance. A simple example is a sharp resonance in

a one dimensional system [RFSO+09] in which the local density of states could

be written:

N(ε) = −Im

{
1

π

1

ε− Ej + iΓφ − α(∆− iΓbulk)

}
, (4.16)

where αΓbulk represent the escape to the rest of the tight-binding chain and

α∆ gives the energy shift due the presence of the other sites. The parameter α

gives the strength of the coupling with the rest of the chain. For ε within the

band edges, this equation results:

N(ε) =
1

πΓ

1 + 2αΓbulk/Γ(
ε−Ej−2α∆

Γ

)2

+ (1 + 2αΓbulk/Γ)2
, (4.17)

which in the limit of large Γ compared with αΓbulk, gives N(ε) ≈ 1/πΓ. This

limit is achieved at room temperature whenever α� 1.

4.5.2.2 Inter-chain hopping

We start considering the effect of VX , an inter-chain hopping at site j. Any

neighboring chain can act as an “environment” for an electron at this site.

This is because an electron jumping into a side chain (see Fig. 4.12) has

two options: 1) to escape towards this alternative propagation channel and

never return. This is obviously decoherent as it can not interfere any longer

with the main pathway[FPM06, BcvT95, BcvTBac99, AMPB94]. 2) to return

after having an ergodic walk on the side chain. In this case it is just the

excessive amount of interferences and anti-resonances involved that leads to a

decoherent description [FPM06]. Each node in the plot corresponds to a multi-

chain electronic state. Notice that the interaction structure looks the same as

in the local phonon picture discussed in Ref. [PFM02, FTPM01]. Using Eq.

6.8, we have for self-energy ΣX
j describing this coupling:
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Figure 4.12: Inter-chain hopping at site j. States are written in Dirac
notation including quantum numbers s which label different PAni chains.
This representation illustrates the similarity with Fock-space representation
of the electron-phonon system.

ΣX
j =

|VX |2

ε− (Ej − iη)− Σj

=

(
VX
Vj,j+1

)2

Σj, (4.18)

where Ej, Vj,j+1are site and hopping strength within the chain. As usual, η

is an finitesimal imaginary part of the local energy (see section 2.2.4). Thus

the inter-chain rate can be expressed as ΓXφ =
(

VX
Vj,j+1

)2

Γj where Γj and the

imaginary part of total self energies at site j. We may evaluate an estimate for

the typical Γj by disregarding localization and considering that the side chain

is an infinite PAni strand and using the representative values of E ' −0.3eV

for and site energy and V ' −3.6eV for intra-chain π bonds. Thus,

ΓXj =

(
VX

V

)2
√
V

2 −
(
ε− E

2

)2

. (4.19)

We might wonder which range of values would be required from VX to yield

an energy uncertainty of the order ΓX ' kBTR where kBTR stands for room

temperature energy. The use of the discussed values yields VX < V /12. While

we can not ensure that this is the case, in every site of the PAni chain, uncer-

tainty energy associated with inter-chain coupling is not too far below thermal

energy and, therefore, it is not negligible. Indeed, there could be sites in which

inter-chain couplings are stronger, and they would contribute substantially to

the decay of local states.
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4.5.3 Numerical Results

We have performed a detailed analysis of the conductance properties of the BL

model of polyaniline emeraldine salt. Due to the fact that, according to experi-

mental data, PAni chains seem to have an average length of 400 rings [KSZ+05],

we have taken that number in our numerical calculations. However, it should

be noted that our results do not depend critically on this parameter. We first

calculated the coherent transmission probability as a function of energy for a

set of chain configurations drawn from the representative ensemble. Results are

in full agreement with the those of Farchioni et al. [VFG01, FVG99, FGP96]

and evidence the mobility edges induced by correlated disorder in this 1-D sys-

tem [DWP90]. While there is an appreciable density of states at the Fermi

energy, it corresponds to localized states. Indeed, according to Fig. 4.13-a, the

Fermi energy is far away from the extended state region. Fig. 4.13-b shows the

drastic differences in conductance once that decoherent processes are taken into

account. Conductance at the Fermi energy now becomes appreciable for any

configuration. These results show that metallic transport is possible within a

purely BL model through an environment-assisted transport [RMK+09]. Even

within a model of perfectly conducting PL islands bridged by BL strands, the

calculated chains can be taken as representative of such transport bottleneck.

One expects that small differences in quinoid ring concentrations would appear

due to natural fluctuations on the oxidation degree previous to doping. In Fig.

4.14 we show the resultant conductance for various quinoid concentrations and

found no significant changes in transport.

We also studied the behavior of total conductance as a function of decoher-

ence rate. In accordance with recent works [RMK+09, MRLA08], three regimes

can be appreciated. Starting from T=0K, as the temperature rises dephasing

events become more successful in the destruction of localization caused by co-

herent interference at the Fermi energy, rising the total conductance of the

system. In this regime, transport rate increases as the energy uncertainty asso-

ciated with temperature is increased. However, there is a Γφ value for which the

conductance is maximal. If the temperature is increased further, the associated

energy uncertainty becomes larger than the terms of the system Hamiltonian

(characteristic hopping and site energies), and the decoherent process now are

able to suppress transport. This is commonly known in the literature as the
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Figure 4.13: Conductance for both: (a) T=0K, and (b) T=300K according
to DP model for a 400 rings long PAni-HCl chain. We also show the T=0K
Density of state for comparison purposes.

quantum Zeno effect. In Fig. 4.15 we show our results for the dependence

of total conductance with Γφ, in which the three regimes above described are

clearly seen. The thermal energy, in this case, lies on an area of great influence

on the total conductance of this system, and therefore decoherent processes

should not be neglected. At room temperatures, the PAni BL is safely placed

in the range of thermally assisted transport, and it is clear from the figure that

small variations in the exact value of Γφ do not alter the outcome significantly

(note the log-log scale).
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Figure 4.14: Fluctuations in total conductance at T=300K in the main
peak around the Fermi energy with the fraction of quinoid rings along the
chain.
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Figure 4.15: Conductance for a 400 rings long PAni-HCl chain as a func-
tion of Γφ. The value for Γφ at T = 300K also shown in dash line.
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Figure 4.16: Total conductance at T=300K as a function of the chain
large. As an inset, it is shown the scale difference between coherent and
total conductance.

We studied the dependence of conductance on the chain length. The re-

sults are shown in Fig. 4.16. With the exception of some fluctuations at

short lengths, conductance at T=300K decreases as the reciprocal of the chain

length, as expected for an Ohmic system. The fitting gives G/ (2e2/h) =

1/ (20, 6NR), where NR is the number of rings of the chain. The log scale

in the inset figure emphasizes the drastic difference between the full con-

ductance and that restricted to coherent tunneling processes. The coherent

conductance decays exponentially as expected for a one dimensional disor-

dered system [MK81, PSW85]. In our case the localization length is small,

G/ (2e2/h) = 22×103e−0.53NR , which implies that even for very short disordered

polymer chains, transport does not take place unless decoherence processes are

involved. Indeed, conductance decays a factor 1/3 for every two rings. There-

fore, in a model of islands as that mentioned in the introduction, destruction

of localization by decoherence would have a fundamental role. However, our

results go further and evidence that even a fully BL PAni would sustain strong

electronic transport.

Fig. 4.17 shows the net current through 50 random chain configurations of

bipolaronic PAni. The current was evaluated by using Eq. 3.33 for symmet-

ric voltages at room temperature. As can be seen, the behavior of different
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Figure 4.17: Average current (black line) and currents for 50 different
configurations (shadow lines) are shown.

chain configurations is very similar and close to the linear regime. All chain

configurations exhibit an appreciable conductance with an average value of

7, 7x10−9Ω−1. Taking the PAni-HCl density as 1, 329g/cm3 [SG02] we get a

conductivity of σ = 81Ω−1cm−1. This result is slightly higher than the experi-

mental ones, 1Ω−1cm−1 . σ . 20Ω−1cm−1 [ZGW+97, KC99, LCW+03] which

is reasonable because in the calculation of the conductivity we are considering

the conductance of the ideal case of chains directly connected to the leads.

4.6 Summary

In this work we have discussed electron conductance in a doped PAni. We

show that the PAni ground state configuration, the BL, has high conductance

even in presence of disorder provided that decoherent processes are included.

This is done without leaving the convenient a là Landauer approach by using

the generalization introduced by D’Amato and Pastawski [DP90] where an

effective transmission accounts for decoherent processes. While our formulation

accepts further improvements, it provides an answer from the robust description

of Keldysh formalism within a minimal parametrization. Roughly speaking,

decoherent processes split each chain into a series of portions whose length
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is given by the decoherence length Lφ [PWA95]. These define the elemental

conductivities from which the sample’s Ohmic transport builds on.

For many years, it has been assumed that conduction of polyanilines is in-

separably linked to the existence of a polaronic crystalline structure. However,

although our main intention is qualitative, we showed that decoherent processes

are able to give appreciable metallic conduction in the more entropically favor-

able bipolaronic lattice. For this system, the uncertainty of energy associated

with thermal processes cannot be neglected in the study of conductance, since

kBT falls in a region in which the interplay between incoherent and coherent

dynamics results in an increased efficiency of electron transport. One might

then speculate that only when the thermal energy scale becomes smaller than

the Coulomb energy of the localized states, one would actually start to notice

a qualitative difference with an ideal 1-D metal.

The robustness of the results obtained is evident by noting that they nei-

ther depend on variations in the oxidation degree of PAni prior to the doping

process, nor on the particular arrangement of quinoid rings along the chain, or

on the exact value of the energy uncertainty associated to Γφ. This justifies

the fact that good conducting properties do not depend much on the purity of

the emeraldine base so that small displacements toward the leucoemeraldine or

pernigraniline are acceptable. The evaluation presented in the appendix show

that, even when inter-chain coupling can contribute appreciably to conductiv-

ity, the coupling between the pz bonds with torsional degrees of freedom is

strong enough to provide almost all the required decoherence. This hypothesis

seems consistent with the experiments that show that adding residues that re-

strict the torsional motion would also diminish the conductivity as compared

with the unmodified bipolaronic lattice [HHY+01, HLHY03, SAM+04].

We do not attempt to rule out the presence of phase segregation into metallic

polaronic islands and “insulating” bipolaronic domains. However, these last

strands constitute the bottle-neck where thermal decoherent processes activate

the conductivity. Moreover, our results go further ahead and evidence that

bipolaronic chains can sustain electronic transport by themselves. In fact,

based in our simulations we can estimate bulk conductivity for these chains

and arrive to a remarkably good value as compared with experimental data.
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5
Decoherent transport on multi-terminal

devices: Efficient algorithms and
applications.

Both the understanding of the effects of quantum decoherence and even its

proper description in the context of transport problems are still open research

subjects in modern physics. However, our expectation is that the methodology

introduced in previous chapters, despite its inherent limitations, will provide

simple but powerful insight into this blooming field. Perhaps one of the most

important restrictions, which in turn is a desirable simplifying feature for any

initial study of this subject, is the one-particle picture assumed in the model

description. The underlying idea of this approach is that, in several impor-

tant systems, complex many-body interactions result in the loss of the simple

interferences of a one-body description.

However, in some cases there are certain many-body interactions suffered

by carriers in electronic devices that can not be treated within the simple Fermi

golden rule approximation, providing extra degrees of freedom that must be ac-

counted explicitly. Fortunately many times, in some approximation, this extra

degrees of freedom can be mapped into the one-electron picture as extended

topological spaces, transferring the complexity of the many-body interactions

to the geometry of the one-electron transport problem. The extension of the
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Landauer’s picture of transport for the study of decoherence effects in multi-

terminal devices, in this sense, provides a starting point.

This chapter is devoted to the discussion of electronic transport on multi-

terminal molecular devices, in the presence of decoherent events, in terms of

a simple generalization of the D’Amato-Pastawski model. The review of the

computational approach is also presented with particular emphasis on efficient

recursive algorithms for solving this kind of problems. Some meaningful phys-

ical examples of its application are also presented and discussed: the case of

electron-phonon interactions, Floquet theory applied to simple periodic time-

dependent Hamiltonians and decoherent transport in carbon nanotubes..

5.1 Matrix continued fractions

Landauer’s picture of electronic transport has almost no rival in the evaluation

of quantum coherent electronic transport at the nanoscale [IL99]. As shown

in section 2.1, in its simplest form conductance is determined by the coher-

ent transmission probability between two one-dimensional electrodes acting as

current source and drain. A natural extension developed by Büttiker [B8̈6a],

discussed in section 2.1.2, involved the application of the Kirchhoff laws, for a

system composed by many channels, which can be associated not only to cur-

rent leads but also to voltage probes. In the latter case, one must evaluate a

self-consistent non-equilibrium chemical potential that ensures the current can-

cellation at the voltmeter, as explained throughout the chapter 3. Büttiker’s

initial observation that a voltage probe implies a classical measurement and

hence could be associated to a decoherence source, was further developed into

a Hamiltonian formulation by D’Amato and Pastawski [DP90] which enabled

an homogeneous distribution of decoherence processes. However, its practical

applications remained reduced to one-dimensional problems where it was orig-

inally formulated. This is because of the practical limitations of dealing with a

great number of self-consistent reservoirs required by spatially distributed de-

coherent processes. Having a more efficient method would greatly improve the

prospects for better simulations at the nanoscale in the presence of dephasing,

a field of much current interest.
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In this section we present an efficient algorithm to calculate the matrix

elements of the Green’s function which is very useful for wide variety of prob-

lems beyond the typical one dimensional calculations. The method is widely

applicable but its efficiency is associated with block tridiagonal Hamiltonians.

There are many frequent physical examples in which the Hamiltonian matrix

adopts a block tridiagonal structure, specifically when interaction are truncated

at a certain order. For example if hopping elements beyond first neighbors are

neglected in nanowires or molecules with a single or multiple orbitals per atom.

In order to obtain the Green functions matrix of the sample, the evaluation of

the matrix inverse in Eq. 2.33 is needed. A way to solve this problem, based

in the Matrix Continued Fractions [But73, PWA83], will prove very useful and

requires to exploit iteratively the well known method of block matrix pseudo-

inverses (usually referred to as “bordering”). Let us initially “partition” the

matrix of the effective Hamiltonian of the system, Ĥeff., into two portions, a

cluster block 1, and the rest of the system R. The Hamiltonian block subdi-

vision may lie in geometric considerations of the tight-binding basis or can be

chosen so as to take advantage of given symmetries of the Hamiltonian matrix

for any given problem. In particular, if the sample Hamiltonian could be ar-

ranged in a three-diagonal block structure, much benefit can be obtained from

the use of this decimation procedures. Thus, the matrix to invert in Eq. 2.33 is

subdivided into four blocks, (εI−E1),(εI−E1),−V1R, and −VR1 of dimensions

N1 ×M1, NR ×MR, N1 ×MR and NR ×M1 respectively. Thus,

G(ε)R =

[
G11 G1R

GR1 GRR

]
=

[
εI− E1 −V1R

−VR1 εI− ER

]−1

(5.1)

Here it is very important to note that the Green functions matrix G(ε) includes

all corrections due to fictitious and real probes, by virtue of Eq. 3.16. In this

way, the block energies denoted here by Ei contain the energies of the open

system which are represented by complex numbers. For the two block matrix



90
Decoherent transport on multi-terminal devices: Efficient algorithms and

applications.

inverse, is straightforward to show that[
εI− E1 −V1R

−VR1 εI− ER

]
=

=

[
I 0

−VR1(εI− E1)−1 I

] [
(εI− E1) 0

0 S1

] [
I −(εI− E1)−1V1R

0 I

]

=

[
I −V1R(εI− ER)−1

0 I

] [
SR 0
0 (εI− ER)

] [
I 0

−(εI− ER)−1VR1 I

]
(5.2)

where S1(R) is the Schur complement of (εI− E1(R)), given by

S1(R) = (εI− E1(R))− V1R(R1)(εI− ER(1))
−1VR1(1R). (5.3)

From last expressions is easy to obtain

G11 = [(εI− E1)− Σ1R]−1 (5.4)

GRR = [(εI− ER)− ΣR1]−1 (5.5)

G1R = G11V1R(εI− ER)−1 (5.6)

GR1 = GRRVR1(εI− E1)−1 (5.7)

where the block self-energies, Σ’s, are given by:

Σ1R = V1R(εI− ER)−1VR1 (5.8)

ΣR1 = VR1(εI− E1)−1V1R (5.9)

The similarity with Eq. 2.21 allowed us to define these block self energies.

Therefore the decimation of the degrees of freedom associated with the portion

R of the effective Hamiltonian is implied in Eq. 5.7, where:

Ẽ1 = E1 + Σ1R = E1 + V1R(εI− ER)−1VR1 (5.10)

Note that with the adopted notation for the self energies, Σij is the correction

to site i when all sites between i and j (with j included) are decimated. Once

arrived to this point becomes very simple to extend the block decimation rules

for an arbitrary number of clusters, by further partition of Eq. 5.10. If block

R is subdivided into a cluster 2 and the rest of the system R′,

G(ε) =

 εI− E1 −V12 −V1R′

−V21 εI− E2 −V2R′

−VR′1 −VR′2 εI− ER′

−1

(5.11)
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we can also decimate the degrees of freedom associated with block 2, taking

Ẽ1 = E1 + Σ12 (5.12)

ẼR′ = ER′ + ΣR′2 (5.13)

Ṽ1R′ = V12(εI− E12 − Σ2R′)−1V2R′ + V1R′ (5.14)

which leads to an effective Eq. with the analogous to Eq. 5.1,[
G11 G1R′

GR′1 GR′R′

]
=

[
εI− Ẽ1 −Ṽ1R′

−ṼR′1 εI− ẼR′

]−1

(5.15)

by further decimation of block R′ into block 1, we have the analogous of Eq.

5.10, the decimation of blocks 2 and R′ into block 1 as

Ẽ1 = E1 + Ṽ1R′(εI− ẼR′)−1ṼR′1 (5.16)

where V1R is given by [V12,V1R′ ]. If the last block partition preserve a three-

diagonal structure, with V1R′ = VR′1 = 0, then we have that Ẽ1 = E1 + Σ1R′

with,

Σ1R′ = V12(εI− E2 − Σ2R′)−1V21 (5.17)

For further partition to an arbitrary number of clusters, we have:

Σi,j = Vi,i+1 (εI− Ei+1 − Σi+1,j)
−1 VT

i,i+1 (5.18)

Σj,i = Vj,j−1 (εI− Ej−1 − Σj−1,i)
−1 VT

j,j−1 (5.19)

provided that the final structure preserves a three-diagonal form and where

j > i. We recall that corrections by the presence of the leads have been

previously included in the site energies (Eq. 3.16). Leaving sites i and j,

Ẽi = Ei + Σi,1 + Σi,j (5.20)

Ẽj = Ej + Σj,i + Σj,N (5.21)

Ṽi,j = Ṽi,j−1(εI− Ej − Σj,1)−1Vj−1,j (5.22)

With this methodology, it is straightforward to calculate exactly each i, j el-

ement of the complete Green’s function matrix, by decimation of the entire

system into sites i and j,[
Gii Gij

Gij Gjj

]
=

[
εI− Ẽi −Ṽij

−Ṽji εI− Ẽj

]−1

(5.23)
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and using Eq. 5.1 for the two block matrix inverse. This procedure is shown

diagrammatically on 5.1 and is the analog of the method described in section

2.2.4.

Note that the diagonal elements easily calculated evaluating ∼ N energy

corrections of the form, Σi1 and ΣiN , where all the sites have been decimated

into site i,

Gii = [εI− Ei − Σi1 − ΣiN ]−1 (5.24)

and that in order to compute all the non diagonal elements of the GF matrix,

we need to evaluate ∼ N2 energy corrections Σij’s.

However, for tridiagonal block Hamiltonians it is possible to speed up the

computation of non-diagonal Green’s function elements. Non-diagonal block

matrix elements of the GF could be obtained in terms of the diagonal ones,

avoiding the need of the evaluation of ∼ N2 Σij’s. This is the case for the

trivial tridiagonal form shown in Eq. 5.7. In the extension for the general case,

Gi,j = Gi,i

j−1∏
k=i

Σk,NV−1
k+1,k (5.25)

Gj,i = Gj,j

i−1∏
k=j

V−1
k−1,kΣ1,k (5.26)

where i < j. Although these expressions have been written in terms of hopping

matrix inverses, V−1, Eqs. 5.25 and 5.26 are still accurate when the hopping

matrices are singular. This is because the hopping matrix inverse cancels out

with the hopping in the Σ definition, as it can be seen in Eqs 5.19 for example.

These formulas represent the matricial formulation of those discussed in section

3.3.3, where the computational strategies of the D’Amato-Pastawski model for

one-dimensional systems are reviewed.

In most cases, GR
ij = GR

ji, and therefore Eqs. 5.25 and 5.26 are equivalent.

However, both equations were explicitly individualized for those cases in which

this symmetry is broken, as in quantum pumping [Tor05].

5.2 Multiterminal D’Amato-Pastawski model

To obtain the total transmission on each channel, we can take advantage of the

decimation procedures discussed above, with a simple observation. Eq. 3.18
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Figure 5.1: Diagrammatic representation of the decimation scheme to cal-
culate the elements of the Green function.

is easily rearranged in terms of the total reflection Rαi,α,i = 1−
∑

β,j Tβj,αi for

process α at site i:

Iαi =
2e

h

∑
β=L,φ

N∑
j=1

{Tαi,βj(1− δα,βδi,j)− (1−Rαi,αi)δα,βδi,j}δµβ,j (5.27)

In a compact notation, Eq. 5.27 can be expressed in a matrix form,
−→
I = 2e

h
T
−→
δµ,

where the transmissions matrix can be arranged in a block structure, grouping

the terms that connect real or fictitious channels in the system,

IL1
...

ILN
0
...
0


=

2e

h


TLL TLφ

TφL Tφφ





µL1
...

µLN
µφ1

...
µφN


(5.28)

In this case, Tαβ relates transmissions of probes associated with process types

α = L, φ and β = L, φ. The fact that on-site chemical potentials at incoherent

channels ensure that no net current flows through them, allows us to eliminate

them through a simple decimation, leading to “effective” transmissions asso-

ciated with transport between channels with current flows, as shown in Eqs.

3.31-3.32.

The decimative procedure involves a simple algebraic relation between the

real channels of the system and the chemical potentials associated with currents
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drops or sources:

T−1



I1
...
IN
0
...
0


=

2e

h



µ1
...
µN
µφ1

...
µφN


⇒ [T−1]LL

 I1
...
IN

 =
2e

h

 µ1
...
µN

 (5.29)

which implies
−→
I = 2e

h
T̃
−→
δµ, where T̃ = [[T−1]LL]−1 contains the effective trans-

missions between real channels in the system. Using Eqs. 5.3 and 5.7, we

have:

T̃ = TLL − TLφ[Tφφ]−1TφL (5.30)

and for the matrix elements of T̃, this implies a recursive scheme,

T̃(k)
ij = T̃(k−1)

ij −
T̃(k−1)
i,k T̃(k−1)

k,j

T̃(k−1)
k,k

(5.31)

where k ε {φ1...φN} and T̃(k)
ij stands for the matrix element i, j ε {L1...LN} of

matrix T after the decimation of k incoherent channels. Once that all incoher-

ent channels were decimated, we have an effective transmission matrix T̃ given

by:

T̃ =

 (R̃L1,L1 − 1) T̃L1,L2 · · · T̃L1,LN
...

...
. . .

...

T̃LN,L1 T̃LN,L2 · · · (R̃LN,LN − 1)

 (5.32)

which accounts for decoherent transmission through different paths of the sys-

tem. This effective transmission matrix relates real currents on each site of

the sample with the voltage drops associated with each electron reservoir. It

should by noticed that by the Kirchhoff law, rows and columns sums over T
and T̃ must be zero.

Although this is the most general problem, in most cases one deals with

the situation in which there is an unique voltage drop across every possible

real system channels. On this cases, there is one chemical potential associated

with electron injection and the others electrodes present in the sample are

connected with chemical potentials with (particle) populations at the same

lower reference energy. We will label “L” (or “Left”) the lead associated with

electron source and “R” (or “Right”) those associated with electron sinks,
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because of the similarity with the simplest case of transmittance between two

electrodes. Assuming, for the sake of simplicity, that the left lead is only

connected to site 1, and requiring a unique voltage drop with δµi ≡ 0 ∀i 6=1,

we summarized the formulation of the problem after the incoherent channels

decimation as:

Ii =
2e

h
T̃Ri,L1µL1 = GV (5.33)

where G is the associated conductance and V is the voltage drop in volts. In the

simplest case of single channel transport, the effective matrix T̃ has dimension

2× 2.

5.3 Application examples

As a corollary of the recipes presented so far, we state that environment inter-

actions that could be approximated within a FGR, are treated as decoherence

sources by DP model. However, stronger interactions must be explicitly incor-

porated into the description, providing extra available degrees of freedom. An

extended tight-binding Hamiltonian, generally in the form of a multi-terminal

system, can be use to treat these problems in some approximation. The multi-

channel formulation allows to distinguish between independent contributions

to the total decoherent transmission.

In fact, electronic nanodevices are intrinsically multi-channel systems. Po-

larons and time-dependent interactions are examples in which some degrees of

freedom, as some phonon-electron couplings, must be treated explicitly while

others could be question-less sources of decoherent processes. To illustrate the

methodology presented in the previous sections, we present simple examples of

multi-terminal transport in which the scheme of the DP model is applied to

account for decoherence.

5.3.1 Decoherent polaronic model

We start considering a simple model which provides an explicit description of a

single vibrational mode coupled to a “local” electronic state of a particular site

i of the sample Hamiltonian. Although this problem is discussed extensively in

Ref. [PFM02], here we are interested in taking into account decoherence effects
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on the one-electron transmission probability. The system Hamiltonian is

HS = ~ω0b̂
+b̂ +

N∑
α=1

Eαĉ
+
α ĉα +

N∑
α=1

Vg ĉ
+
α ĉα(b̂+ + b̂) (5.34)

where the first and second term represents the phonon and electron degrees

of freedom respectively and the last term is the coupling between them. The

eigenstates of this Hamiltonian are analogous to the polaron states of the Hol-

stein’s local polaron model [AMPB94, WJW88]. The eigenvalues are given

by,

Eα,n = Eα + ~ω0

(
n+

1

2

)
− |Vg|

2

~ω0

(5.35)

As discussed in Ref. [PFM02], it is clear that the phonon absorption /

emission process can be viewed as a “vertical” hopping in a two-dimensional

network. The Fock space is equivalent to the electron tight-binding model with

an expanded dimensionality [AMPB94]. For simplicity it is considered the case

of a single state, or “resonant” state, of energy E0 in the region of interest.

The problem for an electron that tunnels trough the system can be mapped to

the one-body problem showed in Fig. 5.2.

Figure 5.2: Fock space representation of the system Hamiltonian.

When an electron comes from the left while there are n0 phonons in the

well, it arrives at the resonant site where it couples to the phonon field, and

it can either keep the available energy E as kinetic energy or change it by

emitting or absorbing n phonons. Each of this processes contributes to the
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total “multichannel” coherent transmission which is given by,

T =
∑
n

Tn0+n,n0 (5.36)

It must be stressed that, in this over-simplified example, there is no proper

treatment of Pauli exclusion principle. Prima facie, “vertical” hoppings could

be blocked by the presence of other electrons and the exclusion principle might

play a crucial role. However, with a little more attention, a simple model can be

constructed in which vertical process are properly included, consistently trans-

formed into a total energy conserving flow where the Pauli blocking factors do

not appear at all. The insight is given in section 3.2.2, where the problem of

the exclusion principle is discussed. A simplified picture with the basic ingre-

dients is shown on Fig. 5.3 The key is that the initial “phonon” populations

Figure 5.3: A construction for a simple model in which electronic ver-
tical process are consistently transformed into an total energy conserving
flow. The initial “phonon” populations are transformed into quantum chan-
nel probabilities. Scattering states that contribute to a single incoming chan-
nel are highlighted with bold lines. Notice that unitary of scattering matrix
imposes that total incoming probability is always smaller than one. Thus,
the Pauli blocking factor is not required.

are transformed into probabilities associated with each channel. The linear

response conductance is obtained from the static expressions. In this simple

model, the Pauli principle is circumvented, since the absence of overflow ev-

erywhere is guaranteed. Note that a treatment beyond the linear response is

possible, with a self-consistent evaluation of the phonon populations. However,
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this interesting treatment involves little more complex expressions and exceeds

the purpose of this brief section. We presented it outlined to state that the

one-electron picture for this polaronic systems is valid, but needs a little more

attention than the one given in the following discussions: the underlying idea

is that the transport problem in Landauer’s picture is builded in terms of scat-

tering states that can not be blocked by Pauli factors. Although the range

validity of the following results might be narrow, the example remains suffi-

ciently rough to illustrate in simple terms the methodology of the DP model

for multi-terminal transport.

In order to include the effects of decoherence in the transport properties

of this system, we need to introduce a finite time-life to the polaron states

through an imaginary correction to the resonant energies, given by Eq. 3.15.

The available “direct” channels are associated with the transmission probabil-

ities, TRn′,Ln, TLn′,Ln and the available incoherent channels, are those related

to TLn,φn, TLn,φn′ , Tφn,φn′ . If we assume that electrons are injected with n0 = 0

phonons in the well, then the total transmission is simply,

T̃ =
N∑
i=1

T̃Rn,L0 (5.37)

where each T̃L0,Rn includes the decimation of the incoherent channel, just as

in Eq. 3.31. The results for different processes and for total transmission are

shown in Fig. 5.4. As it can be seen in the figures, in general the effect of

decoherence on transmission is to broaden the resonances, lowering the peaks,

and lifting the tails. Note also the coherent nature of the anti-resonances, that

are destroyed after decoherent processes.

On Fig. 5.5, a color map for the transmission probability as a function of

dephasing strength and incident energy is shown.

5.3.2 Time-dependent problems

The last section of the introductory chapter is devoted to the transport prop-

erties of time-periodic dependent Hamiltonians. As shown there, the extra

degree of freedom that appeared due to the interaction of the electrons with

a photon field can be mapped into a one-particle Floquet Hamiltonian in an

extended Hilbert space, that satisfies an eigenvalue equation similar to the
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Figure 5.4: Adimensional conductance for ~ω0 = 0.2eV , E0 = 0.5eV and
Vg = 0.1eV (a) without electron-phonon interaction; (b) an electron leaving
the sample without extra phonons; (c) an electron leaving the sample with
one extra phonon; (d) Total conductance.
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Figure 5.5: Color map for the total transmission probability of the polaronic
system as a function of the energy and Γ.



100
Decoherent transport on multi-terminal devices: Efficient algorithms and

applications.

time-independent Schrödinger equation. This extended space is the analog of

the Fock space of the previous section. The advantage in this case is that, under

wide applicable assumptions, the one-electron Landauer’s picture of transport

is a good approximation, at least for average DC currents. As a consequence,

the results of the DP model are more representative.

Therefore, here we consider a time-dependent quantum system whose dy-

namics is governed by a Schrödinger equation given by:

i~
d

dt
|ψ(t)〉 =

[
Ĥ(t) + Σ̂

]
|ψ(t)〉 (5.38)

where the Hamiltonian of the system depends explicitly on time. The self-

energy Σ̂ comes, as before, after a decimation of the environmental degrees of

freedom, and implies a no-unitary time evolution,

Σ̂ = Σ̂L + Σ̂φ (5.39)

where Σ̂L is the self-energy associated with the leads and Σ̂φ accounts for

dephasing processes. Electrons interacting with a time dependent potential

can gain or loss energy. If the potential is periodic in time, Ĥ(t) = Ĥ(t + τ)

with period τ , we can describe the state of the system using the Floquet theory

[KLH05a]. We consider the system Hamiltonian given by,

ĤS =
N∑
i=1

{
Ei(t)ĉ

+
i ĉi +

N∑
j=1j 6=i

Vij
[
ĉ+
i ĉj + ĉ+

j ĉi
]}

, (5.40)

for the special case in which the electron-photon interaction is only possible at

site with α,

Ei(t) = Ei + V0 cos(ω0t)δi,α (5.41)

In this simple case, electrons arriving at site α are able to absorb or emit

photons and leave the site with energies ε′ = ε + n~ω0. As discussed before,

the absorption/emission process can be viewed as a “vertical” hopping in a

two-dimensional network [Tor05].

For simplicity it is considered the case of a single state, or “resonant” state,

of energy Eα in the region of interest. The problem for an electron that tunnels

trough the system can be mapped to the one-body problem in the same way

as in the case showed in Fig. 5.2. However, in the floquet system the vertical

hopping does not depend on the channel label n.
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When an electron comes from the left, it arrives at the resonant site where

it couples to the photon field, and it can either keep the available energy E as

kinetic energy or change it by emitting or absorbing n photons. Each of this

processes contributes to the total “multichannel” coherent transmission which,

as in the phonon example, is given by,

T =
∞∑

n∼−∞

Tn0+n,n0 (5.42)

Note that in the interaction with the photon field there is yet another difference

with the phonon example. The amount of available channels is no limited for

photon absorption nor for emission. However, again only a limited range of

channels, |n| < Nmax would lead to finite transmission amplitudes [Tor05], and

only within this range are the real channels that need to be considered.

Figure 5.6: Multichannel decoherent transmission for the periodic time-
dependent model. On the left, total conductance. On the right hand side, an
electron leaving the sample emitting one photon. In this example, ~ω = 1eV,
EF = 0eV and Vg = 0.5eV.

In order to include the effects of decoherence in the transport properties of

this system, we need to introduce a finite time-life to the electron states through

an imaginary correction to the resonant energies, given by Eq. 3.15. The

available “direct” channels are associated with the transmission probabilities,
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TRn′,Ln,TLn′,Ln and the available incoherent channels, are those related to TLn,φn,

TLn,φn′ , Tφn,φn′ ,

T̃ =
∑
n

T̃Rn,Ln′ (5.43)

where each T̃L0,Rn includes the decimation of the incoherent channel, just as

in Eq. 3.31. The results for total transmission with different values of Γ are

shown in Fig. 5.6.

5.3.3 Carbon nanotubes

Allotrops of carbon with cylindrical structure are usually called carbon nan-

otubes (CNTs). In particular, single-walled CNTs are formed by only one

sheet of hexagonally arranged carbon atoms. In multi-walled CNTs, individual

nanotubes align themselves into ropes in a pi-stacking. Since their discovery,

they have attracted considerable scientific and engineering attention due to

their outstanding mechanical and electrical properties. Depending on their

helicity, CNTs exhibit either semi-conducting or metallic behavior, and, for

low resistance contacts, ballistic transport is observed in the low bias regime.

In particular, this section is devoted to the study of decoherent transport in

Figure 5.7: Single-walled carbon nanotubes corresponding to the structures:
(a) zigzag, and (b) armchair.

single-walled carbon nanotubes corresponding to zigzag and armchair struc-

tures, illustrated in Fig. 5.7. The structure symmetry of a nanotube strongly

affects its electrical properties. In ideal zigzag CNTs, transport is nearly metal-

lic, with a very small band gap, if the number of carbon atoms in its diameter

is a multiple of 3. All armchair CNTs do not have gaps and behave as metals.
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A nearest neighbors tight-binding description for the π Hamiltonian matrix

of CNTs has a tridiagonal block structure. The block dimension is given by

the number of carbon atoms that defines the width of the nanotube. In the

armchair (n, n) structure, the block dimension is 2n× 2n. Diagonal blocks are

given in the form

E =



. . .

E V 0 0
V E 0 0
0 0 E V
0 0 V E

. . .


(Armchair) (5.44)

where E are the site energies and V the hoppings. The hopping blocks have

the form

V =



. . . V
0 0 0 0
V 0 0 0
0 V 0 0
0 0 V 0

0
. . .


(Armchair) (5.45)

the block hopping sequence is ...,V,VT ,V,VT ...., and the tridiagonal block

Hamiltonian is

H =



. . .

E V 0 0
VT E VT 0
0 V E V
0 0 VT E

. . .


(Armchair) (5.46)

In the zigzag (m, 0) structure, blocks have dimension m×m, E’s are diagonal,

and is straightforward to show that the hopping block sequence has the form

...,V1,V2,VT
1 ,V2, ....

Coherent and decoherent transmission probabilities as a function of the

(incident) Fermi energy for zigzag CNTs are shown of Fig. 5.8. Decoherent

degrades and smooths the transmission function across the CNT.

One of the most remarkable results, however, is the recovering of the Ohm’s

law for decoherent transmission. The results for T−1 as a function of the nan-

otube length, for different values of Γφ, are shown in Fig. 5.9. These qualita-
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Figure 5.8: Coherent and decoherent transmission probabilities as a func-
tion of the Fermi energy for zigzag CNTs of 9 atom width.
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Coherent transport is ballistic, as expected. Remarkably, the Ohm’s law is
recovered for decoherent transport.
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tive results are in agreement with recent four-point measurements of resistance

in single-walled nanotubes, where the Ohm’s law is observed experimentally

[GCF+05].

5.4 Summary

Many-body interactions suffered by carriers in electronic devices that can not

be treated within the simple Fermi golden rule approximation, provide extra de-

grees of freedom that must be accounted explicitly in the transport description.

This situation, in some approximation, can be mapped into the one-electron

picture as a multi-terminal setup, transferring the complexity of the many-

body interactions to the geometry of the one-electron transport problem. On

the other hand, system-environment interactions that can be approximated

within a FGR, are treated as decoherence sources with the insight of the DP

model.

In fact, electronic nanodevices are intrinsically multi-channel systems. Po-

larons and time-dependent interactions are examples in which some degrees of

freedom, as some phonon-electron couplings, must be treated explicitly while

others could be question-less sources of decoherent processes. To this end, ex-

act and computational efficient methods to analyze decoherent transport on

intrinsically multi-terminal setups were presented. The matrix continued frac-

tions approach, as an extension of the continued fractions methods discussed in

the introductory chapter, constitutes the strategy to obtain the overall Green

function matrix of the system. For tridiagonal block Hamiltonians, a general-

ization of the “Thouless-Kirkpatrick” formula, that relates non diagonal with

diagonal elements of the Green’s function, was presented. The Kirchhoff law

expressions for the D’Amato-Pastawski model on multichannel systems were

derived. In this way, we obtained an efficient method to introduce decoherence

in the study of electronic transport in real situations, where the complexity of

the system in study prevents the usual approach in which only a single channel

is present.

Although in the simple examples considered the effect of decoherence is

not highly surprising, compared with the case of polyanilines were its effects

produces a dramatic change in the transport properties, the purpose was the
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clearest introduction of the methodology involved, and the possibilities for the

study of more complex situations, such as quantum pumping, biological sys-

tems, etc remains basically with exactly the same approach. Both the under-

standing of the effects of quantum decoherence and even its proper description

in the context of transport problems are still open research subjects in modern

physics. However, our expectation is that the methodology introduced, de-

spite its inherent limitations, will provide simple but powerful insight into this

blooming field.
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The phenomenon in which the electrical resistance of a conductor is affected

under the influence of an external magnetic field is known as magnetoresistance.

Of substantial importance, this property was discovered by Lord Kelvin and for

the next century there was hardly any improvement of the performance of mag-

netoresistive materials since his work [Fer08]. By the year 1988, two research

groups independently discovered materials showing a very large magnetoresis-

tance, now known as giant magnetoresistance (GMR). These materials are also

called magnetic multilayers, since the effect is observed in thin-film structures

composed of alternating ferromagnetic and non-magnetic layers. The 2007 No-

bel Prize in physics was awarded to Albert Fert and Peter Grünberg for the

discovery of GMR. The effect is observed as a significant change in the electrical

resistance depending on whether the magnetization of adjacent ferromagnetic

layers are in a parallel or an anti-parallel alignment. The overall resistance is

relatively low for parallel alignment and relatively high for anti-parallel align-

ment.

The phenomenon of GMR has had a growing interest in last decades. Since

its discovery by Albert Fert’s and Peter Gründberg’s groups, GMR has driven

the development of the field of spintronics, with immediate applications in

electronic devices [Fer08]. This effect is commonly explained by means of a

107
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simple classical picture that involves important conceptual simplifications based

on the so called sd model and the two resistors model.

6.1 Mott’s sd model

The sd model was introduced long time ago by Mott [Mot35, Mot36] as a use-

ful simplification of the band structure of transition metals to explain their

electronic resistance. Its use is still wide extended for the study of transport

properties in ferromagnetic materials. In this simple model, the rather compli-

cated band structure of ferromagnets is assumed to be comprised by only two

bands, of s and d type. The electrons of the d band do not contribute directly

to the conductance, since their effective mass is large and have poor mobility.

Electrons in the s band are nearly free. In presence of a magnetic field, these

bands suffer a splitting. The sub-bands of electrons with up and down spin

orientations have a different number of occupied states: this defines a majority

spin direction. The s band is parabolic, with a spin-split potential energy ∆

resulting from the sd exchange interaction. The d band is very narrow, with a

significant difference in the number of up and down states at the Fermi energy

[Fal06]. This is depicted on Fig. 6.1.

The exchange interaction between electrons in s and d bands has a charac-

teristic rate which can be determined by the Fermi Golden Rule (FGR):

1

τφ,σ
=

2π

~
|Vφ|2Nd,σ(εF ) (6.1)

where σ accounts for the orientation of the electron spin in the conduction

band, Vφ is the strength of the exchange coupling and Nd,σ is the density of

states of the sub-band for the spin σ in the band d. Since this rate is spin-

dependent, electrons with their spin aligned to the field suffer more scattering

events than the others, because of the relation Nd,↓(εF ) > Nd,↑(εF ).

In a Drude description, τφ,σ represents the time between collisions and de-

termines the mean free path of the electrons. This rate is associated with a

relaxation that, although conserving spin, leads to quantum decoherence of the

conduction electrons.
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Figure 6.1: Sketch of the simplified band structure in the sd model. The
arrows denote the electron spin direction in each sub-band with respect to the
magnetization direction [Fal06].

6.2 Two-resistor model

If the system temperature is low compared with the Curie’s temperature, most

scattering events will conserve the spin direction. The length scale for spin-

reversing scattering (spin diffusion length) `sf , is generally much larger than

the spin-dependent mean free paths `σ. Therefore, in transport over distances

less that `sf , spin-up and spin-down electrons can be considered as almost in-

dependent and they will represent two parallel contributions to the net current.

Each of these contributions can be characterized by a Drude resistance:

Rσ =
~
e2

L

`σ
(6.2)

where L is the system length. Note that in this one-dimensional case, there is

no cross-section factor. The quantity `σ is related the rate defined in Eq. 6.1

by `σ = vF τφ,σ, where vF is the Fermi velocity. Inserting this into Eq. 6.2, one

obtains:

Rσ =
}

2πe2

L

vF
|Vφ|2Nd,σ(ε) (6.3)
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Notice that the resistance for the current of electrons with spin σ is proportional

to the density of states of the d electrons with the same spin orientation. Hence,

electrons with its spins parallel to the magnetic field have higher mean free path

and lower resistance.

Figure 6.2: Magnetic configuration and corresponding two-resistor model
representation for a GMR bilayer, for (a) parallel configuration and (b) anti-
parallel configuration.

The basic GMR effect can be represented in a ferromagnetic bilayer struc-

ture comprising two layers in which the magnetization is either parallel or

anti-parallel. This is illustrated on Fig. 6.2, and constitutes the conceptual

simplification of trilayer structures known as spin valves [MLPD95], in which

two ferromagnetic layers are separated by a non-magnetic metallic layer [Fal06].

The resistance on each configuration can be easily calculated in this simple two-

resistor model, using the simplifications introduced above with the sd model.

In the parallel configuration,

RP = 2R↓R↑/ (R↓ +R↑) , (6.4)

while on the other,

RA =
1

2
(R↓ +R↑) . (6.5)

The GMR effect is commonly explained by these different resistances associ-

ated with each setup. The classical nature of this description is usually justified

assuming that the phase-coherence length, Lφ, is significantly smaller than the

spin diffusion length, `sf . The simple two-resistor model, hence, contains the

essence of the physics involved in the GMR. However, in a more detailed de-

scription, based in the Boltzmann equation, `sf must be explicitly included



6.2 Two-resistor model 111

in order to describe spin-relaxation processes. On intrinsically quantum treat-

ments to this (and related) problems, there is a persistent difficulty in describing

relaxation processes that do not occur in the particle reservoirs. Therefore, all

quantum approaches are commonly restricted to the case L� `sf .

In a Boltzmann description allowing spin-flip processes, it has been shown

[VF93] that, in the anti-parallel configuration, the relaxation of spin on either

side of the interface takes the form of an exponential decay. The characteristic

length of this decay is `sf . The qualitative results of this description are repro-

duced on Fig. 6.3 (extracted from Ref. [Fal06]). A very important conjecture

Figure 6.3: Qualitative diagrams comparing the spin-dependent voltages
and currents for the bilayer with anti-parallel configuration in the case of
(a) a realistic exponential relaxation of electron spin between up and down
channels, and (b) the approximation represented by the corresponding two-
resistor model. Extracted from Ref. [Fal06].

is that each spin channel can be approximately considered to be in local equi-

librium, and therefore local spin-dependent electrochemical potentials exists

at each point in space [Fal06]. Notice that this is explicitly assumed in the

D’Amato-Pastawski model, where the local chemical potentials on each tight-

binding site are associated with local interactions of the carriers which have the

effect of phase-breaking processes. These interactions are provided by the sd

exchange. In the following section we show that the DP model provides all the

ingredients for a generalized Landauer-Büttiker approach of magnetotransport.
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6.3 Generalized Landauer-Büttiker approach

The key insight to go from a purely quantum to a classical description is the

proper introduction of the quantum decoherence into the analytical treatment

of the problem. This is precisely the insight of the D’Amato-Pastawski DP

model [DP90] for decoherent transport. A generalized version of this model

that can be fairly applied to account for all the basic characteristics involved in

GMR is proposed [FCP]. Its computational power and its robustness becomes

evident when the regime `sf ≤ L is considered.

Figure 6.4: Tight-binding model for magneto-transport in a bilayer struc-
ture. Each chain is associated with a spin current. The interface is illustrated
with a dashed line.

We deal with a quantum approach to a generalized two-resistor model.

The problem of electron transport across bilayer structures can be addressed

drawing on the Landauer-Büttiker picture [IL99] generalized [Pas91, Pas92]

to include spin-conserving and spin-reversing processes. The latter can be

modeled by a direct coupling between the electrons in the s band. However,

spin-conserving processes are the consequence of the interaction of the elec-

trons in the s band with the environmental degrees of freedom provided by the

electrons in the d band, which do not contribute directly to the conductance.

Spin-conserving processes, thus, can be regarded as decoherent events. There-

fore, the quantum mechanical description of this problem can be simplified by

a single particle tight-binding Hamiltonian for electrons in the s band that in-

cludes the system-environment interactions properly. A sketch is illustrated on

Fig. 6.4.

The DP model refers to a simple way to account for the infinite degrees

of freedom of the thermal bath and the particle reservoirs. In this case, the
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sample’s Hamiltonian is described in a nearest neighbor tight-binding approach,

with local spin-reversing interactions

ĤS =
N∑
n=1

∑
σ=↑,↓

[En,σ ĉ
†
n,σ ĉn,σ +

∑
m

Vnσ,mσ ĉ
†
nσ ĉmσδn,m±1

+Vxĉ
†
n,σ ĉn,σ′ (1− δσ,σ′)]

(6.6)

where the labels n and m indicate sites on a lattice, N is the total number of

sites, and σ denotes the spin direction. An effective Hamiltonian incorporates

the leads and the interactions with the environment:

Ĥeff. =
(
ĤS − iη Î

)
+ Σ̂L + Σ̂R + Σ̂φ, (6.7)

where Σ̂L = ΣL(ĉ†1↑ĉ1↑+ĉ
†
1↓ĉ1↓) and Σ̂R = ΣR(ĉ†N↑ĉN↑+ĉ

†
N↓ĉN↓) are, respectively,

the self-energies operators describing the escape to the left and the right leads

obtained through a Dyson equation,

ΣL(R) =
V 2

ε− (E0 − iη)− ΣL(R)

(6.8)

= ∆L(R)(ε)− iΓL(R)(ε), (6.9)

where ΓL(R) results proportional to the escape rate, and hence to the Fermi

velocity, at the L(R) lead.

The spin-conserving scatterings are regarded as decoherent events charac-

terized by a spin-dependent rate τφ,σ, given by Eq. 6.1. Therefore, as suggested

in the DP model [PM01], theses processes can be included in the Hamiltonian

description simply through local imaginary correction to the site energies

Σ̂φ =
∑
σ=↑,↓

∑
l

− iΓφ,σ ĉ
†
l,σ ĉl,σ. (6.10)

where Γφ,σ is obtained from Eq. 6.1 as 2Γφ,σ = ~/τφ,σ. These imaginary shifts

result from the renormalization of the site energies due to the decimation of

environmental degrees of freedom. In this way, Γφ,σ can be regarded as an

energy uncertainty associated to a decay rate of the local state at site l, σ

described by the FGR. We drop any possible dependence on l simplifying the

description. Since Î is the identity operator, η can be taken as an infinitesimal

imaginary part of the local energy, En,σ → En,σ − iη, resulting in a decay to

the environment in the same sense as the Γ’s above.
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As usual, given the effective Hamiltonian we have the retarded and advanced

Green’s functions in terms of the real energy variable ε:

GR(ε) = [εI−Heff.]
−1 (6.11)

= GA†(ε), (6.12)

where Heff. may be non-linear in ε and non-hermitian for η 6= 0.

To simplify the notation for the following expressions, we first note that in

the resulting model setup, every state can be subject to two types of decay

Γα. Decays toward the leads, via ΓL and ΓR, or decays due to spin-conserving

events, via Γφ,σ. Second, sites on the tight-binding Hamiltonian were labeled

by two indices, real site i index and spin σ index. We group site indices

in the form (n, σ) → i. With this notation, latin letters represent sites in

the two-dimensional tight-binding Hamiltonian, while Greek letters label decay

processes α = L,R, φ. The complete setup for the tight-binding model is shown

on Fig. 6.5

With this notation the generalized Fisher-Lee transmission probability be-

tween a process α on site i and a process β on site j results [PM01]:

Tαi,βj(ε) = 2Γβj(ε)G
R
j,i(ε)2Γαi(ε)G

A
i,j(ε). (6.13)

Within the DP model, each decay process α on a site i is associated with a

particle reservoir characterized by a chemical potential δµαi [PM01]. This on-

site chemical potentials can be regarded as local voltage probes, that allow

keeping track on the total voltage drop across the sample, site by site. With

the transmission probabilities given by the generalized Fisher-Lee formula, and

invoking linear response, it is possible to compute the net current associated

with each process [PM01]:

Iαi =
e

h

∑
βj

(Tαi,βjδµβj − Tβj,αiδµαi) (6.14)

and zero net current is imposed for decoherent processes at each site and energy

ε, Iφi = 0. This accounts for an incoherent re-injection of every particle that has

decayed through the Γφi terms. Eq. 6.14 can be expressed in a compact matrix

notation, separating the conceptually different decoherent processes from those

associated with the leads: ( −→
I `

0

)
=
e

h
T
(

δ−→µ`
δ−→µ φ

)
(6.15)



6.4 Numerical results 115

where T is the array of transmission probabilities defined by Eq. 6.14 and can

also be subdivided in the same block structure:

T =

(
T`` T`φ
Tφ` Tφφ

)
(6.16)

With this notation it is stressed that T`` only involves terms that connect leads

(` = L,R), Tφφ only involves transmissions between decoherent processes and

the blocks T`φ and Tφ` connect leads with decoherent processes. The local

voltage at each site, given by the elements of the vector δ−→µ φ, can be tracked,

after Eq. 6.15, as:

δ−→µ φ = T−1
φφTφ`δ

−→µ ` (6.17)

where the chemical potentials at the leads δ−→µ ` are given. Another quantity of

interest, is the local current between every pair of sites, and can be computed

according to [KW08]:

Iφi,φj =

∞∫
−∞

dε
[
VijG

<
ij(ε)− VjiG<

ji(ε)
]

(6.18)

where G< = GRΣ<GA and,

Σ<(ε) =
∑
`

δµ`

[
Σ†`(ε)− Σ`(ε)

]
(6.19)

This approach provides all the basic ingredients to understand the basic

properties of magnetotransport in bilayer structures from a quantitative Hamil-

tonian description. The results obtained with this scheme are shown in the next

section.

6.4 Numerical results

We consider a tight-binding representation of spin-up and spin-down electrons

of the s-band for the anti-parallel bilayer configuration, with 1000 pair of sites.

The domain wall is placed exactly on the middle, and is represented by the

crossing of the chains. On each site, the sd exchange interaction is modeled

by a phase-breaking probe acting as a particle reservoir, introducing a spin-

dependent local imaginary energy shift Γφ. This is sketched on Fig. 6.5. In

this way, each spin channel can be approximately considered to be in local
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Figure 6.5: Sketch of the effective tight-binding Hamiltonian in the anti-
parallel configuration of the bilayer structure. The sd exchange interaction is
modeled by phase-breaking probes acting as a particle reservoirs, introducing
a spin-dependent local imaginary energy shift Γφ.

equilibrium, and therefore local spin-dependent chemical potentials exists at

each site.

First, we neglect spin-flips taking Vx = 0 in Eq. 6.7. The results for this case

are shown on Fig. 6.6. Trivially, when spin-flip interactions are not allowed

the two current contributions are totally independent, and the results of the

two-resistor model are obtained. The overall voltage drop is equal for the two

Figure 6.6: Results of the DP model for the anti-parallel configuration in
the bilayer structure, when spin-flips are not allowed. The same results as
in the two-resistor model are obtained. On the left hand side, voltage drop.
On the right, the associated currents.

spin directions and since Vx = 0, there is no “vertical” flow. As a consequence

both currents are equal, as shown on the left hand side in Fig. 6.6.

The results for the most important case, when Vx 6= 0, are shown in Fig.
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6.7. In this case the powerful insight of the DP model for magnetotransport is

appreciated. The exponential relaxation of spins is clearly observed. Currents

start in equilibrium with each other and there is a splitting at the interface,

as expected [VF93]. At the interface, the external magnetic field is inverted.

Figure 6.7: Results of the DP model for the anti-parallel configuration in
the bilayer structure, when spin-flips are allowed. In (a) the strength of
the dephasing is smaller than in (b). The exponential relaxation of spins is
observed.

The currents associated with each spin direction try to accommodate to the

new configuration, reversing their magnitudes. There is a net flow between up

and down spins. The equilibrium at each site with a local chemical potential

is reflected as a smooth behavior, with an exponential decay. This results are

compared with Fig. 6.3 on section 6.2 of this chapter.

For a similar system, in the anti-parallel bilayer structure with N = 600,

we computed local chemical potential difference between both spin directions,

∆µ, as a function of the site position, z. As before, the interface is located at

the center. When `sf � L, the two-resistor model is recovered. However, when

`sf is comparable with L the spin-diffusion is important and allows a relaxation

of the current at the interface. Note that the width is given by 2`sf .
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Figure 6.8: Local chemical potential difference at each site in the anti-
parallel bilayer structure. When `sf � L, the two-resistor model is recovered.
Otherwise, currents show an exponential relaxation. The width of the ∆µ
distribution is given by 2`sf .

6.5 Summary

Mott’s sd model provides a useful and wide extended simplification of the band

structure of ferromagnets. Electrons in the s band are nearly free while elec-

trons in the d band have poor mobility and are not directly relevant for the

transport mechanism. However, the exchange interaction between electrons in

s and d bands provides a phase-breaking mechanism for conduction electrons.

The sub-bands of electrons with up and down spin orientations have a different

number of occupied states, and this defines a majority spin direction. In this

way, the strength of the exchange interaction is different for each spin orien-

tation and as a result, the mean free path is not the same for up and down

spins.

If the spin-diffusion length is greater than the spin-dependent mean free

path, up and down spin orientations provide nearly independent contributions

to the overall current and the giant magnetoresistance effect can be under-

stood in simple terms, with a two-resistor model. The classical approach to

the problem is justified because the phase-coherence length is expected to be
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significantly smaller than the spin-diffusion length in most cases. However, in-

troducing spin-flip processes within this classical approach constitutes a very

difficult task. In a Boltzmann description allowing spin-flip processes, it has

been shown that, in the anti-parallel configuration, the relaxation of spin on

either side of the interface takes the form of an exponential decay and the char-

acteristic length of this decay is `sf . A very important conjecture is that each

spin channel can be approximately considered to be in local equilibrium, and

therefore local spin-dependent electrochemical potentials exists at each point

in space.

On intrinsically quantum treatments to this (and related) problems, there

is a persistent difficulty in describing relaxation processes that do not occur

in the particle reservoirs. Therefore, all quantum approaches are commonly

restricted to the case L� `sf . The key insight to go from a purely quantum to

a classical description is the proper introduction of the quantum decoherence

into the analytical treatment of the problem and this is precisely the insight of

the D’Amato-Pastawski model for decoherent transport. A generalized version

of this model that can be fairly apply to account for all the basic characteristics

involved in GMR were proposed and its computational power and robustness

becomes evident. The GMR phenomenon was previously described in terms of

the self-consistent solutions of the phenomenological Boltzmann equation. As

we have proved, the implementation suggested by the DP model undoubtedly

opens the possibility to evaluate more complex quantum interference effects

at the magnetic interface, which have not been addressed yet in enough detail

[Fer08].
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7
Conclusion

By now, it is a general wisdom that quantum ballistic transport can be ex-

perimentally observed in metallic molecular wires of nanometer lengths at low

temperatures. Landauer’s picture of electronic transport provides an elegant

and accurate framework to understand and predict the nature of this behav-

ior. However, there are important departures from these predictions which are

the natural consequences of the limits of the coherent description. For exam-

ple, for a long time, and in spite of an apparent initial success, a description

of transport in conducting polymers at low temperatures has been lacking.

In the meanwhile, the fundamentals of decoherent processes in transport and

their consequences are currently of intense activity in various contexts, from

quantum optics and quantum information to molecular electronics. In par-

ticular, researchers in this last field have become aware that environmental

degrees of freedom might play a crucial role since, as we also showed in var-

ious cases, destruction of quantum coherence due to the dephasing effect of

system-environment interactions lead to an enhancement of transport.

A simple computational model for decoherence in one-electron transport

problems is not only desirable, but also strongly required, since in several im-

portant systems, complex many-body interactions result in the loss of the sim-

ple interferences of a one-body description. In this work, this is done without

121
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leaving the convenient a là Landauer approach by using the generalization in-

troduced by D’Amato and Pastawski where an effective transmission accounts

for decoherent processes. Our formulation accepts further improvements as it

is just a form of the robust Keldysh formalism within a minimal parametriza-

tion. In Chapter 3 we provided computational strategies for the implementa-

tion of the DP model, with strong emphasis on the description of our efficient

algorithm. Our purpose is that the methodology described could enable the

widespread implementation of the DP model in the great variety of systems

where it is required.

In Chapter 4 we have discussed electron conductance in a doped PAni. We

showed that the PAni ground state configuration, the BL, has high conductance

even in presence of disorder, provided that decoherent processes are included.

Roughly speaking, decoherent processes split each chain into a series of portions

whose length is given by the decoherence length Lφ [PWA95]. These define the

elemental conductivities from which the sample’s Ohmic transport builds on.

For many years, it has been assumed that conduction of polyanilines is in-

separably linked to the existence of a polaronic crystalline structure, which is

incompatible with thermodynamics. However, we showed that decoherent pro-

cesses are able to give appreciable metallic conduction in the more entropically

favorable bipolaronic lattice. For this system, the uncertainty of energy associ-

ated with thermal processes cannot be neglected in the study of conductance,

since kBT falls in a region in which the interplay between incoherent and co-

herent dynamics results in an increased efficiency of electron transport. One

might then speculate that only when the thermal energy scale becomes smaller

than the Coulomb energy of the localized states, one would actually start to

notice a qualitative difference with an ideal 1-D metal.

The robustness of our results is evident by noting that, in contrast with a

coherent transport, they neither depend on variations in the oxidation degree

of PAni prior to the doping process, nor on the particular arrangement of

quinoid rings along the chain, or on the exact value of the energy uncertainty

associated to Γφ. This justifies the fact that good conducting properties do not

depend much on the purity of the emeraldine base so that small displacements

toward the leucoemeraldine or pernigraniline are acceptable. We showed that,

even when inter-chain coupling can contribute appreciably to conductivity, the
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coupling between the pz bonds with torsional degrees of freedom is strong

enough to provide almost all the required decoherence. This hypothesis seems

consistent with the experiments that show that adding residues that restrict

the torsional motion would also diminish the conductivity as compared with

the unmodified bipolaronic lattice [HHY+01, HLHY03, SAM+04].

We do not attempt to rule out the presence of phase segregation into metallic

polaronic islands and “insulating” bipolaronic domains. However, these last

strands constitute the bottle-neck where thermal decoherent processes activate

the conductivity. Moreover, our results go further ahead and evidence that

bipolaronic chains can sustain electronic transport by themselves. In fact,

based in our simulations we can estimate bulk conductivity for these chains

and arrive to a remarkably good value as compared with experimental data.

In Chapter 5 we showed that many-body interactions suffered by carriers

in electronic devices that can not be treated within the simple Fermi golden

rule approximation, provide extra degrees of freedom that must be accounted

explicitly in the transport description. This situation, in some approximation,

can be mapped into the one-electron picture as a multi-terminal setup, trans-

ferring the complexity of the many-body interactions to the geometry of a ficti-

tious one-electron transport problem. On the other hand, system-environment

interactions that can be approximated within a FGR, are treated as decoher-

ence sources with the insight of the DP model. In fact, electronic nanode-

vices are intrinsically multi-channel systems. As we clarified, “polarons” and

time-dependent interactions are examples in which some degrees of freedom, as

some phonon-electron couplings must be solved explicitly, while others can be

included as sources of decoherence through the FGR. To this end, we developed

exact and computational efficient methods to analyze decoherent transport on

intrinsically multi-terminal setups. The matrix continued fractions approach,

as an extension of the continued fractions methods discussed in the introduc-

tory chapter, constitutes the strategy to obtain the overall Green’s function

matrix of the system. For tridiagonal block Hamiltonians, a generalization of

the “Thouless-Kirkpatrick” formula, that relates non diagonal with diagonal el-

ements of the Green’s function, was presented. The Kirchhoff law expressions

for the DP model on multichannel systems were established. In this way, we

obtained an efficient method to introduce decoherence in the study of electronic
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transport in realistic situations, where the complexity of the system prevents

the usual approach in which only a single channel is present.

In Chapter 6 we prove that the DP model provides all the ingredients for

a generalized Landauer-Büttiker approach of magneto-transport in nanowires.

On intrinsically quantum treatments to this (and related) problems, there is

a persistent difficulty in describing relaxation processes that do not occur in

the particle reservoirs [GWJS04]. However, with the insight of the DP model,

we accounted for all the basic characteristics involved in giant magnetoresis-

tance effect, a phenomenon that was previously described in terms of the self-

consistent solutions of the phenomenological Boltzmann equation. Our per-

spective is that this model will open the possibility to evaluate more complex

quantum interference effects at the interface which have not been addressed

yet in enough detail [Fer08].

Both the understanding of the effects of quantum decoherence and even its

proper description in the context of transport problems are still open research

subjects in modern physics. However, our expectation is that the methodology

introduced, despite its inherent limitations, will provide simple but powerful

insight into this blooming field.
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A
Diagonal elements of the transmission

matrix

In this section we show that the diagonal elements of T, that involve reflexion

probabilities, can be written in the form:

(1/gαi) =
∑

β=L,R,φ

N∑
j=1

Tαi,βj = 4πNiΓαi (A.1)

where Ni is the local density of states at the site i, and Γαi is the imaginary shift

introduced in the local site energy Ei due to the local escape associated with

the process α. This demonstration is very simple and relies on the formulation

of the optical theorem for the Green’s function, which can be found on Ref.

[PM01] and we reproduce here with little more detail.

After the decimation of the environmental degrees of freedom, the effective

Hamiltonian of the system has the form:

ĤS −→ Ĥef = ĤS + Σ̂ (A.2)

where HS is the Hamiltonian operator of the isolated sample and Σ̂ accounts for

the self-energies of the environment. In terms of the Green’s function matrix,

this can be expressed as a Dyson equation,

GR = G(0)R + G(0)RΣRGR (A.3)
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where G(0)R is the retarded Green’s function associated with HS and GR is

associated with the entire effective Hamiltonian. From the Dyson equation, we

can isolate ΣR,

[G(0)R]GR[GR]−1 − [G(0)R]−1G(0)R[GR]−1 = ΣR

[G(0)R]−1 − [GR]−1 = ΣR

(A.4)

In the same way of Eq. A.3, we can write a Dyson equation for the advanced

Green’s function to obtain an expression of the form given by Eq. A.4. Sub-

tracting ΣA from ΣR the terms G(0)R cancel and,

ΣR − ΣA = [GA]−1 − [GR]−1

= [GR]−1{GR[GA]−1 − 1}

= [GR]−1[GR −GA][GA]−1

(A.5)

which finally leads to:

GR −GA = GR[ΣR − ΣA]GA (A.6)

This is the result that is known as the optical theorem, which relates local

densities of states (associated with the imaginary parts of the Green’s function,

as in Eq. 2.36) and decay rates (associated with imaginary shifts to local site

energies). As defined by Eq. 3.19, total transmission probabilities from each

site i and process α is:

1

gi
≡
∑
j=1

N∑
β=L,R,φ

Tjβ,iα (A.7)

and the total reflexion probability on site i and process α is given by:

Rαi,αi = 1−
∑
j=1

N∑
β=L,R,φ 6=α,i

Tβj,αi (A.8)

With the help of the optical theorem (Eq. A.6) we can write,

Im{GR} = GRΓGA

Im{GR
i,j} =

∑
j=1

N∑
β=L,R,φ

GR
i,jΓβjG

A
j,i

(A.9)
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and then,

1/gi = 4
∑
j=1

N∑
β=L,R,φ

ΓαiG
R
i,jΓβjG

A
j,i

= 4Γαi
∑
j=1

∑
β = L,R, φN{GR

i,jΓβ,jG
A
j,i}

= 4ΓαiIm{GR
ii}

(A.10)

and the last expression is simply,

1/gi = 4πNiΓαi (A.11)

With this expression it is possible to express diagonal terms of the matrix T
in terms of diagonal elements of the Green’s function matrix, as shown in Eq.

3.39, in section 3.3.3.
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B
Nuclear Magnetic Resonance

Nuclear Magnetic Resonance (NMR) spectroscopy is a research technique that

relies in the magnetic nature of certain atomic nuclei. Immersed in a static

magnetic field and exposed to a second pulsed radio-frequency (RF) field, the

response of the nuclei provide detailed information about the structure, dynam-

ics, reaction state, and chemical environment of molecules. The term resonance

implies the tuning with a natural frequency of the magnetic system [Sli90]. This

appendix covers the basic theory behind this technique.

B.1 Basics aspects

Many atomic nuclei, in their ground state, have non zero spin angular momen-

tum
−→
J i, and an associated magnetic moment given by:

−→µ i = γ
−→
J i (B.1)

where γ is the gyromagnetic factor and is a constant value, characteristic of

each type of nucleus. With a few exceptions, the order of magnitude of these

magnetic moments is in the range 10−3-10−4 Bohr magnetons. Most of the

basic concepts involved in NMR experiments can be understood in terms of

the vector model. In the presence of an applied magnetic field
−→
B0, the bulk
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nuclear magnetization,
−→
M, is given by the sum of individual magnetizations of

nuclei,
−→
M =

∑
i

−→µ i (B.2)

therefore, bulk magnetization can be expressed as,

−→
M = γ

−→
J (B.3)

where
−→
J represents the sum of the individual angular moments of nuclei. The

influence of an applied uniform magnetic field
−→
B0, manifests as a torque on the

magnetization vector,
−→
T = d

−→
J /dt which in this case is:

−→
T =

−→
M×

−→
B0 (B.4)

that leads to,

d
−→
M

dt
= γ
−→
M×

−→
B0 (B.5)

This equation describes the motion of the vector
−→
M in the applied field

−→
B0.

The magnetization precesses around
−→
B0 with a constant angle, as shown in

Fig. B.1. The frequency of this precession is known as the Larmor frequency.

Since the standard practice in NMR is to consider the field
−→
B0 in the z axis,

Figure B.1: Larmor frequency.

the Larmor frequency results,

ω0 = γB0 (B.6)

Now we consider the effect of the radio-frequency (RF) field. This field is

usually represented by the vector
−→
B1 and is applied perpendicular to the static

field
−→
B0. The RF field is composed by two components with circular polar-

ization, both with amplitude B1 and frequency ωrf . One of this components
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rotates in the same direction of the spin precession and is the responsible for

the resonance phenomenon when ωrf = ω0. The other component is usually

neglected since B1 � B0.

Therefore, from a classical point of view, consider the magnetization initially

parallel to the field
−→
B0. Then, the RF field is applied in resonance for a

time tp. This is known as a θp pulse, where γB1 ≡ ω1tp ≡ θp. This pulse

produces a rotation of the magnetization
−→
M in an angle θp from the z axis. The

standard notation for the NMR pulses is (θp)ϕ, where ϕ refers to the direction

of the RF field and is called phase of the pulse. In particular, if θp = π/2,

the magnetization precesses in the x − y plane. If we perform a coordinate

transformation to a rotating frame which rotates with frequency ωrf around
−→
B0, then the field

−→
B1 is static in this frame. Hence, the time-dependence of

the RF field is removed in the rotating frame.

In a typical experiment, the application of RF fields produce transitions

that modify the equilibrium population of the nuclei spin system. How the

system recovers the termodinamic equilibrium state is precisely what provides

the information.

B.2 Experiments

The basic arrangement of an NMR spectrometer is shown on Fig. B.2. The

sample is positioned in the magnetic field and excited via pulsations in the radio

frequency input circuit. The realigned magnetic fields induce a radio signal

in the output circuit which is used to generate the output signal. Fourier

analysis of the complex output produces the actual spectrum. The pulse is

repeated as many times as necessary to allow the signals to be identified from

the background noise.

The chemical shift in absolute terms is defined by the frequency of the

resonance expressed with reference to a standard compound which is defined

to be at 0 ppm. The scale is made more manageable by expressing it in parts

per million (ppm) and is independent of the spectrometer frequency.
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Figure B.2: NMR setup.

B.2.1 1 Pulse experiment

The simplest NMR experiment involve only one pulse. The diagram of pulse

sequence is illustrated on Fig. B.3.

Figure B.3: One pulse NMR experiment.

When a pulse (π
2
)ϕ is applied, the magnetization, initially in equilibrium,

(Îz) is flipped to the plane x − y, where precesses around the axis z. over

time relaxation will cause this magnetization to decay away to zero. The free

induction decay (FID) signal, which results from the magnetization precessing

in the x y plane will therefore decay away in amplitude. This loss of x- and

y-magnetization is called transverse relaxation. Fourier transformation of the

free induction signal will produce a spectrum with lines at the characteristic

frequencies of the signal. The width of each peak is related with the decay time

of the FID.
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B.2.2 Magic Angle Spinning

Magic angle spinning (MAS) is a technique in which the sample is rotated very

fast, averaging out the solid-state dipolar interaction. The angle of spinning to

the magnetic field is chosen so that 3 cos θ−1 is equal to zero. NMR spectra in

solid state are usually very broad for materials. When spinning the sample at

low speed the chemical shift anisotropy will result in spinning sidebands. These

spinning sidebands appear at distances to the main signal which are multiples

of the spinning frequency. At high enough speed the spinning sidebands get

smaller.

B.2.3 Heteronuclear decoupling

Couplings between nuclear spins generate substantial broadening of the spectral

lines of solid state NMR experiments. Dipolar interaction can be responsible

for hundreds of kHz in magnitude, while the indirect coupling (or J interac-

tion) is weaker and requires the nuclei to be chemically bound. To obtain

high-resolution spectra in solid state NMR, it is necessary to eliminate this in-

teractions, specially dipolar couplings. Prima facie, this could be accomplished

with the help of MAS techniques. However, often is not possible to reach the

spin velocities needed.

Natural abundance of 13C nuclei is very low. Then, dipolar interactions

between identical 13C nuclei is weaker and can be eliminated from the NMR

spectra with MAS. However, the number of 1H atoms in organic compounds is

usually large and the heteronuclear dipolar interaction 1H-13C is strong. The

simplest example of heteronuclear decoupling is the continuous wave decou-

pling, which involve the application of a continuous RF pulse during the entire

FID acquisition. Within the theory of average Hamiltonians, is possible to show

that during the irradiation period, the operator Îz precesses in a way such that

the dipolar Hamiltonian vanishes in a complete precession period and tends to

zero for long irradiation times.

B.2.4 Cross Polarization

In this example the abundant nucleus was chosen to be 1H and the observed

nucleus is 13C. The abundant nucleus is excited, and its energy is then trans-
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Figure B.4: Cross-polarization technique.

fered to the observed nucleus by using a long low power pulse on both channels.

The RF power ratio of these pulses needs to be tuned so that the transition

energy for both nuclei is the same. So that for instance for the polarization

transfer from a 1H to a 13C, the rotating field B1 must be 4 times weaker for

the proton channel than for the carbon channel.

This method often gives a much stronger signal than direct excitation, allow

faster repetition rate (it now depends on the T1 of the proton instead the one

of lower gyromagnetic ratio nuclei). The major limitation of CP method is the

requirement of high power irradiation, that could deteriorate the sample or the

probe.



C
Comparison to Marcus-Hush theory

Electron couplings with Torsional degrees of freedom involved the physically

relevant situation of a quadratic interaction with the vibrational coordinate.

This is not conceptually different with the standard linear electron-phonon

coupling used to describe the Franck-Condon effect [Mar00] and the electron-

transfer process [Nit06]. All these physical processes are contained in a simple

Hamiltonian

Ĥ =
∑

j=A,B

Ej ĉ
+
j ĉj + ~ω0

(
b̂+b̂+ 1

2

)
− Vg

(
b̂+ + b̂

)
ĉ+
B ĉB (C.1)

+VAB(ĉ+
AĉB + ĉ+

B ĉA), (C.2)

whose interactions in the Fock space are represented in Fig. C.1. The electron

transfer problem is best represented resorting to the polaronic transformation

which would diagonalize the Hamiltonian but for the tunneling described by

VAB. The essence of an estimation of the electron transfer rate is a FGR

evaluation of the tunneling between the electronic states A and B in the regime

of weak coupling non-adiabatic limit ~ω0 � kBT, |VAB| � |Vg|.

kA−→B =
1

τA−→B
=

2π

~
|VAB|2 [F (∆E)] (C.3)
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Figure C.1: Fock-space representation of Eq. C.2 and its corresponding
semiclassical picture in terms of vibronic degree of freedom X as used in the
Marcus-Hush model for electron transfer reactions. The potential surface at
the right becomes shifted when represented in the polaronic basis allowing to
define the reorganization energy Er. In this model, the electronic coupling
VAB must be small enough to remain perturbative. Left panel is also used to
represent the decoherence by electron-phonon coupling when Vg � VAB.

where ∆E = EA− ẼB, ẼB = EB − V 2
g /~ω0 and F (∆E) is a density of directly

connected states denominated Franck-Condon factor. Thus it satisfies∫ ∞
−∞

F (∆E)d∆E = 1. (C.4)

F (∆E) is estimated resorting to a thermal average and following the Marcus

original treatment which interprets the transition probability according to a

Landau-Zener formula. Thus

F (∆E) =
1√

4πErkBT
exp

[
−(∆E − Er)2

4ErkBT

]
(C.5)

where the reorganization energy Er is indicated in the plot.

In contrast to this treatment, in a decoherence problem one focus on es-

timating how the electron-phonon interaction degrades the standard coherent

Rabi oscillation [Pas07]. This describes an electron jumping forth and back be-

tween states B and A and attenuates within a decoherence time τφ. Similarly

to Eq. (3.14) of Ref. [Pas92] a FGR evaluation gives:

1

τφ
=

2π

~
|Vg|2 〈〈(n+ 1)N(EB + ~ω0) + nN(EB − ~ω0)〉〉 (C.6)

' 4π

~
|Vg|2

[
kBT

~ω0

N(EB)

]
. (C.7)
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where 〈〈〉〉 stands for thermal average. The approximation involves a high

temperature limit and again, the square brackets indicate a density of directly

connected states. As in previous section, the assumption that phonon induced

electron energy uncertainty leads to the self-consistent condition of Eq. 4.14:

Γφ =
~

2τB
= |Vg|

√
2πkBT

~ω0

, (C.8)

which is valid provided that ~ω0 � kBT, |Vg| � VAB. Notice that in an ab-

intio parametrization of the tight-binding Hamiltonian, the coupling constant

results from evaluating the dependence of the parameter on the appropriate

generalized coordinate, e.g. Vg = ∂EB/∂θ.

Thus, in both problems, electron transfer in presence of a some reorgani-

zation energy and electron transport with decoherence from a phonon bath,

the Hamiltonian is the same. However, since the calculated observables are

different, the term used as perturbation in the FGR differ. In the first case the

perturbation is the electron jump VAB, while in the decoherent situation the

perturbation is the electron-phonon coupling constant Vg.
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