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Junio de 2004

Lic. Fernando M. Cucchietti
Autor

Dr. Horacio M. Pastawski
Director





A Soledad





Abstract

The Loschmidt echo (LE) is a measure of the sensitivity of quantum mechanics to per-
turbations in the evolution operator. It is defined as the overlap of two wave functions
evolved from the same initial state but with slightly different Hamiltonians. Thus, it also
serves as a quantification of irreversibility in quantum mechanics.

In this thesis the LE is studied in systems that have a classical counterpart with dy-
namical instability, that is, classically chaotic. An analytical treatment that makes use
of the semiclassical approximation is presented. It is shown that, under certain regime of
the parameters, the LE decays exponentially. Furthermore, for strong enough perturba-
tions, the decay rate is given by the Lyapunov exponent of the classical system. Some
particularly interesting examples are given.

The analytical results are supported by thorough numerical studies. In addition, some
regimes not accessible to the theory are explored, showing that the LE and its Lyapunov
regime present the same form of universality ascribed to classical chaos. In a sense, this
is evidence that the LE is a robust temporal signature of chaos in the quantum realm.

Finally, the relation between the LE and the quantum to classical transition is ex-
plored, in particular with the theory of decoherence. Using two different approaches, a
semiclassical approximation to Wigner functions and a master equation for the LE, it is
shown that the decoherence rate and the decay rate of the LE are equal. The relationship
between these quantities results mutually beneficial, in terms of the broader resources of
decoherence theory and of the possible experimental realization of the LE.
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Chapter 1

Introduction

Can nature possibly be as absurd as it seems to us in these atomic experiments?

Werner Karl Heisenberg

In 1872 Boltzmann published his first formulation of his now famous H theorem,
in which he provided a proof of irreversibility (growth of entropy) from mechanics. His
derivation used statistical techniques which had recently been developed by Maxwell. The
early misunderstanding of some of the implications of these tools led Boltzmann to use a
strong deterministic language in his conclusions. His subsequent work would go back to
the understanding and development of further proofs of his H theorem over the next two
decades, at the same time advancing some of the most profound concepts of statistical
mechanics.

However, his early flaws were readily picked up by the Austrian physicist Josef Loschmidt,
who in 1876 1 enunciated a theorem that showed the impossibility of deriving the second
law from mechanics. His argument was based in that the microscopic laws of mechanics
are invariant under time reversal. For every mechanically possible motion that leads to-
wards equilibrium (and growth of entropy), there is another one, equally possible, that
leads away from it. This evolution, reducing the entropy and thus violating the second
law of thermodynamics, is set in motion by taking the final state of the previous evolution
as the new initial state and then reversing all the individual molecular velocities.

Although Boltzmann was not mentioned directly by Loschmidt, he was greatly con-
cerned with this “reversibility paradox” (as it became known later). Ultimately, it brought
Boltzmann to a proper statistical understanding of the second law and his H theorem, re-
alizing the existence of statistical fluctuations, and leading him to his final expressions for
entropy using the probability of states compatible with the values of the thermodynamic
variables.

The statistical arguments, however, do not make Loschmidt’s argument untrue, they
only prove that such occurrences are extremely improbable. In the spirit of Maxwell’s
daemon gedanken experiment, let us imagine a supernatural being that has the power of

1A comment on the same lines was made two years previously by William Thomson, later known as
Lord Kelvin
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Chapter 1. Introduction

reversing all the velocities of the particles trapped in a box. The fact remains that such
a creature has the intrinsic power of decreasing the entropy of the system under his will.
We call this being a Loschmidt daemon. Furthermore, an external observer, measuring
some variable of the particles in the box before and after the action of the daemon, would
see a recurrence in his measurements which we call a Loschmidt echo.

Several decades passed until it was possible to give a measure of the powers the daemon
needed to perform this time reversal effectively. This came with the advent of chaos theory,
observed empirically for the first time in 1960 by the meteorologist Edward Lorenz. In the
foundations of this theory is the observation that some systems have equations of motion
that are hypersensitive to their initial conditions (an example of this is the weather).
In this sense, it is known that any prediction of future states of the system will rapidly
differ from its actual evolution. It should be noticed that this does not mean that the
motion is not deterministic, it is only extremely difficult to predict (where again the
weather provides an everyday example). Further mathematical development of the theory
showed that these systems, despite their unpredictability, share many broad features that
characterize them. An important feature for this work is the so called Lyapunov exponent,
which is the rate at which two very close initial states diverge exponentially in time. The
Lyapunov exponent is a property of the Hamiltonian of the system and does not depend
on the distance between initial conditions, which is only a prefactor of the divergence
in time. The explanation of irreversibility provided by chaos is based on the notions of
mixing and coarse graining. The former is the property of chaotic systems of generating a
uniform distribution in phase space over the proper energy shell for any initial distribution.
The latter, on the other hand, refers explicitly to the sensitivity to initial conditions: the
coarseness of our instruments prevents us to prepare specific initial states that will evolve
diminishing their entropy.

The devastating consequence of these conclusions for the Loschmidt daemon are the
following: to achieve his feat, it must possess an exponentially increasing precision (with
the complexity of the system) of the time reversal operation. In the thermodynamic
limit, the hypersensitivity of the classical equations of motion implies that the Loschmidt
daemon needs to be perfect: otherwise, his attempts to reduce the entropy will quickly fail
and go back to the usual thermodynamic prescription. It is, in a way, Boltzmann’s concept
of “molecular disorder” or stossszhalansatz (in an extremely more developed fashion) that
settles the century old paradox. However, the Loschmidt daemon has apparently an exit
door: becoming quantum.

It is fairly simple to demonstrate that changes in the initial conditions do not grow with
quantum evolution, the main reason being that the evolution operators are unitary. Sup-
pose we have an initial state |ψ(0)〉 and another one very close to it denoted |ψδ(0)〉, such
that the initial distance between them is measured by the overlap δ(0) = | 〈ψδ(0)|ψ(0)〉 |2.
This distance in time can be expressed using the quantum evolution operator U(t),

δ(t) = | 〈ψδ(t)|ψ(t)〉 |2
= |

〈
ψδ(0)|U †(t)U(t)|ψ(0)

〉
|2 = δ(0),

because U is a unitary operator. Conclusive numerical evidence of this insensitivity to
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initial conditions even when the underlying Hamiltonian is classically chaotic was pre-
sented in [CCGS86]. This property of quantum mechanics could fairly imply that a time
reversal as proposed above has better chances of being successful in this context.

The relevant question now is: how to define the action of the Loschmidt daemon in
quantum mechanics? A simple way is given by the observation that in the Schrödinger
equation, a change in the sign of the Hamiltonian could be absorbed as a change in the sign
of time, and therefore is equivalent to a time reversal. The Loschmidt daemon’s powers
are then restricted to “flipping” the sign of the Hamiltonian, something that could be in
fact less demanding than changing velocities of particles. So much simpler, actually, that
an experimental realization was possible in the setting of Nuclear Magnetic Resonance
experiments. As early as 1950, Hahn [Hah50] noticed that a π pulse in the X−Y plane in
a sample under a strong magnetic field in the Z direction would be equivalent to changing
the sign of the local magnetic field of the spins. This in turn inverted the decay of the total
magnetization (given by inhomogeneities of the external field for each spin), and produced
the first realization of a Loschmidt echo. The fact that the sequence only changed the
sign of the spin-field term of the Hamiltonian, leaving aside interactions and other terms,
made the magnitude of the echo decay with the time waited to perform the operation,
therefore leading to an imperfect time reversal.

Further improvements were performed by Rhim, Kessemeir, Pines and Waugh [RK71,
RPW70]. They were able to change the sign of the dipolar interaction between spins
through a pulse sequence that changed the axis of quantization of the spins in the sample.
Theirs was the first implementation of a many body Loschmidt echo (albeit later called
Magic echo in the NMR community). However it was still far from a perfect echo, since
its magnitude also decreased indicating some failure in the time reversal. Furthermore,
since the only available information was the total magnetization of the sample, no further
insight on the microscopic nature of this decay was possible. Although the majority of
the technological components needed were available at the time, it took more than two
decades of conceptual progress to combine them to produce a more controlled Loschmidt
daemon.

In the meantime, theoretical studies focused more on what meant chaos in quan-
tum mechanics. Being unable to provide a dynamical definition, researchers found that
the spectral properties of systems with a classically chaotic analog presented particular
features that distinguished them from integrable systems. For instance, Casati et al.
[CGVG80] and later Bohigas et. al. [BGS84] observed that the distribution of level spac-
ings in a classically chaotic system was the same as the distribution obtained from random
matrices with the appropriate symmetries (for instance time reversal or spin symmetry),
which are more amenable to analytical studies. In particular, chaotic systems present a
Wigner-Dyson distribution of the spacings, which has a marked zero for degenerate lev-
els. Integrable systems on the other hand show a Poissonian (exponential) distribution,
indicating that degeneracies abound. Heller [Hel84], on another line, showed that the
spatial density of the wave function in chaotic billiards showed scars, marked lines that
corresponded to the position of classical periodic orbits. Another example is the finding
by Szafer et. al. [SA93], who showed that the energies of a chaotic system as a function
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Chapter 1. Introduction

of an external parameter displayed repulsion and spectral rigidity (also found in random
matrices). They also were able to compute the value of the parameter after which per-
turbation theory broke down and the level velocity correlations decayed to zero. There
exists a multitude of studies of spectral properties of chaotic systems, but we shall focus
on just two that directly treat dynamics.

One of the first results that connected the classical chaotic motion to a quantum ob-
servable was also due by Heller [Hel91], who showed that given an initial wave packet
along a periodical orbit of a chaotic system, one should observe recurrences in the au-
tocorrelation function that were attenuated exponentially with the a rate equal to the
Lyapunov exponent.

The second work is closely related to the discussion that interests us, the Loschmidt
daemon. Peres in [Per84] proposed that, given the paradox between quantum mechanics
and classical chaos, one should look for sensitivity not in the initial conditions but rather
in the Hamiltonian that governs the evolution. In specific terms, he proposed to study
the overlap of the same initial wave function |ψ0〉 evolved with two slightly different
Hamiltonians,

M(t) = |m(t)|2 =
∣∣〈ψ0| ei(H0+Σ)t/~ e−iH0t/~ |ψ0〉

∣∣2 . (1.1)

By virtue of the structure of quantum operators, this equation also describes the mag-
nitude of an imperfect Loschmidt echo: take an initial state |ψ0〉, evolve it with a given
Hamiltonian H0 for a time t, perform a faulty sign change in the Hamiltonian represented
by the addition of a unitary term Σ, and compute what is the overlap with the desired
(initial) state.

Peres’ work [Per84] contains two main results. Frst, using perturbation theory he
showed that for short times or very small Σ, M decayed quadratically. Second, and
perhaps more important and profound, he provided numerical evidence that the long time
behavior of M for classically chaotic or integrable systems was clearly distinguishable.
While the former decayed rapidly to a small constant given by the inverse of the size of
the Hilbert space, M in integrable systems showed strong oscillations and recurrences and
did not saturate at such a small value. Later on, in Ref. [Per91], Peres would indicate
that in numerical computations for chaotic systems M appeared to decay exponentially
until the saturation value was reached.

Peres’ seminal paper sparked a wave of related work [SC92, SC93, BSW93, SC96b,
BZ96, SC96a]. Of importance to us is Ref. [SC96a]. There, using an information theoret-
ical approach, Schack and Caves were able to show that in classical dynamics perturbing
the evolution had the same effect as that of changing the initial conditions: linear increase
of entropy with the Lyapunov exponent.

To explain the following analytical breakthrough, it is better refer back to its ex-
perimental motivation. After the Magic echo of the 70’s, it took another 20 years to
combine it with a technique called cross-polarization to probe the inner dynamics of the
spin network. The setup is the following: using a rare spin species as a local probe and
the cross-polarization technique, magnetization can be injected and after some time mea-
sured by the probe in only one spin of a large network [ZME92]. Therefore, one can access
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microscopic information about the dynamics directly. In between the injection and the
measurement, the Magic echo sequence can be applied. The result, dubbed a Polarization
echo [ZME92], allowed to track the behavior under time reversal of a local excitation of the
spin system, unlike the Magic echo which only provides information of the magnetization
on a global level.

The group of Levstein and Pastawski developed this matter further, and aimed to
shed light on the problem of irreversibility. Among their main results, the following are
those that are most pertinent to this discussion. For spin systems weakly coupled to
the environment, the decay of the Loschmidt echo was found to have a Gaussian shape
[LUP98, UPL98]. The width τφ of this Gaussian was observed to depend mainly on the
dipolar interaction constant between the spins [UPL98]. Even more, they were able to
show that τφ depends only weakly on the strength ω of the RF field used to perform
the pulse sequence [PLU+00] (where it is argued that the most important terms of Σ are
proportional to ω−1). The long detour through the experiments that led to these striking
results, along with their interesting conceptual framework and analysis is reviewed in
[PUL01].

The main conclusion to be extracted from the last two findings is that the typical
decay time of the Loschmidt echo in an isolated many body spin system depends only on
properties of the Hamiltonian of the system, and is independent of the perturbation Σ.
The similarity of this effect to that discussed above for chaotic systems is striking, and
strongly suggests that the many body system presents an hypersensitivity to perturbations
in much the same way as classical chaotic systems.

Sadly, analytical tools to treat this problem in many body systems do not exist, or at
least are not sufficiently simple or capable of providing a solution. An alternative problem
amenable to analytical treatment, and with enough elements to at least mimic the most
prominent behavior, is a single particle in a classically chaotic system. In this sense, we
assume that the chaotic Hamiltonian supplies enough complexity in the dynamics to make
up for the intricacies of the many body situation. Furthermore, it is at least reasonable to
assume that if hypersensitivity to perturbations were to be found in quantum mechanics,
one would expect to observe it in chaotic systems such that the classical behavior is
consistently recovered.

These are the ideas and assumptions behind the work of Jalabert and Pastawski [JP01]
that is the basis for this thesis. I will briefly mention their main result since it will
be derived later in full detail. Studying the Loschmidt echo for a single particle in a
classically chaotic Hamiltonian, Jalabert and Pastawski showed that there exists a regime
of the parameters where M(t) decays exponentially with a rate given by the Lyapunov
exponent of the classical system. This striking result triggered a large amount of analytical
and numerical work in different groups on many aspects of the theory, a process I had the
privilege of participating actively since its very beginnings.

This thesis is an account of the work I did in this period of great excitement over
the field. The results of the investigations I took part of are not presented in chrono-
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Chapter 1. Introduction

logical order for pedagogical reasons2. The organization of this work is the following: In
chapter 2, I introduce a generalization of the original calculation of [JP01], as well as an
ample discussion on the implications of the theoretical results. Ensuing, some particular
examples are given that serve to gain insight on the (somewhat intricate) semiclassical
calculations. In chapter 3, I first present some numerical results that support the theory.
Afterwards, the main topic of the chapter is addressed, namely the universality of the
Lyapunov decay of the LE. Briefly, this universality is understood as that commented
above for classical chaos. The subtle issue of an apparently classical behavior emerging
from a quantum object is approached in chapter 4. For this purpose, a relation between
the LE and the theory of the quantum to classical transition in open systems is demon-
strated. This relation proves to be useful in providing fresh perspectives and insight of
the previously obtained results.

At the end of each chapter a summary of the main results is given. This leaves for the
conclusions some remarks on the general character of the problem, comments on work by
other groups not mentioned in the body of the thesis, and finally some considerations on
future investigations.

2This choice, however, takes away the opportunity to witness the emotional roller-coaster of scientific
research.

6



Chapter 2

The semiclassic approximation to the

Loschmidt echo

You can never solve a problem on the level on which it was created.

Albert Einstein.

We left the previous chapter with the purpose of tackling the problem of a complex
many body Hamiltonian with many degrees of freedom applying a rather crude first
approach: a single body in a chaotic system. Chaos is our attempt to introduce complexity
while at the same time retaining some analytical tractability, hoping that at least some
physical insight will be gained. A powerful tool that lets one take into account the
classically chaotic properties of motion in the description of quantum dynamics is the so
called semiclassical approximation. In this chapter we will use it to analyze the problem
of the Loschmidt echo (LE), and show that it succesfully describes some of its relevant
regimes. Afterwards, we will consider some particular examples that help develop intuition
on the subject, apart from being useful to compare with numerical tests. Finally (and
in the spirit of gaining intuition) we will consider an interesting analytically solvable
example: an inverted harmonic oscillator that, although presents dynamical instability, is
not chaotic.

2.1 General Approach

This section contains calculations of the Loschmidt echo for a generic chaotic Hamiltonian
H0 and a perturbation Σ that has a random time and spatial dependence. This latter
restriction will be relaxed later in one of the examples of the next section.

7



Chapter 2. The semiclassic approximation to the Loschmidt echo

2.1.1 Semiclassical Evolution

Let us consider as an initial state a Gaussian wave packet of width σ and initial mean
momentum p0,

ψ(r, t=0) =

(
1

πσ2

)d/4

exp

[
i

~
p0 · (r− r0)−

1

2σ2
(r− r0)

2

]
. (2.1)

Such an initial state is a typical choice in semiclassical approximations because it is a good
representation of a classical state and, not less important, it usually simplifies analytical
calculations. The generality of results based on this approximation can be questioned,
since it is not true that the behavior of the LE is the same for a general initial state. While
not formally proved, the general feeling is that any localized state (in space, momentum,
etc.) will show classical properties appearing in the decay of the LE. On the other hand,
it has been shown that this is not the case for other choices like eigenstates [WC02] of the
system or random states [gWL02]. We adhere however to the usual prescription, noting
that the results obtained will be as general as the decomposition of the initial state into
a superposition of Gaussians [JAB02, gWL02].

The time evolution of an initial state ψ(r, 0) = 〈r|ψ(t = 0)〉 is given by

ψ(r, t) =

∫
dr K(r, r; t) ψ(r, 0) , (2.2)

with the quantum propagator

K(r, r; t) = 〈r| e−iHt/~ |r〉 . (2.3)

It is usually at this point that the semiclassical approximation is made (only a brief
summary of it follows asmany good textbooks exist on the subject [Gut90, BB97]). This
consists of an expansion of the full quantum propagator in a sum of propagators but only
over all possible classical trajectories1 s(r, r, t) going from r to r in time t,

K(r, r; t) '
∑

s(r,r,t)

Ks(r, r; t) ,

Ks(r, r; t) =

(
1

2πi~

)d/2

C1/2
s exp

[
i

~
Ss(r, r; t)− i

π

2
µs

]
. (2.4)

The approximation is valid in the limit of large energies for which the de Broglie wave-
length (λdB = 2π/kdB = 2π~/p0) is the minimal length scale. Ss(r, r; t) =

∫ t

0
dtLs(qs(t), q̇s(t); t)

is the action over the trajectory s, and L the Lagrangian. The Jacobian Cs = |detBs|
accounts for the conservation of classical probabilities, with the matrix

(Bs)ij = − ∂2Ss

∂ri∂rj
, (2.5)

1Trajectories not included, but allowed by quantum mechanics, are for instance those with tunneling
through energy forbidden regions.
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2.1. General Approach

obtained from the derivatives of the action with respect to the various components of
the initial and final positions. µs is the Maslov index, counting the number of conjugate
points of the trajectory s, but it will be disregarded since it does not play any role in the
LE.

Let us consider fairly concentrated initial wave–packets, which will let us expand the
action around trajectory s to first order

Ss(r, r; t) ' Sŝ(r, r0; t)− pŝ · (r− r0) , (2.6)

where ∇ri
Ss|r=r0

= −ps,i and ps,i is the i-th component of the initial momentum of
trajectory s. We are lead to work with trajectories ŝ that join r0 to r in a time t, which
are slightly modified with respect to the original trajectories s(r, r, t). We can therefore
write

ψ(r, t) =
∑

s(r0,r,t)

Ks(r, r0; t)

∫
dr exp

[
− i

~
ps · (r− r0)

]
ψ(r, 0)

=
(
4πσ2

)d/4
∑

s(r0,r,t)

Ks(r, r0; t) exp

[
− σ2

2~2
(ps − p0)

2

]
, (2.7)

where we have neglected second order terms of S in (r − r0) since we assume that the
initial wave packet is much larger than the de Broglie wavelength (σ � λdB). Eq. (2.7)
shows that only trajectories with initial momentum ps closer than ~/σ to p0 are relevant
for the propagation of the wave-packet, and it is the expression for the wave function at
time t that will let us obtain a tractable form for the Loschmidt echo (even though further
approximations are still needed).

2.1.2 Semiclassical Loschmidt Echo

Combining Eqs. (1.1) and (2.7) one readily obtains the semiclassical expression for the
amplitude of the Loschmidt echo,

m(t) =

(
σ2

π~2

)d/2 ∫
dr

∑

s,s̃

C1/2
s C

1/2
s̃ exp

[
i

~
(Ss − Ss̃)−

iπ

2
(µs − µs̃)

]

× exp

[
− σ2

2~2

(
(ps − p0)

2 + (ps̃ − p0)
2)

]
(2.8)

where s (s̃) are trajectories traversed with the unperturbed (perturbed) Hamiltonian H0

(H0 +Σ). Let us first evaluate this equation for the zero perturbation (Σ = 0) case. Here
we need to restrict the sum to the terms with s = s̃ (the ones we leave aside are terms
with a highly oscillating phase and are corrections of smaller order). Thus we obtain

9



Chapter 2. The semiclassic approximation to the Loschmidt echo

mΣ=0(t) =

(
σ2

π~2

)d/2 ∫
dr

∑

s(r0,r,t)

Cs exp

[
−σ

2

~2

(
ps − p2

0

)2
]

= 1s . (2.9)

where we have performed the change from the final position variable r to the initial
momentum ps using the Jacobian C, and then simply carried out a Gaussian integration
over the variable ps. Notice the subindex s to the unity is a remainder that the result is
1 to first order (s = s̃) and that small corrections to 1 could exist. 1s is therefore the
“semiclassical” unity [VL01].

To proceed analytically in the Σ 6= 0 case, we need to perform a rather controversial
approximation. We will assume that the perturbation is sufficiently weak so that it does
not change appreciably the classical trajectories associated with H0, at least in the time
interval of interest. In terms of Eq. (2.8), this means we will only keep terms where s ∼ s̃.
Clearly, in a chaotic system this is a no-hope situation, where individual trajectories are
per definition exponentially sensitive to perturbations. Thus, the time regime of validity
of the approximation is logarithmically short. However, it was observed in numerical
tests that this so called classical perturbation approximation holds for times much longer
than expected. Even though one can argue that terms where s 6= s̃ cancel out because of
rapid oscillations or averaging, a more subtle cause for this robustness has been pointed
out [CT02, VH03]. Despite the sensitivity of individual points in phase space, the whole
manifold of trajectories in chaotic systems displays a rather strong structural stability. In
terms of such an approximation this means that instead of claiming that trajectories s̃ are
weakly affected by the perturbation, one can always resort to a “replacement” trajectory
s′ that moves close to s [VH03].

Within the classical perturbation approximation then Eq. (2.8) can be cast as

m(t) '
(
σ2

π~2

)d/2 ∫
dr

∑

s

Cs exp

[
i

~
∆Ss

]
exp

[
−σ

2

~2

[
(ps − p0)

2]
]
. (2.10)

Where ∆Ss is the modification of the action, associated with the trajectory s, by the
effect of the perturbation Σ. It can be obtained as

∆Ss = −
∫ t

0

dt Σs(q(t), q̇(t), t) , (2.11)

when the perturbation is in the potential part of the Hamiltonian: if it is in the kinetic
term there is an irrelevant change of sign.

Using expression (2.10) we can write the LE as

M(t) =

(
σ2

π~2

)d ∫
dr

∫
dr′

∑

s(r0,r,t)

∑

s′(r0,r′,t)

CsCs′ exp

[
i

~
(∆Ss −∆Ss′)

]

× exp

[
−σ

2

~2

[
(ps − p0)

2 + (ps′ − p0)
2]

]
. (2.12)

10



2.1. General Approach

As in Ref. [JP01], the LE can be decomposed as

M(t) = Mnd(t) +Md(t) , (2.13)

where the first term (non-diagonal) contains trajectories s and s′ exploring different re-
gions of phase space, while in the second (diagonal) s′ remains close to s. Such a distinction
is essential when considering the effect of the perturbation over the different contributions.
One could object that the separation is rather arbitrary and not complete, in the sense
that it has not been precisely defined yet and that it does not contemplate cases between
the two categories (which are likely to exist due to the chaotic nature of the system).
A mathematical definition for the separation will be given later in the treatment of the
diagonal contribution, and this will help dividing more precisely the terms in the two cat-
egories. In any case, numerical experiments will show that such a separation is sufficient
to describe the most prominent behavior of M(t).

2.1.3 Non diagonal terms

To proceed, one needs to enter information about the perturbation. In this and in the
following section we will introduce the calculation of the LE for a quite general form of
the perturbation, requiring knowledge of only statistical properties of the perturbation
correlators.

Let us first consider a perturbation in the potential term of the Hamiltonian, that
depends randomly on the position and in time, Σ = Σ(r, t). In particular, the potential
needs to be continuous and have a finite range ξ in order to allow the application of the
semiclassical tool (this is given by ξkdB � 1). Other restrictions will be specified below
when necessary. The correlation function of the above potential is given by

CΣ(|q− q′|, t− t′) = Σ2CS(|q− q′|)CT (t− t′) = 〈Σ(q, t)Σ(q′, t′)〉 (2.14)

where we have assumed that the time correlation CT is independent of the spatial one

CS. Σ2
1/2

is the typical strength of the perturbation. We require that at least CS or CT

decay sufficiently fast, so that

∫ ∞

0

dr CS(r) = ξ <∞ or

∫ ∞

0

dt CT (t) = τ0 <∞, (2.15)

which for chaotic systems is a sensible approximation. Above ξ is the typical correlation
distance of CS, and τ0 is the typical decay time of CT . The finite range of the potential
is a crucial ingredient in order to bridge the gap between the physics of disordered and
dynamical systems [Jal00, AGM03] and to obtain the Lyapunov regime [JP01]. Moreover,
taking a finite ξ or τ0 is not only helpful for computational or conceptual purposes, but it
constitutes a sensible approximation for an uncontrolled error in the reversal procedure
H0 → −H0 +Σ as well as an approximate description for an external environment, which
is likely to extend over a certain typical length instead of being local.

11



Chapter 2. The semiclassic approximation to the Loschmidt echo

As discussed above, in the leading order of ~ and for sufficiently weak perturbations,
we can neglect the changes in the classical dynamics associated with the external source.
One simply modifies the contributions to the semiclassical expansion of the LE associated
with a trajectory s (or in generally to any quantity that can be expressed in terms of the
propagators) by adding the extra phase ∆S of Eq. (2.11). Let us assume that the velocity
along the trajectories remains unchanged with respect to its initial value v0 = p0/m =
Ls/t.

For trajectories of length Ls � ξ, Ls � v0τ0, the contributions to ∆S from segments
separated more than ξ or v0τ0 are uncorrelated. The stochastic accumulation of action
along the path can be therefore interpreted as determined by a random-walk process,
resulting in a Gaussian distribution of ∆Ss(Ls). This approximation has also been verified
numerically in Ref. [VH03], but it is worth noticing that it could depend on the shape of
the perturbation and the chaoticity of the system [WC04]. In this sense the integration
over trajectories represents an average for the non–diagonal terms M nd, and we can write

〈
Mnd(t)

〉
=

∣∣∣∣∣∣

(
σ2

π~2

)d/2 ∫
dr

∑

s(r0,r,t)

Cs

〈
exp

[
i

~
(∆Ss)

]〉
exp

[
−σ

2

~2
(ps − p0)

2

]∣∣∣∣∣∣

2

.

(2.16)
Using the above considerations on the statistical properties of ∆Ss, the ensemble average
over the propagator (2.4) [or over independent trajectories in Eq. (2.10)] of the phase
differences can be written as

〈exp

[
i

~
∆Ss

]
〉 = exp

[
−〈∆S

2
s 〉

2~2

]
, (2.17)

and therefore Mnd is entirely specified by the variance

〈∆S2
s 〉 = Σ2

∫ t

0

dt

∫ t

0

dt
′
CS(|qs(t)− q′s(t

′
)|)CT (t− t

′
). (2.18)

Since the length Ls of the trajectory is supposed to be much larger than the decay
distance of the correlators, the integral over τ = t − t

′
can be taken from −∞ to +∞,

while the integral on t̂ = (t+ t
′
)/2 gives a factor of t. Two regimes are readily solved, the

first one when the time dependence of the perturbation is slow compared to the spatial
change, ξ � v0/τ0, and one obtains

〈
∆Ss(t)

2
〉
' Σ2

∫ t

0

dt

∫ ∞

−∞

dτCS

[∣∣qs(t− τ/2)− qs(t+ τ/2)
∣∣] =

vt~2

˜̀
S

, (2.19)

where CT (τ) is assumed constant and the mean free path of the perturbation is defined
as

1

˜̀
S

=
ξΣ2

v2~2
. (2.20)

12



2.1. General Approach

On the other extreme, when τ0 � ξ/v, we have the opposite regime and the decay of
Mnd will be given by

〈
∆Ss(t)

2
〉
' Σ2

∫ t

0

dt

∫ ∞

−∞

dτCT (τ) =
vt~2

˜̀
T

, (2.21)

with

1

˜̀
T

=
τ0Σ2

v~2
. (2.22)

Replacing Eqs. (2.19) or (2.21) into Eq. (2.16) and using the Jacobian Cs to perform
the Gaussian integral,

Mnd = exp

(
−vot

˜̀

)
. (2.23)

The “elastic mean free path” ˜̀ and the mean free time τ̃ = ˜̀/v0 associated with the
perturbation determines the rate of decay of Mnd and will constitute a measure of the
strength of the coupling.

Taking averages over the perturbation is technically convenient, but not crucial. These
results would also arrive from considering a single perturbation and a large number of
trajectories exploring different regions of phase space.

The intermediate regime, when the temporal and spatial scales of the perturbation
coincide, is only accesible through numerical simulations or further assumptions on the
form of the correlators. We will take the latter path in the next section. However, before
that, let us take a brief detour to explore the association of M nd with the well known
Fermi Golden Rule (FGR).

Random Matrix approach: the Fermi Golden rule

Straying momentarily from the semiclassical treatment, we study here the non diagonal
terms with tools from random matrix theory (RMT), and show how the LE is related to
spectral features of the system. In particular, the non diagonal terms just discussed can
be shown to arise from a Fermi Golden rule treatment.

The computation of Mnd(t) by the statistical approach is actually a standard random-
matrix result (see, for instance, Ref. [AWM75] or Appendix B of Ref. [LW99]). The
connection between those terms and the FGR was first pointed out in Ref. [JSB01].
For instructional purposes, let us describe the derivation. The connection to the random
matrix theory is made by the Bohigas’ conjecture [BGS84], which states that Hamiltonians
with a classically chaotic equivalent have the same spectral properties of random matrices
with certain distribution of its components. Consequently, the matrix elements

Σnn′ = 〈n|Σ(r)|n′〉 (2.24)
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Chapter 2. The semiclassic approximation to the Loschmidt echo

with respect to the eigenstates of H0 are Gaussian distributed, regardless of the form of
Σ(r). Noticing that the average

〈
Mnd

〉
= |〈m(t)〉|2

=
∣∣〈ψ0|

〈
e−iHt/~

〉
|ψ0〉

∣∣2 , (2.25)

it is clear that we need to calculate the average of the quantum propagator

U(t) = e−iHt/~θ(t). (2.26)

This task is usually carried out in the energy representation by introducing the Green
function operator

G(E) =
1

E + iη −H , with η → 0+ . (2.27)

The formal expansion of G in powers of Σ and the rules for averaging over products of
Gaussian distributed matrix elements give

G = G0
1

1− ΣG0ΣG0

, (2.28)

where G0 = (E + iη −H0)
−1. The matrix representation of G is particularly simple. In

the eigenbasis of H0 it becomes

Gnn′(E) =
δnn′

E + iη − En − γn(E)
, (2.29)

where En is the n-th eigenvalue of H0 and

γn(E) =
∑

n′

Σ2
nn′(G0)n′ ≡ ∆n(E)− i

2
Γn(E), (2.30)

with

∆n(E) = PV
∑

n

Σ2
nn′

E − En

Γn(E) = 2π
∑

n

Σ2
nn′δ(E − En) . (2.31)

Where PV stands for principal value. The real part ∆N(E) only causes a small shift to
the eigenenergy En and will thus be neglected. Whenever the average matrix elements
Σ2

nn′ show a smooth dependence on the indices n, it is customary to replace Γn by its
average value,

Γ = 2πΣ2/∆, (2.32)
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2.1. General Approach

where ∆ is the mean level spacing of the unperturbed spectrum. In most practical cases,
Γ and ∆ can be viewed as local energy averaged quantities. Hence, the average propagator
in the time representation becomes

Unn′(t) = δnn′ exp

(
−i
Ent

~
− Γt

2~

)
θ(t) . (2.33)

It is worth stressing that Γ arises from a nonperturbative scheme; nonetheless, it is usually
associated with the Fermi golden rule due to its structure.

Now we need to use the average propagator obtained in Eq. (2.33) in the expression
of Eq. (2.25). This step also gives us a more precise meaning to the smooth energy
dependence of Γ(E): In this construction the latter has to change little in the energy
window corresponding to the energy uncertainty of ψ(r, t), which is determined by σ.
Thus, the RMT final expression for Mnd(t) is

Mnd
RMT(t) = exp(−Γt/~), (2.34)

with Γ given by Eq. (2.32). Equation (2.34) does not hold for very short times, since we
neglected the smooth energy variations of Γn and ∆n. It is beyond the scope of RMT to
remedy this situation, since for that purpose nonuniversal features of the model have to
be accounted for.

Despite sharing the same formal structure as Eq. (2.23), we should also demonstrate
that both the semiclassical and the RMT exponents are the same. This was done in Ref.
[CLM+02] for the specific case of a two dimensional billiard with the quenched disorder
perturbation used by Jalabert and Pastawski [JP01], and in principle could be shown for
other models. A general proof however is still not available.

We will however focus on the connection of Eq. (2.34) with the spectral properties of
the system. Let us first notice that the structure of the average RMT propagator (2.33)
tells us that the decay of Mnd for a general initial state is the same as for any eigenstate
|n〉 of H0. In this case it is easy to write an expression for M nd,

Mnd(t) =
∣∣∣〈n|U †Σ(t)U0(t) |n〉

∣∣∣
2

=
∣∣∣e−iEnt/~ 〈n|U †Σ(t) |n〉

∣∣∣
2

, (2.35)

which is equal to the survival or return probability Pn(t) of state |n〉 under the action of
Hamiltonian H = H0 +Σ. Expanding in the basis |φ〉 of H, it is straightforward to obtain

Mnd(t) = Pn(t) =

∣∣∣∣∣
∑

φ

|〈n|φ〉|2 e−iEφt/~

∣∣∣∣∣

2

=

∣∣∣∣
∫

η(E) e−iEt/~ dE

∣∣∣∣
2

, (2.36)
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Chapter 2. The semiclassic approximation to the Loschmidt echo

where we have defined the local density of states (LDOS)

η(E) =
∑

φ

|〈n|φ〉|2 δ(E − Eφ), (2.37)

also known as the strength function [GCGI93, GCGI96]. The LDOS tells us how much the
original eigenstates expand into the basis of the perturbation. The derivation of Eq. (2.34)
and the relation (2.36) thus serve to demonstrate that for random matrices η(E) has a
Lorentzian shape,

η(E) =
1

π

Γ

Γ2 + E2
. (2.38)

The LDOS is the Fourier transform of the survival amplitude [Hel91]. The new result
pointed out in [JSB01] and sketched here is that the non–diagonal terms of the LE are also
the Fourier transform of the LDOS. Note that this is valid in the regime of perturbations

where ∆ < Σ2
1/2

and such that Γ < B, where B is the band width of H0 [JSB01]. The
first inequality assures that perturbation theory is not valid, while the second one implies
that the perturbation has a maximum strength over which it dominates the dynamics of
the system.

2.1.4 Diagonal terms: The Lyapunov regime

The remaining term in Eq. (2.13), Md comes from the contribution of trajectories s and
s′ [from Eq. (2.12)] that remain close in such a way that their action differences ∆Ss are
not uncorrelated. In a more precise sense, we will define such a set of trajectories as those
around which we can expand the perturbation as

Σ(q, t) = Σ(q0, t0) +∇Σ [q0, t0] · [q− q0] +
∂Σ

∂t
(q0, t0) (t− t0), (2.39)

where q0 lies on the trajectory s and q in s′. Using this, the action difference

∆Ss(t)−∆Ss′(t) =

∫ t

0

dt′Σ(qs(t
′), t′)− Σ(qs′(t

′), t′), (2.40)

can be written as

∆Ss(t)−∆Ss′(t) '
∫ t

0

dt′∇Σ [qs(t
′), t′] · [qs(t

′)− qs′(t
′)] (2.41)

where the term with the time derivative becomes null because both coordinates are eval-
uated at the same time, see Eq. (2.40).

Taking in consideration these terms, the average of Eq. 2.12 gives

M(t) '
(
σ2

π~2

)d ∫
dr

∫
dr′

∑

s(r,r0 ,t)

s′(r′,r0,t)

CsCs′

〈
exp

[
i

~
(∆Ss(t)−∆Ss′(t))

]〉

exp

[
−σ

2

~2

(
(ps − p0)

2 + (ps − p0)
2)

]
. (2.42)
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2.1. General Approach

which, assuming again a Gaussian distribution for the fluctuations of the phase difference
[Eq. (2.41)], leads us to consider the force correlator of the perturbation

〈
exp

[
i

~
(∆Ss(t)−∆Ss′(t))

]〉
=

exp

[
− 1

~2

∫ t

0

dt

∫ t

0

dt
′
C∇(|q(t)− q′(t

′
)|, t− t

′
)
(
q(t)− q′(t

′
)
)2

]
, (2.43)

where
C∇(|q(t)− q′(t

′
)|, t− t

′
) =

〈
∇Σ(q(t), t) · ∇Σ(q′(t

′
), t

′
)
〉
. (2.44)

The difference between the intermediate points of both trajectories can be expressed
using the matrix B of Eq. (2.5):

qs(t)− q′s′(t
′
) = B−1(t) (ps − p′) = B−1(t)B(t) (r− r′) . (2.45)

In a chaotic system, B−1(t) is dominated by the largest eigenvalue eλt. Therefore we
make the simplification B−1(t)B(t) = exp

[
λ(t− t)

]
I, with I the unit matrix and λ

the Lyapunov exponent. By doing so we have discarded marginally stable regions with
anomalous time behavior, in a sense using the hypothesis of strong chaos.

In order to continue we need further approximations of the force correlator. As we
will see in the sequel, we can lose some generality here because the effect of the correlator
[Eq. (2.44)] appears only in the prefactor of M d(t) and not in its exponent, and thus
it is not relevant to the shape of the decay. We restrict ourselves only the cases where
Eq. (2.44) can be written as

C∇(|q− q′| , t− t
′
) = (∇q · ∇′

q)
〈
Σ(q, t)Σ(q′, t

′
)
〉
. (2.46)

Therefore, using Eq. (2.14),

C∇(|q− q′| , t− t
′
) = Σ2CT (t− t

′
)(∇q · ∇′

q)CS(|q− q′|). (2.47)

Notice that the correlator

(∇q · ∇q′)CS(q ≡ |q− q′|) =
1− d

q

∂CS(q)

∂q
− ∂2CS(q)

∂q2
, (2.48)

and we require that it decays sufficiently fast. Using the above expressions we obtain

〈
exp

[
i

~
(∆Ss(t)−∆Ss′(t))

]〉
= exp

[
−A (r− r′)2

~2

]
, (2.49)

where

A =
Σ2

v2

∫ t

0

dt

∫ ∞

−∞

dτe2λ(t−t)CT (τ)

[
1− d

τ

∂CS(vτ)

∂τ
− ∂2CS(vτ)

∂τ 2

]
. (2.50)
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Chapter 2. The semiclassic approximation to the Loschmidt echo

In the regime where CT decays slowly,

AS = Σ2
1− e−2λt

2λv

∫ ∞

−∞

dq

[
1− d

q

∂CS(q)

∂q
− ∂2CS(q)

∂q2

]
, (2.51)

and on the other end, when CT dominates the decay of C∇,

AT = Σ2τ0
(1− e−2λt)

2λ
(2.52)

Using this result, the expression for the diagonal part of the Loschmidt echo is

Md(t) =

(
σ2

π~2

)d ∫
dr

∫
dr′

∑

s

C2
s

× exp

[
−2σ2

~2
(ps − p0)

2

]
exp

[
− A

2~2
(r− r′)

2

]
. (2.53)

A Gaussian integration over (r− r′) gives

Md(t) =

(
σ2

π~2

)d ∫
dr

∑

s

C2
s

(
2π~

2

A

)d/2

exp

[
−2σ2

~2
(ps − p0)

2

]
. (2.54)

The factor C2
s reduces to Cs when we make the change of variables from r to p. In

the long-time limit C−1
s ∝ eλt, while for short times C−1

s = (t/m)d. Using a form that
interpolates between these two limits we finally obtain the main result of this section

Md(t) =

(
σ2

π~2

)d ∫
dp

(
2π~

2

A

)d/2 (m
t

)d

exp [−λt] exp

[
−2σ2

~2
(p− p0)

2

]

= A exp [−λt] , (2.55)

with A = [σm/(A1/2t)]d. Since the integral over p is concentrated around p0, the exponent
λ is taken as the phase-space average value on the corresponding energy shell. The
coupling Σ appears only in the prefactor (through A) and therefore its detailed description
is not crucial in discussing the time dependence of Md.

2.2 Decay regimes of the Loschmidt echo

In the previous sections we studied the time dependence of two different types of terms
arising in the semiclassical expression of the LE from the separation of two sets of trajec-
tories. The final expression for Eq. (2.13) is then

M(t) = A exp (−λt) +B exp (−Γt/~), (2.56)

18



2.2. Decay regimes of the Loschmidt echo

where B is a constant and Γ = ~/τ̃ . From this expression one concludes that M(t) in
the semiclassical regime presents an exponential decay with a rate given by the minimum
between λ and Γ/~.

For strong perturbations, when the diagonal terms dominate, the decay rate is given
by λ and we say that the LE is in the Lyapunov regime. On the other end, for smaller
perturbations when the non diagonal terms prevail, we showed that the decay rate is
related to that given by a Fermi golden rule (FGR) approach to the problem. Thus,
this regime is called the FGR regime. The crossover between regimes at Γ/~ = λ is an
important issue and will be discussed in the next chapter.

The Lyapunov regime is of particular interest not only because it presents a pertur-
bation independent decay rate, but more importantly because the decay rate is given by
a classical quantity. As noted in previous discussions, the quantum mechanics of clas-
sically chaotic systems rarely presents dynamical evidence of chaos, with a few notable
exceptions [Hel84]. The LE represents, in this context, a good starting point to develop a
quantum theory of chaos. For this purpose, it needs to be well defined and, furthermore,
it needs to recover the proper classical behavior in the semiclassical limit.

The limits of small t and weak Σ yield an infinite A, and thus creates a divergence in
Eq. (2.56). However, the calculations are only valid in certain intervals of t and strength
of the perturbation. The times considered should verify Γt ≥ ~. Long times, resulting
in the failure of the diagonal approximations [Eqs. (2.12) and (2.42)], or the assumption
that the trajectories are unaffected by the perturbation, are excluded from this analysis.
Similarly, the small values of Σ are not properly treated in the semiclassical calculation
of the diagonal term Md(t), while for strong Σ the perturbative treatment of the ac-
tions is expected to break down and the trajectories become affected by the quenched
disorder. This last condition translates into a “transport mean-free-path”[RUJ96, Jal00]
˜̀
tr = 4(kξ)2 ˜̀ being much larger than the typical dimension L of our system. In the limit
kξ � 1 that we are working with, it is not difficult to satisfy the condition ˜̀

tr � L� ˜̀.
It is worth noting that the width σ of the initial wave-packet is a prefactor of the

diagonal contribution. The non-diagonal term, on the other hand, is independent on
the initial wave-packet. Therefore, as stated in Ref. [JAB02], and numerically verified in
[gWL02], changing our initial state [Eq. (2.1)] into a coherent superposition of N wave-
packets would reduce Md by a factor of N without changing Mnd. The localized character
of the initial state is then a key ingredient in order to obtain the behavior observed here.
In particular, only a FGR regime is observed when the initial state is random [gWL02] or
an eigenstate of the Hamiltonian [WC02]

Let us thoroughly list the decay regimes of the LE in order of increasing perturbation,
thus summarizing and placing into context the results of this chapter (the regimes are
depicted qualitatively in Fig. 2.1):

1. For extremely small perturbations, where Σ < ∆ (∆ is the mean level spacing),
the LE can described by quantum perturbation theory [Per84, Per91]. The result
is a Gaussian decay with a rate that depends quadratically on the perturbation
strength. This decay regime is also observable for very small times.
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Chapter 2. The semiclassic approximation to the Loschmidt echo

Figure 2.1: Schematics of the different regimes of the LE viewed through the typical time
of the exponential decay vs the strength of the perturbation (of course this plot highlights
only the FGR and Lyapunov regimes). The gray area on the left is regime (1), where
perturbation theory applies. The log-log scale shows that the FGR exponent is a power
law of the perturbation [regime (2)]. After the Lyapunov regime, (3), the perturbation
dominates the system and no general prediction is available.

2. For Σ > ∆, one enters the Fermi Golden rule regime. Actually, as will see in
the sequel, the decay observed in this regime is more general than the cases where
the FGR applies [WVPC02, WC04]. The general observation is an exponentially
decaying LE with a rate given by the width of the local density of states of the
perturbation (LDOS). In any case we denote this regime as a FGR regime, to adhere
to common notation. It should be noted that the transition between the Gaussian
perturbative decay and this first exponential decay can be fully described by a
uniform semiclassical approach [CT03].

3. When the underlying classical dynamics is chaotic, for stronger perturbations (such
that Γ/~ > λ the Lyapunov exponent), the LE decays exponentially but now with
a rate λ independent of the perturbation strength and shape, determined only by
the classical chaos [JP01]. The observation of this regime usually requires that the
initial state is localized. The perturbation only enters as a prefactor, as well as a
polynomial dependence in time which deviates from the expected classical behavior.
The smoothness of transition from the FGR to this Lyapunov regime depends on
the chaoticity of the underlying classical system. For stronger chaos (larger λ), the
fluctuations in phase that cause the decay of the non diagonal terms are strong and
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thus the diagonal term emerges dominant. In the opposite case, it has been shown
[WC04] that the decay rate can present strong oscillations around the Lyapunov
exponent when the perturbation strength is near the critical one.

4. For extremely strong perturbations (when Σ dominates the dynamics), it has been
noted that there is a saturation of the decay rate at the band width of the unper-
turbed Hamiltonian [JSB01]. This occurs when H0 “cannot stand” stronger pertur-
bations which are much larger than the largest frequency in the system, namely its
bandwidth. In this regime there is evidence that the LE again follows the autocor-
relation function, the Fourier transform of the LDOS [CBH01]. The shape of the
decay then depends on the particular form of the LDOS.

This thesis is focused on the FGR and the Lyapunov regimes for strongly classically
chaotic systems. Of course, this by no means is equivalent to saying that they are the most
relevant regimes in all physical situations. In general, this is a question whose answer lies
in the eyes of the beholder. However, the fast growing control over experimental systems
in areas such as quantum dots, cold atoms, or other insofar unthought of systems, let us
imagine a near future where a simple knob will tune the experiment to any of the above
regimes.

The analytical results have been presented so far in a very general way, thus there is
a need for examples to gain insight. For this, in the next section we will particularize the
theory to different models. These specific results will also be useful to perform numerical
tests of the theory, to be presented in the next chapter.

2.3 Semiclassical Loschmidt echo: examples

In this section we will see how the semiclassical theory for the LE applies to particular
examples. First we will consider a particular form of the correlators for the perturbation
which will allow us to obtain closed expressions for the diagonal and non–diagonal terms of
the previous section. Second, we will study the LE in a model purposely devised to break
many of the assumptions in the theory, such as the continuous evolution of H0 and the
presence of disorder in the perturbation. The model is a Lorentz gas with a perturbation
in the mass tensor of the particle, which will prove numerically advantageous (compared
to bound systems) in the next chapter. Finally, we will study a toy model which, although
it is not chaotic, will present instability. Its most important feature is that it is exactly
soluble, and this always allows deep investigations of the inner aspects of a theory.

2.3.1 Gaussian decay of correlators

A general class of perturbations can be defined by the particular form of the correlators
[Eq. (2.14)],

CS(r) =
2√
π

exp(−r2/ξ2); CT (τ) =
2√
π

exp(−τ 2/τ 2
0 ). (2.57)
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Under the assumption that t is large compared to τ0 and ξ/v, let us replace in Eq. (2.18)

〈
∆Ss(t)

2
〉

=
4Σ2

√
π

∫ t

0

dt

∫ ∞

−∞

dτ exp(−v2τ 2/ξ2) exp(−τ 2/τ 2
0 ) (2.58)

and obtain the decay rate for the FGR regime

1

˜̀ =
4Σ2

v
√
π~2

√
(v/ξ)2 + 1/τ 2

0

. (2.59)

For the diagonal terms, let us note that

C∇(|q− q′| , t− t
′
) =

Σ2

ξ2

(
d− |q− q′|2

ξ2

)
1

ξ2
CS(|q− q′|)CT (t− t

′
), (2.60)

Using the above expression we can also obtain the prefactor of the diagonal terms

A =

√
2π Σ2(1− e−2λt) [(1 + d)v2 + dξ2/τ 2

0 ]

2λξ4
√

(v/ξ)2 + 1/τ 2
0

. (2.61)

Quenched disorder

A particular case of the correlators specified in this section is the quenched disorder model
studied in the original paper by Jalabert and Pastawski [JP01]. Here the perturbation
consists of Ni impurities with a Gaussian potential characterized by the correlation length
ξ,

Σ = Ṽ (r) =

Ni∑

α=1

uα

(2πξ2)d/2
exp

[
− 1

2ξ2
(r−Rα)2

]
. (2.62)

The independent impurities are uniformly distributed (at positions Rα) with density
ni = Ni/Ω, (Ω is the sample volume). The strengths uα obey 〈uαuβ〉 = u2δαβ. The
correlation function CS of the above potential is given by

CṼ (|q− q′|) =
u2ni

(4πξ2)d/2
exp

[
− 1

4ξ2
(q− q′)2

]
, (2.63)

and hence is a particular example of the general case of Gaussian correlators presented
above, with CT = 1. In particular, the mean free path of the perturbation writes

1
˜̀

=
u2ni

v2
0~

2(4πξ2)(d−1)/2
. (2.64)

The prefactor A of the diagonal terms is

A =
(d− 1)u2ni

4λv0ξ2(4πξ2)(d−1)/2
. (2.65)
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As mentioned earlier, we gave this particular example of quenched disorder because it
was the first analytical calculation that showed the existence of the Lyapunov regime of the
LE, and also because it will be treated numerically in the following chapter. However, we
have not yet seen the existence of a Lyapunov regime for a static and uniform perturbation
(neither temporal nor spatial noise). Moreover, no particular Hamiltonian H0 has been
written. In the next section we will produce such results for an experimentally relevant
system under the presence of a non-disordered perturbation.

2.3.2 Loschmidt echo in a Lorentz gas

We will consider in this section the case where the system Hamiltonian H0 represents a
two dimensional Lorentz gas, i.e. a particle that moves freely (with speed v0) between
elastic collisions (with specular reflections) with an irregular array of hard disk scatterers
(impurities) of radius R. Such a billiard system is a paradigm of classical dynamics, and
has been proven to exhibit mixing and ergodic behavior, while its dynamics for long dis-
tances is diffusive [Arn78, Dor99, AL96]. The existence of rigorous results for the Lorentz
gas has made it a preferred playground to study the emergence of irreversible behavior
out of the reversible laws of classical dynamics [Dor99]. Moreover, anti-dot lattices de-
fined in a two dimensional electron gas [WRM+91, WRM+93, PPB+01] constitute an
experimentally realizable quantum system where classical features have been identified
and measured. The terms anti-dot, impurity and disk will be used indistinctly.

The Lorentz gas has been thoroughly studied (for example, in Ref. [Dor99]), and to
avoid straying away from the subject we shall not discuss here its classical dynamics in
detail. A brief presentation can be found in appendix B, where some of its quantum
properties are also discussed. Here, we only need to recall the properties and assumptions
that will be used in the analytical treatment of the LE.

We require that each disk has an exclusion region Re from its border, such that the
distance between the centers of any pair of disks is larger than a value 2Re > 2R. Such a re-
quirement is important to avoid the trapping of the classical particle and the wave-function
localization in the quantum case: both situations that would unnecessarily complicate the
analysis. We will consider the anti-dots density to be roughly uniform. Within these re-
strictions, the exclusion distance Re completely determines the dynamical properties of
the Lorentz gas. Among them, we are interested in the Lyapunov exponent (measuring
the rate of separation of two nearby trajectories) and the elastic mean free path ` (given
by the typical distance between two collisions). Analytical and numerical methods to ob-
tain the Lyapunov exponent are presented in Appendix B. For the distribution of lengths
between successive collisions, a shifted Poisson distribution

P (s) =






exp
[
− s

(`−2(Re−R))

]

(`− 2(Re −R)) exp
[
− 2(Re−R)

(`−2(Re−R))

] if s > 2(Re − R) ,

0 if s < 2(Re − R) ,

(2.66)
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is a reasonable guess, which yields 〈s〉 = ` = v/τe. This distribution is consistent with
numerical simulations in the range of anti-dot concentration that we are interested in (see
appendix B, Fig. B.3). Since velocity both v0 and momentum p0 are conserved within
this model (all collisions are elastic) we will omit their subindex.

The perturbation Hamiltonian

In order to shed light on the dependence of the LE on the details of Σ, we contemplate a
perturbation radically different to that considered in Sec. 2.1.2: a distortion of the mass
tensor, introduced in Ref. [CPW02] and briefly discussed in the sequel.

The isotropic mass tensor of H0, of diagonal components m0, can be distorted by
introducing an anisotropy such that mxx = m0(1 + α) and myy = m0/(1 + α). This
perturbation is inspired by the effect of a slight rotation of the sample in the problem of
dipolar spin dynamics [PU98], which modifies the mass of the spin wave excitations. The
kinetic part of the Hamiltonian is now affected by the perturbation, which can be written
as

Σ(α) = α
p2

y

2m0
− α

1 + α

p2
x

2m0
. (2.67)

In our analytical work we will stay within the leading order perturbation in α. That is,

Σ(α) =
α

2m0

(
p2

y − p2
x

)
. (2.68)

Making the particle “heavier” in the x direction (i.e. we consider a positive α) modifies
the equations of motion without changing the potential part of the Hamiltonian. It is
important to notice that, unlike the case of quenched disorder, the perturbation (2.67) is
non-random, and will not be able to provide any averaging procedure by itself, but only
through the underlying chaotic dynamics.

For a hard wall model, such as the one we are considering, the perturbation (2.67) is
equivalent to having non-specular reflections. This allows to show (see appendix B) that
the distortion of the mass tensor is equivalent to an area conserving deformation of the
boundaries x → x(1 + ξ), y → y/(1 + ξ), as used in other works on the LE [WVPC02],
where ξ =

√
1 + α− 1 is the stretching parameter.

Semiclassical Loschmidt echo

This section presents the calculations of the Loschmidt echo for the system previously
described. H0 describes a Lorentz gas and Σ is given by Eq. (2.67). Clearly, the approach
is to adapt the semiclassical method of Sec. 2.1.2 to this particular perturbation, as well
as the modifications introduced by the discontinuity of the dynamics (elastic collisions)
of the classical Hamiltonian.

As before, we take as initial state a Gaussian wave-packet of width σ [Eq. (2.1)]. The
semiclassical approach to the LE under a weak perturbation Σ is given by Eq. (2.12),
with the extra phase
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∆Ss =

∫ t

0

dt Σs(q(t), q̇(t)). (2.69)

The sign difference with Eq. (2.11) is because the perturbation is now in the kinetic part
of the Hamiltonian. On the other hand, this sign turns out to be irrelevant because we
will only consider the variance of ∆S.

Using the perturbation of Eq. (2.68), we only have to integrate a piecewise constant
function (in between collisions with the scatterers), obtaining

∆Ss =
αm0

2

Ns∑

i=1

τi
(
2v2

yi
− v2

)
. (2.70)

We have used v2
x +v2

y = v2, and have defined τi as the free flight time ending with the i-th
collision, vyi

is the y component of the velocity in such an interval, and Ns as the number
of collisions that the trajectory s suffers during the time t.

As previously noted, the free flight times τi (or the inter-collision length vτi) have a
shifted Poisson distribution [Eq. (2.66)]. This observation will turn out to be important in
the analytical calculations that follow since the sum of Eq. (2.70) for a long trajectory can
be taken as composed of uncorrelated random variables following the above mentioned
distribution. Unlike the case of Sec. 2.1.2, the randomness is not associated with the
perturbation (which is fixed), but with the diffusive dynamics generated by H0.

Non-diagonal contribution

As in the case of Sec. 2.1.3, the non-diagonal contribution is given by the second moment

〈
∆S2

s

〉
=
α2m2

0

4

〈
Ns∑

i,j=1

τiτj
(
2v2

yi
− v2

) (
2v2

yj
− v2

)〉
. (2.71)

Separating in diagonal (i = j) and non-diagonal (i 6= j) contributions (in pieces of tra-
jectory) we have

〈
∆S2

s

〉
=

α2m2
0Ns

4

[〈
τ 2
i

〉 (
4
〈
v4

yi

〉
− 4v2

〈
v2

yi

〉
+ v4

)

+ (Ns − 1) 〈τi〉2
(
4
〈
v2

yi

〉2 − 4v2
〈
v2

yi

〉
+ v4

)]
. (2.72)

We have assumed that different pieces of the trajectory (i 6= j) are uncorrelated, and that
within a given piece i, τi and vyi

are also uncorrelated. According to the distribution of
time-of-flights (2.66) we have

〈τ〉 = τe , (2.73a)〈
τ 2

〉
= 2τ 2

e . (2.73b)
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Assuming that the velocity in the pieces of trajectories distribution is isotropic (P (θ) =
1/2π, where θ is the angle of the velocity with respect to a fixed axis) is in good agreement
with numerical simulations, and results in

〈
v2

y

〉
= v2

〈
sin2 θ

〉
=
v2

2
, (2.74a)

〈
v4

y

〉
= v4

〈
sin4 θ

〉
=

3v4

8
. (2.74b)

Replacing in Eq. (2.72) we obtain that 4
〈
v2

yi

〉2 − 4v2
〈
v2

yi

〉
+ v4 = 0, implying a can-

cellation of the cross terms of 〈∆S2
s 〉, consistently with the lack of correlations between

different pieces that we have assumed. We therefore get

〈
∆S2

s

〉
=
α2m2

0Nsτ
2
e v

4

4
. (2.75)

For a given t, Ns is also a random variable, but for t � τe we can approximate it by its
mean value t/τe and write

〈
∆S2

s

〉
=
α2m2

0v
4τet

4
. (2.76)

We therefore have for the average echo amplitude

〈m(t)〉 ' exp

[
−α

2m2
0v

4τet

8~2

](
σ2

π~2

)d/2 ∫
dr

∑

s

Cs exp

[
−σ

2

~2
(ps − p0)

2

]

= exp

[
−vt

2˜̀

]
, (2.77)

where we have again used Cs as a Jacobian of the transformation from r to ps and we
have defined an effective mean free path of the perturbation by

1
˜̀

=
m2

0v
2`

4~2
α2 . (2.78)

The effective mean free path ˜̀ = v τ̃ should be distinguished from ` = vτe since the
former is associated with the dynamics of Σ and H0, while the latter is only fixed by H0.
Obviously, these results are only applicable in the case of a weak perturbation verifying
˜̀� `. From Eq. (2.77) one re–obtains that the non-diagonal component of the LE

Mnd(t) = |〈m(t)〉|2 = exp

[
−vt

˜̀

]
. (2.79)
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Diagonal contribution

As in Sec. 2.1.4, we have to discuss separately the contribution to the LE [Eq. (2.12)]
originated by pairs of trajectories s and s′ that remain close to each other. In that case
the terms ∆Ss and ∆Ss′ are not uncorrelated. The corresponding diagonal contribution
to the LE is given by Eq. (2.42), and therefore we have to calculate the extra actions
for s ' s′. Let us represent by θ (θ + δ) the angle of the trajectory s (s′) with a fixed
direction (i.e. that of the x-axis). We can then write the perturbation [Eq. (2.67)] for
each trajectory as

Σs =
α

2m0

p2 (2 sin2 θ − 1) , (2.80a)

Σs′ =
α

2m0
p2 (2 sin2 θ − 2δ sin 2θ − 1) +O(δ2) . (2.80b)

Assuming that the time-of-flight τi is the same for s and s′ (correct up to the same
order of approximation in δ) we have

∆Ss −∆Ss′ =
αp2

m0

∫ t

0

dt δ(t) sin
[
2θ(t)

]
. (2.81)

The angles δ alternate in sign, but the exponential divergence between nearby trajec-
tories allows to approximate the angle difference after n collisions as |δn| = |δ1| eλnτe . A
detailed analysis of the classical dynamics [Dor99] shows that the distance between the
two trajectories grows with the number of collisions as d1 = |δ1| vτ1, d2 = d1 + |δ2| vτ2,
and therefore

dNs
' v

Ns∑

j=1

|δj| τj ' vτe |δ1|
Ns∑

j=1

e(j−1)λτe = ` |δ1|
eNsλτe − 1

eλτe − 1
. (2.82)

By eliminating |δ1| we can express an intermediate angle δ(t) as a function of the final
separation |r− r′| = dNs

,

δ(t) ' |r− r′|
`

eλτe − 1

eλt − 1
eλt , (2.83)

where again we have used that t = Nsτe is valid on average. Assuming that the action
difference is a Gaussian random variable, in the evaluation of Eq. (2.42) we only need its
second moment

〈
(∆Ss −∆Ss′)

2〉 ' α2m2
0v

4 |r− r′|2
`2

(
eλτe − 1

eλt − 1

)2

×
〈∫ t

0

dt

∫ t

0

dt
′
eλt+λt

′

sin
[
2θ(t)

]
sin

[
2θ(t

′
)
]〉

. (2.84)
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As before, we assume that the different trajectory pieces are uncorrelated and the
angles θi uniformly distributed. Therefore 〈sin [2θi] sin [2θj]〉 = δij/2 and

〈
(∆Ss −∆Ss′)

2〉 ' α2

2

(
m0v

2

`

)2

|r− r′|2
(
eλτe − 1

eλt − 1

)2 Ns∑

i=1

〈∫ ti

ti−1

dt eλt

〉2

=
α2

2

(
m0v

2

λ`

)2

|r− r′|2
(
eλτe − 1

)4

(eλt − 1)2

e2λNsτe − 1

e2λτe − 1

= A |r− r′|2 , (2.85)

where we have taken the limit λt� 1, and defined

A =
α2

2

(
m0v

2

λ`

)2
(
eλτe − 1

)3

eλτe + 1
. (2.86)

The result of Eq. (2.85) is analogous to Eq. (2.50) obtained in the case of a random
perturbation. Obviously, the factor A is different in both cases, but we use the same
notation to stress the similar role as just a prefactor of M d. Performing again a Gaussian
integral of Md over r− r′ we obtain

Md(t) =

(
σ2

π~2

)d ∫
dr

∑

s

C2
s

(
2π~

2

A

)d/2

exp

[
−2σ2

~2
(ps − p0)

2

]
. (2.87)

Under the same assumptions than in Sec. 2.1.4, we obtain a result equivalent to that
of Eq. (2.55),

Md(t) ' Ae−λt, (2.88)

with, again, A = [σm0/(A
1/2t)]d. As we have shown, the form of the Loschmidt echo

found in Eq. (2.56) holds for the perturbation Σ that we have discussed in this section
[Eq. (2.67)], as well as for the random one of Sec. 2.1.2. The only difference turned out to
appear in the form of the “elastic mean free path” ˜̀ and the prefactor A, both of which
are perturbation dependent.

Recalling the discussion of Sec. 2.2 about the critical perturbation between the FGR
and the Lyapunov regimes, in the model discussed in this section, an explicit value of the
perturbation parameter α is obtained by setting v/ ˜̀= λ, and results

αc =
2~

m0

√
λ

v3`
. (2.89)

We will discuss in the next chapter the physical consequences of the above critical value
and its dependence on various physical parameters.
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2.3.3 An exact solution: the upside down harmonic oscillator

As a final example it will be very instructive to evaluate the LE in an exactly solvable
system, an upside down harmonic oscillator (UHO). Although the UHO is not chaotic, it
might be the simplest system with an unstable fixed point. In this sense we are repre-
senting the chaotic behavior only by the stretching of the probability density along the
unstable manifold, while the folding mechanism is discarded.

The Hamiltonian of the system is

H0 =
p2

2m
− mω2

0x
2

2
, (2.90)

where the frequency ω0 plays the role of the Lyapunov exponent. In order to observe the
instability, one needs that initial state |0〉 be a Gaussian wavepacket of width σ located
at x = 0 and with mean momentum p0 = 0.

Let us consider a perturbation linear in the coordinate of the system,

Σ(x, t) = εJ(t)x. (2.91)

We write the amplitude of the LE in the interaction picture

m(t) = 〈0|U †Σ(t)U0(t) |0〉
= 〈0| T̂

(
e−iε

R

J(t′)x(t′)
)
|0〉 , (2.92)

with T̂ the time ordering operator. Since the system and the perturbation are quadratic
in the coordinates of the system, and the initial state a Gaussian, one realizes that the
solution can be obtained by completing squares in the argument of the exponential and
performing the Gaussian integral. The result is another exponential with a quadratic
argument, a Gaussian functional of J and x. The fastest way to obtain it is write down
the most general Gaussian functional in terms of unknown kernels ν and κ,

m(t) = exp

[
iε2

∫ ∫
dt1dt2 J(t1)ν(t1, t2)J(t2) + iε

∫
dt1 J(t1)κ(t1)

]
, (2.93)

and find out what these kernels are by taking functional derivatives of Eqs. (2.92) and
(2.93) with respect to J and evaluating the results for J = 0. For instance,

∂m

∂J(t)
= 〈0| (−iεx(t) T̂

(
e−iε

R

J(t′)x(t′)
)∣∣∣

J=0
|0〉 = 〈0| (−iεx(t)) |0〉 = 0

= iεκ. (2.94)

Similarly, taking the second derivative of m(t) with respect to J and using the classical
solution for x(t), one obtains

ν(t1, t2) = i 〈0| (x(t1)x(t2) + x(t2)x(t1) |0〉 =
~

2mω0

coshω0(t1 + t2). (2.95)
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Using this in Eq. (2.93) and the relation cosh(a+ b) = cosh a cosh b+sinh a sinh b, we can
write the LE as

MJ(t) = exp

{
− ~

mω0

[(
ε

∫
cosh(ω0t)J(t)

)2

+

(
ε

∫
sinh(ω0t)J(t)

)2
]}

. (2.96)

Completing squares and undoing the Gaussian integrals, we can write

MJ(t) =
1

2πσ2

∫
dr1

∫
dr2 e

−
r2
1

2σ2 e−
r2
2

2σ2 eir1ε
R

dt1 cosh(ω0t1)J(t1)eir2ε
R

dt2 sinh(ω0t2)J(t2)

=
1

2πσ2

∫
dr1

∫
dr2 e

−
r2
1+r2

2
2σ2 eiε

R

dt′(r1 cosh(ω0t′)+r2 sinh(ω0t′))J(t′), (2.97)

where σ2 = ~/mω0 is the initial dispersion of a minimum uncertainty wave packet.
Let us now consider the average LE over realizations of the perturbation, that is we

assume a distribution for J ,

P (J) = N

∫
DJ exp

(
−1

2

∫ ∫
J(t1)A

−1(t1, t2)J(t2)

)
, (2.98)

where A(t1, t2) = 〈J(t1)J(t2)〉 is the noise correlation function and DJ represents that
this is an integral over all functions J(t). Denoting x(t′) = (r1 cosh(ω0t

′) + r2 sinh(ω0t
′)),

a trivial Gaussian integration of Eq. (2.97) gives the average LE

M̄ =
1

2πσ2

∫
dr1

∫
dr2 e

−
r2
1+r2

2
2σ2 e−

ε2

2

R R

x(t1)A(t1 ,t2)x(t2). (2.99)

To obtain definite results we have to give the correlation of the noise. A significant
and simple case is the white noise correlation A(t, t′) = Dδ(t− t′), where one obtains

M̄ =

(
1 +

ε2Dσ2

2ω0
sinh(2ω0t) +

ε4D2σ4

4ω2
0

(
sinh2(ω0t)− ω2

0t
2
))−1/2

. (2.100)

This exact result shows that for long times (ω0t � log(ε2Dσ2/2ω0)) the echo M̄ decays
as exp(−ω0t), which in this example is the equivalent of the Lyapunov decay.

For short times a decay with a rate determined by diffusion is observed,

M(t) '
(

1− ε2Dσ2

2
t

)−1/2

' e−
ε2Dσ2

4
t. (2.101)

Although it looks like a FGR, this is only a transitory perturbation dependent regime
that always leads to a decay dominated by the Lyapunov (ω0) exponent.

As we have seen, this apparently oversimplified example (by the absence of chaos)
already captures the essence of the Lyapunov decay of the LE. Not only this provides in-
sight into the LE problem, but also proves that further analytical progress can be made in
more complex situations by using UHOs as building blocks for complicated environments
[BKZ04].
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2.4. Summary

2.4 Summary

In this chapter we have applied the semiclassical approximation to calculate the behavior
of the LE in classically chaotic systems. It was found that the semiclassical expression
of M(t) can be written as a sum of two terms that decay exponentially. One of these
terms is given by a Fermi Golden Rule expression and therefore its decay rate Γ depends
quadratically on the perturbation strength. The other term has a decay rate not only
independent of the perturbation but also, and more importantly, given by the Lyapunov
exponent λ of the classical system. Thus, M(t) has a regime of parameters where it
decays with the minimum between λ and Γ/~. The transition between both regimes
occurs approximately when Γ/~ = λ, a condition we will explore in the next chapter.
Some examples for particular systems were given, of relevance is the Lorentz gas for
which the results were shown to be the same regardless the non–disordered perturbation.

Original results

• Generalization of the original results of Jalabert and Pastawski [JP01] to any per-
turbation with spatial as well as temporal noise (with finite variance), Sec. 2.1.
These results are being prepared for publication [CLP04]. The specific perturbation
studied in [JP01] is given as a particularization in the examples, Sec. 2.3.1.

• Semiclassical analysis of the Lorentz gas with a mass tensor perturbation, Sec. 2.3.2.
This derivation is also an extension of [JP01] to a hard wall system (which implies
non–continuous equations of motion) and a perturbation without disorder. These
results were published in Ref. ([CPJ04]).

• The final result of M(t) for the inverted harmonic oscillator was presented in
[CDPZ03], although the derivation of Sec. 2.3.3 is presented for the first time here.
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Chapter 3

Universality of the Lyapunov regime

The most exciting phrase to hear in science , the one that heralds new discov-
eries, is not “Eureka!” (I found it!), but rather “that’s funny...”.

Isaac Asimov.

The exciting results shown in the previous chapter should quickly raise our attention
and demand closer scrutiny. Many approximations are actually uncontrolled, assump-
tions are made that could probably be too strong, weak or plainly wrong, and plenty of
questions arise regarding aspects difficult to contemplate using analytical tools. Among
those questions, perhaps the most important are those that concern the range of validity
of the Lyapunov regime. In order to clarify these issues the semiclassical theory presented
before needs numerical support and exploration.

The chapter is divided in two parts: the first one will mainly provide numerical ev-
idence of systems that present the transition from a FGR to the Lyapunov regime. For
this, different combinations of system/perturbations give generality to the results of the
previous chapter. The second part will focus on the universality of the Lyapunov regime,
not only in its classical chaos interpretation but also on some extra quantum aspects.

3.1 Correspondence between semiclassical and nu-

merical calculations

3.1.1 The Lorentz gas

Let us start by studying one of the systems considered at the end of the previous chapter,
the Lorentz gas. The physical advantages of this system will be evident in Sec. 3.2.
Although it is not the numerical example to be shown that has the most similarities with
the theory, it is presented it at this point for historical reasons: it was the first model
where numerical evidence of the Lyapunov regime was observed.

The classical dynamics of the system is described in detail in Sec. 2.3.2 and in ap-
pendix B (see in particular the calculation of the classical Lyapunov exponent). In order
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Chapter 3. Universality of the Lyapunov regime

to compute the quantum analog, the system is discretized using a small lattice unit a (see
App. A), and the whole system is embedded in a finite box of size L with periodic bound-
ary conditions. It is important to verify that a is the smallest scale in the simulation, and
that the results do not depend on it. Clearly small system sizes L will not appropriately
represent general results (because they cannot accommodate many impurities thus giving
dynamics strongly dependent of the realizations). The smallest L that allows the obser-
vation of an exponential decay of M(t) over a large interval was found to be L = 200a,
which means the consideration of a Hilbert space of dimension 4×104 states. As standard
diagonalization routines cannot manage such large matrices, the evolution was performed
resorting to a Trotter-Suzuki algorithm (see appendix A) that does not provide energy
or eigenvector information but computes the quantum dynamics in the spatial base with
high precision and efficiency.

The typical simulation used disks of radius R = 20a, and with a de Broglie wavelength
λdB = 2π/kdB = 16/3a. Notice that kdBR ' 23 � 1, which assures we are sufficiently
well in the semiclassical regime. Also, this value of kdB is at the limit where the dispersion
relationship is still approximately quadratic (like the free particle’s dispersion). Shorter
wavelengths would strongly feel the discretization of the system.

The concentration of impurities c is computed as the ratio of the area occupied by the
disks to the area of the box,

c = NπR2/L2. (3.1)

The perturbation in the mass tensor of Eq.(2.67) is easily implemented in the tight
binding scheme (see App. A) by enlarging or reducing the hoping elements of the Hamilto-
nian in the respective directions. The perturbation strength is given by the (adimensional)
parameter α. An illustrative picture of the quantum dynamics of the Lorentz gas and the
effect of the perturbation is shown in Fig. 3.1.

All results presented in this section for M(t) are averaged over 100 realizations of
the disorder potential. In following sections the effect of the averaging procedure on the
results is discussed.

M(t) was calculated for different strengths of α and concentration of disks c. In Fig. 3.2
we can see the results for c = 0.157, 0.195 and 0.289, and increasing values of α.

Since this is the first time we present numerical results of M(t), let us discuss the
various regimes present in the time evolution of the LE. Firstly, for very short times, M(t)
exhibits a Gaussian decay, M(t) = exp [−bα2t2], where b is a parameter that depends on
the initial state, the dynamics of H0 and the form of the perturbation Σ. This initial
decay corresponds to the overlap of the perturbed and unperturbed wave-packets whose
centers separate linearly with time by the sole effect of the perturbation. This regime
ends approximately at the typical time of the first collision.

Secondly, for intermediate times we find the region of interest for the semiclassical
theory. In this time scale the LE decays exponentially with a characteristic time τφ. For
small perturbations, τφ depends on α. We can see that for all concentrations there is a
critical value αc beyond which τφ is independent of the perturbation. Clearly, the initial
perturbation-dependent Gaussian decay prevents the curves to be superimposed.
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ex
p
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]
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exp[+i(H +Σ)t]0exp[-i(H +Σ)t]
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a b
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Figure 3.1: Density of the wave function in the Lorentz gas. The boxes have sides L = 200a
and the disks have R = 20a. (a) Initial wavefunction, a Gaussian packet with momentum
pointing to the left. (b) Evolution of state (a) with the unperturbed Hamiltonian of the
system, H0, for a time t = 30. The solid lines are classical trajectories. (c) Evolution of the
same initial state but with the perturbed Hamiltonian, H0 + Σ, where the perturbation
is the mass tensor distortion. (d) State (c) evolved with −H0 + Σ, which makes an
imperfect time reversal. The Loschmidt echo is the overlap between states (a) and (d) or,
equivalently, between (b) and (c). In this example M = 0.09

Finally, for very large times the LE saturates at a value M∞ that depends on the
system size L, but could also depend on the diffusion constant D. This regime will be
discussed in detail in the next sections.

In order to compare the numerical results ofM(t) with the semiclassical predictions, let
us extract τφ by fitting lnM(t) to ln [A exp(−t/τφ) +M∞] . This logarithmic fit assures
the correct weighting of the data for many orders of magnitude. The dashed lines in
Fig. 3.2 correspond to the best fits obtained with this procedure. The extracted values of
τφ for the different concentrations are shown as a function of the perturbation strength in
Fig. 3.3. In agreement with the analytical results of the previous chapter, we see that 1/τφ

grows quadratically with the perturbation strength up to a critical value αc, beyond which
a plateau appears at the corresponding Lyapunov exponent. The dashed lines are the best
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Chapter 3. Universality of the Lyapunov regime

Figure 3.2: Time decay of the Loschmidt echo M(t) for different values of the perturbation
strength α and concentration of impurities c in the Lorentz gas. (top panel) c = 0.157
and α =0.004, 0.007, 0.01, 0.015, 0.02, 0.03, 0.05, 0.07, 0.1 (from top to bottom); (middle
panel) c = 0.195 and α =0.004, 0.007, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.1, 0.15; (lower panel) c = 0.289 and α =0.004, 0.007, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05,
0.06, 0.07. The time is measured in units of ~/V , where V is the hopping term of the
tight-binding model (see appendix A). The doted lines represent the best fits to the decay,
as described in the text.
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fit to a quadratic behavior. The values obtained in this way agree with those predicted
by the semiclassical theory (Eq. [2.78)] for the non-diagonal (FGR) term. The saturation
values above αc are well described by the corresponding Lyapunov exponents (solid lines),
in agreement with the semiclassical prediction [Eq. (2.87)]. The very good quantitative
agreement between the semiclassical and numerical calculations for the Lorentz gas (as
well as in the case of other models [JSB01, WVPC02, CLM+02]) strongly supports the
generality of the saturation of τφ at a critical value of the perturbation strength.

Figure 3.3: Extracted values of the decay rate 1/τφ of the LE as a function of the perturba-
tion strength α for the three concentrations of Fig. 3.2. The rates (normalized to the group
velocity of the initial wave-packet v) is given in units of a−1; c = 0.157 (circles), 0.195
(squares) and 0.289 (triangles). The solid lines are the corresponding classical Lyapunov
exponents and the dashed lines are fits to the quadratic behavior predicted by Eq. (2.78).
The predicted coefficients for the three concentrations are 72a−1, 55a−1 and 33a−1, while
the obtained ones are 92a−1, 50a−1 and 37a−1 respectively. In the inset, a log-log scale of
the same data to show the quadratic increase of 1/τφ for small perturbations.

The FGR exponent, which depends on H0 but not much on its chaoticity [JAB03],
is given by the typical squared matrix element of Σ, and the density of connected final
states 1/∆. That is why we observe that, for fixed perturbation strength α, the factor v/ ˜̀

depends on the concentration of impurities of H0 (see inset of Fig. 3.3, where a log-log
scale has been chosen in order to magnify the small perturbation region).

Notably, the dependence of v/ ˜̀ with H0 leads to a counter-intuitive effect (clearly
observed in the inset of Fig. 3.3), namely that the critical value needed for the saturation
of 1/τφ is smaller for less chaotic systems (smaller λ). The reason for this is that in
more dilute systems Σ is constant over larger straight pieces of trajectories (in between
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Chapter 3. Universality of the Lyapunov regime

collisions), leading to a larger perturbation of the quantum phase and resulting in a
stronger effective perturbation.

3.1.2 Smooth Stadium billiard

The second model where we will investigate the dependence of the Loschmidt echo on the
magnitude of an external perturbation is devised to correspond exactly with the system
studied in the original work by Jalabert and Pastawski [JP01].

The unperturbed system is a smooth “billiard” stadium (also dubbed “bathtube”) in-
troduced in Ref. [VLM99, OdA00]. This model consists of a two-dimensional Hamiltonian
H0 = p2/2m + U(r) with the potential given by

U(r) = U0×






+∞, x < 0,
(y/R)2ν, 0 ≤ x < R,{

[(x− R)2 + y2]/R2
}ν

, x ≥ R .
(3.2)

In addition, U(r) = +∞ whenever y < 0 (See Fig.3.4). Actually, we should consider a
quarter of a stadium in order to avoid features related to parity symmetries [Haa91]. The
exponent ν sets the slope of the confining potential. For ν = 1 the smooth stadium is
separable and thus integrable. As the value of ν is increased, the borders become steeper.
In the limit of ν →∞, the stadium gains hard walls, becoming the well-know Bunimovich
billiard, one of the paradigms of classical chaotic systems to be considered in the next
section. Thus, by varying ν, we can tune the system dynamics from integrable to chaotic.

Figure 3.4: Potential profile of the Smooth stadium billiard for ν = 3, in the scales
mentioned in the text.

In order to make the presentation more concise, let us use units such that U0 = 1 and
m = 1/2. Thus, for R = 1 the equipotential U(x, y) = 1 corresponds to the border of the
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3.1. Correspondence between semiclassical and numerical calculations

stadium with unit radius and unit length. For any value of the energy E the equipotential
U(x, y) = E gives the classical turning points, defining the allowed area A ≡ A(E). This
area is an important parameter of the classical and quantum dynamics of this system.
Any exponent in the range 1 < ν ≤ 2 already leads to a mixed phase space, i.e., a situation
with both regular and chaotic motions present. In particular, for ν ≥ 2, R = 1, and total
energy E = 1 the classical dynamics is predominantly ergodic, although small remnants
of integrability still exist. These observations are illustrated by the Poincaré surfaces of
section displayed in Fig. 3.5.
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Figure 3.5: Poincaré surface of section for the smooth stadium billiard for E = 1, R = 1,
and (a) ν = 1.5, (b) ν = 2, and (c) ν = 3.

The global Lyapunov exponent λ was computed using the algorithm by Benettin et al.
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Figure 3.6: The Lyapunov exponent of the smooth stadium for E = 1 and R = 1 as
a function of ν. The circles are the results of the numerical computations, while the
continuous line serves as a guide to the eye. The dashed line corresponds to the billiard
limit, λBunimovich = 0.86.

[BGS76]. The evolution of the classical trajectories was carried out numerically1 using a
symplectic algorithm [Yos90]. The Lyapunov exponent was computed for several values of
ν. At E = 1, λ varies smoothly as a function of ν, as shown in Fig. 3.6. As expected, as ν
becomes very large λ approaches the value of the Lyapunov exponent for the Bunimovich
stadium billiard (see next section), namely λhard = 0.86.

The chosen perturbation for this system is a Gaussian static disordered potential (Eq.
[2.62)]. M(t) was computed and afterwards an ensemble average over different realizations
of Σ(r) was taken. All impurities are uniformly distributed over an area A of the two-
dimensional plane where the stadium resides, with concentration ni = Ni/A.

The quantum evolution was carried out through the fourth-order Trotter-Suzuki algo-
rithm [Suz90, Suz93, Rae96] (appendix A). As with the Lorentz gas, one must resort to a
spatial discretization of the system. Within the energy range explored, it was found that
a two-dimensional lattice of area 2.1R× 1.1R provided very accurate results for N = 180
sites per unit distance R (with the intersite distance given by a = R/N), corresponding
to a total number of 378× 198 lattice sites.

The range of parameter values explored in the simulations is limited by computational
cost. Moreover, the choice of parameters was guided by the constraints imposed by

1The computation of λ for the Smooth billiard was carried out by R.O. Vallejos [CLM+02]

40



3.1. Correspondence between semiclassical and numerical calculations

the semiclassical calculations of Sec. 2.1.2. First, in order to include a large number of
randomly located impurities, their correlation width ξ had to be taken much smaller than
R. Second, the semiclassical regime where Eq. (2.56) applies requires ξ to be larger
than the wave packet width σ, which, in turn, has to be much larger than the particle
wavelength λdB. Other constraints arise from finite size effects. For instance, the large-
time saturation value of the Loschmidt echo, M(t → ∞), depends on the ratio σ/N .
Thus, for a fixed N , it is necessary to make σ as small as possible in order to guarantee
a small value for M(t→∞). In addition, one can only accurately recover the dispersion
relation of the free particle, Ek = ~

2k2/2m, when ka � 1. All these constraints are
summarized by the inequalities

a� λdB � σ < ξ � R. (3.3)

A reasonable compromise between a good accuracy and a feasible simulation time was
found for ξ = 0.25R, σ = 0.18R, λdB = 0.07R, and N = 180. This choice, combined with
the values of the classical model parameters, m = 1/2 and E = 1, gave rise to units such
that ~ = 0.011R. Thus, the inequalities of Eq. (3.3) were approximately observed in the
simulations. For the quantum evolution, a time step δt = 2ma2/10~ = 2.8 × 10−4E/~
proved to be sufficiently small.

It is important to make a few remarks about the averaging procedure. In the sim-
ulations, besides averaging over impurity configurations, it was also found important to
average over initial positions r0 and directions p0. The main reason is that numerical
simulations of billiards deal with relatively small, confined systems and directionality has
a strong influence in the short-time dynamics.

The initial conditions for the quantum evolution were chosen from a subset that also
minimized finite-size effects. That is, it is preferable to choose initial conditions that allow
for the observation of an exponential decay before the saturation time. For that purpose,
we took 0.5R < x0 < R, 0.2R < y0 < 0.5R, and initial momentum p0 such that the first
collision with the boundary occurred at x > R, avoiding trajectories close to bouncing
ball-like modes along y. (Such trajectories were found to lead to strong non-exponential
decays in M(t) for time intervals shorter than the saturation time.)

In Fig. 3.7 we can see M(t) for ν = 1.5, 2, and 3 for different values of the pertur-
bation strength. In all graphs we observe that the asymptotic decays are approximately
exponential within a certain ranges of u, as predicted in Sec. 2.1.2. In order to obtain the
characteristic decay times, lnM(t) was fitted to the function ln[A exp(−t/τφ)/t + M∞].

The fit was performed for times t > R/v, where v =
√

2E/m = 2 is the wave packet
velocity, to exclude the initial, non-universal (and non-exponential) time evolution. It is
worth noting that the usual nonlinear fitting procedures are rather insensitive to certain
combinations of parameters τφ and A. Thus, while the parameter M∞ could be fixed by
averaging the long-time tail of the data, the uncertainty in A and τφ was avoided by fixing
the value of the fitted curve at the initial point to be exactly equal to the respective data
value. It was checked that such a procedure yields values for A proportional to u−2, as
expected.
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Figure 3.7: M(t) for the smooth stadium with ν = 1.5 (a), 2 (b), and 3 (c) for different
values of the perturbation strength: u = 0.002, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, and
0.06.

The typical number of samples used in the averaging procedure (for each trace of the
M(t) shown) was in the range 80-100. In fact, it is noticeable that the number of samples
needed to obtain comparable statistical mean squares fluctuation for M(t) scaled with
the perturbation strength u. That is, the larger the perturbation, the larger were the
fluctuations in M(t). This fact set another practical limit to the range of perturbation
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strengths u one can investigate in numerical simulations.

In Fig. 3.8 the inverse characteristic decay times 1/τφ obtained in the fittings are
plotted as a function of the impurity strengths u for the three values of ν (from Fig. 3.7).

Figure 3.8: The characteristic decay rates for the smooth stadium obtained from Fig. 3.7
as a function of perturbation strength. The solid curves correspond to the phenomeno-
logical expression, Eq. (3.4).

For comparison, notice in the plot the phenomenological curve that should interpolate
between the minimum of the two exponents

τphenom(u) =
1

λ
+

~

Γ
(3.4)

where λ is the classical Lyapunov (u independent) and Γ = ~v0/˜̀ is the characteristic de-
cay rate obtained in Sec. 2.1.2, Eq. (2.64). Such a curve matches the expected asymptotic
behaviors for 1/τφ at small and large values of u.

The plateau around the classical Lyapunov exponent λ clearly confirms the theoretical
prediction of Sec. 2.1.2. For weak perturbations, the data is also consistent with the
quadratic behavior of 1/τ̃ .
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3.1.3 The Bunimovich stadium billiard: when the FGR does

not apply

So far, we have seen numerical evidence of the Lyapunov regime in two systems. The
Smooth billiard is a model exactly described by the original presentation of Jalabert and
Pastawski [JP01] (see Sec. 2.3.1) with a quenched disorder perturbation. The Lorentz
gas, on the other hand, did not have any disorder in the perturbation, but there was
some in the dynamics of the unperturbed Hamiltonian. Therefore, the question remains
if disorder plays a relevant role in the decay of the LE, whether in the perturbation or in
the Hamiltonian. As anticipated in the previous chapter, disorder is a practical tool that
allows analytical progress, and results do not depend strongly on it. This section shows
a system that is completely free of disorder to provide numerical evidence on this aspect.

As an extra feature, it will be seen that the LDOS in this system is not a Lorentzian as
obtained for random matrices (2.1.3). Therefore we will be able to observe the behavior
of the LE for weak perturbations in this situation where the theory does not apply.

We consider the desymmetrized Bunimovich stadium billiard2 [Bun74], one of the
paradigms of classical chaos theory. It consists of a free particle inside a 2-dimensional
planar region whose boundary C (shown in Fig. 3.9) is a quarter of a circle of radius r
with a square box of side r next to it. If we take r equal to unity then the enclosed area
is 1 + π/4. This system not only has a great theoretical importance by being a very well
known fully chaotic system, but also is of experimental relevance [SMCG99, HFP+99].

The classical dynamics is completely defined once the boundary is given. On the other
hand, to address the quantum mechanics, it is necessary to solve the Helmholtz equation,
∇2φµ = k2

µφµ with appropriate boundary conditions. kµ is the wave number and by
setting ~ = 2m = 1, k2

µ results the energy. The most commonly used boundary conditions
are the Dirichlet (hard walls) and the Neumann (acoustics) conditions. However, we
are interested in the possibility of perturbing the quantum system without breaking the
orthogonal symmetry and leaving the classical motion undisturbed [SA93]. This is possible
using more generalized boundary conditions:

φ(q) + ξ g(q)
∂φ

∂n
(q) = 0, (3.5)

where q is a coordinate along the boundary of the billiard (see Fig. 3.9), and n is the unit
vector normal to the boundary. g(q) is a real function and ξ the parameter controlling
the strength of the perturbation. Dirichlet boundary conditions are recovered when ξ = 0
while Neumann conditions are satisfied in the limit ξ → ∞. The eigenfunctions and
eigenenergies for the case ξ = 0 are readily obtained by using the scaling method [VS95].

In order to compute the LE in this system, a relation between the eigenvalues and
eigenfunctions for different values of the parameter ξ is needed. Based on a recently
developed Hamiltonian expansion for deformed billiards [WV99], it is easy to show that
the eigenvalues and eigenfunctions for different values of the parameter ξ can be obtained

2The numerical results of the LE in the Bunimovich stadium were obtained by Diego. A. Wisniacki
[WVPC02] using the method described in this section.
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Figure 3.9: Spectrum of the desymmetrized Bunimovich stadium billiard with mixed
boundary conditions controled by the parameter ξ [Eq. (3.6)]. The wave numbers kµ(ξ)
run between 49.3 and 50.7. Inset: Schematic figure of the system. In solid line the
boundary of the stadium billiard where the mixed boundary conditions are applied [Eq.
(3.5)]. The coordinate q on the boundary is also shown. Dashed lines correspond to the
symmetries axis with Dirichlet boundary conditions.

from the Hamiltonian H0 + Σ(ξ) which is expressed in the basis of eigenstates at ξ = 0
(hereafter referred to as φµ),

Σµν = ξ × Φµν

∮

C

g(q)
∂φµ

∂n

∂φν

∂n
dq. (3.6)

The function g(q) measures the strength of the change in the boundary condition along
the contour. Within a perturbation theory it would represent the direction and strength
of a distortion of the stadium [WV99], and it can be shown to be equivalent to the mass
tensor perturbation introduced in Sec. 2.3.2 (see App. B. Here we shall use

g(q) =

{
α 0 ≤ q ≤ 1,

(1 + α) sin(q − 1) + α 1 < q ≤ 1 + π/2

with α = −1/(2 + π/2) that could be assimilated to a dilation along the horizontal axis
and a contraction along the perpendicular one. Notice that the integral above could be
viewed as an inner product among the wave functions ∂φµ

∂n
defined over C. This relation

defines an effective Hilbert space in a window ∆k ≈ Perimeter/Area [WV99]. The cut-off
function Φµν = exp

[
−2 (k2

µ − k2
ν)

2/(k0∆k)
2
]

restricts the effect of the perturbation to
states in this energy shell of width B ' k0∆k. It allows us to deal with a basis of finite
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dimension with wave numbers around the mean value k0 and restricting to a particular
region ∆k of interest.

Figure 3.9 shows the dependence of the energy levels on the perturbation. They
exhibit many avoided crossings as ξ is varied. While the energy levels show the typical
behavior of a general system without constants of motion, we also recognize that some
small avoided crossings are situated along parallel tilted lines. These energies correspond
to the well known “bouncing ball” states which are highly localized in momentum. The
selected perturbation does not modify substantially those states.

While a global exponential decay of M(t) can be clearly identified in almost any indi-
vidual initial condition, the fluctuations for a system with k0 not too large can introduce
error in the estimation of the rate. Hence, we have taken an average over 30 initial states.
Fig.3.10 (a) and (b) show typical sets of curves of M(t) for k0 = 50 and k0 = 100 respec-
tively. It can be seen clearly that after the initial transient, M(t) decays exponentially,
∼ exp[−t/τφ]. For ξ > ξc ' 4.5/k the decay rate τφ becomes independent of the per-
turbation and 1/τφ ≈ λ with λ the Lyapunov exponent of the classical system [DP95]
in accordance with Sec. 2.1.2. On the other hand, for large times M(t) saturates to the
finite value M∞ ≈ 1/N with N the effective dimension of the Hilbert space [Per84].
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Figure 3.10: M(t) for the desymmetrized stadium billiard perturbed by a change in the
boundary conditions. The calculations are shown in two different energy regions. (a)
Corresponds to the region around k0 = 50. The value of ξ is, from the top curve to
bottom: 0.019, 0.038, 0.057, 0.075, 0.094, 0.11, 0.13, 0.15 and 0.17. (b) Corresponds to
the region around k0 = 100. The value of ξ is, from the top curve to bottom: 0.0066,
0.0131, 0.020, 0.0262, 0.0327, 0.0393, 0.0458, 0.0524, 0.0589, 0.066, and 0.072. The thick
lines corresponds to an exponential decay with decay rate τφ = 1/λ.

For smaller perturbations, the system is predicted to be in the FGR regime (Sec.
2.1.3), with an exponential decay given by the Fourier transform of the local density of
states (LDOS). However, it is not general for any system or perturbation that the LDOS is
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3.1. Correspondence between semiclassical and numerical calculations

a Lorentzian. In particular, the LDOS for the Bunimovich stadium with the perturbation
presented above is shown in the inset of Fig. 3.11 for three different perturbation strengths,
all showing they are clearly not Lorentzian. This is related to the fact that the function
g(q) that determines the perturbation does not connect all different regions of phase space;
for instance, the bouncing ball states are practically undisturbed by Σ determining the
non-generic nature of the perturbation. In particular, one can evaluate the width Γ of
the LDOS as its second moment, showing the spreading of the unperturbed eigenstates
when expressed in terms of the new ones. The results show a linear dependence of Γ on
ξ shown in Fig. 3.11 [opposed to the quadratic behavior expected by the semiclassical
theory, Eq. (2.20), and random matrix theory, Eq. (2.32)]. A best linear fit to the data
results in Γ ' 0.36ξk2. Taking into account that λ ' 0.86k, the critical value ξc for the
crossover from the FGR regime to the Lyapunov one is expected at ξc = 2.4/k. However,
from Fig. 3.10 we can see that the saturation occurs at ξc ≈ 4.5/k. For the Bunimovich
stadium then, the crossover between regimes occurs when the Lyapunov exponent is equal
to the half width of the LDOS.
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Figure 3.11: Width Γ of the local density of states as a function of the perturbation
strength ξ for k0 = 50 (filled circles) and k0 = 100 (circles). The solid lines are the best
linear fit. Inset: Local density of states P (r) for different perturbations in k0 = 50 (r is
measured in mean level spacing units).

These results contrast with the FGR dependence observed in the previous examples.
In general, when the FGR is not applicable, one cannot make the connection to the
Fourier transform of the LDOS as in Sec. 2.1.3. Therefore, this is direct evidence that
both quantities may have quite different underlying physics [WC02]. On the other hand,
it was shown here that the LE decays exponentially with a rate given by the perturbation
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Chapter 3. Universality of the Lyapunov regime

dependent width of the LDOS. This is a topic that deserves further investigation.

In summary, the Bunimovich stadium is a valuable example that sets off from the
analytical approach of previous sections in two important aspects: First, it is a system
where there is no disorder at all, neither in the Hamiltonian nor in the perturbation. The
observation of the Lyapunov regime in such a case positively answers the question that
disorder is not an essential ingredient of the theory. Second, in the Bunimovich stadium
that the FGR is not applicable due to the non-general origin of the perturbation. In this
case we observed that a FGR-like regime exists in the sense that some general properties
of the LDOS are related to the decay of the LE, however the particular form of that
relationship could in principle be quite model-dependent.

3.2 Universality

We turn to study a very important aspect of the Lyapunov regime observed in classically
chaotic systems, namely, its robustness and generality. In particular, we will claim that
these properties, along others, be regarded as the universal character of the Lyapunov
regime. Universality, however, is not a well defined mathematical concept, and some
discussion on its meaning is therefore needed.

In classical mechanics there exist many examples of physical systems that can be
described by deterministic equations of motion, albeit they present clearly non-predictable
behavior. The success of chaos theory is the finding that on many occasions these systems
(which in general have very different particular characteristics) can be classified into large
classes where some quantitative and qualitative predictions can be made. This feature is
commonly referred to as the universality of chaotic behavior [Cvi89].

The same attribute in the Loschmidt echo would certainly heighten its rank as a
powerful tool in quantum chaos. The results of the previous chapter using semiclassical
techniques, along with numerical evidence, clearly show that the Lyapunov regime is
present in classically chaotic systems and that it describes their behavior independently
of details of the Hamiltonian dynamics or the perturbation. However, more requirements
in addition to those described above are needed to make a fair claim of universality.
Some of these conditions are set by the limitations of the theory, for instance the need of
averaging or the presence of disorder in the perturbation or the Hamiltonian. The latter
was dealt with in the previous example of the Bunimovich stadium, while the former
will be shown to be irrelevant in the sequel. Other requirements are more explicitely
related with the quantum nature of the LE. On one hand, we need to ascertain that
its features are not trivially inherited from some classical counterpart by the quantum–
classical correspondence before the Ehrenfest time, but that they are intrinsic to the LE
itself. On the other hand, we also demand that the LE recover the appropriate classical
form in the limit of high energies (or ~ going to zero), so that it smoothly describes chaotic
systems for all energy regimes up to the classical level.

In this section we will deal with these topics by resorting to numerical results in the
Lorentz gas, that as we will see for these purposes has many advantages over other models.
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The last two issues above mentioned, however, will leave some questions opened that will
need the more profound analysis presented in the next chapter.

3.2.1 Individual vs. ensemble-average behavior

In order to make analytical progress in our semiclassical calculations, an ensemble average
was introduced (over realizations of the quenched disordered perturbation or over initial
conditions). This tool raises the question of whether the exponential decay of M(t) is
already present in individual realizations or, on the contrary, the averaging procedure is a
crucial ingredient in obtaining a relaxation rate independent of the perturbation [STB03].

As discussed in Sects. 2.1.2 and 2.3.2, for trajectories longer than the correlation length
ξ of the perturbation, the contributions to ∆S from segments separated by more than ξ
are uncorrelated. This leads us to consider that the decay observed for a single initial
condition will be equivalent to that of the average. In this section we test this hypothesis
numerically.

For large enough systems presenting a large saturation time, we expect M(t) to fluctu-
ate around an exponential decay. This expectation is clearly supported by the numerical
results shown in Fig. 3.12, where we can see M(t) for three different initial conditions
in a Lorentz gas with L = 800a and fixed α = 0.024. An exponential decay with the
semiclassical exponent is shown for comparison (thin solid line).

Figure 3.12: M(t) for three different single initial conditions of the wave-packet in the
Lorentz gas. All the curves oscillate around the decay corresponding to the Lyapunov
exponent, whose slope is shown in the straight line for comparison.

In order to obtain the exponent of the decay with a good precision, we could calculate
M(t) for a single initial condition in a large enough system. Alternatively, Fig. 3.12 shows
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Chapter 3. Universality of the Lyapunov regime

that it is correct to obtain the exponent through an ensemble average to reduce the size
of the fluctuations. As the former method is computationally much more expensive, one
typically resorts to the latter.

This situation is analogous to the classical case where one obtains the Lyapunov ex-
ponent from a single trajectory taking the limit of the initial distance going to zero and
the time going to infinity, or else resorts to more practical methods [BGS76] that average
distances over short evolutions.

Notice that in the Lorentz gas the average over initial conditions and the average over
realizations of the impurities positions are equivalent. Because of this, the term initial
conditions is used to refer also to realizations of H0. All the cases shown in Sec. 3.1 and
this one are averaged over realizations. In particular for these calculations, the average
is constrained to those systems where the classical trajectory of the wave-packet collides
with at least one of the scatterers. This restriction helps avoiding those configurations
where a “corridor” exists, in which case M(t) presents a power-law decay possibly related
to the behavior found in integrable systems [JAB03].

As a side note, let us remark on the averaging procedure used numerically. The
averaging of quantities that fluctuate around an exponential decay is a delicate matter,
since fluctuations can affect the result dramatically. In particular, for the LE it has
been noted that averaging M(t) over initial conditions can result in an exponential decay
different than the one for a single initial condition [gWL02, STB03]. Given the exponential
dependence of M(t) in λ, the phase space fluctuations of the Lyapunov exponent will
induce a difference between the average lnM(t) and that ofM(t). The former procedure is
more appropriate in order to have averages of the order of the typical values. On the other
hand, if the fluctuations of the exponent are small, both procedures give similar results.
This is the situation found in the Lorentz gas. 〈M(t)〉 and 〈lnM(t)〉 were calculated and
later the decay rates of the exponential regime extracted using the fit described in Sec. 3.1.
In the Lorentz gas at the range of parameters of interest both averaging procedures
give values of τφ that are indistinguishable from each other within the statistical error.
However, although the rates are similar, the actual values of 〈M(t)〉 and 〈lnM(t)〉 are
different, usually the later being larger.

3.2.2 Ehrenfest time and thermodynamic limit

Let us consider the extension of the time regime where the Lyapunov decay is observed.
After the initial Gaussian decay, the following relevant time scales for the LE are the so
called Ehrenfest time tE, and the saturation or breakdown of exponential decay time ts
(given by the size of the available Hilbert space).

The Ehrenfest time is such that up to it one expects the propagation of a quantum
wave-packet to be described by the classical equations of motion. After tE the quantum-
classical correspondence breaks down [BZ78] and interference effects become relevant. In
a classically chaotic system tE scales as ln[~], for which it is also known as the log time.

Strictly speaking, the semiclassical calculation presented in Sec. 2.1.2 is valid only until
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the Ehrenfest time3. In addition to this, if the LE has a classical counterpart (sometimes
defined as the overlap between classical distributions in phase space [BC02, BCV03]),
the very same definition of tE indicates that the quantum LE would follow the classical
behavior simply because of the quantum–classical correspondence.

It is then of importance to test numerically the behavior of the LE after tE. However,
in other systems where the Lyapunov regime of the LE has been observed, such as bounded
systems like the Bunimovich [WVPC02] or the smooth [CLM+02] stadiums, chaotic maps
[BC02] or kicked systems [JSB01], tE coincides with the saturation time ts = 1/λ ln[N ].
This is because in these systems the number of states N plays the role of an effective
Planck’s constant ~eff = 1/N . Therefore, when in these systems the LE is governed by a
classical quantity, the whole range of interest occurs before the Ehrenfest time. It is then
impossible from that evidence to conclude if the independence of the decay rate on the
perturbation strength has some quantum origin at all, or if it is more general than the
regime of validity of the semiclassical theory.

In the Lorentz gas, presented in Sec. 2.3.2, we can differentiate between the time scales
ts and tE by appropriately controlling the parameters. This is a property not shared by
finite systems, but robust for extended ones like the Lorentz gas (this does not imply an
unbounded exponential decay of the LE, as discussed below). The saturation time for an
initial wave packet of width σ in a Lorentz gas embedded in a box of size L is given by

ts '
2

λ
ln
L

σ
, (3.7)

while the Ehrenfest time, defined as the time it takes for a minimal wave-packet of wave-
length λdB to spread over a distance of the order of R [AL96], is given by

tE '
1

λ
ln

2R

λdB
. (3.8)

The numerical calculations shown in Sec. 3.1.1 show that M(t) decays exponentially
after the Ehrenfest time without much further ado.

Furthermore, in Fig. 3.13 we can see that, as expected, increasing the size of the system
for fixed concentration simply increases the range of the exponential, while tE remains
fixed. The dependence of the saturation value M∞ as a function of the inverse system size
1/L2 was previously studied by Peres [Per84]. Supposing that for long times the chaotic
nature of the system will equally mix the Ñ = (L/σ)2 levels appreciably represented in
the initial state with random phases φj, we write

M∞ = lim
t→∞

M(t)

=
1

Ñ2

∣∣∣∣∣
∑

j

exp
[
i(φj − φ′j)

]
∣∣∣∣∣

2

=
1

Ñ
. (3.9)

3Heller et al. [TH91, TH93] have shown examples where the semiclassical approximation remains very
good for times polynomial in ~, much longer than Ehrenfest’s time. A particular source of quantum
effects that cannot be captured by the SC theory are diffraction due to discontinuities in the potential or
its derivatives, and the density of these points reduce or increase the precision of the SC approximation
dramatically.
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Chapter 3. Universality of the Lyapunov regime

In the inset of Fig. 3.13 the saturation value for long times Eq. (3.9) deduced by Peres
[Per84] is plotted. A best linear fit to the data gives M∞ = (0.6 ± 0.1) (σ/L)2 which
confirms the prediction.

Figure 3.13: Solid lines: Average M(t) for different sizes L = 200a (blue), 400a (red) and
800a (black) for a fixed perturbation α = 0.024. The Ehrenfest time is shown with an
arrow. In dashed line, shown for reference, exponential decay with the Lyapunov exponent
of the classical LG. In the inset, M∞ is shown as a function of (L/a)−2. The straight lines
is the best fit M∞ = (0.6± 0.1) (σ/L)2.

According to these results, in the thermodynamic limit of L → ∞ the Lyapunov
regime persists for arbitrarily large times. However, this occurs only for times smaller
than the critical time where the saturation value coincides with the space explored by the
particle. In other words, for infinite unbounded systems there could be a saturation of the
LE at the “available” (time dependent) Hilbert space, which in the case of the Lorentz
gas would follow a diffusive law. Therefore, the exponential decay of the quantum LE
ends when exp (−λt) = σ2/r2(t), where r2(t) = 2dDt and D is the diffusion coefficient
(see App. B). The maximum possible saturation time t∗s of the Lorentz gas, independent
of the box size L, is the solution of

t∗s '
1

λ
ln
`vt∗s
σ2

. (3.10)

For times shorter than t∗s, the expanding range of the exponential with L for times

52



3.2. Universality

larger than tE, where the correspondence principle does not prevail, as exemplified in
Fig. 3.13.

The survival of a classical signature in the quantum dynamics after the Ehrenfest time
is due to a more complex effect, namely the environment which, through the perturbation,
randomizes the phase of the wave function and washes out terms of quantum nature. We
will discuss this process and its relation to decoherence in detail in the next chapter.

3.2.3 Universality of the Lyapunov regime in the semiclassical

limit

The semiclassical analysis of the Lorentz gas yielded a critical value of the perturbation to
enter in the Lyapunov regime [Eq. (2.89)], that vanishes in the semiclassical limit, αc → 0
for ~ (or λdB) → 0, implying the collapse of the Fermi Golden Rule regime. This behavior
is reproduced by numerical calculations (Fig. 3.14). Here, λdB is decreased while keeping
fixed the size σ of the initial wave packet. A point that should not be over–sighted is
that the perturbation Σ [Eq. (2.67)], for a given value of the parameter α, scales with
the energy in a way that the underlying classical trajectories are always affected in the
same way by the perturbation. The extracted crossover values of αc are in quantitative
agreement with Eq. (2.89), decreasing with λdB in the tested interval, where numerical
computations take reasonable time to finish.

Note that other choices of the perturbation Σ, such as the quenched disorder of
Eq. (2.62) [JP01, CLM+02], can be shown to give critical values that decrease with
decreasing ~ as in Eq. (2.89), provided that the perturbation is scaled to the proper
semiclassical limit. That is, for a fixed perturbation potential, we should take the limit
of λdB → 0. As a result, if we keep ~ constant and decrease λdB by increasing the parti-
cle energy, we should scale up the perturbation potential consistently (assuming that H0

generates the same dynamics at all energies).

The strong conclusion to be extracted from this result is the main one of this chapter:
in the semiclassical limit, any perturbation will be strong enough to put us in the Lyapunov
regime, in consistency with the hypersensitivity expected for a classical system. In this
limit the Lyapunov regime of the LE shares the universality of classical chaos. However,
this is not such an unexpected result, as in this limit the Ehrenfest time diverges and the
correspondence principle should prevail at all times.

The sound evidence presented above allows other perspectives which will provide useful
insight on the different regimes of the LE. In particular, we can devise a plot of a scaling
parameter proportional to the particle’s energy and the inverse of ~ as a function of the
perturbation strenght. In such a plot, the critical perturbation Eq. (2.89) is a curve
that separates the FGR from the Lyapunov regime. In a sense, this perspective offers
a “phase” or regime diagram for the LE. We can see this plot in Fig. 3.15. The shaded
region corresponds to the Fermi Golden Rule regime and the clear one to the Lyapunov
regime, while the line that divides both phases is Eq. (2.89). Note that the dots are the
numerical values of αc, extracted from Figs. 3.3 and 3.14. There is of course another
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Figure 3.14: Decay rates 1/τφ for different wavelengths λdB of the initial wave-packet for
a concentration c = 0.195 with the same units as in Fig 3.3. Solid line: classical Lyapunov
exponent. Dashed lines: the FGR quadratic behavior. Note that for decreasing λdB the
critical perturbation diminishes, implying a collapse of the Fermi Golden Rule regime.

transition from FGR to perturbative regime (dotted area) appearing when Σ ' ∆. This
perturbative value also goes to zero in the semiclassical limit of λdB → 0. Finally, the
Lyapunov regime is bounded from above by an ~ independent critical value αp marking
the classical breakdown discussed bellow (dashed area).

A remarkable conceptual feature highlighted by Fig. 3.15, is the importance of the
order in which we take the limits of Σ and λdB going to zero. Two distinct results are
obtained for the different order in which we can take this double limit. As depicted in
the figure (with arrows representing the limits),

lim
λdB→0

lim
Σ→0

1/τφ = 0, (3.11)

for the FGR exponent always goes to zero with the perturbation. On the other hand,
taking the inverse (more physical) ordering

lim
Σ→0

lim
λF→0

1/τφ = λ, (3.12)

the semiclassical result is obtained because the FGR regime has collapsed.
The semiclassical theory clearly fails when the perturbation is strong enough (or the

times long enough) to appreciably modify the classical trajectories. This would give an
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∞

Figure 3.15: Regime diagram for the Loschmidt echo as a function of the perturbation
and the energy (or inverse ~). The yellow area is the FGR regime, while the clear one is
the Lyapunov regime. The line that divides both regimes is Eq. (2.89). The dots are the
numerical values obtained from Figs. 3.3 and 3.14. The blue region is where perturbation
theory (PT) applies, although for increasing energy this regime collapses faster than the
FGR. The arrows schematize the possible ordering of the classical double limit of the
perturbation and the wavelength going to zero. Notice how the lower one gives always
zero while the upper (correct) one gives λ since it remains always in the Lyapunov regime.

upper limit (in perturbation strength) for the results of Sec. 2.1.2. A more stringent
limitation comes from the finite value of ~, due to the limitations of the diagonal approx-
imations and linear expansions of the action that we have relied on. In other systems,
like the quenched disorder in a smooth stadium [CLM+02], the upper critical value of the
perturbation (for exiting the Lyapunov regime) can be related to the transport mean free
path of the perturbation ˜̀

tr, which is defined as the length scale over which the classical
trajectories are affected by the disorder[RUJ96].

We can obtain in the Lorentz gas an estimate of ˜̀
tr by considering the effect of the

perturbation on a single scattering event. The difference δθ between the perturbed and
unperturbed exit angles after the collision can be obtained using Eqs. (B.16), which
results in

δθ ∼ 4nxny

(v · n
v

)2

α , (3.13)

where v is the initial velocity of the particle and n is the normal to the surface.
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Assuming that the movement of the particle is not affected by chaos (non-dispersive
collisions), one can do a random walk approach and estimate the mean square distance
after a time τtr from the fluctuations of the angle in Eq. (3.13). Estimating the transport
mean free time as that at which the fluctuations are of the order of R, one obtains

˜̀
tr '

4R2

3α2`
, (3.14)

where a uniform probability for the angle of the velocity is assumed. Eq. (3.14) is used
to get the upper bound perturbation αp for the end of the Lyapunov plateau,

αp =

√
4λR2

3`v
. (3.15)

For the parameters used in the examples of this chapter, αp ' 0.23, 0.29 and 0.43 respec-
tively for increasing magnitude of the three concentrations shown in Fig. 3.3. It is rather
difficult to reach numerically these perturbations in our system, since the initial Gaussian
decay drives M(t) very quickly towards its saturation value, preventing the observation
of an exponential regime. Moreover, one should keep in mind that Eq. (3.15) is just an
upper bound. Despite these difficulties, we can see in Fig. 3.3 that the Lyapunov regime
plateau appears to end for sufficiently strong perturbations. For the range explored, the
limiting values are in qualitative agreement with the estimation from Eq. (3.15).

3.3 Summary

The LE was studied numerically for three different chaotic systems. The results strongly
support the analytical predictions of Chap. 2. Furthermore, some of the approximations of
the theory were tested numerically showing that the result is more general than expected.

The LE was computed in a Smooth billiard, the Bunimovich stadium and a Lorenz
gas. The different nature of the perturbations in the examples implies that its details are
generally irrelevant for the LE in chaotic systems. The Bunimovich stadium also shows
that disorder in the perturbation or in the Hamiltonian is just an artifact needed by the
theory, and that results do not depend on it. In the same line, it was also shown that while
averages over the disorder (or over initial states) can be used to obtain better precision of
the decay rates, individual curves decay oscillating slightly around the average exponent.

The robustness of the Lyapunov regime against these effects, plus the persistence of
the exponential decay after the Ehrenfest time and the recovery of the classical hyper-
sensitivity in the limit of ~ → 0 are evidence of the universality of the Lyapunov regime,
much like the universality ascribed to classical chaos theory.

The “phase diagram”representation for the different regimes of the LE, Fig. 3.15, is
a simple conceptual tool that sums up most of the results presented in this section in a
straightforward yet profound way.
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Original results

• First numerical evidence of the Lyapunov regime, presented in [CPW02], later ex-
panded in [CLP04].

• Persistence of the effect for times longer than tE [CPW02, CLP04].

• Study of the LE in the Bunimovich stadium and observation of a FGR-like regime
for non Lorentzian LDOS [WVPC02].

• Existence of the Lyapunov regime for the Smooth billiard, with a mixed phase space
[CLM+02].

• Observation of exponential decay in individual curves and independence of averages
[CPW02, CLP04].

• High energy (kdB →∞ or ~ → 0) limit of the LE, showing the collapse of the FGR
in the classical limit and the recovery of classical hypersensitivity to perturbations
[CLP04].
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Chapter 4

The Loschmidt echo, decoherence

and the quantum-classical transition

‘The name of the song is called “Haddock’s Eyes.” ’

‘Oh, that’s the name of the song, is it?’ Alice said, trying to feel interested.

‘No, you don’t understand,’ the knight said, looking a little vexed. ‘That’s what
the name is called. The name really is “The Aged Aged Man.” ’

‘Then I ought to have said “That’s what the song is called” ?’ Alice corrected
herself.

‘No, you oughtn’t: That’s quite another thing! The song is called “Ways and
Means”: but that’s only what it’s called, you know !”

‘Well, what is the song, then?’ said Alice, who was by this time completely
bewildered.

‘I was coming to that,’ the knight said. ‘The song really is “A–sitting on A
gate”: and the tune’s my own invention.’.

Lewis Carrol, Through the Looking Glass.

A remarkable feature of the Loschmidt echo observed in the previous chapters is the
fact that a quantity related to the classical dynamics (the Lyapunov exponent) emerges out
of a quantum magnitude. What is quantum, what is classical and what is the interplay
between them for a given system are questions at the core of the so called quantum–
classical transition. It is well known that in our everyday life quantum mechanics is more
the exception than the rule: we hardly ever encounter phenomena such as superpositions
or matter interference–related effects1. How is it then that, although the underlying laws
are quantum, the resulting reality is classical? Is there a point where quantum effects are

1This paradox deeply intrigued Schrödinger and was summed up in his famous paradox of the cat in
a box with an atom that triggers a killing mechanism when it decays. The observation is that after a
while, the cat would entangle with the atom and would therefore exist in a superposition of dead and
alive states.
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lost and all that is left is classicality, or we could never expect to be in a regime where
they are important?

This second point of view could be justified due to the smallness of ~, since the quan-
tum classical correspondence principle assures us that quantum mechanics is irrelevant
up to quite large times. However, as we saw in the previous chapter, the breakdown
time for the correspondence (the Ehrenfest time tE) is actually short, because it depends
logarithmically on ~. A crude calculation of tE for Hyperion, a moon of Saturn, showed
[ZP95b] that tE ' 20 years, that is, at this point in time Hyperion should be a gigantic
quantum superposition of moons all over its orbit!

A possible circumnavigation of this problem is provided by decoherence theory [Zur91,
GJK+96, Zur03]. It shows that even the faintest interaction of a quantum system with an
environment causes, in the end, a randomization of its phase and therefore a suppression
of all quantum effects related to it.

We are interested in studying the relationship between decoherence and the LE because
the latter presents many features that have similar counterparts in decoherence theory.
In the following sections we will first see some basic concepts of decoherence to illustrate
these similarities. Thereafter, we will show how a formal relationship between both fields
can be developed both ways, using techniques of the LE to connect with decoherence and
vice-versa. For the former path, we will develop a semiclassical theory of Wigner functions
and reinterpret the results of Sec. 2.1 in terms of the emergence of classical behavior. In
the latter approach, using a formalism typical of decoherence studies, we will be able to
obtain a master equation for the LE and show that its decay rate is equal to the rate of
suppresion of coherence.

4.1 Decoherence and the transition from quantum to

classical

Decoherence is an essential ingredient in the explanation of the quantum–classical tran-
sition [PZ01, GJK+96, Zur91, Zur03]. One considers a system coupled to an external
environment, over which the observers have neither information nor control. This is in-
troduced in the theory as the postulate that one has access only to the reduced density
matrix of the system ρ, which is obtained by tracing out the environmental degrees of
freedom from the total density matrix,

ρ = TrEρT . (4.1)

Another object that has all the accessible information is the Weyl representation of
the density matrix, the Wigner function

W (q,p, t) =
1

2π~

∫
dδqeipδ̇q

〈
q− δq

2

∣∣∣∣ ρ(t)
∣∣∣∣q +

δq

2

〉
. (4.2)

The real valued Wigner function provides a phase-space representation for quantum states,
although it is not strictly a probability density since it can take negative values. The
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regions where this happens are actually a signature of the presence of definite quantum
phase correlations in the wave function, and, as we shall soon see, are suppresed by the
environment induced decoherence. When this happens, the Wigner function becomes
positive everywhere and becomes similar to the classical probability distribution. We can
see some of this fascinating behavior already in a simple example, the superposition of
two Gaussian wave packets. The Wigner function for such a state is

W (q, p) =
1√
8π~

e−
p2σ2

2~2

[
e−

(q−q0)2

σ2 + e−
(q+q0)2

σ2 + 2e−
q2

σ2 cos
(pq0

2~

)]
(4.3)

We can see in Fig. 4.1-a that W (q, p) is composed of two Gaussians centered in the
classical positions ±q0 with zero momentum, and in between them a strong pattern of
oscillations forms. These oscillations are the signature that our quantum state is a true
superposition of states, and not a statistical mixture.

Figure 4.1: (a) Wigner function of the superposition of two Gaussian wave packets cen-
tered at ±q0 with zero momentum. Notice the oscillation pattern in between the two
peaks that correspond to the classical distribution. (b) The same Wigner function but in
an open system, where decoherence has set in and suppressed the quantum oscillations.

One of the simplest systems with analytical solution, and yet general enough to have
non–trivial behavior, is a quantum oscillator surrounded by a bath of independent oscil-
lators (called the linear quantum Brownian motion model [PZ01]). Going through the
detailed calculations is beyond the need of this section: it will suffice to present the results,
the hypothesis involved and some subsequent relevant additions to the theory.

The total Hamiltonian of the model is

HCL = HS +HBath +Hint

=
p2

2m
+

Ωq2

2
+

∑

k

p2
k

2m
+
ωkq

2
k

2
+

∑

k

V (q)qk, (4.4)

61



Chapter 4. The Loschmidt echo, decoherence and the quantum-classical transition

where q and p are the conjugate coordinates of the system, and qk and pk are the co-
ordinates of the k-th oscillator in the bath. Assuming a linear coupling, V (q) = q, the
reduced density matrix can be shown to obey a master equation [HPZ92, PZ01]

∂ρ

∂t
= − i

~

[
HS +

1

2
MΩ̃2(t)q2, ρ

]
− i

~
γ(t) [q, p, ρ]

− D(t) [q, [q, ρ]] − 1

~
f(t) [q, [p, ρ]] , (4.5)

where Ω̃(t) is a frequency renormalization, γ(t) is a damping coefficient and D(t) and f(t)
are diffusion coefficients. In the limit of high temperatures and absence of dissipation
[PZ01], γ and f can be neglected and D considered constant, which gives

∂ρ

∂t
= −i~ [HS, ρ] − D [V (q), [V (q), ρ]] . (4.6)

Notice that this equation can be derived for a general coupling V (q). The first term
on the rhs of Eq. (4.6) generates unitary evolution, the second one is responsible for
decoherence: It induces a tendency towards diagonalization in position basis and, in the
Wigner representation, it gives rise to a diffusion term [PZ01]. For the simplest case of
V (q) = q the master equation (4.6) can be cast into an equation for the Wigner function,

Ẇ (q, p) = {HS,W}MB + D ∂2
ppW (q, p), (4.7)

where {...}MB is the so–called Moyal bracket, responsible for unitary evolution.
Eq. (4.7) is useful to understand the effect of decoherence on the Wigner function. As

we discussed above, interference effects become evident in the Wigner function as rapid
oscillations between positive and negative values. If for a given region of phase space we
can characterize this oscillations by a well defined wave–number kp along the momentum
direction (W (q, p, t) ' A(q, t) cos (kpp)), we can see that the decoherence term in (4.7)
gives an exponential decay with a rate ΓD = Dk2

p. Thus, the oscillations are suppressed
and the Wigner function becomes positive (see Fig. 4.1-b). In particular, ~/ΓD is then
the decoherence time, the typical time it takes the Wigner function to lose all its quantum
properties and become equivalent to the classical distribution.

Decoherence is a dynamical process through which the couplings to an environment
causes the suppression of phase correlations in a quantum system. After a long time
the system is left in a statistical mixture of those states that are more resilient to the
decoherence process, the so called “pointer states”. Generally, the pointer states can
be described classically without difficulty, and therefore classical behavior emerges from
the system in a natural way. As a last remark, the scale kp is usually very small for
macroscopic systems [think of the inverse of q0 in Eq. (4.3)], which prevents quantum
effects from lasting for long.

The rate ΓD obtained above depends explicitly on D, the coupling with the environ-
ment. However, for a quantum system with a classically chaotic Hamiltonian the rate at
which the environment degrades information about the initial state can be independent of
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4.1. Decoherence and the transition from quantum to classical

the system–environment coupling strength [ZP94, ZP95a]. This rate (e.g., as measured by
the von Neumann or the linear entropy production rate computed from the reduced density
matrix of the system) is set by the classical Lyapunov exponents [Pat99, MP00, MP01],
provided that the coupling strength is within a certain (wide) range.

To see this, we can use the master equation (4.7) to obtain the time derivative of the
purity

P = Trρ2. (4.8)

The purity is related to the linear entropy H = −lnP, analytically simpler to treat than
von Neumann’s entropy. Rewriting P in terms of the Wigner function and applying
Eq. (4.7) [ZP94],

Ṗ =
d

dt

∫
dqdpW 2(q, p)

= 2

∫
dqdpW (q, p)

[
{HS,W}MB + D ∂2

ppW (q, p)
]

= 2D

∫
dqdpW (q, p)∂2

ppW (q, p), (4.9)

where in the last line we used that the unitary part of the evolution integrates out to zero.
After integrating by parts, equation (4.9) can be rewritten as

Ṗ
P = −2D

σ2
, (4.10)

where σ characterizes the dominant wavelength in the spectrum of the Wigner function,

σ−2 =

∫
(∂pW )2

∫
W 2

. (4.11)

Notice that if σ2 results proportional to D, the rate of change of the purity becomes in-
dependent of the diffusion constant. This happens indeed as the typical width σ depends
on the competition between two effects [ZP94]. The first one is the tendency of chaotic
evolution to generate (exponentially fast, at a rate set by the Lyapunov exponent λ)
small scale structure in the Wigner function. For a system with only one Lyapunov expo-
nent, the classical distribution basically expands in one direction (the unstable one) and
contracts in another (the stable), such that the total area remains constant. The expan-
sion/contraction is proportional to eλt and e−λt respectively. The former would therefore
be the typical width of the Wigner function if chaotic motion were the only process acting
on it. However, there is still the effect of the diffusion term of Eq. (4.7), which tends to
smear small scales exponentially fast at a rate determined by the product Dk2

p. These
two effects reach a balance when σ̄2 = 2D/λ [ZP94]. Hence, in this regime the purity P
decreases exponentially at a rate fixed by λ. For this behavior to take place D should
be above a threshold [ZP94], otherwise the critical width is not established (the implicit
assumption is that the time scale for diffusion to wash out a kp–oscillation is shorter than
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Chapter 4. The Loschmidt echo, decoherence and the quantum-classical transition

the time scale for the oscillations to be regenerated by the dynamics). Therefore, already
in a simple scenario the purity has a regime of strong enough perturbations where it
decreases exponentially with a Lyapunov rate.

All these considerations have shown features of decoherence (as quantified by purity)
that bear a striking resemblance to the results obtained for M(t) in previous chapters.
Now, let us return to the LE to elucidate the physical origin of these similarities.

4.2 Loschmidt echo through semiclassical approxi-

mation of the Wigner function

In this section we will employ semiclassical techniques to study the evolution of the
Loschmidt echo expressed as the integral or overlap between two Wigner functions evolved
with slightly different Hamiltonians,

M(t) =

∫
dqdp W0(q, p)WΣ(q, p). (4.12)

Such a framework will be particularly useful to identify links between the LE with
decoherence theory. Moreover, the phase space representation of M(t) will allow me to
ascribe the different regimes of the LE to the behavior of the Wigner functions in different
regions of phase space.

4.2.1 Classical evolution of the Wigner function

Let us consider first the semiclassical approximation for a single Wigner function and its
time evolution. Using the wave-function propagators of Eqs. (2.3), we can express the
time-dependence of the Wigner function as

W (r,p; t) =
1

(2π~)d

∫
dδr

∫
dr

∫
dδr

∫
dp W (r,p; 0) exp

[
i

~
(p · δr− p · δr)

]

× K

(
r− δr

2
, r− δr

2
; t

)
K∗

(
r +

δr

2
, r +

δr

2
; t

)
. (4.13)

where W (r,p; 0) is the initial Wigner function. The semiclassical expansion of the
propagators [Eq. (2.4)] leads to the propagation of the Wigner function by “chords”
[dA98, TL02], where pairs of trajectories (s, s′) traveling from (r − δr/2, r + δr/2) to
(r− δr/2, r+ δr/2) have to be considered (see Fig. 4.2). In the leading order in ~ we can
approximate the above propagators by sums over trajectories going from r to r, and the
semiclassical evolution of the Wigner function is given by

W (r,p; t) = (2π~)d

∫
dr

∫
dpW (r,p; 0)

∑

s,s′

δ

(
p− ps + ps′

2

)

×δ
(
p− ps + ps′

2

)
Ks (r, r; t)K∗

s′ (r, r; t) . (4.14)
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4.2. Loschmidt echo through semiclassical approximation of the Wigner function

Figure 4.2: Two semiclassical trajectories needed to expand the evolution of one Wigner
function.

where ps (ps) and ps′ (ps′) are the initial (final) momenta of the trajectories s and s′,
respectively. The dominant contribution arises from the diagonal term s = s′,

Wc(r,p, t) =

∫
dr

∑

s(r,r,t)

Cs δ (p− ps) W (r,ps; 0) . (4.15)

Using the fact that Cs is the Jacobian of the transformation from r to ps, we have

Wc(r,p; t) =

∫
dps δ (p− ps) W (r,ps; 0) , (4.16)

where the trajectories considered now are those that arrive to r with momentum p. We
note (r,p) the pre-image of (r,p) by the classical equations of motion acting on a time t.
That is, (r,p) = Xt(r,p). The momentum integral is trivial, and we obtain the obvious
result

Wc(r,p; t) = W (r,p; 0) , (4.17)

with (r,p) = X−1
t (r,p). Since Xt conserves the volume in phase-space, we have shown

that at the classical level the Wigner function evolves by simply following the classical
flow. Although this seems like a dead-end result, it actually is what one expects for
the semiclassical approximation for only one Wigner function. In order to introduce
quantum phase effects, one needs to consider higher order expansions of Eq. (2.4) like in
[dA98] or, alternatively, consider two Wigner functions and the relative phase between
the trajectories of their semiclassical expansion. The Loschmidt echo is then appropriate
for this analysis, which we will undertake in the following section.
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Chapter 4. The Loschmidt echo, decoherence and the quantum-classical transition

4.2.2 Semiclassical approximation of the LE 2: the Wigner func-

tion

As indicated in Eq. (4.12), the Loschmidt echo is given by the phase-space trace of two
Wigner functions associated with slightly different Hamiltonians (H0 and H0 + Σ). In
order to facilitate the discussion, let us introduce the density (or partial trace) fΣ writing
the LE as

M(t) =

∫
dr fΣ(r, t) , (4.18)

with

fΣ(r, t) =
1

(2π~)d

∫
dp

∫
dδr

∫
dr

∫
dδr

∫
dp

∫
dδr′

∫
dr′

∫
dδr′

∫
dp′

× exp

[
i

~
(p · δr− p · δr)

]
exp

[
− i

~
(p · δr′ − p′ · δr′)

]

× W (r,p; 0) W ∗(r′,p′; 0)K

(
r− δr

2
, r− δr

2
; t

)
K∗

(
r +

δr

2
, r +

δr

2
; t

)

× K∗

(
r− δr′

2
, r′ − δr′

2
; t

)
K

(
r +

δr′

2
, r′ +

δr′

2
; t

)
. (4.19)

The semiclassical evolution of fΣ is given by sets of four trajectories, as illustrated
schematically in Fig. 4.3.

As previously done in other semiclassical calculations in this work, let us take Gaussian
wave-packet (of width σ) as initial state. Its associated Wigner function reads

W (r,p; 0) =
1

(π~)d
exp

[
−(r− r0)

2

σ2
− (p− p0)

2σ2

~2

]
. (4.20)

Note that the integral on p gives δ(δr − δr′), rendering the integral on δr′ trivial.
Assuming that Σ constitutes a small perturbation, after performing these integrations we
can obtain
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Figure 4.3: Four classical trajectories used to compute semiclassically the Loschmidt echo
through the evolution of two Wigner functions associated with different Hamiltonians.

fΣ(r, t) =
σ2

(2π3~4)d/2

∫
dδr

∫
dr

∫
dδr

∫
dp

∫
dδr′

∫
dp′

× exp

[
i

~
(p′ · δr′ − p · δr)

]
exp

[
− 2

σ2
(r− r0)

2

]

× exp

[
−σ

2

~2

(
(p− p0)

2 + (p′ − p0)
2
)] ∑

s,s′

∑

s̃,s̃′

exp

[
−P

2σ2

8~2

]

× Ks

(
r− δr

2
, r− δr

2
; t

)
K∗

s̃

(
r +

δr

2
, r +

δr

2
; t

)

× K∗
s′

(
r− δr

2
, r− δr′

2
; t

)
Ks̃′

(
r +

δr

2
, r +

δr′

2
; t

)
. (4.21)

Where we have defined

P = ps + ps′ − ps̃ − ps̃′ , (4.22)

and, after changing variables ξ = (r + r′)/2, δξ = r − r′, the Gaussian integral on δξ
was performed. Now the trajectories s and s′ (s̃ and s̃′) arrive to the same final point
r−δr/2 (r+δr/2). Since the initial wave-packet is concentrated around r0, we can further
simplify and work with trajectories s and s′ (s̃ and s̃′) that have the same extreme points.
Therefore, we have
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2

2
r+δr

s~
s

s’s’~

0

Figure 4.4: For fairly localized initial wave-packet, the four classical trajectories contribut-
ing to the LE can be reduced to those starting at its center r0.

fΣ(r, t) =
σ2

(2π3~4)d/2

∫
dδr

∫
dr

∫
dδr exp

[
− 2

σ2
(r− r0)

2 − δr2

2σ2

]

×
∑

s,s′

∑

s̃,s̃′

exp

[
−P

2σ2

8~2
− 2σ2

~2

(R
4
− p0

)2
]

× Ks

(
r− δr

2
, r− δr

2
; t

)
K∗

s′

(
r− δr

2
, δr− δr

2
; t

)

× K∗
s̃

(
r +

δr

2
, r +

δr

2
; t

)
Ks̃′

(
r +

δr

2
, δr +

δr

2
; t

)
, (4.23)

with

R = ps + ps′ + ps̃ + ps̃′ . (4.24)

The integrals on p and p′ are trivial, while the integral on δr′ involves a change of variables
as above to the mean and the difference with δr. By the same considerations as before, we
can reduce all four trajectories to start at the center r0 of the initial wave-packet (Fig. 4.4)

fΣ(r, t) = (4πσ2)d

∫
dδr

∑

s,s′

∑

s̃,s̃′

exp

[
−(P2 + S2 + T 2)σ2

8~2

]

× exp

[
−2σ2

~2

(R
4
− p0

)2
]
Ks

(
r− δr

2
, r0; t

)
K∗

s′

(
r− δr

2
, r0; t

)

× K∗
s̃

(
r +

δr

2
, r0; t

)
Ks̃′

(
r +

δr

2
, r0; t

)
, (4.25)
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with

S = ps − ps′ + ps̃ − ps̃′ , (4.26)

T = ps + ps′ − ps̃ − ps̃′ . (4.27)

Given that

P2 + S2 + T 2 = (ps − ps′)
2 + (ps − ps̃)

2 + (ps − ps̃′)
2 +

× (ps′ − ps̃)
2 + (ps′ − ps̃′)

2 + (ps̃ − ps̃′)
2 , (4.28)

and since the pairs of trajectories (s, s′) and (s̃, s̃′) have the same extreme points, the
dominant contribution to fΣ will come from the terms with s = s′ and s̃ = s̃′. Such an
identification minimizes the oscillatory phases of the propagators, and corresponds to the
first diagonal approximation of the calculation of Sec. 2.1.2 and Ref. [JP01]. Within such
an approximation we have

fΣ(r, t) =

(
σ2

π~2

)d ∫
dδr

∑

s,s̃

Cs Cs̃ exp

[
−(ps − ps̃)

2 σ2

2~2

]

× exp

[
−2σ2

~2

(
ps + ps̃

2
− p0

)2
]

× exp

[
i

~

(
∆Ss

(
r− δr

2
, r0, t

)
−∆Ss̃

(
r +

δr

2
, r0, t

))]
. (4.29)

As in Eq. (2.10), ∆Ss,s̃ is the extra contribution to the classical action that the trajectory
s (s̃) acquires by effect of the perturbation Σ.

We have two different cases, depending on whether or not there are trajectories leaving
from r0 with momentum close to p0 that arrive to the neighborhood of r after a time t.
In the first case r is in the manifold that evolves classically from the initial wave-packet
(Fig. 4.5). Such a contribution is dominated by the terms where the trajectory s̃ remains
close to its partner s, and calling f d

Σ this diagonal component, we get

fd
Σ(r, t) =

(
σ2

π~2

)d ∫
dδr

∑

s,s̃

C2
s exp

[
−2σ2

~2
(ps − p0)

2

]

× exp

[
i

~

(
∆Ss

(
r− δr

2
, r0, t

)
−∆Ss̃

(
r +

δr

2
, r0, t

))]
. (4.30)

Assuming, as in Sec. 2.1.2, that H0 stands for a chaotic system and that the perturba-
tion Σ represents a spatial disorder (the more general case of a time dependent Σ should
follow easily), upon average we obtain spacial
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Figure 4.5: Classical trajectories in the manifold that evolves classically from r0 to r,
representing the diagonal component of fΣ. The action differences ∆S of trajectories s
and s̃ are correlated. The shaded regions depict the initial and final classical densities.

〈
exp

[
i

~

(
∆Ss

(
r− δr

2
, r0, t

)
−∆Ss̃

(
r +

δr

2
, r0, t

))]〉
= exp

[
− 1

2~2
A δr2

]
, (4.31)

where A is given by Eq. (2.51). We therefore have

fd
Σ(r, t) =

(
2σ4

π~2A

)d/2 ∑

s(r0,r,t)

C2
s exp

[
−2σ2

~2
(ps − p0)

2

]
, (4.32)

and the corresponding contribution to the Loschmidt echo is

Md(t) =

∫
dr fd

Σ(r, t) =

(
2σ4

π~2A

)d/2 ∫
dp C exp

[
−2σ2

~2
(p− p0)

2

]
. (4.33)

As in Eq. (2.9) we have used C as the Jacobian of the transformation from r to p.
Now the dominant trajectories are those starting from r0 and momentum p0. We are
then back to the case of the diagonal contribution of Sec. 2.1.4.

Md(t) ' A e−λt, (4.34)

where C = (m/t)de−λt is assumed, and A = (mσ/A1/2t)d. The decay rate of the diag-
onal contribution is set by the Lyapunov exponent λ, and therefore independent on the
perturbation Σ.

The second possibility we have to consider is the case where there is not any trajectory
leaving from r0 with momentum close to p0 that arrives to the neighborhood of r after
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4.2. Loschmidt echo through semiclassical approximation of the Wigner function

Figure 4.6: Non-diagonal classical contribution to the LE given by trajectories departing
from r0 and arriving to points equidistant from the point r where the Wigner function is
evaluated. The action differences ∆S associated with both trajectories are uncorrelated.

a time t. It is a property of the Wigner function that in the region of phase space
classically inaccessible by Xt the points r half-way between branches of the classically
evolved distribution will yield the largest values of fΣ (see Fig. 4.6) and the discussion on
Sec. 4.1). The trajectories s and s̃ now visit different regions of the configuration space,
and the impurity average can therefore be calculated independently for each of them. As
in Eq. (2.19), we have

〈
exp

[
i

~
∆Ss

]〉
= exp

[
− 1

2~2

〈
∆S2

s

〉]
= exp

[
−v0t

2̃`

]

.

(4.35)

Such an average only depends on the length L = v0t of the trajectories. Thus, after
average the non-diagonal term writes

fnd
Σ (r, t) =

(
σ2

π~2

)d

exp

[
−v0t

˜̀

] ∫
dδr

∑

s,s̃

CsCs̃

exp

[
−σ

2

~2

(
(ps − p0)

2 + (ps̃ − p0)
2)

]
. (4.36)

The trajectory s (s̃) goes between the points r0 and r ∓ δr/2. That is why the largest
values of fnd

Σ (r, t) are attained when r is in the middle of two branches of the classically
evolved distribution. Other points r result in much smaller values of f nd

Σ (r, t), since the
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classical trajectories that go between r0 and r∓ δr/2 require initial momenta ps (ps̃) very
different from p0. Thus, exponentially suppressed contributions result.

The non-diagonal contribution to the Loschmidt echo can now be written as

Mnd(t) =

∫
dr fnd

Σ (r, t) =

(
σ2

π~2

)d

exp

[
−v0t

˜̀

]

∣∣∣∣∣

∫
dr

∑

s

Cs exp

[
−σ

2

~2

(
(ps − p0)

2)
]∣∣∣∣∣

2

= exp

[
−v0t

˜̀

]
. (4.37)

Where again we have made the change of variables from r to p, and accordingly, we have
obtained the non-diagonal contribution to the LE [Eq. (2.16)]. As discussed in Sec. 2.2,
such a contribution is a Fermi Golden Rule like [JSB01]. In the limit of ~ → 0 the diagonal
term, Eq. (4.34), obtained from the final points who follow the classical flow, dominates
the LE, consistently with the findings of Sec. 3.2.

4.2.3 Emergence of classicality in the Loschmidt echo

The cumbersome equations of the previous section might hinder the conclusions that can
be extracted from the results, especially those regarding the connection between the LE
and decoherence, and the phase space interpretation of the Lyapunov and FGR regimes.
Therefore it is important to devote this special section to develop these conclusions, which
will be confirmed later using a more illustrative approach.

However, before undertaking this analysis, we need to remind the historical purpose
of the introduction of a unitary perturbation and the origin of the LE. As discussed in
Sec. 4.1, the traditional approach to decoherence is to introduce an environment E cou-
pled to a system S, perform the quantum evolution of the composed system SE , and at
the end obtain the reduced density matrix of S tracing out all degrees of freedom of E .
Alternatively, the Loschmidt echo approach is to consider the environment as all degrees
of freedom over which we have little power to perform the time reversal operation. As an
analytically treatable approximation, it is assumed that the effect of this uncontrolled de-
grees of freedom can be represented by a unitary perturbation to the original Hamiltonian
of the system. To connect the two approaches, one needs a correspondence between envi-
ronments and Hamiltonian perturbations. Nevertheless, this could be extremely difficult
or even impossible to prove in a general case.

Despite the lack of such a connection, research on the LE went on by interest on
the object itself. However, varied results strongly hinted at the relationship between the
LE and decoherence. For instance, the role of − logM(t) as a measure of entropy was
shown using geometric arguments by Usaj [Usa98]. Furthermore, Saraceno and coworkers
[GMSS03] recently considered two open systems whose self Hamiltonians are slightly
different, and they were able to show that the rate of decay of the LE is the average
of the decay rates of the purities of both systems. On a different approach, Zurek et.
al. proposed [KJZ02] to couple a simple spin 1/2 with a chaotic environment, where
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4.2. Loschmidt echo through semiclassical approximation of the Wigner function

the coupling depends on the two levels of the system. For the environment, therefore,
there are two very similar evolutions, and after some simple algebra one can show that
the purity of the reduced density matrix of the spin decays as the Loschmidt echo of the
environment. It is with the results showed in Sec. 4.2.2 and the ones of Sec. 4.3 that a
formal link between decoherence and the LE consolidated. As we will see in the sequel,
this was done by showing a particular case of the aforementioned correspondence between
environment and perturbation.

Let us discuss the results we have obtained so far. From the semiclassical evolution
of the Wigner function we were able to identify the non-diagonal component M nd as the
contribution to the LE given by the values of the Wigner function between the branches
of the classically evolved initial distribution (Fig. 4.6). In this region both of the Wigner
functions contributing to Eq. (4.12) are highly oscillating. As their structures are very
small, with high probability we can consider them to be quite different from each other.
The overlap of this region, which is perfect for zero coupling (ensuring the unitarity
requirement) is rapidly suppressed with increasing perturbation strength. Therefore, the
non-diagonal part of the LE, associated with the Fermi Golden Rule regime, arises from
the region of phase space where contributions to the the Wigner function have a quantum
origin (interference patterns). In particular we have seen that the regime where these
quantum effects dominate (FGR) collapses as ~ → 0.

Beyond a critical perturbation, such that the quantum contribution toM is suppressed,
the diagonal component M d takes over as the dominant contribution to the LE, and is
given by the values of the Wigner function on the regions of phase space that result from
the classical evolution of the initial distribution. This is the Lyapunov regime, where the
decay rate of M(t) is given by λ. In particular, it is possible to observe this “classical”
behavior only when the coupling to the environment (perturbation) is strong enough to
suppress the quantum contribution.

The previous calculations have allowed us to identify the two salient regimes of the
LE with two different contributions to Wigner functions. The Lyapunov regime is given
by the classical region of the Wigner function, while the FGR obtains from the oscillating
interference patterns in between the classical regions.

Notice that, despite its classical association, the diagonal terms of the LE are still of
quantum origin, as we are comparing the increase of the actions of nearby trajectories by
the effect of a small perturbation, assuming that the classical dynamics is unchanged. The
behavior in the Lyapunov regime does not simply follow from the classical fidelity, where
the change in the classical trajectories is taken into account, and the finite resolution with
which we follow them plays a major role. The upper value of the perturbation strength for
observing the Lyapunov regime is a classical one, i.e. ~ independent [`tr ' L in Sec. 2.1.2
and Eq. (3.15)]. For stronger perturbations (see discussions in Sects. 2.1.2 and 3.2) the
classical trajectories are affected and the decay rate of the LE is again perturbation
dependent.

73



Chapter 4. The Loschmidt echo, decoherence and the quantum-classical transition

4.3 Decoherence and the Loschmidt echo

In this section we will abandon the semiclassical approximation used many times pre-
viously to treat the LE. Instead, by finding a master equation for M(t) like the one of
Sec. 4.1, the whole toolbox of decoherence theory will become available to study the
problem. In the process the relationship between decoherence and LE will be formally
demonstrated. Furthermore, the new perspective will allow simpler interpretations of
previous sections’ results.

The key result of this section is that for a classically chaotic system, the rate of
decoherence is equal to the rate of decay of the average LE. In particular, that above a
critical perturbation both quantities decay with a rate given by the Lyapunov exponent.
Finally, the results of the previous section regarding the origin in phase space of the
different regimes of the LE will be further analyzed and interpreted using know results
from decoherence theory.

The results to be developed are restricted to the average over perturbations of M(t).
This, as we saw in Sec. 3.2.1, could be taken as a limitation give by the need to make
analytical progress, with typical cases lying close to the average. However, to avoid
confusions, we will distinguish the average echo for an ensemble of perturbations Σ(x, t)
with probability density P (Σ) with the symbol

M̄(t) =

∫
DΣ P (Σ) |〈Ψ0|U †Σ(t)U0(t)|Ψ0〉|2, (4.38)

with UΣ(t) and U0(t) the evolution operators for a time t of the perturbed and unperturbed
Hamiltonians respectively. Notice that this can be rewritten by moving inside the integral
only the quantities that depend on Σ,

M̄(t) =

∫
DΣ P (Σ) 〈Ψ0|U †0(t)UΣ(t)|Ψ0〉〈Ψ0|U †Σ(t)U0(t)|Ψ0〉

= 〈Ψ0|U †0(t)
[∫

DΣ P (Σ) UΣ(t)|Ψ0〉〈Ψ0|U †Σ(t)

]
U0(t)|Ψ0〉. (4.39)

Thus, M̄(t) is simply the overlap between the average state ρ(t) and the unperturbed
density matrix ρ0(t) evolved from the initial state with U0:

M̄(t) = Tr (ρ(t)ρ0(t)) , (4.40)

with

ρ0(t) = U0(t)|Ψ0〉〈Ψ0|U †0(t),

ρ(t) =

∫
DΣ P (Σ) UΣ(t)|Ψ0〉〈Ψ0|U †Σ(t). (4.41)

Equation (4.40) already can be used to establish an inequality between M̄(t) and
the purity P(t) [Eq. (4.8)], typically used to characterize decoherence. Using Schwartz
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4.3. Decoherence and the Loschmidt echo

inequality, (TrAB)2 ≤ TrA2TrB2, and assuming that the initial state is pure (Trρ2
0 = 1),

we see that
M̄2(t) ≤ P(t). (4.42)

Another argument to obtain similar equations is given in Refs. [Usa98, PUL01]. Inequal-
ity (4.42) was also noticed and used in [ZP03] when studying the LE and the purity in
composite systems, and in [GMSS03] for the problem of two similar open systems. Equa-
tion (4.42) implies that when the purity P(t) decays exponentially with a rate γD, then
M̄(t) should also decay exponentially (or faster) with a rate at least γD/2. However, as
we will see later, we can go much further in the relationship between both decay rates.

The key point to study now is the behavior of the average state ρ(t). In particular,
in order to place the evolution of M̄(t) in the context of decoherence, we need to find a
master equation with non–unitary terms for ρ(t) similar to Eq. (4.6). For this, we will
appeal to the technique of the influence functional developed by Feynman and Vernon
[FV63], which has been successfully used to find master equations of open systems [PZ01].
Let us expand the expression for ρ using the full quantum propagators [Eq. (2.3)]

ρ(x, x′, t) =

∫
DΣP (Σ)ρΣ(x, x′, t)

=

∫
DΣP (Σ)

∫
dx0KΣ(x, x0, t)

∫
dx′0K

∗
Σ(x′, x′0, t)ρ(x0, x

′
0, 0). (4.43)

Now, instead of performing a semiclassical approximation [Eq. (2.4)], we use the path
integral representation of the evolution operator [Fey48],

K(x, x0, t) =

∫
DqeiS[q]/~, (4.44)

where the integral runs over all possible paths (not just the classical) that satisfy the
boundary conditions q(0) = x0 and q(t) = x, and S[q] is the action along the path. The
average density matrix can then be written as

ρ(x, x′, t) =

∫
dx0

∫
dx′0 K̄(x0, x

′
0, x, x

′, t)ρ(x0, x
′
0, 0), (4.45)

where the average propagator is given by

K̄(x0, x
′
0, x, x

′, t) =

∫
DΣ P (Σ)

∫
Dq

∫
Dq′ei(SΣ[q]−SΣ[q′])/~

=

∫
Dq

∫
Dq′ei(S0[q]−S0[q′])/~F [q, q′]. (4.46)

In the last equation we have used that the action SΣ[q] = S0[q] +
∫

Σ[q(t′), t′]dt′, and
F [q, q′] defined as the Feynman-Vernon influence functional [FV63],

F [q, q′] =

∫
DΣ P (Σ) exp

[
i

∫ t

0

(Σ[q(t′), t′]− Σ[q′(t′), t′])dt′
]
. (4.47)
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To make analytical progress, it is convenient to consider a simple form of the pertur-
bation. Results do not depend strongly on it, provided we exclude situations where the
perturbation changes substantially the nature of the Hamiltonian. Let us assume that the
time and spatial dependence of the perturbation are uncorrelated, Σ(x, t) = V (x)J(t),
where V (x) is a function of the coordinates of our system and J(t) is an external source.
For this case, averaging over Σ consists of averaging over functions J(t). We will further
assume that the probability density P (J) is a Gaussian whose width defines the temporal
correlation function for the sources:

P (J) = N exp

[
−1

2

∫ ∫
dtdt′ J(t)ν−1(t, t′) J(t′)

]
, (4.48)

with ν(t, t′) =
∫
DJ P (J)J(t)J(t′) the noise correlation function and N a normalization

factor. Replacing in Eq. (4.47) gives a straightforward Gaussian integration, and one
obtains

F [q, q′] = exp

[
−1

2

∫ ∫
dtdt′ V−(t)ν(t, t′) V−(t′)

]
, (4.49)

where V−(t) = V (q(t))− V (q′(t)).
A simple but physically relevant case is when the noise is white, i.e. ν(t, t′) = 2Dδ(t−

t′). In this case, we can compute the time derivative of the averaged density matrix (4.45),

∂ρ

∂t
=

∫
dx0

∫
dx′0

∂K̄

∂t
(x0, x

′
0, x, x

′, t)ρ(x0, x
′
0, 0)

=

∫
dx0

∫
dx′0ρ(x0, x

′
0, 0)

∫
Dq

∫
Dq′

[
i

~
(L0(x, t)− L0(x

′, t))−DV 2
−(t)

]

× ei(S0[q]−S0[q′])/~F [q, q′], (4.50)

where L0(x, t) is the Lagrangian of the unperturbed system which gives the unitary evo-
lution [like the first term in the rhs of Eq. (4.6)]. Using that

(V (x)− V (x′))
2 〈x| ρ |x′〉 = 〈x| [V (x), [V (x), ρ]] ρ |x′〉 , (4.51)

it is trivial to obtain from (4.50) the master equation for ρ,

ρ̇ =
1

i~
[H0, ρ]− D [V (x), [V (x), ρ]] . (4.52)

We see that Eq. (4.52) is just like the master equation that arose from considering a
quantum system interacting with a quantum environment formed by a set of harmonic
oscillators (Eq. 4.6) [CL83, HPZ92, PZ01]. In such a case the modulus of the influence
functional generated by the environment is identical to (4.49) provided one chooses the
spectral density and the initial state of the environment in such a way that its noise–kernel
is equal to the kernel ν(t, t′) in (4.49). However, as can be seen from the derivation of
Eq. (4.5) [PZ01], in general the influence functional is a complex number whose phase
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4.3. Decoherence and the Loschmidt echo

is responsible for dissipation. In the physically relevant limit (usually associated with
high temperatures) for decoherence studies aimed at understanding the quantum–classical
correspondence, relaxation effects can be ignored [Zur03].

We have therefore demonstrated that averaging of the evolution over an ensemble
of perturbations yields an effect analogous to the tracing out of the unobserved degrees
of freedom of an environment. They are not completely equivalent, though. While the
equivalence can be established for the average over an ensemble of noise realizations, it
does not exist for individual members of the ensemble, which follow unitary evolution with
a given noise. By contrast, a decohering system will lose purity after becoming entangled
with the environment, even when the state of the environment is known beforehand (see
Ref. [Zur03] for a detailed discussion).

We have seen that, in this limit, the evolution of the average state ρ is identical to that
of a quantum system interacting with an environment. Thus, the effect of a particular
environment on its evolution can be represented by a perturbation in the Loschmidt echo
picture. Hence, the evolution of the echo M̄(t) is directly placed in the context of open
quantum systems and decoherence.

The master equation (4.52) for the average state can be used to obtain the time
derivative of M̄(t), along the same lines followed for P [Eqs. (4.9) through (4.11)],

˙̄M = ∂tTr(ρ ρ0) = D

∫
dxdp W0(x, p)∂

2
ppW (x, p). (4.53)

The same argument as before can also be used to analyze the decay of the Loschmidt
echo. In fact, equations (4.9) and (4.53) just differ by a factor of 2 and by the presence of
W0 instead of W inside the integral. As above, we can transform the evolution equation
of the echo into

˙̄M

M̄
= − D

σ2
M

, (4.54)

with the typical width σM defined similarly as the width σ for the purity [Eq. (4.11)],

σ−2
M =

∫
W0∂

2
ppW∫

W0W
. (4.55)

Notice that when decoherence is effective and the dominant structure in W approaches
the critical value, the smallest scales of the pure Wigner function W0 continue contract-
ing and developing smaller and smaller scales (sub–Planck scales are reached quickly in
chaotic quantum systems [Zur01]). To estimate the behavior of σM in this situation let
us approximate locally W ∼ exp(−p2/2σ2) and W0 ∼ exp(−p2/2σ2

0(t)). In the large time
limit t � 1/λ, the chaotic nature of the system contract the pure Wigner function and
σ0 ∼ exp(−λt). Under these assumptions, Eq. (4.55) gives σ2

M = 2σ2. This factor 2
compensates the one missing in Eq. (4.54) when compared to Eq. (4.10), and therefore
we see that the decay rates of the LE and the purity are the same.

This equivalence in the the decay rates of both quantities is the main result obtained
in this section, given by the derivation of the master equation for the average state ρ. It
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is also the first formal proof of such a relationship between LE and decoherence. Apart
from demonstrating this connection, we can now use the findings of this section to present
a more illustrative picture of the origin in phase space of the different regimes of the LE
discussed in Sec. 4.2.3.

To compute the overlap M̄ =
∫

dxdp W0W we can split the phase space integral into
two regions: the region AC close to the classical unstable manifold of the initial state,
where W0 is positive, and the region AO over which W0 oscillates:

M̄(t) =

∫

AO

dxdp W0W +

∫

AC

dxdp W0W. (4.56)

In the oscillatory region we can estimate the value of the integral assuming that there is
a dominant wave vector kp. In such a case, from Eq. (4.52) [or its Weyl representation

Eq. (4.7)] we assume W̄ ' W0e
−Dk2

pt. Using this,

∫

AO

dxdpW0W ' e−Dk2
pt

∫

AO

dxdpW 2
0 . (4.57)

If more than one scale is present the result would be a sum of terms like this one. For the
second integral, we can also use a crude estimate supposing that W0 and W̄ are constant
over their respective effective support. In particular, W0 ∼ 1/AC since its integral over
AO cancels out. As W̄ approaches the critical width σ̄ along the stable manifold, the area
of its effective support grows exponentially. Therefore, one gets that the second integral
is (see Fig. 4.7)

∫

AC

W0W̄ ∼ ACW0W̄ ∼ W̄ ∼ e−λt

σM
. (4.58)

Thus, combining the two results we find that the expected behavior of the Loschmidt echo
is

M̄(t) = a exp(−λt) + b exp(−Dk2
pt) (4.59)

for appropriate prefactors a and b. We have thus re–obtained the result from Sec. 2.1.2
[JP01, CPJ04], included the perturbation dependence of factor a.

The virtue of this analysis, entirely based on properties of the evolution of W̄ derived
in the context of decoherence studies, is the simplicity with which it enables us to demon-
strate the behavior implied by the calculations of Sec. 4.2.2: the FGR contribution arises
from the decay of the interference fringes while the Lyapunov contribution is associated
with the behavior of W̄ near the classical unstable manifold.

Notice that the same arguments could have been applied to the purity, therefore its
behavior in phase space should be the same as for the LE. Also, it is important to remark
that the treatment shown here is valid in a semiclassical regime where the evolution of the
Wigner function is dominated by the classical Hamiltonian flow and the corresponding
interference fringes generated when its phase space support folds.
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Figure 4.7: Schematics for the estimation of the integral over AC in Eq. (4.58), where the
whole region in phase space is unfolded. The classical part of the Wigner function stretches
along the stable direction with a total length proportional to eλt. The unperturbed Wigner
function W0 contracts in the stable direction so as to keep the area constant. The average
(or decohered) Wigner function W , however, achieves a final width σM given by the
competition between the decoherence process and the chaotic compression.

4.4 Summary

In this chapter we briefly introduced the theory of decoherence in open systems, often
used to explain the transition from quantum to classical behavior. The treatment of
the Loschmidt echo using Wigner functions enabled us to obtain a new interpretation of
previously known results. In particular, the suppression of the FGR term can now be
stated as the cancellation of the quantum contributions to the LE, and the emergence of
the classical behavior in the shape of the Lyapunov regime.

Afterwards we developed a master equation for the density matrix averaged over re-
alizations of the perturbation. We saw that this master equation corresponds term by
term to that obtained by coupling the system to an environment composed of quantum
harmonic oscillators. Therefore, we demonstrated that the effect of an environment in
the dynamics of the reduced density matrix can be assimilated by a perturbation in the
self–Hamiltonian of the system.

Using this master equation we showed that the Loschmidt echo decays exponentially
with the same rate as the purity, a quantity typically used to measure decoherence.

On one hand, this connection brings the interesting possibility of measuring directly
the rate of decoherence in a system by measuring the Loschmidt echo. This possibility is
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of special importance to the field of Quantum Information [NC00], since it could provide
a general scheme to obtain the decoherence rate in any of the possible implementations of
a quantum computer. Furthermore, we could implement an experimental determination
of pointer states by measuring the rate of generated entropy and using the predictability
sieve.

On the other hand, the field of the LE can benefit greatly from the vast analytical
tools existent in the more developed field of decoherence. We saw an example of this
usefulness with a simpler demonstration of the results mentioned above on the origin in
phase space of the two contributions to the LE. In particular this derivation of the result
does not resort to classical trajectories, which makes the assignment of the regions in
phase space much more direct and clear.

Original results

• Semiclassical treatment of the Wigner function representation of the LE. With this
derivation we were able to show an interpretation in phase space of the different types
of pairs of trajectories contributing to the LE, which in turn assigns to the FGR
and Lyapunov regimes to the quantum and classical contributions to the Wigner
function, respectively. These results were published in [CPJ04].

• Derivation of a master equation for the average LE. Using this master equation, it
was shown that the LE and the purity decay exponentially with the same decay
rate. This was published in [CDPZ03].

• Using the master equation for the LE, a much simpler demonstration of the origin
in phase space of the FGR and Lyapunov regimes was obtained [CDPZ03]. This
derivation in particular can be applied directly to the purity with the same results.
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Conclusions

Very interesting theory – It makes no sense at all.

Groucho Marx

I started working on the Loschmidt echo just after Jalabert and Pastawski demon-
strated the existence of the Lyapunov regime (later published in [JP01]), which might be
considered the single biggest breakthrough in the subject. This by no means implies that
later technical and conceptual achievements lack relevance, since they added substantially
to the the deep understanding of the problem available today. I would like to stress in
particular the role of the contributions presented in this thesis.

The first important step was the numerical verification of the predictions of [JP01],
shown in the first part of Chap. 3. At the moment the first semiclassical calculation was
done, serious doubts existed on how robust would the Lyapunov regime be for an actual
model Hamiltonian. When the numerical evidence finally appeared, it provided not only
support for the theory but also great insight on its range of validity. In particular, the
simulations shed light on the approximations regarding the semiclassical regime and the
persistence after the Ehrenfest time.

These issues motivated further investigation, which resulted in the work shown in the
second half of Chap. 3 regarding the universality of the Lyapunov regime. Clearly these
are strong new results which demonstrated the validity of the theory for situations not
available theoretically, and clarified the recovery of classical chaos in the limit of high
energies.

At the same time, I also developed the semiclassical theory for the Lorentz gas
(Sec. 2.3.2), showing analytically that the results were robust to non disordered perturba-
tions. Even more, the derivation of the general case of Sec. 2.1.2 is a useful generalization
of [JP01] to any perturbation with noise in space or in time, setting off from the particular
case shown in Sec. 2.3.1.

From the results of Sec. 3.2 it became clearer that the persistence of the Lyapunov
regime after the Ehrenfest time needed thorough explanation, probably linked to the
emergence of classicality in the LE. The semiclassical analysis of the Wigner function
of Sec. 4.2 and later the finding of a master equation for M(t) (Sec. 4.3) are, to my
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opinion, the biggest conceptual leap in the subject after [JP01]. They provide not only
explanation and closure of various phenomena, but also a unification of fields. This is
clearly to the benefit of the LE which benefits from the analytical resources developed
in the more mature field of decoherence. Reciprocally, the experimental feasibility of the
LE is a great attraction to other fields such as Quantum Information [NC00], since it
would allow to measure directly the rate of decoherence in possible implementations of a
quantum computer.

The problem of the LE gained considerable attention right after the publication of
[JP01], and many aspects not considered here were the focus of many works in the lit-
erature. Some of these hitherto unmentioned papers are of great importance since they
complement the results presented here in this thesis, therefore before discussing possible
future directions of the investigation let me give a brief account.

Perhaps the most notorious absence in this work is the behavior of the LE in clas-
sically integrable systems. All results pertain chaotic systems where universal behavior
is found, for example exponential divergence of trajectories or Lyapunov exponents. In-
tegrable systems, on the other hand, have nothing that can be regarded as generalities.
Actually, with some effort one could even design a system to have almost any behavior
one might desire. Far less general is the effect perturbations have on integrable systems.
Because of this, the investigation of the LE in integrable systems has encountered many
controversies or even opposed results. For instance, power law decays [JAB03], and faster
than exponential decays [PSZ03, VP04] have been both predicted and observed. Another
possibility is systems with a mixed phase space. Although the Smooth billiard could
enter into this category, the initial states were chosen in the chaotic region. An stretch
exponential decay has been observed [WLT02] for initial states in the border between
the stable and unstable regions of phase space. Further research in these areas is highly
desirable, mainly if one wishes to use the LE as a fair signature of quantum chaos.

I also focused on the FGR and the Lyapunov regimes, and little was said about the
short time or weak perturbation regime. This is by all means an arbitrary decision, since
for instance for quantum computing applications the most important range of decay is
the first one or two percent. Wisniacki has shown [Wis03] that also in this regime a
connection to the LDOS can be demonstrated. On another line, Cerruti and Tomsovic
obtained [CT03] a uniform semiclassical approach that not only treats the weak pertur-
bative regime, but also successfully describes the transition to the FGR regime. The
perturbative regime is also of great importance to quantum information. In particular, it
should be noticed that in that field a quantity very similar to the LE exists, the so called
fidelity [NC00]. It is also the overlap between two wave functions evolved with similar
Hamiltonians, and it is used to calculate how good is a computation with the incorrect
quantum algorithm. Despite this similarity, I distinguished fidelity from the LE because
the latter implies a perturbed time reversal, while the former can actually be the overlap
between any two states.

Another interesting issue not explored in this thesis is the behavior of the classical
equivalent of the LE. Benenti and Casati have found [BC02, BCV03] a definition that is
a logical extension of the quantum version, namely they use as classical echo the overlap
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between two classical distributions. Interestingly, they were able to show that after the
Lyapunov decay, the classical LE follows a decay given by the Ruelle resonances. Similar
behavior was noticed for the quantum version in [GMSS03].

What are the remaining problems in the LE that deserve further investigation? Cer-
tainly some have already been mentioned, like the full characterization of integrable sys-
tems, or the classical version of the LE. Other case of interest is that of disordered in-
tegrable systems, for instance a Lorentz gas where the disks are replaced by squares (a
wind-tree model). This would be required to understand the role of disorder separately
from the effects of chaotic motion.

Apart from these obvious extensions, important fundamental issues have not been
clarified yet. For instance, it is clear that the single particle theory developed semiclassi-
cally is not enough to describe the experiments in NMR. In particular, the experiments
show a Gaussian decay of M(t), opposed to the exponential obtained in Sec. 2.1.2. It
is not yet clear yet whether it is a general many body effect or a particular behavior of
the spin system. In any case, research on both possibilities is highly desirable. Actually,
that a Gaussian decay for the purity and the LE is possible for a single spin coupled to
a bath of non interacting spins was recently shown in [ZCP03]. However, the time scale
of the Gaussian is given by the coupling to the environment, understandable since the
model studied there is too simple to take into account the intricacies of the experimental
situation.

A very interesting line being developed [Cor] is the use of the LE as a characterization
tool. Using the results shown in this work, or others particularly developed for specific
systems, the LE scheme can be implemented as a subroutine of a quantum algorithm.
This could provide information on the system, the environment or the coupling between
them, depending on what one wants to find out.
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Appendix A

Quantum dynamics of discrete

systems

This appendix details the approximations and techniques used in Chap. 3 to simulate
the dynamics in the Lorentz gas and the Smooth stadium billiard. For simplicity, all the
examples are given for a one dimensional system, the generalization to higher dimensions
is direct.

Let us start by considering a discrete and finite system of size L, divided in N pieces
such that a = L/N is small compared to all other lengths in the problem. The wave
function will be considered to exist only at discrete positions in space, x = na with n an
integer from 0 to N−1. To focus in only one example, we will consider periodic boundary
conditions such that ψ(Na) = ψ(0), although open boundaries are also simple.

Schrödinger’s equation for the discrete wave function ψ can be obtained by rewriting
the kinetic energy term of the Hamiltonian H using finite differences,

i~
∂ψ

∂t
= Hψ(x, t)

= − ~
2

2m

∂2ψ

∂x2
+ V(x)ψ(x, t)

= − ~
2

2m

ψ[(n + 1)a] + ψ[(n− 1)a]− 2ψ(na)

a2
+ V(na)ψ(na, t)

= − ~
2

2ma2
{ψ[(n + 1)a] + ψ[(n− 1)a]}+

(
V(na)− ~

2

ma2

)
ψ(na, t). (A.1)

This equation can be readily written in matrix form,

i~
∂ψ

∂t
= Hψ, (A.2)

where ψ now represents a vector with components ψn = ψ(na), and the Hamiltonian
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Chapter A. Quantum dynamics of discrete systems

matrix is given by the terms of Eq. (A.1), forming a tri-diagonal matrix

H =




E0 −V 0 0 0 . . . −V
−V E1 −V 0 0 . . . 0
0 −V E2 −V 0 . . . 0
0 0 −V E3 −V . . . 0
...

...
...

...
...

. . .
...

−V 0 0 0 0 . . . EN−1




, (A.3)

where En = V(na) is the potential profile as a function of the coordinate, called the
on-site energies, and the kinetic term transforms into hopping elements V = ~

2/2ma2

outside the diagonal. Note that the constant term −~
2/ma2 in the potential energy has

been dropped because it is just a redefinition of the zero of energy.
The discretization scale a has to be larger than two scales: First, the smallest wave-

length used in the problem, and second, the smallest scale of the potential energy features.
The first condition is related to the appearance of diffraction effects, and can be estimated
by analyzing the free particle problem, that is when En = 0 ∀n. In this case the eigenen-
ergies of the Hamiltonian can be analytically obtained, giving a dispersion relation

E(k) = 2V [1− cos(ka)], k =
2πm

N
, m = 0...N − 1, (A.4)

where k is the momentum of the eigenstate |k〉. When the wavelength λ = 2π/k is much
smaller than a, one recovers the dispersion relation of the free particle,

E(k) ' V k2a2 =
~

2k2

2m
. (A.5)

Typically, what units are used depend on how the problem is posed. In particular for
the Lorentz gas, the convention a = 1, V = 1 and ~ = 1 was used. This determines how
all other quantities are measured, for instance, time is given in units of ~/V . For the
Smooth stadium, on the other hand, the size of the system R is set to unity, as well as
the energy scale given by U0 = 1 so that unit energy is obtained where the boundary of
the Bunimovich stadium is located. Furthermore, unit energy was assigned to the initial
kinetic energy of the particle. This choice has the effect of setting an unorthodox value
~ = 1/k, with ka = 0.5 and a = R/N = 0.0055. In both cases, m was set to 1/2.

To compute the quantum dynamics of Eq. (A.1) one could in principle resort to a
diagonalization of H (if it is time-independent). This path, however, is not practical since
it becomes easily intractable even for moderately large computers, restricting the prob-
lem to small values of N . Other methods to solve differential equations like Runge-Kutta,
Crank-Nicholson, etc., are usually not unitary and therefore they have to be comple-
mented with periodic renormalizations of the wave function. In general, these methods
are unstable and require very small time steps to produce consistent results.

The method used in this thesis is a higher order version of the Trotter product decom-
position [Tro59] of the evolution operator. It has the important features of being unitary
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by construction, and of being more efficient than direct diagonalization in resources and
time. In contrast, it does not provide any spectral information like energies or eigenstates.

Let us denote U(τ) = exp(−iHτ) the exact evolution operator of the Hamiltonian for
a given time τ . The main approximation comes from the observation that if H = H1+H2,
then

‖U(τ)−U1(τ)‖ ≤
τ 2

2
‖ [H1,H2] ‖, (A.6)

with U1(τ) = exp(−iH1τ) exp(−iH2τ) is the Trotter operator [Tro59]. For very small τ
this approximation can be quite good, where of course the choice of the decomposition of
H plays an important role. A particularly clever (for numerical purposes) option is one
where the Hn’s are analytically diagonalizable, as we will see in the sequel.

In the example of the one dimensional system above, a natural decomposition is

H = H0 + Heven + Hodd, (A.7)

with

H0 =




E0 0 0 0 0 . . . 0
0 E1 0 0 0 . . . 0
0 0 E2 0 0 . . . 0
0 0 0 E3 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . EN−1




, (A.8)

the on-site energies Hamiltonian,

Hodd =




0 −V 0 0 0 . . .
−V 0 0 0 0 . . .
0 0 0 −V 0 . . .
0 0 −V 0 0 . . .
...

...
...

...
...

. . .



, (A.9)

the Hamiltonian with the hopping elements between odd-even sites and

Heven =




0 0 0 0 0 . . .
0 0 −V 0 0 . . .
0 −V 0 0 0 . . .
0 0 0 0 −V . . .
0 0 0 −V 0 . . .
...

...
...

...
...

. . .




(A.10)

the remaining terms. The decomposition is schematized in Fig. (A.1).
The full evolution operator writes as U1(τ) = exp(−iH0τ) exp(−iHevenτ) exp(−iHoddτ).

Hence, the evolution is performed by multiplying these matrices in order to the wave func-
tion. Since Hodd and exp(−iHeven are made up by two by two blocks, the exponentiation
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Chapter A. Quantum dynamics of discrete systems

is simple. For instance,

exp(−iHoddτ) =




cos(V τ) i sin(V τ) 0 0 0 . . .
−i sin(V τ) cos(V τ) 0 0 0 . . .

0 0 cos(V τ) i sin(V τ) 0 . . .
0 0 −i sin(V τ) cos(V τ) 0 . . .
...

...
...

...
...

. . .



. (A.11)

The evolution of the wave function with one of these operators can be seen as a simple
rotation between neighboring elements. The alternate application of the even and odd
evolutions resembles a stroboscopic Hamiltonian, which for short τ quickly converges to an
average Hamiltonian with both terms present. Finally, the evolution operator exp(−iH0τ)
is diagonal and accordingly is just a phase for each component of the wave function. For
higher dimensions, the extension is simply to consider decompositions of two Hamiltonians
for each dimension, odds and evens hopping terms, plus the on-site energies Hamiltonian.
Additionally, features like the hard walls of the disks in the Lorentz gas (infinite energy
potential regions) are easily included in this scheme: a zero hopping term hinders the
penetration of the wave function in these areas, and is numerically more stable than using
large on–site energies.
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Figure A.1: Schematics of the decomposition of the Hamiltonian of a one dimensional
system in three analytically solvable Hamiltonians. The colored (white) dots represent
diagonal elements of the matrix different from (equal to) zero, while the links are the
off-diagonal or hopping elements.

Notice that there is no need to store any of these evolution operator matrices in
memory when performing the numerical simulation, only the vector φ and a vector with
the energies are needed. This is clearly an improvement in storage resources over direct
diagonalization. In addition, the number of operations needed to apply the Trotter evo-
lution operator is proportional to N 2, while diagonalization typically requires N 3 steps
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to perform. Accordingly, for large N one can expect a large improvement in simulation
time.

Regarding the numerical precision, more elaborate schemes exist that take the Trotter
evolution operator to higher orders. These are due to Suzuki [Suz90, Suz93] (see a didac-
tical review in [Rae96]), who showed how to construct these operators in such a way that
they are always unitary and, at the same time, provided an algorithm to construct any
approximation order from the previous one. In particular, a second order Trotter-Suzuki
evolution operator is written as

U2(τ) = UT
1 (τ/2)U1(τ/2), (A.12)

where T means transpose. U2 is bounded by τ 3 errors, and therefore is a better approx-
imation to the real evolution. In this thesis the fourth order approximation was used,
given by

U4(τ) = U2(pτ)U2(pτ)U2((1− 4p)τ)U2(pτ)U2(pτ), (A.13)

with p = (4− 41/3)−1.
Summarizing, the Trotter-Suzuki evolution operator is a very good approximation to

the actual evolution. It is much more efficient than direct diagonalization, it is stable and,
furthermore, generalizable to other kinds of Hamiltonians like spin systems [RHMR00].
A particular example of the strengths and advantages of this method over the traditional
ones is given by my personal experience with the Lorentz gas: The largest system that
one could diagonalize in a 1GB memory computer has 4 × 103 states, and depending
on processor power the process can take up to a day of time. In contrast, using the same
memory and time with the Trotter-Suzuki algorithm I was able to treat systems with 106

states.
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Appendix B

The Lorentz Gas: Classical and

quantum dynamics

This appendix contains some details on the quantum and classical dynamics of the Lorentz
gas, used in Chap. 3.

B.1 The system

The Lorentz gas is a two dimensional box of sides L where an irregular array of n hard
wall disks are fixed [see Fig. (B.1)]. The classical dynamics of a particle in the system
is given by specular reflections against the disks, and against the walls of the box hard
wall boundary conditions (associated in quantum mechanics with the Dirichlet boundary
conditions ψ(rs) = 0 for points r on the surface.)

If the radius of the disks is R, and the concentration (assumed to be uniform) given
by the ratio between the area occupied by the disks to the total area of the box is

c =
nπR2

L2
, (B.1)

then the entire system is characterized by the mean free path between collisions `. A
simple argument to estimate this parameter is the following: Let us consider a rectangle
of sides L and 2R representing a typical cross section of the gas [see Fig. (B.2)]. In this
rectangle we place m = 2cL/πR disks according to the concentration in the whole box.
Locating them equidistant from each other, this leaves a free distance between the disks
L/m − δ, where δ is the average space occupied by one disk along the short side of the
box. In particular, δ = πR/2. This free distance between the disks reasonable agrees
with numerical computations of ` [see Fig. (B.3)], and expressed in terms of the other
parameters of the system writes

` ' πR

2c
− πR

2
(B.2)

The mean free path between collisions should not be confused with the transport mean
free path which enters in the diffusion equation that describes the classical dynamics of
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Chapter B. The Lorentz Gas: Classical and quantum dynamics

Figure B.1: Representation of a Lorentz gas. Notice how two initially close trajectories
become separated after a collision with an impurity, reflecting the dispersive behavior of
the classical dynamics.

L

2
R

L/m

Figure B.2: Scheme to estimate the mean free path ` between collisions in the Lorentz
gas. ` is approximately L/m minus the average distance occupied by one disk.

the system. According to this law, the mean square distance traveled by a particle after
a time t is given by < r2(t) >= 2dDt, where D is the diffusion coefficient and d the
dimension (in this case d = 2). Inserting in the diffusion equation the transport mean
free path `tr = vτtr, one obtains D = v`tr/2d.

The relationship between the mean free path and the transport mean free path is given
by the amount of deflection of the trajectory in each collision. For weak scattering, `tr

can be much larger than `. The way to compute their relationship is by weighting every
collision with the exit angle θ after the scattering in the following way,

`tr =

∫
dθP (θ)`[1− cos(θ)] (B.3)

Changing variables from θ to the impact parameter ρ = R cos(θ/2), and using P (ρ) =
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B.2. Classical chaos in the Lorentz gas

Figure B.3: Histogram of the distances between collisions with the disks, used in order
to obtain numerically the mean free path ` for the Lorentz gas. The solid line represents
Eq. (2.66) and the dashed vertical line is the cut-off distance 2(Re −R).

1/2R, one obtains that for the Lorentz gas `tr = 4`/3. Numerical simulations of the
classical dynamics support this result.

The quantum dynamics of a localized wave packet follows closely that of the classical
distribution of particles (albeit interference effects). One expects for a certain regime to
observe diffusive behavior in the propagation of the wave packet, corresponding to the
diffusion observed in classical dynamics. Such effect can be observed in Fig. (B.4), where
the average expectation value of r2 = x2 +y2 is plotted as a function of time for a Lorentz
gas with L = 200a, R = 20a and ` ' 100a. After an initial ballistic motion, a diffusive
behavior sets in that corresponds to the classical case (thin blue line). For long times
the wave packet has spread over the whole box and diffusion stops. The finite size effects
start to be appreciable at the so called Thouless time tD.

For comparison, also in Fig. (B.4) is plotted the decay of the LE for α = 0.07 (see
Chap. 3 for details). Notice that the saturation in the diffusive behavior is not correlated
to the saturation of the LE.

B.2 Classical chaos in the Lorentz gas

Appart from diffusion, the other relevant feature of the classical dynamics of the Lorentz
gas is chaos. In this sense, two particles initially close from each other will separate
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Figure B.4: In thick blue line, mean dispersion square of a wave packet in a Lorentz gas.
For short times it presents ballistic behavior, while for long times it saturates because of
the finite size of the sample. In between those regimes, a diffusive behavior is observed
that corresponds with the classical one (thin blue line). For comparison, the LE is plotted
in the same time scale (thick black line). The time scales marked in the plot are tc the
collision time, tE the Ehrenfest time, tD the Thouless time at which diffusion saturates
and ts the time of saturation of the LE.

exponentially fast with the Lyapunov exponent of the system1 λ. The chaotic character
of the dynamics is a consequence of the de-focusing nature of the collisions. As illustrated
in Fig. (B.1), a particle with impact parameter x will be reflected with an angle

θ = π − 2 arctan

[
x√

R2 − x2

]
. (B.4)

Considering a second particle with impact parameter x + δx, its outgoing angle will be
θ + δθ, with

δθ =
2√

R2 − x2
δx. (B.5)

The separation between these two particles when they have travelled a distance s after a
collision will grow as

δd ' δx+ δθs ' δx

(
1 +

2s√
R2 − x2

)
. (B.6)

1The fact that the concentration of impurities is uniform helps to have only one Lyapunov exponent.
The general case is that the Lyapunov exponent is a quantity that depends on the location of the
trajectories in phase space.
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B.2. Classical chaos in the Lorentz gas

The next collision will further amplify the separation, due to the new impact parameters
and the different incidence angles.

The usual algorithm for numerical computation of the Lyapunov exponent is that
of Benettin et al. [BGS76]. The scheme is the following: Two nearby trajectories are
computed, and their separation is periodically scaled down to the initial value δx0. For
intermittent chaos like that of the Lorentz gas, the period t should be taken longer than
the collision time to avoid computing distances where chaos has not intervened. Also, it
should be smaller than the time where the distance enters a diffusive regime, typically
given by the moment when the trajectories collide with different impurities. The Lyapunov
exponent results from the average over the expanding rates in the different intervals,

λ = lim
n→∞

v

n

n∑

j=1

1

sj
ln

[
δxj

δx0

]
, (B.7)

where sj is the length of the j-th interval, and δxj the separation just before the nor-
malization [see Fig. (B.5)]. Technically, we should work with distances in phase-space,
rather than in configuration space, but the local instability of the Lorentz gas makes this
precision unnecessary. The computation of λ using this method is presented in Fig. (B.6).

δx0

δx1

δx2 δx3

δx4

x(t)
x(2t)

x(3t)

x(4t)

Figure B.5: Schematics of Benettin’s algorithm [BGS76] to compute the Lyapunov ex-
ponent of a chaotic system. Two initially close trajectories are computed up to a time t
where the distance is renormalized to the initial one. The Lyapunov exponent is given by
the average of the normalization factors.

The first estimation of the Lyapunov exponent of the Lorentz gas was given by Laugh-
lin, who considered a periodic Lorentz gas (repeated Sinai billiard) and proposed the form
[Lau87]

λ =
v

`
ln

[
1 +

β`

R

]
, (B.8)

where β is a geometrical factor of order 1. In a similar approach of treating a simpler
ordered system, Gaspard and Nicolis [GN90] for the three-disk problem obtained

λ =
v

2Re − 2R
ln

[
2Re − R + (4R2

e − 4ReR)
1/2

R

]
. (B.9)
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A full treatment of the Lorentz gas in the diluted limit (c � 1) by van Beijeren and
Dorfman [vBD95, vBD96] showed that

λ = 2
N

L2
Rv

(
1− ln 2− 0.577− ln

[
NR2

L2

])
, (B.10)

later confirmed by numerical results [DP95].
A simple approach, presented for the first time in [CPW02, CPJ04], is to use the basis

of Benettin’s algorithm for an analytical estimate of λ. For this, we consider the period
of renormalization of the distance between trajectories as given by the mean free path.
Consequently, we replace s by ` in Eq. (B.6). Using this in Eq. (B.7), we identify the
average over pieces of the trajectory with a geometrical average over impact parameters,

λ =
v

R`

∫ R

0

dx ln

[
1 +

2`√
R2 − x2

]
. (B.11)

Performing the integration yields

λ

v
=

1

`
ln

[
`

R

]
+
π

R
+

√
4

R2
− 1

`2

(
arcsin

[
R

2`

]
− π

2

)
. (B.12)

As shown in Fig. (B.6), the above expression reproduces remarkably well the numerical
calculations of the Lyapunov exponent. It agrees with the result of van Beijeren and
Dorfman and Laughlin in the dilute limit, although it appears to have a broader range of
validity (for larger concentrations).

B.3 The perturbation: distortion of mass tensor

For a hard wall model, like the one we are considering, one can show that the distortion
of the mass tensor [Eq. (2.67)] is equivalent to having non-specular reflections.

Let us assume a particle in a free space with mass tensor
↔
m surrounded by an infinite

potential surface (hard wall). Suppose that the particle departs from a point r0 at time t0
and arrives to a final point r at time t. The total trajectory is determined by the unknown
time tc and position rc along the surface at which the particle collides [see Fig. B.7]. The
action along the trajectory is

S =
(rc − r0)

↔
m(rc − r0)

2(tc − t0)
+

(r− rc)
↔
m(r− rc)

2(t− tc)
. (B.13)

We can solve the problem by minimizing the action, taking the derivative of Eq. (B.13)
along the surface. Introducing the unitary vector n normal to the surface at the point of
collision, we can express the minimization condition as

n×∇rc
S = 0 . (B.14)
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B.3. The perturbation: distortion of mass tensor

Figure B.6: Lyapunov exponent λ of the Lorentz gas as a function of the mean free path `.
The black dots represent the numerical values obtained through Benettin’s method, the
red line is the analytical estimate [Eq. (B.12)]. The blue and green lines are Laughlin’s
and van Beijeren-Dorfman’s approximations [Eqs. (B.8) and (B.10)]. The open dots are
the quantum values obtained from the decay of the LE [from Chap. (3)]. Inset: the same
plot in log-log scale to highlight the agreement between the different approximations in
the region of very small concentrations (large `).

Denoting the initial and final velocities as vi = (rc−r0)/(tc−t0) and vf = (r−rc)/(t−
tc), from Eqs. (B.13) and (B.14) we can write

n× ↔
m(vi − vf ) = 0 . (B.15)

This, along with the conservation of energy E = v
↔
mv/2, results in a generalized reflection

law:
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Figure B.7: A free particle colliding with a hard wall. The fixed points in the trajectory
are the initial one r0 and the final r, the correct trajectory is obtained by minimizing the
action with respect the collision point rc and time tc.

vxf =
vxi(mxn

2
y −myn

2
x)− 2vyimynxny

mxn2
y +myn2

x

, (B.16a)

vyf =
vyi(myn

2
x −mxn

2
y)− 2vximxnxny

mxn2
y +myn2

x

. (B.16b)

Eqs. (B.16) allow to show that the distortion of the mass tensor is equivalent to an
area conserving deformation of the boundaries as x → x(1 + ξ), y → y/(1 + ξ), as used
in other works on the LE[WVPC02], where ξ =

√
1 + α − 1 is the stretching parameter,

related to the distortion of
↔
m as in Eq. (2.67). This equivalence can be observed in Fig.

(B.8), where an unperturbed trajectory in the Bunimovich stadium (a) is subjected to
both effects, dilation of the stadium (b) and distortion of the mass tensor (c). As stated
above, given the appropriate relation between α and ξ, (b) and (c) are identical.
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Figure B.8: (a) A particular trajectory in the Bunimovich stadium. The arrows represent
the velocity in the initial and final points. (b) Trajectory with the same initial condition as
(a) but in stadium dilated by a factor ξ. The change in the boundaries has influenced the
trajectory, notice the difference with the final point of (a). (c) Evolution of the same initial
point of (a), but now with a distorted mass tensor such that ξ =

√
1 + α. The perturbed

trajectory is again different from (a), but a simple mapping of the coordinates relates it
to (b). Therefore, the distortion of the mass tensor and the dilation are equivalent.
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