
U N S U P E RV I S E D M E T H O D S F O R N AT U R A L L A N G U A G E
PA R S I N G

franco m . luque

director : gabriel infante-lopez

Presentada ante la Facultad de Matemática, Astronomía y Física como parte de los
requerimientos para la obtención del grado de Doctor en Ciencias de la

Computación de la

U N I V E R S I D A D N A C I O N A L D E C Ó R D O B A

Marzo 2012

c©FaMAF — UNC 2012

Franco M. Luque: Unsupervised Methods for Natural Language Parsing,
Computer Science, PhD, c© Marzo 2012

R E S U M E N

En esta tesis estudiamos métodos no supervisados para el análi-
sis sintáctico (parsing) de lenguaje natural, tanto desde un punto de
vista teórico como desde uno práctico. Desde el acercamiento teórico,
investigamos el uso de métodos provenientes del área de inferencia
gramatical de lenguajes formales. Estudiamos las propiedades de
aprendibilidad teórica de varias clases de gramáticas y su adecuación
para representar la sintaxis de lenguaje natural. En el acercamiento
práctico, estudiamos la aplicación de nuevos métodos no supervisa-
dos para el aprendizaje de autómatas al análisis sintáctico de lenguaje
natural.

En la primera parte, estudiamos gramáticas No-Terminalmente Sep-
aradas (NTS), una familia de gramáticas libres de contexto que com-
parten propiedades con la sintaxis de lenguaje natural. Estas gramáti-
cas son de interés para el aprendizaje no supervisado gracias al resul-
tado de aprendibilidad PAC (Probablemente Aproximadamente Cor-
recta) demostrado por Clark (2006), que dice que las gramáticas NTS
Inambiguas (UNTS) son polinomialmente PAC-aprendibles a partir
de ejemplos positivos. Primero, definimos las gramáticas Inambiguas
Débilmente NTS (UWNTS), una generalización de las UNTS que tam-
bién es polinomialmente PAC aprendible. Luego, estudiamos la ade-
cuación de estas gramáticas para sintaxis de lenguaje natural usando
un enfoque experimental. Para esto, desarrollamos métodos para en-
contrar cotas superiores de la performance unlabeled F1 que cualquier
gramática UWNTS puede alcanzar sobre un treebank de lenguaje
natural dado. Aplicamos estos métodos sobre subconjunto WSJ10

del Penn Treebank, encontrando una cota para la F1 de 76.1% para
las gramáticas UWNTS sobre el alfabeto de POS tags. Luego, defini-
mos las gramáticas k, l-UNTS6, una jerarquía de clases de gramáticas
que generaliza las gramáticas UWNTS agregando la noción de con-
textos de tamaño fijo (k, l). Probamos luego que las gramáticas k, l-
UNTS6 son también polinomialmente PAC-aprendibles a partir de
ejemplos positivos, mostrando que éstas pueden ser inyectivamente
convertidas a gramáticas UNTS sobre un alfabeto más rico.

En la segunda parte, estudiamos métodos espectrales para el apren-
dizaje de Split-Head Automaton Grammars (SHAGs) no-determinís-
ticos, un formalismo de estados ocultos para el análisis sintáctico de
dependencias. En un SHAG se utiliza un conjunto de autómatas
para modelar las características sintácticas de las secuencias de mod-
ificadores a izquierda y derecha de las palabras núcleo. En primer
lugar, presentamos un algoritmo espectral para aprender los autó-
matas no-determinísticos (PNFAs) que componen los SHAGs. Los

iii

autómatas se aprenden de manera no supervisada, en contraste con
los acercamientos previos a donde hay una estructura determinís-
tica dada y sólo se aprenden las probabilidades de las transiciones.
Esto permite encontrar estructura específica para cada lenguaje au-
tomáticamente. El algoritmo espectral, a diferencia de algoritmos
tradicionales como EM, es muy eficiente y no presenta problemas
de máximos locales. Luego, presentamos un algoritmo de parsing
para SHAGs no-determinísticos que corre en tiempo cúbico, mante-
niendo así los costos estándar de parsing con SHAGs. Finalmente, re-
alizamos experimentos con el Penn Treebank para comparar el parser
no-determinístico con algunos baselines determinísticos, y para com-
parar el algoritmo espectral con EM. En experimentos no-lexicaliza-
dos, vemos que el algoritmo espectral tiene una performance de pars-
ing comparable a la de EM, pero en tiempos de entrenamiento varios
órdenes de magnitud menores. En experimentos lexicalizados, defin-
imos tres parsers determinísticos baseline diferentes, y observamos
una mejora consistente en la precisión de parsing al agregarles a és-
tos la componente no-determinística. Además, un análisis cualitativo
de los autómatas resultantes muestra que efectivamente el algoritmo
espectral aprende estructura latente significativa.

iv

A B S T R A C T

In this thesis, we study unsupervised methods for natural language
parsing, both from a theoretical point of view and from a practi-
cal one. Within the theoretical approach, we research the usage of
methods coming from the area of grammatical inference of formal
languages. We study the theoretical learnability properties of several
grammar classes and their adequacy to represent natural language
syntax. In the practical approach, we study the application of new un-
supervised methods for automata learning to natural language pars-
ing.

In the first part, we study Non-Terminally Separated (NTS) gram-
mars, a family of context-free grammars that share properties with
natural language syntax. These grammars are of interest for unsu-
pervised learning thanks to the PAC (Probably Approximately Cor-
rect) learnability result proved by Clark (2006), that states that Un-
ambiguous NTS (UNTS) grammars are polynomially PAC-learnable
from positive examples. First, we define the Unambiguous Weakly
NTS (UWNTS) grammars, a generalization of UNTS grammars that
is still polynomially PAC learnable. Then, we study the adequacy of
these grammars for natural language syntax using an experimental
approach. To do this, we develop methods to find upper bounds for
the unlabeled F1 performance that any UWNTS grammar can achieve
over a given natural language treebank. We do experiments with the
WSJ10 subset of the Penn Treebank, finding an F1 bound of 76.1% for
the UWNTS grammars over the POS tags alphabet. Then, we define
the k, l-UNTS6 grammars, a hierarchy of classes of grammars that
generalize the UWNTS grammars adding the notion contexts of fixed
size (k, l). We then prove that the k, l-UNTS6 grammars are also poly-
nomially PAC-learnable from positive examples, showing that these
grammars can be inyectively converted to Unambiguous NTS gram-
mars over a richer alphabet.

In the second part, we study spectral methods to learn non-deter-
ministic Split-Head Automaton Grammars (SHAGs), a hidden-state
formalism for dependency parsing. In a SHAG, a set of automata
is used to model the syntactic features of the left and right modifier
sequences of the head words. First, we present a spectral algorithm
to learn the non-deterministic automata (PNFAs) that compose the
SHAGs. The automata are learnt in an unsupervised fashion, in con-
trast to previous approaches where a deterministic structure is given
and only the transition probabilities are learnt. This allows us to
find specific structure for each language automatically. The spectral
learning algorithm, unlike traditional algorithms such as EM, is very

v

efficient and do not present local-maximum issues. Then, we present
a parsing algorithm for non-deterministic SHAGs that runs in cubic
time, hence mantaining the standard parsing costs for SHAGs. Fi-
nally, we do experiments with the Penn Treebank to compare the non-
deterministic parser with some deterministic baselines, and to com-
pare the spectral algorithm with EM. In unlexicalized experiments,
we see that the spectral algorithm has a parsing performance compa-
rable to the one of EM, but with training times several orders of mag-
nitude smaller. In lexicalized experiments, we define three different
deterministic baseline parsers, and we see a consistent improvement
in parsing accuracy when adding to them the non-deterministic com-
ponent. Moreover, a qualitative analysis of the resulting automata
shows that effectively the spectral algorithm finds significant latent
structure.

vi

A G R A D E C I M I E N T O S

A Gabriel Infante-Lopez, por dirigirme, aguantarme tanto tiempo,
y finalmente llevarme a puerto.

A los miembros del tribunal, Paula Estrella, José Castaño y Elmer
Fernández. Especialmente a Paula, que presidió el tribunal e hizo
una revisión muy completa de mi tesis.

A Xavier Carreras y Ariadna Quattoni de la Universitat Politècnica
de Catalunya (UPC), con quienes trabajé en la segunda parte de mi
tesis, por llevarme a Barcelona y tratarme tan bien. A los integrantes
del Departament de Llenguatges i Sistemes Informàtics (LSI) de la
UPC, que me hicieron sentir como en casa.

A la comunidad de la FaMAF, y en particular al Grupo de Proce-
samiento de Lenguaje Natural (PLN), que fueron un entorno ideal
para trabajar en la tesis, tanto en cuanto a lo académico como en lo
social. A todos los que pasaron por el Grupo de PLN: Gabi Infante,
Laura Alonso, Paula Estrella, Martín Domínguez, Ezequiel Orbe, Raúl
Fervari, Guillaume Hoffmann, Elsa Tolone, Rafael Carrascosa, Carlos
Areces, Luciana Benotti, Romina Altamirano, Matthias Gallé, Sergio
Penkale, Pablo Duboue, David Racca y Sasha Vorobyova, entre otros.
Al resto de los profesores de computación: Javier Blanco, Damián
Barsotti, Nicolás Wolovick, Pedro D’Argenio, Nazareno Aguirre y Da-
niel Fridlender.

A todas las personas interesantes que conocí en estos años y que de
alguna manera tuvieron influencia en este trabajo. Particularmente, a
Borja Balle, François Coste, Alexander Clark y Ryo Yoshinaka.

A mis compañeros y amigos del día a día en la FaMAF, y de al-
gunas noches. Matías “Chun” Lee, Juampi Agnelli, Miguel Pagano,
Martincito Domínguez, Eze Orbe, Any Zwick, Demetrio Vilela, Fran-
cusa Rodríguez, Sergio Giro, Guillaume Hoffmann, Elsa Tolone, Raúl
Fervari, Leti Losano, Renato Cherini, Ara Acosta y muchos más.

A mis amigos de FaMAF repartidos por el mundo. Especialmente,
a Aldana Gonzalez, Belu Franzoni y Fede Pont.

A mis amigos de Barcelona. Especialmente, a mis compañeros de
piso Mario y Iago, y a Solmaz Bagherpour.

A mis viejos, Fanny y Charo, y a mis hermanos, Pau e Isma. A mis
amigos del colegio, Agus, Charly B., Charly F., Gabi y Rauli, aunque
no se lo merezcan tanto. A la Lu Marchetti, mi compañera durante
gran parte de esta etapa.

A la Universidad Nacional de Córdoba, al CONICET y a la Agencia
Nacional de Promoción Científica y Tecnológica (ANPCyT) por los
cargos, subsidios y becas recibidos.

vii

Y por último, pero no menos importante, al pueblo argentino por
su apoyo a través de todos los subsidios y becas recibidos, y al Gob-
ierno Argentino, que desde el año 2003 con las presidencias de Néstor
Kirchner y Cristina Fernández ha prestado especial atención al desar-
rollo de la ciencia y la tecnología en el país. Los científicos argentinos
estamos en deuda con nuestro pueblo, y debemos trabajar para que
nuestra ciencia sea en pos de un país socialmente justo, económica-
mente independiente y políticamente soberano.

viii

P U B L I C AT I O N S

Several of the results in this thesis appeared in the following publi-
cations:

Franco M. Luque and Gabriel Infante-Lopez. Upper bounds for
unsupervised parsing with Unambiguous Non-Terminally Separated
grammars. In Proceedings of CLAGI, 12th EACL, pages 58–65, 2009.

Franco M. Luque and Gabriel Infante-Lopez. Bounding the maximal
parsing performance of Non-Terminally Separated Grammars. In
José M. Sempere and Pedro García, editors, Grammatical Inference: The-
oretical Results and Applications, volume 6339 of Lecture Notes in Com-
puter Science, chapter 12, pages 135–147. Springer Berlin / Heidelberg,
Berlin, Heidelberg, 2010. ICGI 2010 Best Student Paper Award.

Franco M. Luque and Gabriel Infante-Lopez. PAC-learning unam-
biguous k, l-NTS6 languages. In José M. Sempere and Pedro Gar-
cía, editors, Grammatical Inference: Theoretical Results and Applications,
volume 6339 of Lecture Notes in Computer Science, chapter 11, pages
122–134. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2010.

Franco M. Luque, Ariadna Quattoni, Borja Balle and Xavier Carreras.
Spectral learning for non-deterministic dependency parsing. To ap-
pear in Proceedings of the 13th Conference of the European Chapter of the
ACL (EACL 2012), Avignon, France, April 2012. Association for Com-
putational Linguistics. EACL 2012 Best Paper Award.

ix

C O N T E N T S

i preliminaries 1

1 introduction 3

1.1 Non-Terminally Separated Grammars 5

1.1.1 Weakly NTS Grammars 6

1.1.2 k,l-NTS<= Grammars 7

1.2 Non-Deterministic Dependency Parsing 7

1.2.1 Modifier Sequences and the Spectral Algorithm 9

1.2.2 Non-Deterministic Split Head Automata 11

2 background 13

2.1 Formal Languages 13

2.1.1 Regular Languages and Deterministic Finite Au-
tomaton 14

2.1.2 Context-Free Languages and Grammars 14

2.2 Linguistics Basics 15

2.2.1 Phrase Structure Grammars 15

2.2.2 Dependency Grammars 17

2.3 Natural Language as a Formal Language 19

2.3.1 Weak Adequacy vs. Strong Adequacy 19

2.3.2 Natural Language into the Chomsky Hierarchy 20

2.4 Grammatical Inference 22

2.4.1 Identification in the Limit 22

2.4.2 PAC Learning 23

2.5 Parser Evaluation 24

2.5.1 Phrase Structure Metrics 24

2.5.2 Dependency Metrics 25

ii non-terminally separated grammars 27

3 bounding the parsing performance of nts gram-
mars 29

3.1 Notation and Definitions 30

3.1.1 UWNTS Grammars 30

3.1.2 UWNTS-SC Grammars 32

3.2 The W Measure and its Relationship to the F1 33

3.3 The Optimization of W and R 36

3.3.1 Solving for UWNTS Grammars 36

3.3.2 Solving for UWNTS-SC Grammars 37

3.3.3 NP-Hardness of the Problems 39

3.4 Upper Bounds for the WSJ10 Treebank 41

3.5 Discussion 42

4 pac-learning k ,l-unts<= grammars 45

4.1 Notation and Definitions 46

xi

xii contents

4.1.1 k,l-NTS Grammars 46

4.1.2 k,l-NTS<= Grammars 47

4.2 Learning Algorithm for k,l-UNTS<= Grammars 48

4.2.1 Towards a Proof of PAC-Learnability 49

4.2.2 Parameters and Bounds 50

4.3 Proof of PAC-Learnability 52

4.3.1 The Left Marked Form of a Grammar 53

4.3.2 The Right Contextualized Grammar of a Gram-
mar 54

4.3.3 Converting k,l-UNTS<= Grammars 55

4.3.4 Extending the results to PCFGs 56

4.3.5 The Theorems 57

4.4 Discussion 58

iii non-deterministic dependency parsing 61

5 a spectral algorithm for modeling modifier se-
quences 63

5.1 Notation and Definitions 63

5.1.1 Head-Automata Dependency Grammars 63

5.1.2 Operator Models 64

5.2 Learning Operator Models 65

5.2.1 Preliminary Definitions 66

5.2.2 Inducing a Hidden-State Space 67

5.2.3 Recovering Observable Operators 67

5.3 Experiments 69

5.3.1 DFA Approximation 69

5.3.2 Results Analysis 71

6 non-deterministic split head automata 75

6.1 Parsing Algorithms 75

6.1.1 An Inside-Outside Algorithm 76

6.2 Experiments 77

6.2.1 Fully Unlexicalized Grammars 78

6.2.2 Experiments with Lexicalized Grammars 80

iv conclusion 85

7 conclusion 87

7.1 On Non-Terminally Separated Grammars 87

7.2 On Non-Deterministic Dependency Parsing 88

7.3 General Conclusion 88

v appendix 91

a proofs of chapter 3 93

a.1 Lemma 1 93

a.2 Theorem 1 93

b proofs of chapter 4 95

b.1 Lemma 2 95

b.2 Lemma 3 96

contents xiii

b.3 Lemma 4 96

b.4 Lemma 9 97

b.5 Theorem 4 98

bibliography 99

L I S T O F F I G U R E S

Figure 1.1 Example of unannotated non-local agreement
phenomena. a) Two training trees. b) Extracted
rules. c) Incorrectly generated sentence. 8

Figure 1.2 Fixing the agreement problem of Fig. 1.1 with
higher order features. a) Decorated training
trees. b) New rules. 8

Figure 1.3 Example of a dependency structure. 9

Figure 1.4 a) Example of an unlexicalized PNFA generat-
ing left modifiers for the head NN. b) Matrix
arrangement of the PNFA probabilities. 10

Figure 2.1 A toy natural language CFG. 16

Figure 2.2 Two possible parses for the sentence “I saw the
man with the telescope”, using the ambiguous
grammar of Fig. 2.1. 16

Figure 2.3 A DFA version for the toy natural language of
Fig. 2.1. 20

Figure 2.4 a) Structure of cross-serial dependencies in the
Dutch language. b) Structure forced by a con-
text-free grammar. 21

Figure 2.5 Two possible dependency trees for the sentence
“I saw the man with the telescope”. 26

Figure 3.1 An example of gold treebank or bracketing. (a)
Graphical notation. (b) Textual notation. 31

Figure 3.2 (a) A gold bracketing. (b) The bracketing gen-
erated by the UWNTS grammars with C =

{cd,ab, cda}. 38

Figure 3.3 (a) Graph for the MWIS problem for the gold
bracketing of Fig. 3.2. The shadowed nodes
conform the solution. (b) Instance for the ILP
problem. 39

Figure 3.4 Example of conversion of a 2-subdivision graph,
instance of the MIS problem, to an instance of
the MW-UWNTS problem. 40

Figure 4.1 Hierarchy of k, l-NTS classes of grammars. The
arrows represent proper inclusion. 47

Figure 4.2 Relationship between the WNTS and the k, l-
NTS6 classes of grammars. 48

Figure 4.3 Example of conversion of a grammar (a) first
adding the boundaries (b) and then adding the
contexts (c). 51

xiv

Figure 5.1 Example of construction of a 3 state DFA ap-
proximation. a) Forward vectors β for the pre-
fixes of the sequence “JJ JJ DT END”. b) Cosine
similarity clustering. c) Resulting DFA after
adding the transitions. 72

Figure 5.2 DFA approximation for the generation of left
modifiers for NN. 73

Figure 5.3 DFA approximation for the generation of right
modifiers for VBD. 74

Figure 6.1 Graphical depiction of the inside scores com-
putations for the different types of chart ele-
ments for right half-constituent. 78

Figure 6.2 Accuracy curve on English development set for
fully unlexicalized models. 79

Figure 6.3 Unlexicalized DFAs illustrating the features en-
coded in the three deterministic baselines Lex,
Lex+F and Lex+FCP. In Lex+FCP, qc and qp
are, respectively, the target states for coordina-
tion and punctuation symbols. For clarity, on
each automata we added a separate final state,
and a special ending symbol END. 81

Figure 6.4 Accuracy curve on English development set for
lexicalized models. 82

L I S T O F TA B L E S

Table 1.1 Modifier sequences for the dependency tree of
Fig. 1.3 in head-outwards order and with the
END marker. 9

Table 2.1 The Chomsky hierarchy. 13

Table 2.2 Penn Treebank Constituents tag set. 17

Table 2.3 The Penn Treebank POS tag set. 18

Table 3.1 Comparison of the F1 and W measures: The
scores of two bracketings with respect to the
gold bracketing of Fig. 3.1. 35

Table 3.2 Sizes of the MWIS and ILP instances generated
by the MW and MR problems for the WSJ10

treebank. 42

Table 3.3 Summary of the results of our experiments, in
contrast with state-of-the-art unsupervised par-
sers. 42

xv

Table 5.1 General statistics for training modifier sequen-
ces of the WSJ dependency corpus. 70

Table 6.1 UAS of fully unlexicalized models on test sets
for several languages. 80

Table 6.2 Results for lexicalized models by head and di-
rection, ordered by influence in the global re-
sult. 83

A C R O N Y M S

CFG Context Free Grammar 15

DFA Deterministic Finite Automata 14

ILP Integer Linear Programming 37

LAS Labeled Attachment Score 26

LMF Left Marked Form 53

MR-UNTS Maximum R UWNTS 36

MR-UNTS-SC Maximum R UWNTS-SC 36

MSG Maximum Score Grammar 36

MW-UNTS Maximum W UWNTS 36

MW-UNTS-SC Maximum W UWNTS-SC 36

MWIS Maximum Weight Independent Set 37

NTS Non-Terminally Separated 30

PAC Probably Approximately Correct 23

RCG Right Contextualized Grammar 54

SHAG Split-Head Automata Grammar 63

UAS Unlabeled Attachment Score 26

UNTS Unambiguous NTS 30

UWNTS Unambiguous WNTS 31

UWNTS-SC UWNTS Strongly Compatible 33

WNTS Weakly Non-Terminally Separated 31

k, l-NTS k, l-Non-Terminally Separated 46

k, l-NTS6 k, l-Non-Terminally Separated6
47

k, l-UNTS6 k, l-Unambiguous NTS6
47

xvi

Part I

P R E L I M I N A R I E S

1
I N T R O D U C T I O N

One of the main problems of Computational Linguistics is the de-
velopment of natural language parsers, this is, programs that take as
input natural language sentences and that output their syntactic anal-
ysis. Most Natural Language Processing (NLP) tasks require some
kind of syntactic analysis to be performed.

The most studied approach to natural language parsing is based on
supervised methods, that is, methods that rely on expert knowledge
of some kind. This approach usually comprises the usage of machine
learning algorithms over corpora of annotated data, in combination
with manually defined rules or features. However, the need for exper-
tise makes the development of parsers expensive and only possible
on languages for which experts are available.

In the last years, there has been an increasing interest in the devel-
opment of semi-supervised and unsupervised methods for parsing.
In these approaches, machine learning algorithms are used to learn
unnanotated aspects of natural language data. Fully unsupervised
methods learn syntax from plain natural language text [4, 7, 32, 49,
55]. Semi-supervised methods combine supervised methods over an-
notated data with unsupervised methods to help leverage the limited
information present in the data [34, 52]. Unsupervised methods are
useful to alleviate the need of experts and annotated data to develop
highly performant parsers.

The main subject of this thesis is the study of unsupervised meth-
ods for natural language parsing. It is divided in two parts, the first
one dealing with theoretical aspects, and the second dealing with
practical ones.

The first part studies the properties of formal models that can be
used to unsupervisedly learn natural language syntax. Our approach
is to map the natural languages to formal languages. Then, the un-
supervised learning problem is mapped to the theoretical problem
of learnability from positive examples, that is studied in the Gram-
matical Inference field. Along with theoretical learnability, we are
interested in the linguistic property of adequacy, that is the capability
of a formal model to express natural language.

We first study the adequacy of Unambiguous Weakly Non-Termi-
nally Separated (UWNTS) grammars, a subclass of context-free gram-

3

4 introduction

mars that has interesting formal learnability properties. The prop-
erties of UWNTS grammars suggest that they can express natural
language syntax in some degree [13]. We propose an experimental
approximation to the problem, where the adequacy is measured with
respect to a concrete syntactic corpus of a particular language, and in
terms of standard Machine Learning quality measures.

After studying UWNTS adequacy and concluding that it is not ex-
pressive enough, we define a more general family of grammars, the
hierarchy of k, l-NTS6 grammars. We then prove that the Unam-
biguous versions of these grammars also have theoretical learnablil-
ity from positive examples, and observe that they are more adequate
than UWNTS grammars.

The second part of this thesis is devoted to another unsupervised
learning problem, but in the context of dependency parsing. Anno-
tated corpora usually lack the explicit annotation of several linguistic
phenomena. We study the usage of an unsupervised method to learn
latent phenomena in annotated data, alleviating the need for experts
to do language specific explicit feature engineering.

We first consider the problem of modeling the distribution of modi-
fier sequences. The classic approach is to use probabilistic determinis-
tic automata, with the automata structure manually engineered, and
its probabilities learnt using supervised methods. Instead, we pro-
pose the usage of probabilistic non-deterministic automata, and an
unsupervised method to learn them with no a priori structural bias.
The learning method is the novel spectral algorithm from Hsu et. al.
[28]. Unlike traditional algorithms such as Expectation Maximization
[20], this algorithm is very efficient and does not have local optima
issues. To evaluate this approach, we do experiments with training
modifier sequences of the dependency version of the Penn Treebank
[37]. We train an unlexicalized automata for each head and direction,
and then analyze the results using quantitative measures and quali-
tative analysis, comparing them with deterministic baselines and EM
learnt automata.

After modeling unlexicalized modifier sequences, we develop pars-
ing models using them. These parsing models are non-deterministic
versions of the Split-Head Automata Grammars (SHAGs) [22]. Our
parsing algorithm runs in cubic time, maintaing the standard com-
plexity of dependency parsing. To test our models, we first do ex-
periments in multilingual unlexicalized parsing, showing that in all
cases we outperform deterministic and EM baselines. We then turn to
lexicalized parsing of the WSJ corpus, developing three different de-
terministic baselines and showing that adding the unlexicalized non-
deterministic component to them consistently leads to an improve-
ment in the parsing performance.

In the following two sections of this chapter we present in more
detail the motivations and contributions of the two parts of this thesis.

1.1 non-terminally separated grammars 5

1.1 non-terminally separated grammars

Grammatical Inference (GI) is a field that studies the problem of
learning a hidden formal language using some sort of available ev-
idence [19]. Depending on the learning setting, the evidence can
be positive or negative examples of the language, oracles answering
queries about the language, etc. The case of learning from positive ex-
amples is analog to the natural language unsupervised parsing prob-
lem.

In GI, it is said that a class of languages is learnable if there exists
an algorithm that always finds the hidden language through evidence.
There are several learning models, each one with its own formal def-
inition of learnability. One of them is the Probably Approximately
Correct (PAC) learning model [31, 5]. In PAC learning, it is assumed
that the evidence is sampled according to an unknown distribution.
It is said that an algorithm PAC-learns a class of languages if the lan-
guage it returns is closer to the target when it has access to more
evidence.1 If the algorithm runs in polynomial time and number of
samples, it is said that it polynomially PAC-learns.

In the first part of this thesis, we study natural language as a formal
language. Our goal is to find PAC-learnable language classes that are
suitable to model natural language. This way, we could use these
classes and their corresponding learning algorithms in unsupervised
parsing systems.

In linguistics, the capability of a grammar class to express natural
language is called adequacy. There are two types of adequacy. Weak
adequacy is the capacity to describe the set of grammatical natural
langauge sentences. Strong adequacy is, in addition, the capacity to
assign to the sentences the correct or expected structural descriptions,
from a linguistic point of view. In the eye of unsupervised parsing,
the property of our interest is strong adequacy.

Linguists have discussed extensively the adequacy of different lan-
guage classes. We give a brief overview of this discussion in sec-
tion 2.3.2. The reference has mainly been the Chomsky hierarchy,
that is comprised of four nested language classes: the regular lan-
guages, the context-free languages, the context-sensitive languages
and the recursively enumerable languages. Today, there is a general
agreement that natural language is context-sensitive, both in a weakly
and in a strongly adequacy sense. However, as far as we know, there
are no PAC learnability results from positive examples for context
sensitive classes of languages. Moreover, learning context free gram-
mars from positive examples is a hard problem, for which there are
not known polynomial PAC-learning results [18]. So, we must resort
to subclasses of context free grammars, at the cost of knowing that
full adequacy for natural language will not be possible. Fortunately,

1 For a more formal definition, see section 2.4.2.

6 introduction

there are some known context free languages that are polynomially
PAC learnable and have properties suggesting that they may be ade-
quate for natural language in some degree.

In the following section we introduce the grammar classes studied
in the first part of this thesis and address their properties, mainly
focusing on learnability and adequacy.

1.1.1 Weakly Non Terminally Separated Grammars

A subclass of context-free grammars that is relevant to natural
language is the class of Non Terminally Separated (NTS) grammars
[13, 14]. The characteristic property of NTS grammars is that the lan-
guages generated by the non-terminals are all disjoint between them-
selves. In other words, given a string, it can only be generated by
at most one non-terminal of the grammar. In natural language there
is a similar notion: the sustitutability property only hold between
constituents of the same type [14].

In [13, 14], it is argued that natural language is close to be in the
class of Non-Terminally Separated (NTS) languages, and in [13] it is
proved that Unambiguous NTS (UNTS) languages are PAC-learnable
in polynomial time. However, we will see that UNTS grammars are
much less expressive than NTS grammars and that they can not admit
elemental sets of natural language sentences.

In order to shorten the gap between UNTS and NTS, we present
a slight generalization of UNTS grammars called the Unambiguous
Weakly NTS (UWNTS) grammars. In contrast with UNTS, UWNTS
grammars are general enough to admit any finite language, but at the
same time preserving every other aspect of UNTS grammars, includ-
ing PAC-learnability in polynomial time.

We study the strong adequacy of UWNTS grammars, this is, its
potential to model natural language syntax. Our approach to study
UWNTS grammars is in the context of the unsupervised parsing prob-
lem, using the standard quantitative evaluation over gold treebanks.
We do not aim at developing a learning algorithm that returns a
UWNTS grammar, because the resulting evaluation will depend on
the algorithm. Instead, our aim is to find upper bounds for the achiev-
able F1 performance of all the UWNTS grammars over a given gold
treebank, regardless of the learning algorithm and the training mate-
rial used to induce the grammars. Our bounds should only depend
on the gold treebank that is going to be used for evaluation.

We see that the properties of UWNTS grammars and its variants
allows us to develop a method to compute, given a gold treebank,
upper bounds for the achievable F1 quality measure for every gram-
mar that parses the sentences of the treebank. Our method involves
an optimization problem that we prove to be NP-Hard. However,
some instances are quickly solvable using specialized software. In

1.2 non-deterministic dependency parsing 7

this work, we compute upper bounds for UWNTS grammars over a
treebank of short English sentences of POS tags.

In general, knowing an upper bound for a model is useful in at
least two senses. First, if it is lower than the performance we want
to achieve, we should consider not using that model at all. Second,
if it is not low, it might be useful for the development of a learning
algorithm, given that it can be assessed how close the performance of
the algorithm is to the upper bound.

1.1.2 k, l-NTS6 Grammars

Our experimental results on UWNTS grammars’ adequacy leads
us to search for more expressive, yet learnable, classes of languages.

In this thesis, we present two hierarchies of context-free grammars:
The k, l-NTS grammars and the k, l-NTS6 grammars. The k, l-NTS
grammar hierarchy generalizes the concept of Non-Terminally Sep-
arated (NTS) grammar by adding a fixed size context to the con-
stituents. The k, l-NTS6 grammars are k, l-NTS grammars that also
consider the boundaries of sentences as possible contexts.
k, l-NTS grammars express the idea of letting the contexts to influ-

ence the decision of considering the enclosed strings as constituents.
This idea has been successfully applied to natural language and in
particular to unsupervised learning, for instance in the Constituent
Context Model by Klein and Manning [32], where a context of size
(k, l) = (1, 1) is used. Their idea of adding starting and ending
markers to the sentences corresponds exactly to our definition of k, l-
NTS6.

We prove that Unambiguous k, l-NTS6 (k, l-UNTS6) grammars can
be converted to plain old UNTS grammars over a richer alphabet. Us-
ing this and the result of polynomial PAC-learnability with positive
data of UNTS grammars proved by Clark (2006), we prove that k, l-
UNTS6 languages are also PAC-learnable under the same conditions.

1.2 non-deterministic dependency parsing

Natural Language has lots of phenomena that usually can not be
found explicitly annotated in corpora annotations. This is due in
part to expressiveness limitations of the annotation scheme, and to
assumptions of the linguistic theory behind it. For instance, the Penn
Treebank lacks agreement annotation, as in the example of Fig. 1.1.a,
and verb subcategory annotation.

The lack of detail in annotation imposes an important limit to pars-
ing models with strong local independence assumptions. This is
the case, for instance, of naive Probabilistic Context Free Grammar
(PCFG) estimation with rules extracted from the Penn Treebank with
no prior processing. As shown in Fig. 1.1.b, direct extraction of rules

8 introduction

a) b) c)

S

VP

VB

see

NP

PRP

I

S

VP

VBZ

sees

NP

NNP

Diego

S→ NP VP

NP→ PRP | NNP

PRP→ I

NNP→ Diego

VP→ VB | VBZ

S

VP

VBZ

sees

NP

PRP

I

Figure 1.1: Example of unannotated non-local agreement phenomena.
a) Two training trees. b) Extracted rules. c) Incorrectly generated
sentence.

a) b)

S

VP-VB

VB

see

NP-PRP

PRP

I

S

VP-VBZ

VBZ

sees

NP-NNP

NNP

Diego

S→ NP-PRP VP-VB

S→ NP-NNP VP-VBZ

NP-PRP→ PRP

NP-NNP→ NNP

PRP→ I

NNP→ Diego

VP-VB→ VB

VP-VBZ→ VBZ

Figure 1.2: Fixing the agreement problem of Fig. 1.1 with higher order fea-
tures. a) Decorated training trees. b) New rules.

allows the construction of ungrammatical sentences such as the one
in Fig. 1.1.c.

To overcome this limitation, research resorted first to higher order
models. These models drop some independence assumptions, letting
the non-local context of a rule to influence it. For instance, the agree-
ment problem of Fig. 1.1 can be fixed by decorating the NP and VP
non-terminals with their child non-terminals, as shown in Fig. 1.2.

However, in higher order models the number of parameters grow
significantly. To avoid data-sparsity and overfitting problems, yet
maintaining the benefits of high order, there must be a careful selec-
tion of which part of the context to take into account. This is called
feature engineering, a work that has to be done manually, and that
requires some linguistic expertise. Feature engineering is a demand-
ing task, and usually the decisions are not equally appliable to every
language.

Nowadays, state of the art parsers are heavily based on explicit fea-
ture engineering [17, 21, 40, 10, 38, 33]. For instance, in Collins parser
[17], the rules are enriched with several non-local features, such as
parent and sibling nodes, lexical heads and subcategorization frames.

As an alternative to explicit feature engineering, a new trend in
parsing has been the development of latent variable models, together

1.2 non-deterministic dependency parsing 9

PRP VBD DT NN IN DT NN ROOT

I saw the man with the telescope

Figure 1.3: Example of a dependency structure.

Head Direction Modifiers

ROOT left saw/VBD END

saw/VBD left I/PRP END

saw/VBD right man/NN with/IN END

I/PRP left END

I/PRP right END

man/NN left the/DT END

man/NN right END

. . .

Table 1.1: Modifier sequences for the dependency tree of Fig. 1.3 in head-
outwards order and with the END marker.

with unsupervised learning algorithms to learn them [39, 46, 42].
Most of them use PCFGs with augmented non-terminals. Latent vari-
ables allow the encoding of high order unannotated phenomena. If
they are correctly learnt, they would alleviate the need for feature en-
gineering. They would even be able to find unexpected but significant
behaviour.

The main drawback of latent variable models is that they are dif-
ficult to learn. The most commonly used learning algorithm is the
Expectation Maximization algorithm [20]. It has also been used in
combination with heuristics and greedy algorithms, such as variable
splitting and merging. To the best of our knowledge, all the formula-
tions of the learning problem have been non-convex , leading to local
optima issues and expensive training [39, 46, 42].

In the second part of this thesis, we propose a new latent variable
model in the frame of dependency parsing. The main contribution
of our work is the application of spectral learning, a novel unsuper-
vised learning algorithm that overcomes the drawbacks of traditional
algorithms. In the following sections we introduce both the algorithm
and the latent variable model.

1.2.1 Modifier Sequences and the Spectral Algorithm

A dependency structure for a sentence is a tree where the nodes
are the words of the sentence, and the arcs define head-modifier rela-
tioships. In this work, we decompose the dependency tree into sets of
modifier sequences. Each word of the sentence defines two modifier

10 introduction

a)

// GFED@ABCq0

END 0.2
))

DT 0.1
..

DT 0.4

))

JJ 0.3

		 GFED@ABC?>=<89:;q2

GFED@ABCq1

END 0.2

NN, 0.8ff

GFED@ABCq3

END 1

NN

b)

π =


1

0

0

0

 ,AJJ =


0.3 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

ADT =


0 0.1 0.4 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,AEND =


0 0 0.2 0

0 0 0.2 0

0 0 0 0

0 0 1 0


Figure 1.4: a) Example of an unlexicalized PNFA generating left modifiers

for the head NN. b) Matrix arrangement of the PNFA probabilities.

sequences, one for each direction. Fig. 1.3 is an example of a depen-
dency tree, and Tab. 1.1 shows the modifier sequence decomposition.

Split-Head Automaton Grammars (SHAGs) use modifier sequence
decomposition to define dependency models [22]. In this thesis, we
propose to use probabilistic non-deterministic finite automata (PNFA)
[19] to model the modifier sequence distribution. PNFAs are proba-
bilistic automata where one can jump from a state to several different
states using the same symbol. Fig. 1.4.a shows an example of a PNFA,
where q0 is the starting state and q2 is the final state. Here, there is
non-determinism in the state q0 with the symbol DT, that transitions
to the states q1 and q3. In PNFAs, the probability of a modifier se-
quence is the sum of the probabilites of all the possible paths of states
that the sequence can traverse.

An important property of PNFAs is that their probabilities can
be arranged intro matrices. This representation is called an opera-
tor model. For instance, the operator model for the previous example
is shown in Fig. 1.4b. Here, π is the probability vector of initial states,
and each Aa matrix contains in its i, j entry the probability of going
from state qi to state qj generating the symbol a.

1.2 non-deterministic dependency parsing 11

With the operator model, the probability of a sequence can be de-
fined as a matrix product. For instance, in the example, the probabil-
ity of the sequence “JJ JJ DT END” will be

P(JJ JJ DT END) =
−→
1 AENDADTAJJAJJπ

= 0.3× 0.3× 0.1× 0.2+ 0.3× 0.3× 0.4× 1.0

The operator model allows us to use the spectral learning algorithm
from Hsu et. al. [28]. The spectral algorithm has two important
advantages over previous algorithms. First, that it is not subject to
local optima issues, and second, that its complexity does not depend
directly on the number of training instances. Indeed, it is a very
quick algorithm that only does Singular Value Decomposition and
other simple matrix operations. The input of the algorithm is a fixed
set of matrices with unigram, bigram and trigram statistics, and the
output is an operator model.

1.2.2 Non-Deterministic Split Head Automata

Split Head Automaton Grammars (SHAGs) combine deterministic
models for head-modifier sequences to define dependency grammars
[22]. SHAGs have proved useful for dependency parsing, and have
the particular advantage of having a cubic time Maximum a Posteriori
(MAP) parsing algorithm.

In our work, we adapt the SHAG framework to non-deterministic
models. However, MAP parsing is intractable for the non-determinis-
tic case [43]. To solve the parsing problem, we use the inside-outside
algorithm to compute marginal probabilites for individual dependen-
cies, and then choose the dependency structure that maximizes this
probability [35].

2
B A C K G R O U N D

2.1 formal languages

Formal Language theory studies the mathematical notion of lan-
guage. It is very useful to the study of mathematical logic, computer
science and linguistics. For instance, it has been used by Gödel in his
completeness and incompleteness theorems, by Turing in his com-
putability results, and by Chomsky in his linguistic theories.

A formal language is a possibly infinite set of words, where each
word is a finite sequence of symbols drawn from a finite alphabet Σ.
The set of all possible words that can be formed with a given alphabet
is denoted Σ∗.

As sets, languages support union, intersection, difference, and com-
plementation (w.r.t. Σ∗). They also support some additional opera-
tions, such as concatenation, defined as L1L2 = {w1w2|w1 ∈ L1 and
w2 ∈ L2}.

In formal language theory, the languages are organized in classes,
that are sets of languages that share some distinguishing property.
For instance, the set of finite languages is a class of languages.

Formal languages can be defined using several kinds of formal
devices. Each device also defines a class of languages, namely, the
whole set of languages that can be defined using that formalism.
Chomsky studied several kind of grammars as language devices from
a linguistic perspective. This lead to the definition of a hierarchy
of formal language classes called the Chomsky hierarchy, which is de-
picted in Table 2.1. In the following sections we introduce the two less
expressive formalisms of this hierarchy, that are the most relevant for
this thesis.

Type Languages Machine

Type-0 Recursively enumerable Turing machine

Type-1 Context-sensitive Linear Bounded Automata

Type-2 Context-free Context-free Grammar

Type-3 Regular DFA

Table 2.1: The Chomsky hierarchy.

13

14 background

2.1.1 Regular Languages and Deterministic Finite Automaton

The regular languages is a class of languages that supports an el-
ementary form of recursion or iteration in the generation of words.
So, they include some infinite languages in addition to all the finite
languages.

There are several mechanisms to define languages that have a gen-
eration power equivalent to the class of regular languages. Among
these, we find the regular expressions and several kinds of automata,
such as the deterministic and non-deterministic finite automata. In
this section we will pay special attention to deterministic automata.

A Deterministic Finite Automata (DFA) is a finite state machine that
emits a symbol each time a transition from one state to another is
performed. It always starts at the same state called the initial state,
and can optionally stop in those states that are marked as final or
accepting states. Each state has exactly one transition to another state
for each element of the alphabet. A graphical example of a DFA is
shown in Fig. 2.3. Here, the missing transitions are assumed to go to
an absorving non-final state.

A DFA defines a language that is the set of words that can be gener-
ated with the symbols emitted in a traversal of the automata, starting
from the initial state and ending in a final state. It can also be seen as
a machine that accepts or rejects words, depending on whether the
traversal of the automata using the symbols of the word ends in a
final state or not.

Formally, a DFA is a tuple A = 〈Σ,Q,q0, δ, F〉. Σ is the alphabet, Q
is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of
final or accepting states, and δ : Q× Σ→ Q is the transition function.
The language defined by A is

L(A) = {a0 . . . an|∃q1, . . . ,qn :qn ∈ F and

∀i, 0 6 i < n, δ(qi,ai) = qi+1}.

2.1.2 Context-Free Languages and Grammars

The context-free languages are languages that can be generated by a
context free-grammar. Context free-grammars allow more complex
recursive structures than the ones present in regular languages, such
as the so-called central recursion. However, they are not as expressive
as context-sensitive grammars.

A context-free grammar is defined by a set of non-terminals, one
of which is the initial non-terminal, and a set of rules that specify the
ways in which these non-terminals can be replaced by longer strings
of terminals and non-terminals. A derivation is a sequence of appli-
cation of rules in a string of terminals and non-terminals. So, the
language defined by a context-free grammar is the set of terminal
strings that can be derived from the initial non-terminal.

2.2 linguistics basics 15

Context-free grammars provide a way to define natural language
grammars. For instance, Fig. 2.1 shows an example of a context-free
grammar for a simplified version of the English language, and Fig. 2.2
shows examples of derivation trees for this grammar.

Formally, a Context Free Grammar (CFG) is a tuple G = 〈Σ,N,S,P〉,
where Σ is the terminal alphabet, N is the set of non-terminals, S ∈ N
is the initial non-terminal and P ⊆ N× (Σ∪N)+ is the set of produc-
tions or rules.

We use letters from the beginning of the alphabet a,b, c, . . . to rep-
resent elements of Σ, from the end of the alphabet r, s, t,u, v, . . . to
represent elements of Σ∗, and Greek letters to represent elements of
(Σ∪N)∗. We write the rules using the form X→ α.

A CFG G defines a relation ⇒G that results from the application
of a rule in a string. This is, αXβ ⇒G αγβ iff X → γ ∈ P. So, the
derivation relation is the transitive closure of this relation ⇒G, and it
is denoted ∗⇒G. The language generated by G is

L(G) = {s ∈ Σ∗|S ∗⇒G s}.

2.2 linguistics basics

Linguistics is the study of human language. Although it is a very
ancient discipline and a very broad field, our concern will be mainly
on modern linguistics and language syntax. In this section we in-
troduce some of the basic notions that constitute modern language
syntactic theories.

2.2.1 Phrase Structure Grammars

Phrase structure grammars were first introduced by Noam Chom-
sky in the mid 1950’s, as an approach towards a general linguistic
theory [36, 11, 12]. They come from the formalization of the classic
notion of constituent. A constituent is a contiguous segment of words
that plays a specific syntactic role in a sentence. The phrase structure
of a sentence is composed of constituents organized in a tree.

A phrase structure grammar is defined by a set of rules that can be
used in the generation of sentences. These rules describe the way in
which the different types of constituents can be nested until the gen-
eration of an entire sentence. The resulting structure is a constituent
tree, a labeled tree where the internal nodes are the constituents and
the leaves are the words of the sentence.

An example of a simple phrase structure grammar for a natural
language like English is the context-free grammar shown in Fig. 2.1.
Fig. 2.2 shows examples of constituent trees that can be derived from
this grammar. The top level constituent of a sentence is labeled
S. Declarative sentences are usually composed of a subject and a

16 background

S→ NP VP

NP→ Prn | Det NN | NP PP

NN→ Adj NN | Noun

VP→ Verb | Verb NP | VP PP

PP→ Prep NP

Prn→ I | . . .

Det→ the | . . .

Noun→ man | telescope | . . .

Verb→ saw | . . .

Prep→ with | . . .

Figure 2.1: A toy natural language Context-Free Grammar.

a)
S

VP

NP

PP

NP

Noun

telescope

Det

the

Prep

with

NP

Noun

man

Det

the

Verb

saw

NP

Prn

I

b)
S

VP

PP

NP

Noun

telescope

Det

the

Prep

with

VP

NP

Noun

man

Det

the

Verb

saw

NP

Prn

I

Figure 2.2: Two possible parses for the sentence “I saw the man with the
telescope”, using the ambiguous grammar of Fig. 2.1.

2.2 linguistics basics 17

Tag Description

S Simple declarative clause

SBAR Clause introduced by a subor-
dinating conjunction

SBARQ Direct question introduced by
a wh-word or a wh-phrase

SINV Inverted declarative sentence

SQ Inverted yes/no question, or
main clause of a wh-question

ADJP Adjective Phrase

ADVP Adverb Phrase

CONJP Conjunction Phrase

FRAG Fragment

INTJ Interjection

LST List marker

NAC Not a Constituent

NP Noun Phrase

Tag Description

NX Head of the NP (used within
certain complex NPs)

PP Prepositional Phrase

PRN Parenthetical

PRT Particle

QP Quantifier Phrase (used
within NP)

RRC Reduced Relative Clause

UCP Unlike Coordinated Phrase

VP Verbal Phrase

WHADJP Wh-adjective Phrase

WHAVP Wh-adverb Phrase

WHNP Wh-noun Phrase

WHPP Wh-prepositional Phrase

X Unknown, uncertain, or un-
bracketable

Table 2.2: Penn Treebank Constituents tag set.

predicate. Subjects have the Noun Phrase syntactic category, labeled
NP. Predicates are Verbal Phrases (VP) and may contain an object, of
type NP, and complements, that are Prepositional Phrases (PP). Noun
phrases have their internal structure and may have other NPs nested
inside, creating recursive structures. They can also have modifiers
such as PPs. There are several other syntactic categories. A summary
of the categories for the English language used in the Penn Treebank
corpus is shown in Table 2.2.

The pre-terminals in the trees classify the words into categories.
These categories, called part-of-speech (POS), group the words that
share some syntactical behaviour. Verbs, nouns, pronouns, prepo-
sitions, determiners and adjectives are examples of POS categories. A
summary of the POS categories for the English language used in the
Penn Treebank corpus is shown in Table 2.3.

Because of the contiguity of the constituents, word order plays an
important role in phrase structure grammars. In fact, they are more
suitable for languages with a restrictive word ordering, such as En-
glish or Spanish, rather than for free word order languages, such as
Czech or Turkish, where dependency structures are preferred.

2.2.2 Dependency Grammars

Dependency grammars are a different kind of syntactic theory that
was introduced in its modern form by Lucien Tesnière, published
posthumously in the late 1950’s [53]. They rely mainly on the depen-
dency relationship, a relationship that holds between pairs of words
in a sentence. In a dependency, one of the words is the head and the
other is the dependent or modifier.

18 background

Tag Description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition/subord. conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

Tag Description

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person sing. present

VBZ Verb, 3rd person sing. present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

Table 2.3: The Penn Treebank POS tag set.

A dependency grammar is a grammar that defines rules for the attach-
ment of head and dependents in a natural language sentence. The
resulting structure is a dependency tree, a tree where the nodes are the
words of the sentence and the arcs represent dependency relations.

An example of a dependency structure is shown in Fig. 1.3. The
root is the head of the whole sentence, that in a declarative sentence
is usually the verb. It has as direct dependents the head of the subject
and the head of the objects if it is a transitive verb. It may also have
one or more complements, such as adverbs or prepositions. Nouns
can have adjectives as depedendents, to the left in the case of English,
and complements such as prepositions. Prepositions, in turn, have
their own dependents. The dependency structures end at leaf words,
that is, words that have no dependents in the sentence.

Dependency grammars have very different properties than phrase
structure grammars. As there is no explicit notion of constituent, the
grammars are less restrictive in word ordering and, therefore, more
suitable for free word order languages. Dependency trees are also
simpler and flatter than constituent trees.

Computational linguistics have brought much more attention to de-
pendency grammars in the recent years. There has been also an im-
portant development of hybrid structures that combine phrase and
dependency structures, such as the lexicalized phrase structure gram-
mars.

2.3 natural language as a formal language 19

2.3 natural language as a formal language

The approach of studying natural language as a formal language
requires an important number of methodological assumptions. Most
of them date to the origins of modern linguistics and are in general
still valid in the main branches of the Computational Linguistics field.
They are discussed, among others, by Chomsky in [11, 12]. First,
there is an idealization of the human linguistic capabilities, where
it is assumed that there are no memory limitations, distractions or
errors. Moreover, languages are assumed to have a static behaviour
in time and space: They do not change or evolve, and they do not
variate along the community of speakers.

A second set of assumptions is more specific to the mapping of
natural languages to formal languages. The basic elements of a for-
mal language are the symbols, that are drawn from a finite set called
the alphabet of the language. In our case, the words of a natural
language, or sometimes the word categories, are modeled as the al-
phabet. A formal language is a possibly infinite set of strings, where
each string is a finite sequences of symbols. So, the natural language
sentences are mapped to formal language strings, and the entire set
of grammatical sentences of a natural language is mapped to a formal
language.

2.3.1 Weak Adequacy vs. Strong Adequacy

The adequacy of a linguistic theory is how appropiate it is to ex-
press natural language phenomena. The traditional approach for dis-
cussing adequacy is an extensive analysis of the properties of well
known natural languages and how a linguistic theory can express
them.

An important distinction must be made when considering ade-
quacy. Weak adequacy is the capability of a grammar to generate the
set of grammatical sentences of a natural language. As there may
be several different grammars generating the same set of sentences,
it is not guaranteed that a weakly adequate grammar gives the ex-
pected structural descriptions to the sentences, which is called strong
adequacy.

The linguistic concepts of weak and strong adequacy have their
counterparts in formal language theory. Here, we say that two gram-
mars are weakly equivalent if they define the same language and that
they are strongly equivalent if they give the same structural descrip-
tions to the language elements.

The importance of this distinction can be appreciated with the fol-
lowing example. Consider the grammar in Fig. 2.1, that corresponds
to a very simplified version of the English language. Even though
this is a CFG, the generated language is regular because it can also

20 background

?>=<89:;q0
Prn

''

Det 00

?>=<89:;q1
Verb

''
Prepgg

?>=<89:;76540123q3
Prep

''

Det
��

Prn
��

?>=<89:;q6
Prn

''

Det 00

?>=<89:;76540123q7Prepgg

?>=<89:;q2
Adj

HH
Noun

OO

?>=<89:;q4
Adj

HH Noun 77
?>=<89:;76540123q5 Prep

OO

?>=<89:;q8
Adj

HH
Noun

OO

Figure 2.3: A DFA version for the toy natural language of Fig. 2.1.

be generated by the DFA of Fig. 2.3. Then, the DFA representation is
weakly adequate in order to express the language. On the other hand,
in terms of strong adequacy, the DFA representation is not admissible
because it is not able to express some syntactic properties. Namely,
it is not able to express the ambiguity in the prepositional phrase at-
tachment. For instance, in the sentence “I saw the man with the tele-
scope”, the strong adequacy requires a way to tell if the prepositional
phrase is modifying the verb or the object. The CFG does this distinc-
tion, allowing two different structures for the sentence, as shown in
Fig. 2.2. There is no way to do this with the DFA representation, so it
is not strongly adequate.

2.3.2 Natural Language into the Chomsky Hierarchy

The Chomksy hierachy is a good starting point to determine where
natural language fits into the world of formal languages. In this sec-
tion, we quickly review the arguments coming from known natural
languages that have been given to adress this issue. More detailed
reviews can be found in [51], [29] and [24].

The first and easiest question to answer is if natural languages are
regular. There are several examples that show that it is not, not even
in a weakly adequate way. In [11], p. 22, Chomsky derives some
examples from English that can be mapped to the well known non-
regular languages {anbn|n > 0} and {xy|x ∈ {a,b}∗,y = reverse(x)}.

The next question is about the adequacy of context-free languages.
In terms of strong adequacy, Chomsky argues that context-free gram-
mars can only clumsily accomodate several simple syntactic struc-
tures of English ([11], pp. 34–43). A more conclusive argument can
be found in the Dutch language, that has unbounded cross-serial de-
pendencies [8]. This construction can be mapped to a language of
the form {anbn}, with a syntactic structure that associates the ele-
ments in an intercalated fashion, as shown in Fig. 2.4 a). Even though
context-free grammars can generate languages of the form {anbn}, it
can only be done using central recursive context-free rules, forcing a
center-outwards association, as shown in Fig. 2.4 b).

The question of the context-free weak adequacy has been more elu-
sive. Since Chomsky proposed this question in 1965, there were sev-

2.3 natural language as a formal language 21

a)

a a . . . a b b . . . b

b)

a . . . a a b b . . . b

Figure 2.4: a) Structure of cross-serial dependencies in the Dutch language.
b) Structure forced by a context-free grammar.

eral attempts to prove weak inadequacy, but they were all proven
incorrect by Pullum and Gazdar in [48]. It was not until 1985 that
a strong argument against weak adequacy of context-free languages
was given, by Shieber in [50]. Shieber constructs a counterexample
from the Swiss German dialect, that can be mapped to a non-context
free language of the form {wambnxcmdny}. The counterexample
uses Swiss German cross-serial dependencies, as in Dutch, in com-
bination with case-marking on direct and indirect objects (accusative
case and dative case, respectively).

Going further in the Chomsky hierarchy, we find the context-sen-
sitive languages. At least in terms of weak adequacy, context-sensi-
tive languages can describe Swiss German cross-serial dependencies
and other examples of context-free inadequacy. However, context-
sensitive languages are inadequate due to performance issues. The
recognition problem for context-sensitive languages, this is, answer-
ing if w ∈ L(G) for a given context-sensitive grammar G and a string
w, is PSPACE-complete [27]. This means that there is no efficient algo-
rithm to determine if a sentence is grammatical for context-sensitive
languages in general, a task that humans can do quickly for natu-
ral languages. To cope with this problem, a new class of languages
has been proposed, the mildly context-sensitive languages, that lie
between the context-free and the contex-sensitive languages. Mildly
context-sensitive languages can describe several non-context free phe-
nomena, at the same time having polynomial algorithms for recogni-
tion and parsing. Nevertheless, there is some evidence that mildly
context-sensitive languages may not be weakly adequate for some
natural languages [24].

There are even more expressive formalisms that has been proposed
as adequate for natural languages, such as the unification grammars
[24], that can generate the entire class of recursively enumerable lan-
guages, at the top of the Chomksy hierachy. Even if recursively enu-
merable languages seem to be weakly adequate, the recognition prob-
lem for them is undecidable.

22 background

2.4 grammatical inference

Grammatical Inference (GI) is a general research area that studies the
inference or learning of formal language grammars using some kind
of available evidence about the language [19]. The main concern of
GI is a formal approach to this problem, where mathematical defini-
tions are given for the learning setting and for the correctness of the
learning algorithms. However, the GI area also has room for more
informal approaches, such as heuristical algorithms and empirical
learning settings and correctness definitions.

GI is of interest to any discipline that deals with sequential data
and the problem of finding patterns on it. So, it is closely related to
Computational Linguistics and Computational Biology, among other
fields. Some results from GI have also been used as arguments in cog-
nitive sciences’ problem of language acquisition. Particularly, Gold’s
theorem, that proves unlearnability of superfinite languages from pos-
itive examples, was used in favour of Chomsky’s Poverty of the Stim-
ulus hypothesis [25].

The general GI learning model assumes that the language to be
learnt belongs to a known class of languages L. It also assumes that
there is a representation for the languages in the class, this is, a class
of grammars G that can generate all the languages. The learning algo-
rithm is defined as a function that takes a finite number of evidence
elements and returns a hypothesis, this is, the grammar that is be-
lieved to generate the target language.

A key element of the learning model is the kind of information
available to the learner, and how this evidence relates to the target
language. The two main learning models are Identification in the
Limit and Probably Approximately Correct learning. We describe
them in more detail in the following sections.

2.4.1 Identification in the Limit

Identification in the Limit (IIL) is one of the first approaches towards
a formalization of learnability. It was introduced by Gold in 1967 [25].
Here, we follow the notation from [19].

In the IIL model, the evidence is presented to the learner as an
enumeration of elements. At each step, a new evidence element is
presented to the learning algorithm and the algorithm returns a new
hypothesis. The algorithm succeeds if, at some moment, it converges
to the hypothesis that generates the target language.

The kind of evidence that is presented leads to completely different
learning problems. For instance, in the learning from text setting, the
evidence are elements of the target language. In the learning from an
informant setting, the evidence are positive and negative examples of
the target language.

2.4 grammatical inference 23

The presentation of the evidence is formalized as an enumeration
function φ : N→ X, where X is the set of possible evidences. The set
of the first n elements of the evidence is denoted φn, this is, φn =

{φ(i)|i 6 n}.
Given a class L, the set of possible presentations Pres(L) for each

language L ∈ L must be specified to have a precisely defined learning
setting. The presentation functions for the learning from text and the
learning from an informant settings can be defined as follows:

TEXT(L) = {φ : φ(N) = L}

INFORMANT(L) = {φ : φ(N) = L× {1}∪ (Σ∗ − L)× {0}}

Observe that, in both cases, no two different languages can have
the same presentation, and every possible evidence is eventually pre-
sented. These are usual requirements for the learning task to be fea-
sible.

Formally, a learning algorithm is a function A : {φi|i ∈ N,φ ∈
Pres(L)} → G. It is said that A identifies in the limit the class of lan-
guages L if, for all L ∈ L and presentation φ ∈ Pres(L), there is n
such that L(A(φn)) = L and A(φn) = A(φm) for all m > n. When
this happens, it is also said that the class L is identifiable in the limit.

2.4.2 Probably Approximately Correct Learning

Probably Approximately Correct (PAC) learning emerges as a more
realistic attempt to define learnability [31, 5]. In the PAC learning
model, it is assumed that the evidence is sampled following an un-
known probability distribution, and a gradual notion of convergence
to the target is admitted. PAC learning is a general learning frame-
work, not specific to languages. In this section we follow the notation
from [31].

The PAC model adresses the problem of learning a set into a do-
main X, or equivalently a binary classification function for the ele-
ments of X. These sets are called concepts and they are assumed to
belong to a known set of possible concepts, called the concept class
C. The learner has access to an oracle that samples elements of X
according to an unknown distribution and returns them along with
their classification with respect to the target concept.

A learning algorithm is a program that queries the oracle and re-
turns a hypothesis concept. The error of the hypothesis is the proba-
bility mass of the set of elements that are classified differently by the
target concept. An algorithm succeeds if it guarantees that this error
is lower than a value ε that is given as input.

There is a problem in the fact that the oracle does sampling. The
sampling may be bad, leading to a very unrepresentative sample. So,
the algorithm will never be able to guarantee the error bound with
probability 1. However, it will be able to do enough sampling in order

24 background

to bound the probability that the sampling is bad, to be less than a
confidence value δ, also given as input to the algorithm. So, it is said
that an algorithm PAC learns a concept class C if, given an error ε and
a confidence δ, it returns a hypothesis that, with probability greater
than 1− δ, has an error bounded by ε. If this happens, it is said that
the concept class C is PAC learnable.

2.5 parser evaluation

To evaluate and compare parsing systems, it is necessary to use
objective methods to assess their quality. The most used approach
is the corpus based one, where the evaluation is done with respect
to expert annotated natural language corpora. In supervised parsing,
corpora is also used to train the parsers . So, in this case, corpora are
usually splitted in two parts: a training set and a test set.

In the corpus based evaluation approach, the sentences of the test
set are parsed and the resulting proposed structures are compared with
the so called gold structures of the corpus. To do this comparation ob-
jectively, a scoring scheme must be defined. In the following sections
we review the main scores used to evaluate constituent and depen-
dency parsing systems.

2.5.1 Phrase Structure Metrics

For phrase structures, the scores are defined in terms of the set
of constituents of the sentences. The most common used scores are
the PARSEVAL measures [1] and their different variants. The two fun-
damental PARSEVAL measures are the precision and the recall. The
precision is the proportion of proposed constituent that are correct,
while the recall is the proportion of correct constituents that are pro-
posed. If we call X to the set of proposed constituents, and Y to the
set of gold constituents, the measures can be generally defined as
follows:

P =
|X∪ Y|
|X|

R =
|X∪ Y|
|Y|

The variants of this measures depend in first place on how are the
elements of X and Y defined. They may or may not include the con-
stituent labels, leading to labeled and unlabeled scores respectively.
Also, unary branching constituents and the full sentence constituent
may be omitted. This is particularly senseful in the case of unlabeled
scores, because these constituents add redundancy.

2.5 parser evaluation 25

The preterminals, this is, the POS tags of the sentence, are never
considered constituents. Usually, POS tagging evaluation is done sep-
arately from parsing evaluation, and has its own particular scoring
schemes.

Consider, for instance, the trees of Fig. 2.2. Let Fig. 2.2.a be the
proposed tree and Fig. 2.2.b be the gold tree. In this case, for labeled
scores, the sets of constituents are

X = {(S, 0, 7), (VP, 1, 7), (NP, 2, 7), (NP, 2, 4), (PP, 4, 7), (NP, 5, 7)}

Y = {(S, 0, 7), (VP, 1, 7), (VP, 1, 4), (NP, 2, 4), (PP, 4, 7), (NP, 5, 7)}

where we use the triple (V , i, j) to represent the constituent labeled V
that spans the segment si . . . sj−1 of the sentence s0 . . . sn. Then, the
labeled precision and recall scores are

P =
|X∪ Y|
|X|

=
5

6

R =
|X∪ Y|
|Y|

=
5

6
.

There are more variants on the measures depending on how global
scores are computed for an entire test set. If the global precision
and recall are computed just by averaging the precision and recall
for each sentence, the measures are called micro-averaged. They are
called macro-averaged measures if, in the contrary, they are computed
first summing the number of correct proposed constituents for all
the sentences, and then dividing by the totals, as in the following
formulas:

P =

∑
i |Xi ∪ Yi|∑
i |Xi|

R =

∑
i |Xi ∪ Yi|∑
i |Yi|

To obtain a single global score for comparison with other systems,
the harmonic mean between precision and recall, called the F1 score,
is also usually reported:

F1 =
2PR

P+ R
.

2.5.2 Dependency Metrics

For dependency trees, the scores are defined in terms of the set of
dependency pairs of the sentences. If the structures are well formed,
the number of dependencies for a sentence is fixed. So, the scores are
simpler than those for phrase structures because they rise from the
comparation of two sets of equal size.

26 background

a)

PRP VBD DT NN IN DT NN ROOT

I saw the man with the telescope

b)

PRP VBD DT NN IN DT NN ROOT

I saw the man with the telescope

Figure 2.5: Two possible dependency trees for the sentence “I saw the man
with the telescope”. a) “with/IN” headed by “man/NN”. b)
“with/IN” headed by “saw/VBD”.

The Unlabeled Attachment Score (UAS) is the proportion of depeden-
cies that are correct. Formally, if X is the set of proposed dependen-
cies, Y is the set of gold dependencies, and n is the length of the
sentence, the UAS is defined by

UAS =
|X∪ Y|
n

For instance, consider the dependency trees of Fig. 2.5. Let Fig. 2.5.a
be the proposed tree and Fig. 2.5.b be the gold tree. Then, the sets of
dependencies are

X = {(0, 1), (1, 7), (2, 3), (3, 1), (4, 3), (5, 6), (6, 4)}

Y = {(0, 1), (1, 7), (2, 3), (3, 1), (4, 1), (5, 6), (6, 4)}

where we use the pair (i, j) to represent the dependency sj → si in
the sentence s0 . . . sn, using j = n+ 1 when si is the root of the tree.
This way, the UAS is

UAS =
|X∪ Y|
n

=
6

7
.

If the dependencies have some kind of labeling specifying the type
of the dependency relation, there is also a labeled score, the Labeled
Attachment Score (LAS). As with constituent scores, the dependency
scores for an entire test set can be macro or micro averaged, but the
established scores are the macro-averaged ones.

Part II

N O N - T E R M I N A L LY S E PA R AT E D G R A M M A R S

3
B O U N D I N G T H E M A X I M A L PA R S I N G
P E R F O R M A N C E O F N O N - T E R M I N A L LY
S E PA R AT E D G R A M M A R S

Unambiguous Non-Terminally Separated (UNTS) grammars have
good learnability properties but are too restrictive to be used for natu-
ral language parsing. We present a generalization of UNTS grammars
called Unambiguous Weakly NTS (UWNTS) grammars that preserve
the learnability properties. Then, we study the problem of using them
to parse natural language and of evaluating them against a gold tree-
bank. If the target language is not UWNTS, there will be an upper
bound in the parsing performance.

In this chapter we present methods to obtain such upper bounds
for the class of UWNTS grammars. Our methods allow us to com-
pute the bounds without explicitly working with grammarsbecause
we are only interested in the parsings of the gold sentences that the
grammars return.

In principle, the function to be optimized is F1, but instead we de-
fine a new metric W, related to F1, but whose optimization is feasible.
Our methods are based on the optimization of W and the recall, and
on the translation of these optimal values to an upper bound of the
F1.

The optimization problems are solved by reducing them to the well
known Integer Linear Programming (ILP) with binary variables prob-
lem, that is known to be NP-Hard, but for which there exists soft-
ware to solve it [3]. Moreover, we show that the optimization of W
is NP-Hard, by reducing the Maximum Independent Set problem for
2-subdivision graphs to it.

Finally, we solve the optimization problems for the WSJ10 subset
of the Penn Treebank [37], compute the upper bounds, and com-
pare them to the performance of state-of-the-art unsupervised parsers.
Our results show that UWNTS grammars over the POS tags alphabet
can not improve state-of-the-art unsupervised parsing performance.

29

30 bounding the parsing performance of nts grammars

3.1 notation and definitions

We skip conventional definitions and notation for formal languages
and context-free grammars, but define concepts that are more specific
to this chapter.

Given a language L, Sub(L) is the set of non-empty substrings of
the elements of L, and Sub(L) is the set of non-empty proper sub-
strings. We say that two strings r, s overlap if there exist non-empty
strings r ′, s ′, t such that r = r ′t and s = ts ′; r ′ts ′ is called an over-
lapping of r and s. We say that two strings r, s occur overlapped in
a language L if they overlap and if an overlapping of them is in
Sub(L). Given a grammar G and s ∈ L(G), a substring r of s = urv

is called a constituent in (u, v) if and only if there is X ∈ N such that
S
∗⇒ uXv

∗⇒ s. In contrast, r is called a non-constituent or distituent in
(u, v) if it is not a constituent in (u, v).

More than in the grammars, we are in fact interested in all the
possible ways a given finite set of sentences S = {s1, . . . , sn} can
be parsed by a particular class of grammars. As we are modeling
unlabeled parsing, the parse of a sentence is an unlabeled tree, or
equivalently, a bracketing of the sentence. Formally, a bracketing of
a sentence s = a0 . . . an−1 is a set b of pairs of indexes that marks
the starting and ending positions of the constituents, consistently rep-
resenting a tree. A bracketing always contains the full-span bracket
(0,n), never has duplicated brackets (it is a set), and does not have
brackets of span 1, i.e., of the form (i, i+ 1). Usually, we will repre-
sent the bracketings together with their corresponding sentences. For
instance, we will jointly represent the sentence abcde and the brack-
eting {(0, 5), (2, 5), (2, 4)} as ab((cd)e). Fig. 3.1 shows an example of
this. Observe that the full-span bracket is omitted.

Given an unambiguous grammar G and s ∈ L(G), the bracketing of
s with G, brG(s), is the bracketing corresponding to the parse tree of
s with G. Given S ⊆ L(G), the bracketing of S with G, BrG(S), is the set
{brG(s)|s ∈ S}.

3.1.1 UWNTS Grammars

A grammar G is said to be Non-Terminally Separated (NTS) if and
only if, for all X, Y ∈ N and α,β,γ ∈ (Σ ∪N)∗, X ∗⇒ αβγ and Y ∗⇒ β

implies X ∗⇒ αYγ [13]. A grammar is Unambiguous NTS (UNTS) if it
is unambiguous and NTS.

Unambiguous NTS grammars are much less expressive than NTS
grammars: It can be proved that a UNTS language having two over-
lapping sentences can not have the overlapping of them as a sentence.
For instance, the set {ab,bc,abc} can not be a subset of a UNTS lan-
guage because abc is an overlapping of ab and bc. This situation is
very common in the WSJ10 sentences of POS tags, and consequently

3.1 notation and definitions 31

(a)

c

ba db

a g

fe

hfe ife

(b)

(ab)c a(bd) (ef)g efh efi

Figure 3.1: An example of gold treebank or bracketing. (a) Graphical nota-
tion. (b) Textual notation.

there is no UNTS grammar that accepts this set. For instance, it has
the sentences “NN NN NN” and “NN NN”, but “NN NN NN” is an
overlapping of “NN NN” with itself.

The limitations of UNTS grammars lead us to define a more expres-
sive class, UWNTS, that is able to parse any finite set of sentences
preserving, at the same time, every other aspect of UNTS grammars.
The properties of UWNTS will also let us characterize the sets of
bracketings of all the possible grammars that parse a given finite set
of sentences. This characterization will be at the core of our methods
for finding bounds.

Definition 1. A grammar G = 〈Σ,N,S,P〉 is Weakly Non-Terminally
Separated (WNTS) if S does not appear on the right side of any production
and, for all X, Y ∈ N and α,β,γ ∈ (Σ∪N)∗ such that Y 6= S,

X
∗⇒ αβγ and Y ∗⇒ β implies X ∗⇒ αYγ.

A grammar is Unambiguous WNTS (UWNTS) if it is unambiguous and
WNTS.

Note that any finite set {s1, . . . , sn} is parsed by a UWNTS grammar
with rules {S → s1, . . . ,S → sn}. It is easy to see that every NTS lan-
guage is also WNTS. A much more interesting result is that a WNTS
language can be converted into an NTS language without loosing any
information.

Lemma 1. If L is WNTS, then xLx = {xsx|s ∈ L} is NTS, where x is a new
element of the alphabet.

Proof. See Appendix A.

This conversion allows us to prove PAC-learnability of UWNTS
languages using the PAC-learnability result for UNTS languages of
[13]. If we want to learn a UWNTS grammar from a sample S, we
can simply give the sample xSx to the learning algorithm for UNTS

32 bounding the parsing performance of nts grammars

grammars, and remove the x’s from the resulting grammar. A de-
tailed proof of this result is beyond the scope of this chapter. In the
next chapter we will present a more general learnability result, of a
class that contains the UWNTS languages.

In a UWNTS grammar G, every substring is either always a con-
stituent in every proper occurrence or always a distituent in every
proper occurrence. If two strings r, s occur overlapped in L(G), then
at least one of them must be always a distituent. In this case, we say
that r and s are incompatible in L(G) and we say that they are compat-
ible in the opposite case. We say that a set of strings is compatible in
L(G) if every pair of strings of the set is compatible in L(G).

Now let us consider a finite set of sentences S, a UWNTS gram-
mar G, and the bracketing of S with G. The given properties imply
that in the bracketing there are no substrings marked some times
as constituents and some times as distituents. Consequently, the
information in BrG(S) can be simply represented as the set of sub-
strings in Sub(S) that are always constituents. We call this the set
ConstG(S). When considering all the possible UWNTS grammars G
with S ⊆ L(G), there is a 1-to-1 mapping between all the possible
bracketings BrG(S) and all the possible sets ConstG(S). Using this
information, we can define our search space C (S) as

Definition 2. C (S)
.
= {ConstG(S) : G UWNTS and S ⊆ L(G)}.

With UWNTS grammars we can characterize the search space in a
way that there is no need to explicitly refer to the grammars. We can
see that the search space is equal to all the possible subsets of Sub(S)
that are compatible in S:

Theorem 1. C (S) = {C : C ⊆ Sub(S),C compatible in S}.

Proof. See Appendix A for a sketch.

The proof of ⊆ follows immediately from the given properties. ⊇
is proved by constructing a UWNTS grammar mainly using the fact
that S is finite and C is compatible in S.

3.1.2 UWNTS-SC Grammars

In the parser induction problem, it is usually expected that the
induced parsers will be able to parse any sentence, and not only the
finite set of sentences S that is used to evaluate them. However, the
defined search space for UWNTS grammars does not guarantee this.
In Theorem 1, it is evident that the sets of constituents are required
to be compatible in S, but may be incompatible with other sets of
sentences. For instance, if S = {abd,bcd} and C = {ab,bc}, C is
compatible in S but not in {abc}. We define UWNTS-SC grammars
as the subclass of UWNTS that guarantee that the constituents are
compatible with any set of sentences.

3.2 the w measure and its relationship to the f1 33

Definition 3. A grammar G is UWNTS Strongly Compatible (UWNTS-
SC) if it is UWNTS and, for every r, s ∈ ConstG(L(G)), r and s do not
overlap. When r and s do not overlap, we say that r and s are strongly
compatible. And when every pair of a set of strings C do not overlap, we
say that C is strongly compatible.

As UWNTS-SC is a subclass of UWNTS, the properties of UWNTS
grammars still hold. The search space for UWNTS-SC grammars and
its characterization are:

Definition 4. CSC(S)
.
= {ConstG(S) : G UWNTS-SC and S ⊆ L(G)}.

Theorem 2. CSC(S) = {C : C ⊆ Sub(S),C strongly compatible}.

The proof of this theorem is analog to the proof of Theorem 1.
Theorem 2 shows a more natural way of understanding the motiva-

tion under UWNTS-SC grammars. While the compatibility property
depends on the sample S, the strong compatibility does not. It can be
checked for a given set of constituents without looking at the sample,
and if it holds, we know that the set is compatible for any sample.

3.2 the W measure and its relationship to the F1

In this section we will study the evaluation measures in the frame
of UWNTS grammars. In general, a measure is a function of simi-
larity between a given gold bracketing B = {b1, . . . ,bn} of a set of
gold sentences and a proposed bracketing B̂ = {b̂1, . . . , b̂n} over the
same set of sentences. The standard measures used in unsupervised
constituent parsing are the micro-averaged precision, recall and F1 as
defined in [32]:

P(B̂)
.
=

∑n
k=1 |b̂k ∩ bk|∑n
k=1 |b̂k|

R(B̂)
.
=

∑n
k=1 |b̂k ∩ bk|∑n
k=1 |bk|

F1(B̂)
.
=
2P(B̂)R(B̂)

P(B̂) + R(B̂)
.

Note that these measures differ from the standard PARSEVAL mea-
sures [1], because from the definition of bracketing it follows that the
syntactic categories are ignored and that unary branches are ignored.

Another way to define precision and recall is in term of two mea-
sures that we will call hits and misses.

34 bounding the parsing performance of nts grammars

Definition 5. The hits is the number of proposed brackets that are correct,
and the misses is the number of proposed brackets that are not correct. For-
mally,

H(B̂)
.
=

n∑
k=1

|b̂k ∩ bk|

M(B̂)
.
=

n∑
k=1

|b̂k − bk|.

Using these two measures, and defining

K
.
=

n∑
k=1

|bk|

to be the number of brackets in the gold bracketing, we have

P(B̂) =
H(B̂)

H(B̂) +M(B̂)

R(B̂) =
H(B̂)

K
.

As we saw in the previous section, in the case of UWNTS grammars
the bracketings can be represented as sets of constituents Ĉ. So, we
will rewrite the definitions of the measures in terms of Ĉ instead of
B̂. Observe that, if s ∈ Ĉ, B̂ contains all the occurrences of s marked
as a constituent. But in the gold B, s may be marked some times as
a constituent and some times as a distituent. Let c(s) and d(s) be
number of times s appears in B as a constituent and as a distituent
respectively:

Definition 6.

c(s)
.
= |{(u, s, v) : uv 6= λ,usv ∈ S and s is a constituent in (u, v)}|

d(s)
.
= |{(u, s, v) : uv 6= λ,usv ∈ S and s is a distituent in (u, v)}|

Then, for every s ∈ Ĉ, B̂ will have c(s) hits and d(s) misses. This
is,

H(Ĉ) =
∑
s∈Ĉ

c(s)

M(Ĉ) =
∑
s∈Ĉ

d(s).

Using this, we can see that

F1(Ĉ) =
2
∑
s∈Ĉ c(s)

K+
∑
s∈Ĉ c(s) + d(s)

.

Now that we have written the F1 in terms of Ĉ, we would like to
define an algorithm to find the optimal F1(Ĉ) for every Ĉ ∈ C (S). As

3.2 the w measure and its relationship to the f1 35

Bracketing P R F1 H M W

{(ab)c, (ab)d, efg, efh, efi} 50% 33% 40% 1 1 0

{(ab)c, (ab)d, (ef)g, (ef)h, (ef)i} 40% 67% 50% 2 3 −1

Table 3.1: Comparison of the F1 and W measures: The scores of two brack-
etings with respect to the gold bracketing of Fig. 3.1.

the search space is finite, a simple algorithm to find maxĈ F1(Ĉ) is
to compute the F1 for every Ĉ. The problem is that the order of this
algorithm is O(2|Sub(S)|).

Given that the optimization of the F1 does not seem to be feasible,
we will define another measure W which optimization will result
more tractable. This measure has its own intuition and is a natural
way to combine hits and misses. It is very different to the F1, but
we will see that an upper bound of W can be translated to an upper
bound of the F1 measure. We will also see that an upper bound of
the recall R can be used to find a better bound for the F1.

We want W to be such that a high value for it reflects a big number
of hits and a low number of misses, so we simply define:

Definition 7. W(B̂)
.
= H(B̂) −M(B̂).

Note that, when dealing with UWNTS grammars, as H and M are
linear expressions over Ĉ, W will also be linear over Ĉ, unlike the F1
measure. This is what will make it more tractable.
W and F1 are actually very different measures. In first place note

that W is not in the range [0, 1] as the F1. The range of W will depend
on the concrete gold bracketing B. It can be seen that W will have a
value of at most K, and of at least −K ′S, where K ′S =

∑
s∈S |s|− 2 is

the maximal number of brackets that a bracketing of S can have.
Moreover, W and F1 do not define the same ordering over candi-

date bracketings B̂. For instance, Table 3.1 shows the scores for two
different bracketings B̂1, B̂2 with respect to the same gold bracketing.
Here, F1 is higher for B̂2 but W is higher for B̂1.

However, theW and F1 measures are related in some way, as shown
in the following formula:

F1(B̂) =
2R(B̂)

1+ 2R(B̂) −
W(B̂)
K

.

Here, we can forget about the bracketings and write the value of the
F1 directly in terms of the recall value r = R(B̂) and the W value
w =W(B̂):

F1(r,w) =
2r

1+ 2r− w
K

. (3.1)

From this formula it can be seen that the F1 is monotonically increas-
ing in both w and r. In the case of r, this is proved by observing that

36 bounding the parsing performance of nts grammars

∂F1
∂r > 0 iif w 6 K, which is in fact true. In the case of w, the proof is

trivial.
Then, if r and w are upper bounds for their respective measures,

F1(r,w) is an upper bound for the F1 measure. If we do not know an
upper bound for the recall, we can simply use the bound r = 1.

3.3 the optimization of W and R

In this section we first formalize the optimization problems of W
and R over the UWNTS and UWNTS-SC grammars. We define them
in terms of a more general problem of optimization of a score over
a class of grammars. Then, we show how to reduce the problems to
Integer Linear Programming problems, using the fact that W and R
are computed as linear expressions in terms of Ĉ. Finally, we show
that the problems are NP-Hard.

Definition 8. Given a class of grammars G, a score function s, a set of
gold sentences S and a set of gold bracketings B, the Maximum Score
Grammar (MSG) problem is such that it computes

MSG(G, s,S,B) = max
G∈G,S⊆L(G)

s(B,BrG(S)).

Definition 9. The Maximum W UWNTS (MW-UNTS), Maximum W
UWNTS-SC (MW-UNTS-SC), Maximum R UWNTS (MR-UNTS) and
Maximum R UWNTS-SC (MR-UNTS-SC) problems are such that they
compute

MW-UWNTS(S,B) =MSG(UWNTS,W,S,B)

MW-UWNTS-SC(S,B) =MSG(UWNTS-SC,W,S,B)

MR-UWNTS(S,B) =MSG(UWNTS,R,S,B)

MR-UWNTS-SC(S,B) =MSG(UWNTS-SC,R,S,B).

3.3.1 Solving the Problems for UWNTS Grammars

Let us first consider the problem of W maximization, MW-UWNTS.
By the characterization of the search space of Theorem 1, we have
that

MW-UWNTS(S,B) = max
C⊆Sub(S),C compatible in S

∑
s∈C

c(s) − d(s).

Now, let H(S,B) = 〈V ,E,w〉 be an undirected weighted graph such
that

V = Sub(S),

w(s) = c(s) − d(s) and

E = { (s, t) : s, t incompatible in S}.

3.3 the optimization of w and r 37

An independent set of a graph is a set of nodes such that every pair
of nodes in it is not connected by an edge. So, C is an independent
set of H(S,B) if and only if C is compatible in S. Now, consider the
Maximum Weight Independent Set (MWIS) problem, that given G

returns the weight of the independent set with maximum weight of
G [30]. Clearly,

MW-UWNTS(S,B) = MWIS(H(S,B)).

This is a reduction of our problem to the MWIS problem, that is
known to be NP-Hard [30]. In turn, MWIS is reducible to the Integer
Linear Programming (ILP) problem with binary variables. This prob-
lem is also NP-Hard, but there exists software that implements effi-
cient strategies for solving some of its instances [3].

An ILP problem with binary variables is defined by three param-
eters 〈x, f, c〉: A set of variables x that can take values in {0, 1}, an
objective linear function f(x) that has to be maximized, and a set of
linear constraints c(x) that must be satisfied. The result of the ILP
problem is a valuation of the variables that satisfies the constraints
and maximizes the objective function.

In the case of MWIS, given a weighted graph G = 〈V ,E,w〉, we
define a binary variable xv for every node v. A valuation in {0, 1} of
the variables will define a subset of nodes {v|xv = 1}. To ensure that
the possible subsets are independent sets, we define the constraints
c(x) = {xv + xw 6 1|(v,w) ∈ E}. Finally, the objective function is
f(x) =

∑
v∈V xvw(v). Using this instance I(G) = 〈x, f, c〉, we have that

in general MWIS(G) = ILP(I(G)), and in particular that

MW-UWNTS(S,B) = ILP(I(H(S,B))).

We illustrate the reduction of MW-UWNTS to MWIS and then to
ILP with the example instance of Fig. 3.2 (a). The sets of substrings
such that w(c) > 0 is {da, cd,bc, cda,ab,bch}. The input graph for
the MWIS problem and the instance of the ILP problem are given in
Fig. 3.3 (a) and (b).

Now we consider the solution of the problem of recall maximiza-
tion, MR-UWNTS. We can do a similar reduction to MWIS changing
the graph weights from c(s) − d(s) to c(s), and then reduce MWIS to
ILP. If H ′(S,B) is the MWIS instance, then

MR-UWNTS(S,B) =
1

K
ILP(I(H ′(S,B))).

3.3.2 Solving the Problems for UWNTS-SC Grammars

The problems for UWNTS-SC grammars can also be reduced to
MWIS as in the previous section just changing in the graph construc-
tion the definition of the edge set. Instead of saying that (s, t) ∈ E

38 bounding the parsing performance of nts grammars

(a)

h

cb

ad a

dc

b e

ba

f

ba

g

ba

i

cb

j

ad

(da)((bc)h) b((cd)a) (ab)e (ab)f (ab)g (bc)i (da)j

(b)

hc

ba

d

a

dc

b e

ba

f

ba

g

ba

icb jad

d(ab)ch b((cd)a) (ab)e (ab)f (ab)g bci daj

Figure 3.2: (a) A gold bracketing. (b) The bracketing generated by the
UWNTS grammars with C = {cd,ab, cda}.

iff s and t are incompatible in S, we say that (s, t) ∈ E iff s and t

are strongly incompatible, this is, s and t overlap. But this reduc-
tion leads to a much bigger number of edges. In our experiments
with the WSJ10, this resulted in a number of ILP constraints that was
unmanageable by our working version of the ILP software we used.

For instance, if there are n substrings that end with the symbol
a and m substrings that start with a, there will be nm edges/con-
straints. These constraints express the fact that “every string starting
with an a is strongly incompatible with every string ending with an
a”, or equivalently “every string starting with an a has value 0 or
every string ending with an a has value 0”. But this can be expressed
with less constraints using a new ILP variable ya that has value 0 if
every substring starting with a has value 0, and value 1 if every sub-
string ending with a has value 0. To do this we use, for each substring
of the form as, the constraint xas 6 ya and for each substring of the
form ta, the constraint xta 6 1 − ya leading to n +m constraints
instead of nm.

In the general form, the ILP instance is I = 〈x, f, c〉, where

c(x) = {xs 6 yt|s ∈ V , t proper prefix of s}

∪ {xs 6 1− yu|s ∈ V ,u proper suffix of s}.

3.3 the optimization of w and r 39

(a)

da cd bc cda

ab bch

1 1 1 1

2 1

(b)

x = {xda, xcd, xbc, xcda, xab, xbch}

f(x) = xda + xcd + xbc + xcda + 2xab + xbch

c(x) = {xda + xcd 6 1, xcd + xbc 6 1,

xbc + xcda 6 1, xda + xab 6 1,

xab + xbc 6 1, xab + xbch 6 1}

Figure 3.3: (a) Graph for the MWIS problem for the gold bracketing of
Fig. 3.2. The shadowed nodes conform the solution. (b) Instance
for the ILP problem.

3.3.3 NP-Hardness of the Problems

It can be shown that the presented problems, MW-UWNTS, MR-
UWNTS, MW-UWNTS-SC and MR-UWNTS-SC, are all NP-Hard. In
this section, we prove only that the MW-UWNTS problem is NP-Hard.
The proofs for the rest of the problems are analogous.

Theorem 3. MW-UWNTS is NP-Hard.

Proof. We will prove this by reducing the NP-Hard Maximum Inde-
pendent Set (MIS) graph problem to the MW-UWNTS problem. MIS
is the optimization problem over unweighted graphs that is equiva-
lent to the MWIS problem over weighted graphs where all the weights
are 1. We have to provide a way to convert instances of MIS to
instances of MW-UWNTS. To simplify this process, we will restrict
the domain of the MIS problem to the class of 2-subdivision graphs,
where it is still known to be NP-Hard [47]. This is the key idea of
the proof. The 2-subdivision graphs are those graphs that are ob-
tained from another graph by replacing every edge {u, v} by a path
uxyv, where x and y are new nodes. The path uxyv is called the
2-subdivision path of the edge {u, v} and x and y are called the 2-
subdivision nodes of {u, v}.

Let H be a 2-subdivision graph for which we want to solve the
MIS problem, and let G be the graph from which H is obtained by
2-subdividing it. We will construct an instance of the MW-UWNTS
problem (S,B) in terms of H, this is, a set of gold sentences and its

40 bounding the parsing performance of nts grammars

(a)

H:

u x y v

2-subdivision of G:
u v

(b) Σ = { au,bu,av,bv, cuv,d, e}

Substrings = { aubu,avbv,bucuv, cuvav}

(S,B) = {(aubu)cuv, (bucuv)av, (cuvav)bv,

(bucuv)d, (cuvav)d, (avbv)d, (avbv)e}

(c)

H(S,B):

aubu bucuv cuvav avbv

1 1 1 1

Figure 3.4: Example of conversion of a 2-subdivision graphH (a), instance of
the MIS problem, to a pair (S,B) (b), instance of the MW-UWNTS
problem. In (c) it is shown that H is equivalent to H(S,B).

corresponding gold bracketing. The instance (S,B) will be such that,
when reduced to the graph GwS,B as explained in section 3.3.1, this
graph will have all weights equal to 1 and will be structurally equal
to the original graph H. As a solution of the MW-UWNTS problem
gives a solution of the MWIS problem for GwS,B, this solution is also
a solution of the MIS problem for H. This way, we can successfully
solve the MIS problem in terms of a MW-UWNTS problem.

To describe the instance (S,B), we will first define the alphabet it
uses, then the set of substrings that occur in S, and finally the gold
sentences S and the brackets that conform the gold bracketing B. The
alphabet will have, for each node v in H that is also in G, two symbols
av and bv, and for each 2-subdivision path uxyv in H, a symbol cuv.
The set of substrings will have one substring for each node in H. The
substrings must overlap in a way that the overlappings encode the
edges of H. For every node v in G we will use the substring avbv in
the treebank, and for every 2-subdivision nodes x and y of {u, v} we
will use the substrings bucuv and cuvav respectively. Note that, for
every 2-subdivision path uxyv of H, the string corresponding to the
node u overlaps with the string of the node x, the string of x overlaps
with the string of y, and the string of y overlaps with the string of v.
Also, it can be seen that there is no overlapping that does not come
from an edge of a 2-subdivision path of H.

3.4 upper bounds for the wsj10 treebank 41

The sentences must contain the mentioned substrings in a way
that all the pairs of substrings that overlap, effectively appear over-
lapped. This way, the edges of H will be rebuilt from the treebank.
To do this, for each 2-subdivision path uxyv we define the sentences
{aubucuv,bucuvav, cuvavbv}.

We must define also the brackets for these sentences. These have
to be such that every substring s that correspond to a node in H

has weight w(s) = c(s) − d(s) = 1. This will not be possible unless
we use some extra sentences. For instance, if we use the bracket-
ings {(aubu)cuv, (bucuv)av, (cuvav)bv} we will have w(aubu) = 1,
w(bucuv) = w(bucuv) = 0, and w(avbv) = −1. All the weights can
be set to 1 using new symbols and sentences like {(bucuv)d, (cuvav)d,
(avbv)d, (avbv)e}. The new substrings, such as cuvd, will all have
weight < 0 so they will not appear in the graph. In general, it will
always be possible to fix the weights of the substrings by adding new
sentences.

The described conversion of H to (S,B) is O(|V(H)|) in time and
space or, equivalently, O(|V(G)|+ |E(G)|).

A very simple example of this process is shown in Fig. 3.4.

3.4 upper bounds for the wsj10 treebank

This section shows the results of computing concrete upper bounds
for the classes of UWNTS and UWNTS-SC grammars over the WSJ10

treebank. The WSJ10 consists of the sentences of the WSJ Penn Tree-
bank whose length is of at most 10 words after removing punctuation
marks [32].

There is a total of 63742 different non-empty substrings of POS
tags in Sub(S). To solve the optimization problems, the strings with
w(s) 6 0 can be ignored because they do not improve the scores. In
the case of the MW problems, where w(s) = c(s) − d(s), the number
of strings with w(s) > 0 is 7029. In the case of the MR problems,
where w(s) = c(s), the number of strings with w(s) > 0 is 9112.
The sizes of the resulting instances are summarized in Table 3.2. Ob-
serve that the number of edges of the MWIS instances for UWNTS-SC
grammars have a higher order of magnitude than the size of the im-
proved ILP instances.

Using the obtained results of Maximal W and Maximal R we pro-
ceeded to compute the upper bounds for the F1 using (3.1) from
Sect. 3.2. Table 3.3 shows the results, together with the performance
of actual state-of-the-art unsupervised parsers. We show the com-
puted maximal W and maximal recall for UWNTS and UWNTS-SC
grammars, and also the values of all the other measures associated
to these solutions. We also show the upper bounds for the F1 in
the rows labeled UBoundF1(UWNTS) and UBoundF1(UWNTS-SC),
together with their corresponding precision and recall. RBranch is

42 bounding the parsing performance of nts grammars

MWIS ILP

Nodes Edges Variables Constraints

MW-UWNTS 7029 1204 7029 1204

MR-UWNTS 9112 45984 9112 45984

MW-UWNTS-SC 7029 1467257 26434 67916

MR-UWNTS-SC 9112 3166833 28815 79986

Table 3.2: Sizes of the MWIS and ILP instances generated by the MW and
MR problems for the WSJ10 treebank.

Model P R F1 H M W

RBranch 55.1 70.0 61.7

DMV+CCM 69.3 88.0 77.6

U-DOP 70.8 88.2 78.5

Incremental 75.6 76.2 75.9

MW-UWNTS 91.2 62.8 74.4 22169 2127 20042

MR-UWNTS 73.8 69.0 71.3 24345 8643 15702

UBoundF1(UWNTS) 85.0 69.0 76.1

MW-UWNTS-SC 89.1 52.2 65.8 18410 2263 16147

MR-UWNTS-SC 65.3 61.1 63.1 21562 11483 10079

UBoundF1(UWNTS-SC) 79.9 61.1 69.2

Table 3.3: Summary of the results of our experiments with the WSJ10, in
contrast with state-of-the-art unsupervised parsers. The numbers
in bold mark the upper bounds or maximal values obtained in
each row.

a baseline parser that parses every sentence with a right-branching
bracketing. DMV+CCM is the parser from Klein and Manning [32],
U-DOP is the parser from Bod [7] and Incremental is the parser from
Seginer [49].

3.5 discussion

Our bounding methods are specific to the evaluation approach of
comparing against gold treebanks, but this is the most accepted and
supported approach, and it is scalable and unbiased with respect to
the evaluator [56]. Our methods are also specific to the unlabeled
F1 measure as we defined it, with micro-averaging and removal of
unary brackets. Also in [56], micro-averaging and removal of trivial
structure are proposed as the preferred evaluation method.

The quality of our upper bounds depend on how far they are from
the optimal F1. We can measure this by looking at the F1 associated

3.5 discussion 43

to the solution for the MW problem, because it represents an actual
grammar. For instance, the F1 for MW-UWNTS over the WSJ10 is
74.4%, so the upper bound of 76.1% is near to the optimal bound.

4
PA C - L E A R N I N G U N A M B I G U O U S k , l - N T S6

G R A M M A R S

Among the most recent results in the Grammatical Inference field,
there are the results of polynomial PAC-learnability of Unambiguous
NTS (UNTS) languages from Clark [13], and the polynomial identifi-
ability in the limit of Substitutable Context-Free Languages (SCFLs)
from Clark and Eyraud [15]. These two results are related in the sense
that substitutable languages are a sort of language level definition of
the NTS property, and Clark and Eyraud actually conjectured that
the SCFLs are a subclass of the NTS languages. Another recent result
is Yoshinaka’s [57] generalization of Clark and Eyraud work, defin-
ing the hierarchy of k , l-substitutable languages, and proving their
polynomial identifiability in the limit.

In this chapter, we define the hierarchy of k , l-NTS grammars that
generalizes NTS grammars. k , l-NTS grammars add the notion of a
fixed size context to the constituency property of the NTS grammars.
We then present the k , l-NTS6 grammars, a hierarchy of subclasses
of the k , l-NTS grammars. These grammars also consider the bound-
aries of sentences as valid contexts.

We prove that k , l-UNTS6 grammars can be converted injectively
to UNTS grammars over a richer alphabet. We do this by showing
how to convert k , l-UNTS6 grammars with l > 0 to k , l − 1-
UNTS6 grammars. Applying this conversion recursively, we can get
to k , 0-UNTS6 grammars, and applying a symmetric conversion, we
finally get to 0 , 0-UNTS6 grammars, that are exactly UNTS gram-
mars.

We then use the conversion to UNTS grammars to prove that k , l-
UNTS6 grammars are PAC-learnable. A sample of a k , l-UNTS6

language can be converted to a sample of a UNTS language, and this
sample can be used with Clark’s algorithm to learn a grammar that
has a language that converges to the UNTS language. The learned
grammar can then be converted back, to obtain a k , l-UNTS6 gram-
mar with a language that converges to the original k , l-UNTS6 lan-
guage.

45

46 pac-learning k ,l-unts<= grammars

4.1 notation and definitions

Recalling from section 2.1.2, a Context-Free Grammar (CFG) is a
tuple G = 〈Σ , N , S , P 〉 , where Σ is the terminal alphabet, N is
the set of non-terminals, S ∈ N is the initial non-terminal, and P ⊆
N × (Σ ∪ N)+ is the set of productions or rules.

We use letters from the beginning of the alphabet a,b, c, . . . to rep-
resent elements of Σ, from the end of the alphabet r, s, t,u, v, . . . to
represent elements of Σ∗, and Greek letters to represent elements of
(Σ ∪N)∗. We use the notation (α)i to refer to the i-th element of α.
We write the rules using the form X→ α, and call the derivation rela-
tion ∗⇒ to the transitive closure of the relation ⇒ where αXβ ⇒ αγβ

iff X→ γ ∈ P.
The language generated by a CFG G is the Context-Free Language

(CFL) L(G) = {s ∈ Σ∗|S ∗⇒ s}. As in [13], we will assume that all the
non-terminals are useful, that is, that they are used in the derivation
of some element of the language, and that they are not duplicated,
that is, that they all generate different sets of strings.

A grammar is said to be Non-Terminally Separated (NTS) if and
only if whenever X ∗⇒ αβγ and Y ∗⇒ β, we have that X ∗⇒ αYγ. This
definition implies that if a string occurs as a constituent, then all of
its occurrences are also constituents.

4.1.1 k, l-NTS Grammars

We present a generalization of NTS grammars that relaxes the NTS
condition to introduce the influence of fixed size contexts. In the
generalization, the constituency of an occurrence of a string will not
be determined only by the string itself but also by the context where
it occurs.

Definition 10. Let k, l be two non-negative integers. A grammar G =

〈Σ,N,S,P〉 is k, l-Non-Terminally Separated (k, l-NTS) if, for all X, Y ∈
N, α, β, γ, α ′, γ ′ ∈ (Σ∪N)∗, and (u, v) ∈ Σk × Σl,

X
∗⇒ αuβvγ, Y ∗⇒ β and S ∗⇒ α ′uYvγ ′ implies X ∗⇒ αuYvγ.

A grammar is k, l-Unambiguous NTS (k, l-UNTS) if it is unambiguous
and k, l-NTS.

This definition states that if a string occurs as a constituent in a
context (u, v), then every time it occurs in that context, it has to be
a constituent. In contrast with NTS grammars that have one global
set of constituents, in k, l-NTS there is a set of constituents for each
possible context (u, v) such that (|u|, |v|) = (k, l).

From the definition, it is easy to see that the 0, 0-NTS grammars are
exactly the NTS grammars, and that if a grammar is k, l-NTS, then
it is m,n-NTS for m > k, n > l. So, k, l-NTS grammars conform a

4.1 notation and definitions 47

NTS

1,0-NTS 0,1-NTS

1,1-NTS2,0-NTS 0,2-NTS

.

Figure 4.1: Hierarchy of k, l-NTS classes of grammars. The arrows represent
proper inclusion.

hierarchy of classes of grammars that starts with the NTS grammars.
This hierarchy is strict. For instance, the grammar with productions
P = {S→ akYcl−1,S→ ak+1bcl, Y → b} with l > 0, is k, l-NTS but it
is not k, l− 1-NTS. Fig. 4.1 illustrates the hierarchy, showing the strict
inclusion relationships that hold between the particular classes.

4.1.2 k, l-NTS6 Grammars

We will focus our attention on a particular family of subclasses of
k, l-NTS grammars. Observe that in the definition of k, l-NTS gram-
mars, the Y non-terminals are those that can be derived from S with
contexts of size of at least (k, l). This means that the k, l-NTS condi-
tion does not affect those that have smaller contexts.

In k, l-NTS6 grammars the constituency of the strings will be deter-
mined not only by contexts of size (k, l) but also by smaller contexts
if they occur next to the boundaries of the sentences. We will define
k, l-NTS6 in terms of k, l-NTS and use the following simple grammar
transformation.

Definition 11. Let G = 〈Σ,N,S,P〉 be a CFG, and let u, v ∈ Σ ′∗. Then,
uGv = 〈Σ∪ Σ ′,N∪ {S ′},S ′,P ′〉 is a CFG such that P ′ = P ∪ {S ′ → uSv}.

It is easy to see that L(uGv) = {usv|s ∈ L(G)}.

Definition 12. Let G be a CFG and let • be a new element of the alphabet.
Then, G is k, l-Non-Terminally Separated6 (k, l-NTS6) if and only if
•kG•l is k, l-NTS. A grammar is k, l-Unambiguous NTS6 (k, l-UNTS6)
if it is unambiguous and k, l-NTS6.

The definition says that if we add a prefix •k and a suffix •l to
every element of the language, then the resulting language is k, l-
NTS. Doing this, we guarantee that every substring in the original
language has a context of size (k, l) and therefore is affected by the
k, l-NTS condition.

48 pac-learning k ,l-unts<= grammars

0,0-NTS6

WNTS1,0-NTS6
0,1-NTS6

1,1-NTS6

Figure 4.2: Relationship between the WNTS and the k, l-NTS6 classes of
grammars. The arrows represent proper inclusion.

It is easy to see that 0, 0-NTS6 = 0, 0-NTS = NTS, and that k, l-
NTS6 is a hierarchy, where k, l-NTS6 ⊂ m,n-NTS6 for every m > k,
n > l. It can be seen that this hierarchy is strict using the same
example given for k,l-NTS grammars. Also, it can be proved that
k, l-NTS6 ⊆ k, l-NTS, and that this inclusion is proper if k+ l > 0.

The difference between k, l-NTS and k, l-NTS6 grammars can be
illustrated with the following example. In the grammar G with P =

{S → cba,S → Aa,A → b}, there is no constituent with a context
of size (0, 2) so it is trivially 0, 2-NTS. Instead, in G•2, that has P ′ =
{S ′ → S•2,S→ cba,S→ Aa,A→ b}, every constituent (excluding S ′)
has a context of size (0, 2), in particular S ∗⇒ ba with context (λ, •2),
and A ∗⇒ b with (λ,a•). But these two constituents occur with the
same contexts in S ′ ∗⇒ cba•2, so the 0, 2-NTS6 condition says that
S ′
∗⇒ cS•2 and S ′ ∗⇒ cAa•2 should hold. As this is not true, G is not

0, 2-NTS6.
The WNTS grammars from the previous chapter are related to the

k, l-NTS6 grammars. The relationship is shown in the following
lemma, and is illustrated in Fig. 4.2.

Lemma 2. 0,0-NTS6 ⊂WNTS ⊂ 1,1-NTS6.

Proof. See Appendix B.

4.2 learning algorithm for k , l-unts
6

grammars

In this section we see intuitively how k , l-UNTS6 grammars can
be injectively converted into UNTS grammars. Using this and the
PACCFG algorithm for UNTS grammars from [13], we will define
the learning algorithm k,l-PACCFG.

First, remember that in k , l-UNTS6 the substrings are constituents
or not, depending on the substrings themselves and on the contexts
where they occur, while in UNTS the constituency of the substrings
depends only on the substrings themselves. So, in the conversion of

4.2 learning algorithm for k ,l-unts<= grammars 49

k , l-UNTS6 languages to UNTS languages, we must find a way to
encode into the substrings the context where they are occurring each
time. A way to do this is to add to each letter the context where
it is occurring. To mark the contexts of the letters that are at the
boundaries of the sentences, we will use a new terminal •. So, we
must change the alphabet from Σ to the triplets Σk• × Σ × Σl•, where
Σ• = Σ ∪ {•}. To be more compact, we will write the triplets (u , b , v)
using subscripts, in the form ubv. For instance, with (k , l) = (1 , 1),
the string abc would be mapped to •ab abc bc•. With (k , l) =

(0 , 2), abc would be mapped to abc bc• c••.
This is simply the way to convert a k, l-UNTS6 language into a

UNTS language. We use it in the first step of our algorithm in the
following way:

Algorithm 1 k,l-PACCFG

Input: A sample S. Numbers k, l. Precision ε, confidence δ,
and some other parameters (see section 4.2.2).

Result: A context-free grammar Ĝ.

Steps:

1. Convert S into a new sample S ′ by marking the contexts.

2. Run PACCFG with S ′ and let Ĝ ′ be the resulting grammar.

3. Remove the marks in Ĝ ′ and return the resulting grammar
Ĝ.

In the third step, the removal of contextual marks is done on the
terminals that occur on the rules, that are known to belong to the
alphabet Σk• × Σ× Σl•.

4.2.1 Towards a Proof of PAC-Learnability

At the core of the proof that the presented algorithm k,l-PACCFG
is PAC is the fact that the given conversion effectively results in a
UNTS language. To prove this, we have to give a UNTS grammar that
generates the converted language. In this section we illustrate with
an example our algorithmic procedure to build the UNTS grammar
starting with the original k, l-UNTS6 grammar.

Consider the grammar in Fig. 4.3 (a), that generates the language
{abc,abd, bdc}. It is 1, 1-UNTS6, but it is not UNTS because S ∗⇒
abd and X

∗⇒ ab but S 6 ∗⇒ Xd. The derivation trees are shown in
Fig. 4.3 (a’).

Our aim is to change the rules in order to add the context marks
in the terminals. We must do this consistently, in a way that the

50 pac-learning k ,l-unts<= grammars

resulting grammar generates the desired language. In the example,
the language must be { •ab abc bc•, •bd bdc dc•, •ab abd bd•}.

For instance, to mark the contexts in the terminals of the rule X→
ab, we must first know the contexts where X may appear. Once we
know these contexts, we create a new non-terminal and rule for each
possible context. As X only occurs in the context (•, c), it will result
in a new non-terminal •Xc, and the rule X→ ab will result in a rule
•Xc → •ab abc.

But we come to a problem when we consider rules that have non-
terminals in the right side, as in S → Xc. To mark the left context
of c, we need a new type of information, that is the last letter that
will be generated by X. So, we must also add boundaries marks to
all the non-terminals, this is, the initial and final substrings that the
non-terminals will generate.

Actually, to be able to mark all the contexts in the grammar, we
must first mark completely all the boundaries on the non-terminals.
This marking can be done with a bottom-up procedure that starts at
the terminal rules and then recursively process the other rules using
the already marked non-terminals. The boundaries are marked in
the non-terminals using superscripts. In the example, X → ab and
X → bd are marked as aXb → ab and bXd → bd, and after that
the rule S → Xc is marked in two different ways: aSc → aXbc and
bSc → bXdc. The resulting grammar and derivations for the example
can be seen in Fig. 4.3 (b) and (b’). Just for uniformity, the initial
symbol will be denoted •S•.

Once that all the boundaries have been marked, we can proceed
to mark the contexts. This procedure is done top-down, starting at
the initial symbol with context (•, •). For instance, in the rule aSc →
aXbc we know that the left context of c is b, so it will be marked as
a
•S
c
• → a

•X
b
c bc•. The resulting grammar and derivations are shown

in Fig. 4.3 (c) and (c’).
In Sect. 4.3 we will formally define this procedure, and prove that

the resulting grammar has a language that is equal to the converted
language, and that if the original grammar is k, l-UNTS6, then the
resulting grammar is UNTS.

As in [13], to prove that the algorithm is PAC we will assume that
the samples are generated by a PCFG. So, we will have to generalize
the procedure to PCFGs in a way that the probabilities distributions
are preserved.

4.2.2 Parameters and Bounds

The two standard main parameters of a PAC-learning algorithm
are the precision ε and the confidence δ [5]. The precision determines
how close the induced instance will be to the hidden instance, and the
confidence determines with how much probability. These parameters

4.2 learning algorithm for k ,l-unts<= grammars 51

(a)

S → Xc

S → aY

X → ab

X → bd

Y → bd

S

cX

ba

S

cX

db

S

Y

db

a

(b)
•S• → aSc

•S• → aSd

•S• → bSc

aSc → aXbc

aSd → a bYd

bSc → bXdc

aXb → ab

bXd → bd

bYd → bd

•S•

aSc

caXb

ba

•S•

bSc

cbXd

db

•S•

aSd

bYd

db

a

(c)
•
•S
•
• → a

• S
c
•

•
•S
•
• → b

•S
c
•

•
•S
•
• → a

• S
d
•

a
• S
c
• → a

•X
b
c bc•

b
•S
c
• → b

•X
d
c dc•

a
• S
d
• → •ab

b
aY
d
•

a
•X
b
c → •ab abc

b
•X
d
c → •bd bdc

b
aY
d
• → abd bd•

•
•S
•
•

a
• S
c
•

bc•
a
•X
b
c

abc•ab

•
•S
•
•

b
•S
c
•

dc•
b
•X
d
c

bdc•bd

•
•S
•
•

a
• S
d
•

b
aY
d
•

bd•abd

•ab

Figure 4.3: Example of conversion of a grammar (a) first adding the bound-
aries (b) and then adding the contexts (c).

52 pac-learning k ,l-unts<= grammars

are commonly used in the body of the algorithm and in the definition
of the sample complexity. The sample complexity is the minimum
number of samples required to guarantee that the algorithm achieves
a given precision and confidence [5].

In PACCFG, there is a set of additional parameters that stratify
the learning problem, stating properties that are assumed to be sat-
isfied by the underlying UNTS PCFGs. There must be known upper
bounds for the number of non-terminals, n, for the number of pro-
ductions, p, and for the length of the right side of the productions,
m. There are also parameters that specify distributional properties.
There must be a known upper bound L for the expected number of
substrings, and there must be known µ1, ν and µ2 such that the un-
derlying PCFGs are µ1-distinguishable, ν-separable and µ2-reachable.
The sample complexity for PACCFG is a function of all these param-
eters N(µ1,µ2,ν,n,p,m,L, δ, ε). The exact formula for N is rather
complex and is not of special interest. We just observe that N is
O(n+p
εµm1 µ

2
2ν
2). We refer the reader to [13] for the details of the pa-

rameters of PACCFG and for the definition of µ1-distinguishability,
ν-separability and µ2-reachability.

As our algorithm k,l-PACCFG is defined in terms of PACCFG, it
also stratifies the learning problem. We will assume that the under-
lying k, l-UNTS6 PCFGs have the mentioned bounds n,p,m and L,
and a new bound o for the number of non-terminals in the right
sides (o 6 m). Knowing these bounds, it is possible to compute the
corresponding bounds for the UNTS PCFGs that are the result of con-
verting the k, l-UNTS6 PCFGs with the process described in Sect. 4.2.
We will show this in Sect. 4.3.

There will be a different treatment for the parameters µ1, ν and
µ2. We will directly assume that the k, l-UNTS6 PCFGs are such that,
when converted, the resulting UNTS PCFGs are µ1-distinguishable,
ν-separable and µ2-reachable.

4.3 proof of pac-learnability

In this section we give the formal elements required to prove that
our algorithm is PAC. In the first place, we show how to convert a
CFG using the Left Marked Form and then the Right Contextualized
Grammar. Then we show that when these conversions are applied to
a k, l-UNTS6 grammar with l > 0, they return a k, l−1-UNTS6 gram-
mar. Then, we extend the conversion procedure to PCFGs, showing
that the distributions are preserved. Finally, we see that these results
give a conversion from k, l-UNTS6 to UNTS PCFGs and prove that
our algorithm is PAC.

4.3 proof of pac-learnability 53

4.3.1 The Left Marked Form of a Grammar

The Left Marked Form of a grammar adds a mark to each non-
terminal that states which is the first terminal it generates, without
changing the shape of the rules and the generated language. It is
constructed using a recursive bottom-up procedure as described intu-
itively in Sect. 4.2.

Definition 13. Let G = 〈Σ,N,S,P〉 be a CFG. Let G ′i = 〈Σ,N ′i,
•S,P ′i〉,

i > 0 be such that

N ′i = { •S}∪ { aX| aX→ α ∈ P ′i}
P ′0 = { aX→ as|X→ as ∈ P}

P ′n+1 = { aX→ u1
a1X1u2 . . . um

amXmum+1|∀i aiXi ∈ N ′n and

X→ u1X1u2 . . . umXmum+1 ∈ P and

a = (u1)0 if u1 6= λ,a = a1 otherwise }∪
{ •S→ aS| aS ∈ N ′n}

If there exists k such that G ′k+1 = G
′
k, the Left Marked Form (LMF) of G

is the grammar G ′ = G ′k.

Lemma 3. The LMF always exists and is unique.

Proof. See Appendix B.

The sequence of grammars G ′0,G ′1, . . . represents the steps in the
procedure. Lemma 3 states that this procedure converges. The fol-
lowing lemmas state the fundamental properties of the LMF.

Lemma 4. Let G be a CFG and G ′ its LMF. Then, for all X,m > 0,
u1, . . . ,um+1, X1, . . . ,Xm,

X
∗⇒G u1X1u2 . . . umXmum+1

if and only if

there exist a1, . . . ,am such that aX ∗⇒G ′ u1 a1X1u2 . . . um amXmum+1

with a = (u1)0 if u1 6= λ,a = a1 otherwise.

Proof. See Appendix B for a sketch.

Lemma 5. L(G ′) = L(G).

Proof. Corollary of Lemma 4 for the case m = 0 and X = S.

For the parameter conversion of Sect. 4.2.2, we must observe that if
n,p and o are bounds for G, then n ′ = n|Σ|+ 1, p ′ = p|Σ|o and o ′ = o
are bounds for G ′.

54 pac-learning k ,l-unts<= grammars

4.3.2 The Right Contextualized Grammar of a Grammar

The Right Contextualized Grammar adds a mark to each terminal
that says which terminal goes next, while preserving the shape of
the rules. As we saw intuitively in Sect. 4.2, it uses the LMF and
is constructed with a recursive top-down procedure. The procedure
involves changing the right side of the LMF rules to add the right
contexts. To do this we use the following definition.

Definition 14. Let G be a CFG and G ′ its LMF. Let α ∈ (Σ ∪N ′)∗ and
b ∈ Σ. Then, the right-contextualization of α with final context b,
rcb(α), is recursively defined by

rcb(λ) = λ

rcb(αa) = rca(α)ab

rcb(α
aX) = rca(α)

aXb

The right-contextualization of a language L is rc(L) = {rc•(s)|s ∈ L}.

Definition 15. Let G = 〈Σ,N,S,P〉 be a CFG and G ′ = 〈Σ,N ′, •S,P ′〉 its
LMF. Let G ′′i = 〈Σ× Σ,N ′′i , •S•,P ′′i 〉, i > 0 be such that

N ′′n = { •S•}∪ { aXb| cYd → α aXbβ ∈ P ′′n}
P ′′0 = ∅

P ′′n+1 = { aXb → rcb(α)|
aXb ∈ N ′′n and aX→ α ∈ P ′}

If there exists k such thatG ′′k+1 = G
′′
k , the Right Contextualized Grammar

(RCG) of G is the grammar G ′′ = G ′′k .

Lemma 6. The RCG always exists and is unique.

Proof. Analogous to proof of Lemma 3.

The following lemmas state the fundamental properties of the RCG.

Lemma 7. Let G be a CFG, G ′ its LMF and G ′′ its RCG. Then, for all
a,b,X,α, aXb

∗⇒G ′′ α if and only if there is α0 such that α = rcb(α0)

and aX
∗⇒G ′ α0.

Proof. Proof sketch analogous to proof sketch of Lemma 4 in Ap-
pendix B.

Lemma 8. L(G ′′) = rc(L(G)).

Proof. Corollary of Lemma 7 for the case aXb = •S• and α ∈ Σ∗ (also
using Lemma 5).

For the parameter conversion of Sect. 4.2.2, we must observe that
if n ′,p ′ and o ′ are bounds for G ′, then n ′′ = (n ′ − 1)(|Σ| + 1) + 1,
p ′′ = p ′(|Σ|+ 1) and o ′′ = o ′ are bounds for G ′′.

4.3 proof of pac-learnability 55

4.3.3 Converting k, l-UNTS6 Grammars

Lemma 9. Let G be a k, l-NTS6 grammar. Then, its LMF G ′ is also k, l-
NTS6.

Proof. See Appendix B for a sketch.

Lemma 10. Let G be a k, l-UNTS6 grammar with l > 0. Then, its RCG
G ′′ is k, l− 1-UNTS6.

Proof sketch. Here we only show the proof that G ′′ is k, l− 1-NTS6,
omitting the unambiguity part. Unambiguity is not difficult but cum-
bersome in notation. Let H ′ = •kG ′•l and H ′′ = •kG ′′•l−1. Then, we
must prove that H ′′ is k, l− 1-NTS knowing that H ′ is k, l-NTS.

Suppose that

aXb
∗⇒H ′′ αuβvγ,

cYd
∗⇒H ′′ β and

•S•
∗⇒H ′′ α ′u cYdvγ ′, with |u| = k, |v| = l− 1.

We have to show that aXb
∗⇒H ′′ αu cYdvγ. To do this, we must try to

generate the three conditions over H ′ that let us apply the hypothesis
that it is k, l-NTS.

First, we see that if cYd = •S•, then everything is λ except β that
has the form •kβ ′•l−1, so aXb is also •S•, aXb

∗⇒H ′′ αu cYdvγ is
equivalent to •S•

∗⇒H ′′ •S• and we are done with the proof. So, we
can continue assuming cYd 6= •S•.

Condition 1: It is derived from aXb
∗⇒H ′′ αuβvγ but will not

talk about aX. Instead, we will go back to •S• using that there
are α ′′,γ ′′ such that •S•

∗⇒H ′′ α ′′ aXbγ ′′
∗⇒H ′′ α ′′αuβvγγ ′′.

Moving this derivation to G ′′, applying Lemma 7 to go to G ′,
and adding again the • markers to go to H ′, we can see that
•S
∗⇒H ′ α ′′0α0u0β0v0γ0γ ′′0 •. We still do not have the desired

condition because we need a right context of size l.

Condition 2: Since cYd 6= •S•, then β does not have any •, and
also in G ′′ cYd

∗⇒G ′′ β. Using Lemma 7, we have cY
∗⇒G ′ β0

and also in H ′ cY ∗⇒H ′ β0, so we have the second condition.

Condition 3: Using that •S•
∗⇒H ′′ α ′u cYdvγ ′ and applying the

same arguments used in the first condition we can see that
•S
∗⇒H ′ α ′0u0 cYv0γ ′0•. Again, we still need to find a right con-

text of size l.

Conditions 1 and 3: In order to find the correct right context
for both conditions we start observing that either γ0γ ′′0 and γ ′0
must be both λ, or both must derive the same first terminal e.
In the first case the right context will be v0• and in the second

56 pac-learning k ,l-unts<= grammars

case it will be v0e, and in both cases we will have the desired
conditions.

Having the conditions, we apply the hypothesis to obtain in H ′ a
derivation of the form •S

∗⇒H ′ α ′′0α0u0 cYv0eδ0. Moving to G ′, apply-
ing Lemma 7 to go to G ′′ and then to H ′′ adding again the • markers,
we have that •S•

∗⇒H ′′ α ′′αu cYdvefδ for some f. Now, in H ′′ we have
two different ways to derive the same thing:

•S•
∗⇒

{
∗⇒ α ′′αu cYdvefδ

∗⇒
∗⇒ α ′′ aXbγ

′′ ∗⇒ α ′′αuβvγγ ′′
∗⇒

}
∗⇒ α ′′αuβvefδ

Since H ′′ is unambiguous, these two derivations must be the same
tree, enforcing aXb

∗⇒H ′′ αu cYdvγ.

4.3.4 Extending the results to PCFGs

In this section we extend the definitions of Left Marked Form and
Right Contextualized Grammar to PCFGs so that the probabilities of
the derivations are preserved.

In the case of the LMF, the derivations have the same tree structure
as in the original grammar but using an additional initial rule of the
form •S→ aS. So, if every rule that comes from a rule of the original
grammar takes the same probability as the original rule, and all the
new initial rules have probability 1, the probabilities of the deriva-
tions will be preserved. The problem is that we will not end up with
a PCFG but a Weighted CFG (WCFG), because the probabilities of
the rules for •S may sum more than 1 and the rules for the other non-
terminals may sum less than 1. For instance, the rules A

p1→ a,A
p2→ b

will be mapped to the non-PCFG rules aA
p1→ a, bA

p2→ b. To solve
this, we can use the renormalization formula presented in [2] to con-
vert the WCFG back to a PCFG with the same language probability
distribution.

Fortunately, in the case of the RCG the derivations have the same
tree structure as in the LMF, and every rule comes from a rule of the
LMF, so the probabilities can be directly propagated. Despite the fact
that the non-terminals are more granular, in this case we always end
up with a PCFG without the need of renormalization. The LMF rules
aA

p1→ α1, . . . , aA
pn→ αn will be mapped in the RCG to several sets of

rules of the form aAb
p1→ rcb(α1), . . . , aAb

pn→ rcb(αn), each set with
a different b, and each set summing 1.

All these observations are summarized in the following definition
and lemma:

Definition 16. Let G be a PCFG with production probability π.

4.3 proof of pac-learnability 57

The Left Marked Form (LMF) of G is the PCFG G ′ with production
probability π ′ such that

π ′(aX→ α) = w ′(aX→ α)

∏
i ‖(α)i‖
‖ aX‖

where

w ′(aX→ α) =


1 if aX = •S

π(X→ u1X1u2 . . . unXnun+1) otherwise,

where α = u1
a1X1u2 . . . un

anXnun+1

and
‖ aX‖ =

∑
s

Ww ′(
aX
∗⇒G ′ s)

for aX ∈ N ′ and ‖a‖ = 1 for a ∈ Σ.
The Right Contextualized Grammar (RCG) of G is the PCFG G ′′ with

production probability π ′′ such that

π ′′(aXb → rcb(α)) = π
′(aX→ α).

In this definition, Ww ′ refers to the weight of a derivation where
the weights of the rules are given by w ′ [2].

Lemma 11. Let G be a PCFG, G ′ its LMF and G ′′ its RCG. Then, for every
s ∈ L(G), PG(s) = PG ′(s) = PG ′′(rc•(s)).

4.3.5 The Theorems

We will call markk,l to the function that marks the contexts of a
language in Σ∗, and unmarkk,l to the function that unmarks the con-
texts. For convenience, the domain of unmark will be any language
in (Σk• × Σ× Σl•)∗, not only the ones that are the result of marking a
language.

Theorem 4. Let G be a k, l-UNTS6 PCFG. Then, there is a UNTS PCFG
G ′ such that

1. L(G ′) = markk,l(L(G)),

2. and for every s ∈ L(G), PG(s) = PG ′(markk,l(s)).

Proof sketch. Do induction on k and l, starting with k = l = 0, then
continuing with k = 0, l > 0 using the RCG, and finally with k, l > 0,
using a symmetric version of the RCG. See Appendix B for a detailed
proof.

Theorem 5. Given δ and ε, there is N such that, if S is a sample of a k, l-
UNTS6 PCFG G with |S| > N, then with probability greater than 1− δ,
Ĝ = k,l-PACCFG(S) is such that

58 pac-learning k ,l-unts<= grammars

1. L(Ĝ) ⊆ L(G), and

2. PG(L(G) − L(Ĝ)) < ε.

Proof. Let G ′ be the UNTS conversion of G. If the known bounds
for G are of n,p,m,o and L, the corresponding bounds for G ′ are
n ′ = n(|Σ|(|Σ|+ 1))k+l + 1, p ′ = p|Σ|(k+l)o(|Σ|+ 1)k+l, m ′ = m and
L ′ = L.

Let N = N(µ1,µ2,ν,n ′,p ′,m ′,L ′, δ, ε), and suppose that |S| > N.
As defined in step 1 of the k,l-PACCFG algorithm, S ′ is a sample
of G ′ and |S ′| = |S| > N. Then, by Clark’s PAC-learning theorem,
step 2 returns Ĝ ′ that with probability 1 − δ, L(Ĝ ′) ⊆ L(G ′), and
PG ′(L(G

′) − L(Ĝ ′)) < ε. Now, let Ĝ be the result of step 3. Then,

L(Ĝ) = unmarkk,l(L(Ĝ ′))

⊆ unmarkk,l(L(G
′)) (with probability 1− δ)

= L(G).

Also, markk,l(L(Ĝ)) = L(Ĝ ′) with probability 1− δ because L(Ĝ ′) ⊆
L(G ′) = markk,l(L(G)) with the same probability. So,

PG(L(G) − L(Ĝ)) = PG ′(markk,l(L(G) − L(Ĝ)))

= PG ′(markk,l(L(G)) −markk,l(L(Ĝ)))

= PG ′(L(G
′) −markk,l(L(Ĝ)))

= PG ′(L(G
′) − L(Ĝ ′)) (with probability 1− δ)

< ε.

4.4 discussion

As the results presented here are heavily based in the results of
[13], the discussion section of that paper applies entirely to our work.

The sample complexity of our learning algorithm is

O

(
n ′ + p ′

εµm
′

1 µ22ν
2

)
= O

(
n|Σ|2(k+l) + p|Σ|(k+l)(o+1)

εµm1 µ
2
2ν
2

)
.

As pointed in [13], the m exponent is worrying, and we can say the
same about the o exponent. A small restriction on the UNTS gram-
mars can guarantee conversion to CNF preserving the UNTS prop-
erty, giving 2 > m > o. However, it is not clear to us how this
restriction affects the k, l-UNTS6 grammars.

In this work we directly assume known values of µ1, ν and µ2
for the converted UNTS grammars. We do this because these val-
ues can not be computed from the corresponding values for the orig-
inal k, l-UNTS6 grammars as can be done with the other parame-

4.4 discussion 59

ters. We can define new ad-hoc properties that when valid over k, l-
UNTS6 grammars imply µ1-distinguishability, ν-separability and µ2-
reachability over the converted grammars. However, these properties
are in essence equivalent to the given assumptions.

We could not use our approach to prove PAC-learnability of all
the k, l-UNTS languages. Using a modified version of the conversion
process we could show that k, l-UNTS languages with k+ l > 0 can be
converted to 0, 1; 1, 0 or 1, 1-UNTS. However, we could not manage to
give a conversion to UNTS, and we believe it is actually not possible.
Anyway, PAC-learnability of k, l-UNTS languages is not of special
interest to us because we find k, l-UNTS6 more suitable to model
natural language.

Part III

N O N - D E T E R M I N I S T I C D E P E N D E N C Y
PA R S I N G

5
A S P E C T R A L A L G O R I T H M F O R M O D E L I N G
M O D I F I E R S E Q U E N C E S

Split Head-Automata Grammars (SHAGs) [22] use head-modifier
sequence modeling to generate dependency structures. In SHAGs,
the modifier sequences are modeled by a collection of probabilistic
deterministic automata.

In this chapter we present modifier sequence modeling using, prob-
abilistic non-deterministic finite state automata (PNFA) which we
parametrize using the operator model representation. This represen-
tation allows us to use simple spectral algorithms for estimating the
model parameters from a dependency treebank. In all previous work,
the algorithm used to induce hidden structure requires running re-
peated inference on training data—e.g. split-merge algorithms, or
EM algorithms. In contrast, the spectral method we use is simple and
very efficient —parameter estimation is reduced to computing some
corpus statistics, performing SVD and inverting matrices.

5.1 notation and definitions

5.1.1 Head-Automata Dependency Grammars

In this work we use Split-Head Automata Grammars (SHAGs) [22,
21], a context-free grammatical formalism whose derivations are pro-
jective dependency trees. We will use xi:j = xixi+1 . . . xj to denote
a sequence of symbols xt with i 6 t 6 j. A SHAG generates sen-
tences x0:n, where symbols xt ∈ X with t > 1 are regular words and
x0 = ? 6∈ X is a special root symbol. Let X̄ = X ∪ {?}. A derivation
y, i.e. a dependency tree, is a collection of head-modifier sequences
〈h,d,m1:T 〉, where h ∈ X̄ is a word, d ∈ {left, right} is a direction,
and m1:T is a sequence of T words, where each mt ∈ X is a modifier
of h in direction d. We say that h is the head of each mt. Sequences
m1:T are ordered head-outwards, i.e. among m1:T , m1 is the word
closest to h in the derived sentence, and mT is the furthest. A deriva-
tion y of a sentence x0:n consists of a left and a right head-modifier
sequence for each xt. As special cases, the left sequence of the root
symbol is always empty, while the right one consists of a single word

63

64 a spectral algorithm for modeling modifier sequences

corresponding to the head of the sentence. We denote by Y the set of
all valid derivations.

Assume a derivation y contains 〈h, left, m1:T 〉 and 〈h, right,
m ′1:T ′〉. Let L(y,h) be the derived sentence headed by h, which can
be expressed as L(y,mT) . . .L(y,m1) h L(y,m ′1) . . .L(y,m ′T ′).

1 The
language generated by a SHAG are the strings L(y, ?) for any y ∈ Y.

In this thesis we use probabilistic versions of SHAGs where the
probabilities of head-modifier sequences in a derivation are indepen-
dent of each other,

P(y) =
∏

〈h,d,m1:T 〉∈y

P(m1:T |h,d) . (5.1)

In the literature, standard arc-factored models further assume that

P(m1:T |h,d) =
T+1∏
t=1

P(mt|h,d,σt) , (5.2)

where mT+1 is set as a special stop word, and σt is the state of
a deterministic automaton generating m1:T+1. For example setting
σ1 = first and σt>1 = rest corresponds to first-order models, while
setting σ1 = null and σt>1 = mt−1 corresponds to sibling models
[21, 41, 40].

5.1.2 Operator Models

An operator model F of size S consists of a set of operator matrices,
namely: for each x ∈ X, a matrix Ax ∈ RS×S; and two vectors α1 ∈
RS and α∞ ∈ RS. The automaton F computes a function f : X∗ → R

as follows:

f(x1:T) = α
>∞ AxT · · · Ax1 α1 . (5.3)

Operator models have had numerous applications. For example,
they can be used as an alternative parametrization of the function
computed by an HMM [28]. Consider an HMM with S hidden states
and initial-state probabilities π ∈ RS, transition probabilities T ∈
RS×S, and observation probabilities Ox ∈ RS×S for each x ∈ X, with
the following meaning:

π(i) is the probability of starting at state i.

T(i, j) is the probability of transitioning from state j to state i.

Ox is a diagonal matrix, such that Ox(i, i) is the probability of
generating symbol x from state i.

1 Throughout this chapter we assume we can distinguish the words in a derivation,
irrespectively of whether two words at different positions correspond to the same
symbol.

5.2 learning operator models 65

Given an HMM, an equivalent operator model can be defined by
setting α1 = π, Ax = TOx and α∞ = ~11:S. To see this, let us show that
the computation in Eq.5.3 implements the forward algorithm. Let σt
denote the state of the HMM at time t. Consider a state-distribution
vector αt ∈ Rm, where αt(i) = P(x1:t−1,σt = i). Initially α1 = π

by definition of π. At each step in the chain of products of Eq.5.3,
αt+1 = Axt αt updates the state distribution from positions t to t+ 1
by applying the appropriate operator, i.e. by emitting symbol xt and
transitioning to the new state distribution. The probability of x1:T
is given by

∑
i αT+1(i). Hence, Ax(i, j) is the probability of moving

generating symbol x and moving to state i given that we are at state
j.

An HMM is only an example of the distributions that can be pa-
rameterized by an operator model. In general the operator models
can parameterize any PNFA, where probabilities of the model are as-
sociated to emmiting a symbol from a state and moving to the next
state.

The advantage of working with operator models is that, under cer-
tain mild assumptions on the operator parameters, there exist algo-
rithms that can estimate the operators from observable statistics of the
input sequences. These algorithms are extremely efficient and are not
susceptible to local minima issues. See [28] for theoretical proofs of
the learnability of HMMs under the operator model representation.

5.2 learning operator models

For each possible head h in the vocabulary X̄ and each direction d ∈
{left, right} we have an operator model that computes probabilities
of modifier sequences, as follows:

P(m1:T |h,d) = (αh,d∞)> Ah,d
mT
· · · Ah,d

m1
αh,d
1 . (5.4)

To learn the model parameters, namely αh,d
1 , Ah,d

m and αh,d∞ , we use
spectral learning methods based on the work of [28].

The main challenge of learning an operator model is to infer the
hidden-state space from observable quantities, i.e. quantities that can
be computed from the distribution of sequences that we observe. As
it turns out, we can not recover the actual hidden-state space used
by the operators we wish to learn. The key insight of the spectral
learning method is that we can recover a hidden-state space that cor-
responds to a projection of the original hidden space. Such projected
space is equivalent to the original one in the sense that we can define
operators in the projected space that parameterize the same probabil-
ity distribution over sequences.

In the rest of this section we describe an algorithm to learn an
operator model. We will assume a fixed head word and direction, and
drop h and d from all terms. Hence, our goal is to learn the following

66 a spectral algorithm for modeling modifier sequences

distributon, parameterized by operators α1, Am for all m ∈ X, and
α∞:

P(m1:T) = (α∞)> AmT
· · · Am1

α1 . (5.5)

5.2.1 Preliminary Definitions

We start by defining some probability matrices over sequences of
the language. For convenience, assume that X = {1, . . . , l}, so that we
can index vectors and matrices by symbols in X. We define P ∈ Rl×l

as a matrix of marginal probabilities over bigrams of modifiers for a
given head and direction. That is, for any two symbols a,b ∈ X:

P(b,a) = P(mt=a,mt+1=b) .

In the following, we use x = xi:j ∈ X∗ to denote sequences of
symbols, and we use Axi:j as a shorthand for Axj · · ·Axi . We can
express P as

P(b,a) =
∑
p∈X∗

∑
s∈X∗ P(p a b s)

=
∑
p∈X∗

∑
s∈X∗ α

>∞ As Ab Aa Ap α1
= α>∞ (∑s∈X∗ As Ab) (Aa∑p∈X∗ Ap)α1
= B(b) F(a)>

(5.6)

In the last step we have used the following definitions:

F ∈ Rl×S is a matrix of marginal forward states for each symbol
a ∈ X. That is, the row for a contains the sum of hidden-state
vectors after generating prefixes that end with a. Formally,

F(a) =
(
Aa

(∑
p∈X∗ Ap

)
α1

)>
B ∈ Rl×S is a matrix of marginal backward states for each sym-
bol a ∈ X. That is, the row for a contains the sum of hidden-
state vectors that generate suffixes that start with a. Formally,

B(a) = α∞ (∑s∈X∗ As)Aa
With the definitions of F and B, it is easy to see that P = B F>.

Let us now define matrices Pb ∈ Rl×l for each symbol b ∈ X of
marginal probabilities over trigrams of modifiers. That is, for any
three symbols a,b, c ∈ X:

Ph,d
b (c,a) = P(mt−1=a,mt=b,mt+1=c | h,d) .

Using a similar derivation as above, we get that:

Pb(c,a) =
∑
p∈X∗

∑
s∈X∗ P(p a b s)

=
∑
p∈X∗

∑
s∈X∗ α

>∞ As Ac Ab Aa Ap α1
= B(c) Ab F(a)

>

(5.7)

5.2 learning operator models 67

Finally, let p1 ∈ Rl and p∞ ∈ Rl be the marginal probability vectors
over symbols starting or ending sequences of the language: p1(a) =
P(m1 = a) and p∞(a) =

∑
T>1P(mT = a). It is easy to see that

p1 = B α1 and p∞ = α>∞ FT .

5.2.2 Inducing a Hidden-State Space

We now turn into inducing the hidden space RS where values B(a)
and F(a) live. We know that P = B F>, however we can not recover
this particular factorization from observable quantities. This is be-
cause there are multiple ways of factorizing P into matrices Rl×S and
RS×l.

The key insight from the theory behind these methods is that we do
not need to know this particular factorization to estimate the param-
eters of the distribution. We can use other factorizations of P that can
be recovered (i.e. they are unique) to estimate operators that define
the same distribution.

More precisely, we will use a thin SVD decomposition of P =

UΣV>. We can think of the rows of U ∈ Rl×S as projected backward-
state vectors, and of the columns of ΣV> = U>P ∈ RS×l as projected
forward-state vectors. Such projected backward and forward vectors
are in a hidden-state space that is not the same as in the original
distribution, but they can be used to compute the same distribution.

We can give an intuitive representation of this state space by look-
ing at U>P. The columns of this matrix are computed in two steps.
First we take the a-th column of P, which describes a by listing the
marginal probability of ab for each symbol b. Second, we take the
inner-product between this vector and each of the columns ofU. Thus
we can think of the columns of U as centroids that define a soft-
partitioning of the space of into S classes.

5.2.3 Recovering Observable Operators

With the SVD factorization, we want to find, for every symbol a ∈
X, an operator Âx such that Px = UÂx(U

>P). We can recover the
operator as follows:

Âx = U>Px(U
>P)+ (5.8)

= U>BAxF
>(U>BF>)+ (5.9)

= (U>B)Ax(U
>B)+ (5.10)

= Q AxQ
+ (5.11)

Thus, using the SVD factorization we can recover operators Âx,
which correspond to a projection of the original operators using Q =

U>B.

68 a spectral algorithm for modeling modifier sequences

Algorithm 2 LearnOperatorSHAG

Input:

X : an alphabet

train = {〈h1,d1,m11:T 〉, . . . , 〈hn,dn,mn1:T 〉} : a training set with
n head-modifier sequences

S : number of hidden states

Output:

Observable operators α̂h,d
1 , α̂h,d∞ and Âh,d

x for all h ∈ X̄, d ∈
{left, right}, x ∈ X

For each h ∈ X̄ and d ∈ {left, right}:

1. Use train to compute an empirical estimate of the probability
matrices p1, p∞ , P, and Pm for each m ∈ X

2. Let P = UΣV>. Take U to be the matrix of top S left singular
vectors of P

3. Compute the observable operators for h and d:

α̂h,d
1 = Up1,

(α̂h,d∞)> = p∞ (U>P)+
Âh,d
m = U>Pm(U>P)+ for each m ∈ X

The initial and end operators are given by:

α̂1 = Up1 = U
>B α1 = Q α1 (5.12)

α̂>∞ = p∞ (U>P)+ (5.13)

= α>∞ F>(U>BF>)+ = α>∞ Q+ (5.14)

With these observable operators we can compute probabilities for
sequences that are equivalent to the original model (because when
we combine operators the factors (Q+Q) cancel out):

P(m1:T) = α̂>∞ ÂmT
· · · Âm1

α̂1

= (α∞)>Q+QAmT
Q+ · · ·QAm1

Q+Qα1

= (α∞)> AmT
· · · Am1

α1 (5.15)

Algorithm 2 presents pseudocode for a spectral learning algorithm
to learn the operators of a SHAG, using training head-modifier se-
quences. Note that each operator model in the SHAG is learned
separately. The running time of the algorithm is dominated by two
computations. First, a pass over the training sequences to compute

5.3 experiments 69

probability matrices over unigrams, bigrams and trigrams. Second,
SVD and matrix operations to create the operators, which run in cu-
bic time in the number of symbols l. However note that if matrices
are sparse there exist more efficient methods.

5.3 experiments

In the experiments, our aim is to learn natural language models
using the spectral algorithm, and to do both a quantitative and a
qualitative evaluation of them. The quantitative evaluation is done in
the next chapter using the models in parsing tasks. The qualitative
evaluation is done in this chapter, by training and analyzing fully
unlexicalized models, i.e., models over part-of-speech tag sequences.

The corpus we use for the experiments is the dependency version
of the English WSJ Penn Treebank [37]. The dependency trees are
obtained from the original constituent trees by means of a set of head-
finding rules [17]. We train SHAG models using the standard WSJ
training sections (2 to 21). As the models are unlexicalized, we learn
one operator model for each POS tag and direction, using as input the
POS modifier sequences observed for that head and direction in the
training set. Table 5.1 shows some general statistics for the modifier
sequences of the different POS tag and directions in the WSJ training
sections.

The purpose of the qualitative analysis is to see what information
is encoded in the models learned by the spectral algorithm. However,
hidden state spaces are hard to interpret, and this situation is much
worse if the operators are projected into a non-probabilistic space, as
in our case. To do the analysis, we build DFAs that approximate the
behaviour of the non-deterministic models when they generate highly
probable sequences. The DFA approximations allows us to observe
in a simple way some linguistically relevant phenomena encoded in
the states, and to compare them with manually encoded features of
other models.

The next section describes the DFA approximation construction
method. Then, in the following section, we analyze two of the most
important operator models for the WSJ in terms of the number of
dependencies, namely, the models for (NN, left) and (VBD, right). We
use

5.3.1 DFA Approximation

Consider the space RS where the forward-state vectors lie. Gen-
erating a modifier sequence corresponds to a path through the S-
dimensional state space. We cluster sets of forward-state vectors in
order to create a DFA approximation that we can use to visualize the
phenomena captured by the state space.

70 a spectral algorithm for modeling modifier sequences

Head Dir. # Mods. Avg. len. Max. len. # Voc. Top 5 modifiers

NN left 159869 1.2 21 44 DT JJ NN NNP CD

IN right 100776 1.0 9 44 NN NNS NNP CD VBD

NNS left 73787 1.2 19 42 JJ NN DT CD NNP

VBD right 65158 2.2 12 40 . IN NN VBN ,

NNP left 53066 0.6 53 38 NNP DT , CC NN

VBD left 47675 1.6 13 40 NN , NNP NNS PRP

NN right 45127 0.3 9 38 IN , WDT VB VBN

VBZ right 40611 1.9 15 39 . NN VBN IN RB

ROOT left 39832 1.0 1 29 VBD VBZ VBP MD NN

VB right 38160 1.4 11 41 NN IN NNS VB VBN

VBZ left 34089 1.6 10 42 NN , NNP PRP RB

VBN right 23258 1.2 12 39 IN NN VB RB VBN

VBP right 23070 1.8 10 40 . VBN IN RB NN

NNS right 19866 0.3 12 38 IN , VBN WDT VBG

VBP left 19024 1.5 12 40 NNS PRP , RB IN

VBG right 18023 1.2 14 39 IN NN NNS VB TO

VB left 16197 0.6 9 37 TO NNS RB NN PRP

MD right 15878 1.6 11 25 VB . RB ” CC

POS left 15255 1.8 7 29 NNP NN DT NNS JJ

MD left 14762 1.5 12 38 NN PRP , NNS IN

$ right 12013 1.6 11 26 CD IN -RRB- , JJ

NNP right 10703 0.1 12 33 , IN CD WDT WP

TO right 8927 0.4 6 36 NN NNS CD NNP $

JJ left 6982 0.1 11 37 RB JJ CC DT RBR

CD left 6238 0.2 18 35 CD $, DT CC

RB right 5689 0.2 9 37 IN RB CD NN TO

JJ right 5089 0.1 9 34 IN VB TO NNP CC

IN left 4141 0.0 7 34 RB JJ JJR , IN

WDT right 3995 0.9 4 18 VBZ VBD VBP MD NN

$ left 2677 0.4 10 26 IN RB CD $ -LRB-

WP right 2302 1.0 5 21 VBD VBZ VBP MD VB

NNPS left 2287 0.9 21 26 NNP DT JJ CC NNPS

WRB right 2171 1.0 5 24 VBD VBZ VBP MD JJ

VBN left 2154 0.1 11 33 RB NN NNS , CC

CD right 1995 0.1 7 32 IN , RB NN -RRB-

RB left 1620 0.1 12 31 NN NNS , RB IN

DT right 1315 0.0 6 28 IN VBZ CD VBD WP

VBG left 1156 0.1 6 34 RB NN NNS DT NNP

JJR left 802 0.2 6 24 RB CC NN DT JJR

JJR right 577 0.2 5 23 IN VB TO CC NN

WP$ right 448 2.7 9 25 NN NNS VBD VBZ VBP

DT left 364 0.0 12 22 CC NNS , PRP RB

. . .

Table 5.1: General statistics for training modifier sequences of the WSJ de-
pendency corpus. Sorted by total number of modifiers.

5.3 experiments 71

To build a DFA, we compute the forward vectors corresponding
to frequent prefixes of modifier sequences of the development set.
Then, we cluster these vectors using a Group Average Agglomera-
tive algorithm using the cosine similarity measure [36]. This simi-
larity measure is appropriate because it compares the angle between
vectors, and is not affected by their magnitude (the magnitude of
forward-vectors decreases with the number of modifiers generated).
Each cluster i defines a state in the DFA, and we say that a sequence
m1:t is in state i if its corresponding forward vector at time t is in
cluster i.

The transitions in the DFA are defined using a procedure that looks
at how sequences traverse the states. If a sequence m1:t is at state i
at time t− 1, and goes to state j at time t, then we define a transition
from state i to state j with label mt. This procedure may require
merging states to give a consistent DFA, because different sequences
may define different transitions for the same states and modifiers.
After doing a merge, new merges may be required, so the procedure
must be repeated until a DFA is obtained.

Fig. 5.1 illustrates the DFA construction process showing fictitious
forward vectors in a 3 dimensional space. The forward vectors cor-
respond to the prefixes of the sequence “JJ JJ DT END”, a frequent
sequence of noun left modifiers (NN, left). In this example, we con-
struct a 3 state automata by clustering the vectors into three different
sets and then defining the transitions as described in the previous
paragraphs.

5.3.2 Results Analysis

A DFA approximation for the automaton (NN, left) is shown in
Fig. 5.2. The vectors were originally divided in ten clusters, but the
DFA construction required four merging of states, leading to a six
state automaton. State number 5 is the initial and final state. Clearly,
we can see that there are special states for punctuation (state 3) and
coordination (states 1 and 2). States 4 and 6 are harder to interpret.
To understand them better, we computed an estimation of the prob-
ablities of the transitions, by counting the number of times each of
them is used. Now, we find that our estimation of generating END

from state 4 is 0.78, and from state 6 it is 0.18. Interestingly, state
6 can transition to state 4 generating PRP$, POS or DT, that are usual
endings of modifier sequences for nouns (recall that modifiers are
generated head-outwards, so for a left automaton the final modifier
is the left-most modifier in the sentence).

A DFA approximation for (VBD, right) is shown in Fig. 5.3. The
vectors were divided in ten clusters and the DFA construction did
not require any merging. State number 9 is the initial and final state.
At most one adverb (RB) or particle (RP) is generated, always as the

72 a spectral algorithm for modeling modifier sequences

a)

x

y

z

β(λ)

β(JJ)

β(JJ JJ)

β(JJ JJ DT)

β(JJ JJ DT END)

b)
c0 = {β(λ),β(JJ JJ DT END)}

c1 = {β(JJ),β(JJ JJ)}

c2 = {β(JJ JJ DT)}

c)

q0

q2

q1

JJ
JJ

DTEND

Figure 5.1: Example of construction of a 3 state DFA approximation. a) For-
ward vectors β for the prefixes of the sequence “JJ JJ DT END”.
b) Cosine similarity clustering. c) Resulting DFA after adding
the transitions.

5.3 experiments 73

Figure 5.2: DFA approximation for the generation of left modifiers for NN.

first modifier. Then the different type of objects can be generated, in
states 1, 3 and 6. Only after that, in state 8, an optional sequence
of prepositions is generated, that are the heads of the prepositional
phrases. After this, the generation ends, or is followed by punctuation
or coordination, going to states 5 or 2, respectively. Punctuation is
always followed by a gerund verb, VBG, and coordination is always
followed by a past tense verb, as the head itself, going in both cases
to state 4, that also marks the end of the generation process. These
are all linguistically reasonable behaviours for the generation of right
modifiers for VBD’s. Nevertheless, it is reasonable to expect some
“noise” in the automaton, because of the wide variety of verbs that
are being mixed here. Some “noise” can also be attributed to the
particularities of the WSJ corpus (such as state number 1).

74 a spectral algorithm for modeling modifier sequences

Figure 5.3: DFA approximation for the generation of right modifiers for
VBD.

6
N O N - D E T E R M I N I S T I C S P L I T H E A D A U T O M ATA

In this chapter we present a dependency parsing model that ex-
ploits hidden structure using probabilistic non-deterministic automa-
ta. Crucially, the model can be trained with a spectral learning algo-
rithm that is both efficient and not susceptible to local-minima. We
also present an inside-outside algorithm for our parsing model that
runs in cubic time, hence maintaining the standard parsing costs. In
experiments, we show that adding hidden-structure to a variety of
baseline models results in ∼ 30% error reductions.

6.1 parsing algorithms

Given a sentence s0:N we would like to find its most likely deriva-
tion, ŷ = argmaxy∈Y(s0:N) P(y). This problem, known as MAP infer-
ence, is known to be intractable for hidden-state structure prediction
models, as it involves finding the most likely tree structure while
summing out over hidden states. We use a common approximation
to MAP based on first computing posterior marginals of tree edges
(i.e. dependencies) and then maximizing over the tree structure (see
[43] for complexity of general MAP inference and approximations).
For parsing, this strategy is sometimes known as MBR decoding; pre-
vious work has shown that empirically it gives good performance
[26, 16, 54, 45]. In our case, we use the non-deterministic SHAG to
compute posterior marginals of dependencies. We first explain the
general strategy of MBR decoding, and then present an algorithm to
compute marginals.

Let (si, sj) denote a dependency between head word i and modifier
word j. The posterior or marginal probability of a dependency (si, sj)
given a sentence s0:N is defined as

µi,j = P((si, sj) | s0:N) =
∑

y∈Y(s0:N) : (si,sj)∈y

P(y) .

To compute marginals, the sum over derivations can be decomposed
into a product of inside and outside quantities [6]. Below we describe

75

76 non-deterministic split head automata

an inside-outside algorithm for our grammars. Given a sentence s0:N
and marginal scores µi,j, we compute the parse tree for s0:N as

ŷ = argmax
y∈Y(s0:N)

∑
(si,sj)∈y

logµi,j (6.1)

using the standard projective parsing algorithm for arc-factored mod-
els [21]. Overall we use a two-pass parsing process, first to compute
marginals and then to compute the best tree.

6.1.1 An Inside-Outside Algorithm

In this section we sketch an algorithm to compute marginal prob-
abilities of dependencies, given a sentence x0:n. Our algorithm is an
adaptation of the parsing algorithm for SHAG by [22] to the case of
non-deterministic head-automata, and has a runtime cost of O(S2n3),
hence maintaining the standard cubic dependency on the sentence
length. The quadratic dependency on S is inherent to the computa-
tions defined by our model (Eq.5.3). The main insight behind the
design of this extension is the following: because the computations
of our model involve state-distribution vectors, we need to extend
the standard inside/outside quantities to be in the form of state-
distribution vectors.1

Throughout this section we assume a fixed sentence x0:n. We abuse
notation and use (xi, xj) ∈ y to indicate that xi is head of xj in a
derivation y. We use root(y) to indicate the root of a derivation. Fi-
nally, we use Y(xi:j) as the set of derivations that yield the partial
sentence xi:j. Following [22], we use decoding structures related to
complete half-constituents (or “triangles”, denoted c) and incomplete
half-constituents (or “trapezoids”, denoted i), each with a direction
(denoted L and R). We assume familiarity with their algorithm.

We define θi,r
i,j ∈ RS as the inside score-vector of a right trapezoid

dominated by dependency (xi, xj),

θi,r
i,j =

∑
y∈Y(xi:j) : (xi,xj)∈y ,

y={〈xi,r,m1:t〉} ∪ y ′ , mt=xj

P(y ′)αxi,r(m1:t) .

The term P(y ′) accounts for probabilities of head-modifier sequences
in the range xi:j that do not involve xi. The term αxi,r(m1:t) is a
forward state-distribution vector —the s-th coordinate of the vector is
the probability that xi generates right modifiers m1:t and remains at

1 We should note that, technically, when working with the projected operators that we
learn (Âx = QAxQ

+) the state-distribution vectors will not be distributions in the
formal sense. However, they correspond to a projection of a true state distribution
(the distributions given by Ax), for some projection Q we can not recover from data.
This projection has no other effect on the computation of probabilities.

6.2 experiments 77

state s. Similarly, we define φi,r
i,j ∈ RS as the outside score-vector of a

right trapezoid, as

φi,r
i,j =

∑
y∈Y(x0:ixj:n) : root(y)=x0,
y={〈xi,r,mt:T 〉} ∪ y ′ , mt=xj

P(y ′)βxi,r(mt+1:T) ,

where βxi,r(mt+1:T) is a backward state-distribution vector —the s-th
coordinate is the probability of being at state s of the right automaton
of xi and generating mt+1:T . Analogous inside-outside expressions
can be defined for the rest of structures (left/right triangles and trape-
zoids). With these quantities, we can compute marginals as

µi,j =

{
φi,r
i,j θ

i,r
i,j Z

−1 if i < j ,

φi,l
i,j θ

i,l
i,j Z

−1 if j < r ,

where Z is the partition function:

Z=
∑

y∈Y(x0:n)

P(y) = (α?,r∞)> A?,r
stop

θc,r
0,n

Finally, we sketch the equations for computing inside scores of
right half-constituents in O(n3) time . The equations for inside scores
of left half-constituents are symmetrical. The outside equations can
be derived analogously (see [44]). For 0 6 i < j 6 n:

θc,r
i,i = αxi,r1 (6.2)

θc,r
i,j =

j∑
k=i+1

θi,r
i,k

(
(αxk,r∞)> Axk,r

stop
θc,r
k,j

)
(6.3)

θi,r
i,j =

j∑
k=i

Axi,rxj
θc,r
i,k

(
(α
xj,l∞)> A

xj,l
stop θ

c,l
k+1,j

)
(6.4)

Fig. 6.1 illustrates these equations. Fig. 6.1.a corresponds to the
basic case of Eq. 6.2, and Figs. 6.1.b and 6.1.c correspond respectively
to Eqs. 6.3 and 6.4 with a fixed k.

6.2 experiments

The goal of our experiments is to show that incorporating hidden
states in a SHAG using operator models can consitently improve pars-
ing accuracy. A second goal is to compare the spectral learning algo-
rithm to EM, a standard learning method that also induces hidden
states.

The first set of experiments involve fully unlexicalized models, i.e.
parsing part-of-speech tag sequences. While this setting falls behind
the state-of-the-art, it is nonetheless valid to analyze empirically the
effect of incorporating hidden states via operator models, which re-
sults in large improvements. In a second set of experiments, we com-
bine the unlexicalized hidden-state models with simple lexicalized
models.

78 non-deterministic split head automata

a)

h

θC,R
i,i

=

h

b)

h m

i kθI,Ri,k

+

m

k jθC,R
k,j

=

h

i j

m

θC,R
i,j

c)

h

i kθC,R
i,k

+

m

k+ 1 jθC,L
k+1,j

=

h

i

m

jθI,Ri,j

Figure 6.1: Graphical depiction of the inside scores computations for the
different types of chart elements for right half-constituent. Com-
putations for left half-constituents are symmetrical. a) Empty
right half-constituent (“triangle”). b) Non-empty complete right
half-constituent (“triangle”). c) Incomplete right half-constituent
(“trapezoid”).

6.2.1 Fully Unlexicalized Grammars

We trained fully unlexicalized dependency grammars from depen-
dency treebanks, that is, X are POS tags and we parse POS tag se-
quences. In all cases, our modifier sequences include a special stop

word at the end. We compare the following SHAG models:

Det : a basic deterministic grammar with a single state.

Det+F : a deterministic grammar with two states, one emitting
the first modifier of a sequence, and another emitting the rest
(see [23] for a similar deterministic baseline).

Spectral: a non-deterministic grammar with S hidden states
trained with the spectral algorithm. S is a parameter of the
model.

Spectral+F: a non-deterministic grammar with S hidden states
that uses different operators to generate the first modifier and

6.2 experiments 79

Figure 6.2: Accuracy curve on English development set for fully unlexical-
ized models.

the rest. We obtain these by augmenting the first modifier of
each sequence with a special +first tag, thus doubling X and
the number of operators.

EM: a non-deterministic grammar with S states trained with
EM. Here, α∞ = ~11:S, and we estimate operators Ah,d

x , α1 using
forward-backward for the E step. To initialize, we mimicked an
HMM initalization: (1) we set α1 randomly; (2) we created a
random transition matrix T ∈ RS×S; (3) we created a diagonal
matrix Oh,d

x ∈ RS×S, where Oh,d
x (i, i) is the probability of gen-

erating symbol x from h and d (estimated from training, plus a
random variation); (4) we set Ah,d

x = TOh,d
x .

EM+F: a non-deterministic grammar with S states trained with
EM, that has different distributions to emit the first modifier
and the rest.

Using standard WSJ sections of the English Penn Treebank [37], we
trained grammars and compared their performance. Fig. 6.2 shows
the Unlabeled Attachment Score (UAS, see section 2.5.2) curve on the
development set, in terms of the number of hidden states for the spec-
tral and EM models (for EM, we show the best run on development
out of 50 runs). We can see that Det+F largely outperforms Det, but
the interesting part is that hidden-state models obtain larger improve-
ments even when the First state is not explicitly encoded. As for the
hidden-state models, the spectral method obtains better accuracies
than EM.

80 non-deterministic split head automata

Det Spectral Det+F Spectral+F

WSJ 63.76 78.25 72.93 80.83

Dan 61.70 77.25 69.70 78.16

Dut 54.30 61.32 60.90 64.01

Por 71.39 85.33 81.47 85.71

Slo 60.31 66.71 65.63 68.65

Swe 69.09 79.55 76.94 80.54

Tur 53.79 62.56 57.56 63.04

Table 6.1: UAS of fully unlexicalized models on test sets for several lan-
guages.

More important, however, is to compare training times. The spec-
tral method took about 30 seconds to train in a 2.93 Ghz Intel Core
i7-870 microprocessor. Most of the time was consumed by the com-
putation of input statistics for the SVD algorithm, implemented in
the Python language, while the SVD itself was done with an external
tool that ran almost instantly. In contrast, the EM method required at
least 50 iterations to reach a stable accuracy on development, where
each iteration took from 2 to 3 minutes, with a Matlab implementation
running on the mentioned microprocessor. So, there is a factor of
at least 200 between the training times of the spectral method and a
convergent EM.

Table 6.1 shows results on WSJ test data, plus on the tests for six
languages from the CoNLL-X shared task [9], in comparison with the
deterministic baselines. We always use the number of states that gave
optimal results for the WSJ development set (7 states for Spectral,
10 for Spectral+F). The spectral models consistently outperform the
deterministic models by a large margin. As for the result on the WSJ
test, our deterministic baselines obtain roughly the same performance
as those of [23], while the best result we obtain using hidden-states
(80.8%) largely improves over their best model that uses information
about the length of dependencies (75.6%)

6.2.2 Experiments with Lexicalized Grammars

We now turn into estimating lexicalized deterministic grammars
and combine them with unlexicalized spectral grammars we obtained
in the previous experiment. The goal behind this experiment is to
show that the information captured in hidden states is complimen-
tary to head-modifier lexical preferences.

In this case X consists of lexical items, and we assume access to
the POS tag of each lexical item. We will denote as tx and wx the
POS tag and word of a symbol x ∈ X. We will estimate conditional

6.2 experiments 81

Lex Lex+F Lex+FCP

q0 q1

DT, JJ, . . .

END q0

q2

q1

DT, JJ, . . .

END

DT, JJ, . . .

END

q1

qp

qc

q0 q2
END

,

DT, JJ, . . . CC

Figure 6.3: Unlexicalized DFAs illustrating the features encoded in the three
deterministic baselines Lex, Lex+F and Lex+FCP. In Lex+FCP,
qc and qp are, respectively, the target states for coordination and
punctuation symbols. For clarity, on each automata we added a
separate final state, and a special ending symbol END.

distributions P(m | h,d,σ), where m ∈ X is a modifier, h ∈ X̄ is a
head, d is a direction, and σ is a deterministic state. Following [17],
we use three configurations of deterministic states:

Lex: a single state.

Lex+F: two distinct states for first modifier and rest of modifiers.

Lex+FCP: four distinct states, encoding: first modifier, previous
modifier was punctuation, previous modifier was a coordina-
tion, and previous modifier was some other word.

The unlexicalized DFAs shown in Fig. 6.3 illustrate in a simple way
the different configurations. However, the actual distributions use a
back-off strategy that combine lexicalized and unlexicalized informa-
tion. The back-off strategy factorizes P as follows:

P(m|h,d,σ) = PA(tm|h,d,σ)PB(wm|tm,h,d,σ)

To estimate PA we use two back-off levels, the fine level conditions on
{h,d,σ} and the coarse level conditions on {th,d,σ}. For PB we use
three levels, which from fine to coarse are {tm,h,d,σ}, {tm, th,d,σ}
and {tm}. We use the strategy of [17] to estimate PA and PB from a
treebank using back-off.

We use a simple approach to combine lexical models with the un-
lexical hidden-state models we obtained in the previous experiment.
Namely, we use a log-linear model that computes scores for head-
modifier sequences as

s(〈h,d,m1:T 〉) = log Psp(m1:T |h,d) + log Pdet(m1:T |h,d),

where Psp and Pdet are respectively spectral and deterministic proba-
bilistic models. We tested combinations of each deterministic model
with the spectral unlexicalized model using different number of states.
Fig. 6.4 shows the accuracies of single deterministic models, together

82 non-deterministic split head automata

Figure 6.4: Accuracy curve on English development set for lexicalized mod-
els.

with combinations using different number of states. In all cases,
the combinations largely improve over the purely deterministic lex-
ical counterparts, suggesting that the information encoded in hidden
states is complementary to lexical preferences.

6.2 experiments 83

Head Dir. Weight Lex + Spect. Lex+F + Spect. Lex+FCP + Spect.

NN left 18.7 79.8 85.5 82.5 86.6 83.0 87.4

IN right 11.5 52.8 77.2 84.6 86.0 86.2 87.3

NNS left 8.7 79.3 85.1 80.4 85.1 82.0 85.3

VBD right 7.0 75.2 83.3 81.7 86.2 83.7 87.4

VBD left 6.3 82.4 88.1 88.1 90.9 89.3 89.6

NNP left 5.9 62.6 71.4 67.9 74.7 71.9 77.7

ROOT left 4.8 82.9 86.5 88.2 88.2 90.0 89.6

NN right 4.5 81.6 81.1 81.3 81.1 82.2 81.8

VB right 3.9 68.5 80.4 78.1 85.8 82.7 85.8

VBZ right 2.4 74.5 80.8 82.6 85.6 84.8 85.6

VBN right 2.4 75.0 87.6 83.8 89.3 84.4 89.1

VBZ left 2.3 78.8 88.1 90.2 90.7 90.2 91.0

POS left 2.1 37.0 73.8 63.0 78.1 62.8 77.9

NNS right 2.0 76.7 78.8 79.8 79.5 81.2 79.5

VBG right 1.8 63.5 80.6 74.9 83.1 78.1 83.5

VB left 1.7 88.6 88.1 91.8 91.7 92.8 93.2

$ right 1.5 64.6 91.1 92.5 92.7 93.0 93.6

VBP right 1.2 77.0 81.1 85.4 86.3 85.4 86.3

MD left 1.2 75.6 83.1 83.6 85.4 85.4 86.5

VBP left 1.2 80.3 87.3 86.6 90.6 89.0 88.7

MD right 1.2 91.1 92.8 94.5 95.2 97.1 96.9

TO right 1.0 34.6 70.9 64.0 78.4 67.9 79.8

JJ left 0.8 55.3 54.3 64.9 66.0 70.9 70.2

RB right 0.8 63.9 57.2 78.4 74.0 79.2 73.2

CD left 0.8 58.0 68.0 57.6 66.2 71.0 67.7

NNP right 0.7 78.8 75.4 76.7 78.3 79.2 78.3

JJ right 0.5 63.1 54.5 64.2 51.9 65.8 54.5

WDT right 0.5 75.1 89.6 91.9 93.6 91.3 93.1

IN left 0.4 66.0 58.2 68.8 62.4 68.8 60.3

VBN left 0.3 54.5 58.7 63.6 66.1 65.3 64.5

$ left 0.3 58.6 68.5 62.2 70.3 63.1 73.0

WRB right 0.3 70.0 87.8 90.0 92.2 90.0 91.1

WP right 0.2 74.0 84.4 93.5 90.9 93.5 89.6

CD right 0.2 45.8 44.1 45.8 40.7 45.8 42.4

DT right 0.1 60.4 56.6 67.9 54.7 73.6 56.6

RB left 0.1 66.0 66.0 69.8 64.2 71.7 64.2

VBG left 0.1 37.5 39.6 47.9 43.8 56.2 56.2

JJR left 0.1 88.5 76.9 92.3 76.9 76.9 76.9

RBR left 0.1 88.0 96.0 100.0 96.0 92.0 96.0

WP$ right 0.1 50.0 72.7 68.2 72.7 63.6 77.3

DT left 0.1 15.8 0.0 36.8 21.1 63.2 42.1

Table 6.2: Results for lexicalized models by head and direction, ordered by
influence in the global result. Rows with weight < 0.1% were
discarded.

Part IV

C O N C L U S I O N

7
C O N C L U S I O N

In this chapter we discuss the conclusions and possible future work
of this thesis. We first address separately the conclusions of the spe-
cific problems studied on each part of the thesis. At the end, we
expose some general conclusions about the fields we studied.

7.1 on non-terminally separated grammars

On the first part of this thesis, we proposed the goal of finding
PAC-learnable classes of formal languages that are strongly adequate
for natural language, having in mind the idea of using them for un-
supervised parsing.

To do this, we first defined UWNTS grammars and show that they
are polynomially PAC-learnable. Then, we gave an experimental
method to study the expressivity of UWNTS grammars over concrete
natural language corpora. We applied this method to a corpus of
short English sentences of POS tags. We found that, regardless of the
learning algorithm, UWNTS grammars will have a low performance
compared to state-of-the-art unsupervised parsers. We believe that
these experiments provide enough evidence to conclude that unsu-
pervised parsing over POS tags requires more expressive grammars.

Then, we defined the hierarchy of k, l-UWNTS6 grammars and
proved that they also are polynomially PAC-learnable. We did the
same experiments as for UWNTS to measure the strong adequacy of
k, l-UWNTS6 grammars for low k, l. We saw that these grammars
are much more capable of correctly parsing short English sentences
of POS tags. In principle, this fact may suggest that it is worth to
give a try to the PAC-learning algorithm. However, one should take
a look also at the sample complexity of the algorithm. Even for small
toy natural language grammars, learning them with precision and
confidence of at least 80% would require millions of positive exam-
ples.

As PAC-learnability is a theoretical property, it is not very surpris-
ing that the learning algorithm is not directly applicable. A feasible
approach would be to develop a more practical algorithm, combining
elements from the PAC algorithm with heuristics and ML techniques.

87

88 conclusion

This is what Clark did to learn NTS grammars for the Omphalos
competition [14].

7.2 on non-deterministic dependency parsing

On the second part of this thesis, our aim was to learn latent vari-
able models using a spectral algorithm, in the frame of dependency
parsing. We expected this algorithm to learn meaningful latent vari-
ables, and useful parsing models. We also expected this algorithm
to learn better models than EM applied to the same models. To do
this, we defined a non-deterministic version of Split-Head Automata
Grammars, a spectral learning algorithm and a cubic time parsing
algorithm.

In unlexicalized experiments with the English language, we found
by a qualitative analysis that the algorithm is finding linguistically
meaningful features.

We also found in these experiments that spectral learning outper-
forms deterministic models and the EM algorithm. Even though we
didn’t do further experiments with EM, we consider that there is
enough evidence to conclude that, at least for this task, the spectral
algorithm is better in all aspects. Better results for EM, if possible,
would require several long time runs with different initializations,
while with the spectral algorithm, training can be easily and quickly
done.

Then, we did unlexicalized experiments with other six languages,
always finding that our model perform better that deterministic base-
lines.

Finally, we defined several lexicalized deterministic baselines using
simple feature engineering. In the experiments, we saw a consistent
improvement of the baseline models when adding the unlexicalized
spectral model. In this situation, we see how feature engineering can
be complemented with latent variable models, to obtain better parsers
with no need of additional efforts.

In the future, our methods may be used to enrich the representa-
tional power of more sophisticated dependency models. For exam-
ple, future work should consider enhancing lexicalized dependency
grammars with hidden states that summarize lexical dependencies.
Another line for future research should extend the learning algorithm
to be able to capture vertical hidden relations in the dependency tree,
in addition to sequential relations.

7.3 general conclusion

Despite being an old and widely studied subject, the parsing prob-
lem is far from being considered solved. Ceirtanly, some highly tuned
supervised parsers achieved excellent performances over big corpora

7.3 general conclusion 89

such as the English Penn Treebank. It is now known that language
specific parsing can be satisfactorily solved with good linguistic re-
sources and an adequate feature engineering. But this methodology
is clearly expensive in money and time, and it obviously requires the
availability of experts in the language in question. In the last years,
the goal of research has turned more into high quality parsing models
that are language independent and do not require big annotated cor-
pora [9]. This is where semi-supervised and unsupervised methods
play a central role.

The fully unsupervised parsing problem is even much further from
being solved, if this is ever possible. Unsupervised parsing is a rela-
tively immature subject and is more of a theoretical nature. Some en-
couraging results has been given using heuristics and machine learn-
ing techniques [7, 32, 49]. The Grammatical Inference field provides
a rigorous tool to study this problem, but it has failed so far to pro-
vide any result barely appliable to natural language. It still needs the
formulation of more realistic learning settings.

Part V

A P P E N D I X

A
P R O O F S O F C H A P T E R 3

a.1 lemma 1

Lemma. If L is WNTS, then xLx = {xsx|s ∈ L} is NTS, where x is a new
element of the alphabet.

Proof. Let G be an WNTS grammar such that L(G) = L. Now, let G ′

be the same as G but replacing the rules of the form S → α with
S → xαx. It is easy to see that L(G ′) = xLx. We will now see that G ′

is NTS. Suppose that X, Y,α ′,β ′,γ ′ are such that X ∗⇒G ′ α ′β ′γ ′ and
Y
∗⇒G ′ β ′. We must prove that X ∗⇒G ′ α ′Yγ ′. If Y = S, then β ′ = S or

β ′ = xβx for some β. In both cases, it is easy to see that X must also
be S and that α ′ = γ ′ = λ. Then, X ∗⇒G ′ α ′Yγ ′ is just S ∗⇒G ′ S that is
obvious.

If Y 6= S, then Y ∗⇒G ′ β ′ implies that β ′ has no x and Y ∗⇒G β ′. If
X = S, then α ′ = xα and γ ′ = γx for some α,γ. So, X ∗⇒G ′ α ′β ′γ ′
implies X ∗⇒G αβ ′γ, and as G is NTS, X ∗⇒G αYγ, that going back to
G ′ is X ∗⇒G ′ α ′Yγ ′, so we are done in this case. If X 6= S, there is no
x in α ′,γ ′, so X ∗⇒G α ′β ′γ ′, and as G is NTS, X ∗⇒G α ′Yγ ′, and also
in G ′: X ∗⇒G ′ α ′Yγ ′.

a.2 theorem 1

Theorem. C (S) = {C : C ⊆ Sub(S),C compatible in S}.

Proof sketch. The proof of ⊆ follows immediately from the given prop-
erties.
⊇ is proved by constructing a UWNTS grammar G mainly using

the fact that S is finite and C is compatible. In G, we define an initial
non-terminal S and for each s ∈ C one non-terminal Xs. The rules as
are follows:

1. For each s ∈ C that does not have any proper substring in C,
there is a rule Xs → s.

2. For each s ∈ C that has at least one proper substring in C,
we must decompose it in the form s = u1r1u2r2 . . . unrnun+1
where every ri ∈ C and in C there is no superstring of ri that

93

94 proofs of chapter 3

is substring of s. This form is unique, and defines the rule
Xs → u1Xr1u2Xr2 . . . unXrnun+1.

3. For each s ∈ S∩C there is a rule S→ Xs.

4. For each s ∈ S−C that does not have any proper substring in
C, there is a rule S→ s.

5. For each s ∈ S−C that has at least one proper substring in C,
we decompose it again in the form s = u1r1u2r2 . . . unrnun+1
and define the rule S→ u1Xr1u2Xr2 . . . unXrnun+1.

With this set of rules, it can be proved that G is UWNTS, L(G) = S
and Constw(G)∩ Sub(S) = C.

B
P R O O F S O F C H A P T E R 4

b.1 lemma 2

Lemma. 0,0-NTS6 ⊂WNTS ⊂ 1,1-NTS6.

Proof. 0,0-NTS6 ⊂ WNTS is trivial, given that 0,0-NTS6 = NTS and
NTS ⊂ WNTS. To prove WNTS ⊂ 1,1-NTS6, we first prove WNTS ⊆
1,1-NTS6, and then we prove WNTS 6= 1,1-NTS6.

WNTS ⊆ 1,1-NTS6: Let G be a WNTS grammar. We will see that
G is 1,1-NTS6, this is, that •G• is 1,1-NTS. Suppose that X, Y, u, v, α,
β, γ, α ′, γ ′ are such that, in •G•,

1. X ∗⇒ αuβvγ,

2. Y ∗⇒ β

3. and S ′ ∗⇒ α ′uYvγ ′.

We must prove that

4. X ∗⇒ αuYvγ in •G•.

First, beacuse of 3, Y 6= S ′.

If Y = S, because of 3, u = v = •. Then, because of 1, X = S ′

and α = γ = λ, given that the only rule that can produce • is
S ′ → •S•. So, 4 becomes S ′ ∗⇒ •S•, that is trivially true.

If Y 6= S and X = S ′, because of 1, αu = •α ′′ and vγ = γ ′′• for
some α ′′,γ ′′. Also, in 1 the first rule used must be S ′ ∗⇒ •S•,
so we have X = S ′

∗⇒ •S• ∗⇒ •α ′′βγ ′′•. Then, in G we have
S
∗⇒ α ′′βγ ′′. This, together with 2 and Y 6= S, implies that

S
∗⇒G α ′′Yγ ′′, because G is WNTS by hypothesis. Then, we get

to 4 as follows:

X = S ′
∗⇒ •S• ∗⇒ •α ′′Yγ ′′• = αuYvγ.

If Y 6= S and X 6= S ′, we have that 1 and 2 also hold for G. So,
because G is WNTS by hypothesis, we have X ∗⇒G αuYvγ. As
X 6= S ′, this derivation also holds in •G•, having 4.

WNTS 6= 1,1-NTS6: Let G be with rules P = {S → X,S → Y, Y →
b,X → abc}. Then, it is easy to see that G is 1,1-NTS6 but it is not
WNTS.

95

96 proofs of chapter 4

b.2 lemma 3

Lemma. The LMF always exists and is unique.

Proof. First we prove by induction that ∀iG ′i ⊆ G ′i+1.
Base case G ′0 ⊆ G ′1: Let aX→ as ∈ P ′0. Then X→ as ∈ P. Also, as

has the form u1
a1X1u2 . . . um

amXmum+1 with m = 0 and u1 = as.
Then, aX → as ∈ P ′1 and P ′0 ⊆ P ′1. Equally, it is easy to see that
N ′0 ⊆ N ′1.

Inductive case: G ′i ⊆ G ′i+1 ⇒ G ′i+1 ⊆ G ′i+2. Let aX → α ∈ P ′i+1.
Then, α has the form u1

a1X1u2 . . . um
amXmum+1 with ajXj ∈ N ′i for

all j. Si, by inductive hypothesis N ′i ⊆ N ′i+1, ajXj ∈ N ′i+1 for all j.
Then, aX → α ∈ P ′i+2 and P ′i+1 ⊆ P ′i+2. It is easy to see that also
N ′i+1 ⊆ N ′i+2.

Now, we prove that the LMF always exists. This is, that there is k
such that G ′k+1 = G

′
k. Observe that, by definition,

P ′i ⊆ { aX→u1 a1X1u2 . . . um amXmum+1

|X→ u1X1u2 . . . umXmum+1 ∈ P}

for all i, and this last set is finite. So, because of the pigeonhole
principle, there must be k, l such that P ′k = P ′l and k < l. Then
N ′k = N ′l and G ′k = G ′l. But also G ′k ⊆ G ′k+1 ⊆ G ′l, so G ′k = G ′k+1.

Finally, we prove that the LMF is unique. Let k be the smallest
number such that G ′k = G ′k+1. We will prove by induction on n, that
G ′k = G ′k+n for all n. The base case n = 1 is trivial. In the inductive
case, we must prove G ′k = G ′k+n ⇒ G ′k = G ′k+n+1. Now, observe
that P ′k+n+1 is defined as a function of N ′k+n, that is equal to N ′k by
inductive hypothesis. If we call this function f, we have

P ′k+n+1 = f(N
′
k+n) = f(N

′
k) = P

′
k+1.

Equally, N ′k+n+1 is a function g of P ′k+n+1, so

N ′k+n+1 = g(P
′
k+n+1) = g(P

′
k+1) = N

′
k+1.

Then, as P ′k+n+1 = P
′k+ 1 and N ′k+n+1 = N

′
k+1, G ′k+n+1 = G

′
k+1 =

G ′k.

b.3 lemma 4

To prove this lemma we need first the following sublemma:

Sublemma. Let G be a CFG and G ′ its LMF. Then, for all X ∈ N, there is
a such that aX ∈ N ′.

Proof sketch. We first prove that, for all n, if X ∗⇒G u in n steps for
some u, then X ∈ N ′n−1. This can be easily done by induction on
n. As we are assuming that all the non-terminals are useful (see
section 4.1), given X there always exist n and u such that X ∗⇒G u in
n steps. So, X ∈ N ′n−1 ⊆ N ′.

B.4 lemma 9 97

Lemma. Let G be a CFG and G ′ its LMF. Then, for all X,m > 0, u1, . . .,
um+1, X1, . . ., Xm,

X
∗⇒G u1X1u2 . . . umXmum+1

if and only if

there exist a1, . . . ,am such that aX ∗⇒G ′ u1 a1X1u2 . . . um amXmum+1

with a = (u1)0 if u1 6= λ,a = a1 otherwise.

Proof sketch. We prove the “if and only if” by proving implications in
both directions⇒ and⇐.
(⇒): Prove that, for all n, if

X
∗⇒G u1X1u2 . . . umXmum+1

in n steps, then there exist a1, . . . ,am such that

aX
∗⇒G ′ u1 a1X1u2 . . . um amXmum+1

also in n steps. This can be done by induction on n, using the sub-
lemma in both the base and the inductive case.
(⇐): Like in the (⇒) case, prove for all n where n is the number of

derivation steps. This is easily done by induction on n.

b.4 lemma 9

Lemma. Let G be a k, l-NTS6 grammar. Then, its LMF G ′ is also k, l-
NTS6.

Proof sketch. We must prove that •kG ′•l is k, l-NTS. Suppose that, in
•kG ′•l, we have

aX
∗⇒ αuβvγ,

bY
∗⇒ β and

•S
∗⇒ α ′u bYvγ ′.

Then, we must prove that aX ∗⇒ αu bYvγ. Now, using Lemma 4 three
times, we have that, in •kG•l,

X
∗⇒ α0uβ0vγ0,

Y
∗⇒ β0 and

S
∗⇒ α ′0uYvγ

′
0

for some α0,β0,γ0,α ′0,γ ′0. Then, as •kG•l is k, l-NTS, X ∗⇒ α0uYvγ0.
So, again using Lemma 4, aX ∗⇒ αu bYvγ in •kG ′•l.

98 proofs of chapter 4

b.5 theorem 4

Theorem. Given δ and ε, there is N such that, if S is a sample of a k, l-
UNTS6 PCFG G with |S| > N, then with probability greater than 1− δ,
Ĝ = k,l-PACCFG(S) is such that

1. L(Ĝ) ⊆ L(G), and

2. PG(L(G) − L(Ĝ)) < ε.

Proof. We will prove this by induction on k and l.
If k = l = 0, then G ′ = G and the proof is trivial because

mark0,0(s) = s.

If k = 0 and l > 0, then let H be the RCG of G. Then, by Lemma 10,
H is 0, l − 1-UNTS6. So, by inductive hypothesis, there is a UNTS
PCFG G ′ such that L(G ′) = mark0,l−1(L(H)) and for every s ∈ L(H),
PH(s) = PG ′(mark0,l−1(s)). But also, by Lemma 8 and Lemma 11,
L(H) = rc(L(G)) and for every s ∈ L(G), PG(s) = PH(rc(s)). Then,

L(G ′) = mark0,l−1(L(H)) = mark0,l−1(rc(L(G))) = mark0,l(L(G))

and for every s ∈ L(G),

PG(s) = PH(rc(s)) = PG ′(mark0,l−1(rc(s))) = PG ′(mark0,l(s))

and we are done.
If k > 0 and l > 0, we must take the symmetric version of the RCG,

that we can call the LCG H. This H is k− 1, l-UNTS so we can apply
the inductive hypothesis to it and use the symmetric version of the
arguments of the previous paragraph to prove the theorem.

B I B L I O G R A P H Y

[1] S. Abney, S. Flickenger, C. Gdaniec, C. Grishman, P. Harrison,
D. Hindle, R. Ingria, F. Jelinek, J. Klavans, M. Liberman, M. Mar-
cus, S. Roukos, B. Santorini, and T. Strzalkowski. A procedure
for quantitatively comparing the syntactic coverage of English
grammars. In E. Black, editor, Proceedings of a workshop on Speech
and natural language, pages 306–311, 1991. (Cited on pages 24

and 33.)

[2] Steven Abney, David Mcallester, and Fernando Pereira. Relating
probabilistic grammars and automata. In Proceedings of the 37th
ACL, pages 542–549, 1999. (Cited on pages 56 and 57.)

[3] Tobias Achterberg. SCIP - a framework to integrate Constraint
and Mixed Integer Programming. Technical report, 2004. (Cited
on pages 29 and 37.)

[4] Pieter W. Adriaans and Marco Vervoort. The EMILE 4.1 gram-
mar induction toolbox. In ICGI 2002, volume 2484 of LNCS
(LNAI), pages 293–295, Heidelberg, 2002. Springer. (Cited on
page 3.)

[5] Martin Anthony and Norman Biggs. Computational learning the-
ory: an introduction. Cambridge University Press, Cambridge,
1992. (Cited on pages 5, 23, 50, and 52.)

[6] James K. Baker. Trainable grammars for speech recognition. In
D. H. Klatt and J. J. Wolf, editors, Speech Communication Papers for
the 97th Meeting of the Acoustical Society of America, pages 547–550,
1979. (Cited on page 75.)

[7] Rens Bod. Unsupervised parsing with U-DOP. In Proceedings of
the 10th CoNLL (CoNLL-X), pages 85–92, 2006. (Cited on pages 3,
42, and 89.)

[8] J. Bresnan, R. M. Kaplan, S. Peters, and A. Zaenen. Cross-Serial
dependencies in dutch. Linguistic Inquiry, 13(fall):613–635+, 1982.
(Cited on page 20.)

[9] Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on
multilingual dependency parsing. In Proceedings of the Tenth
Conference on Computational Natural Language Learning (CoNLL-X),
pages 149–164, New York City, June 2006. Association for Com-
putational Linguistics. (Cited on pages 80 and 89.)

99

100 bibliography

[10] Xavier Carreras. Experiments with a higher-order projective de-
pendency parser. In Proceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL 2007, pages 957–961, Prague, Czech Republic,
June 2007. Association for Computational Linguistics. (Cited on
page 8.)

[11] Noam Chomsky. Syntactic Structures. Mouton, 2nd edition, De-
cember 1957. (Cited on pages 15, 19, and 20.)

[12] Noam Chomsky. Aspects of the Theory of Syntax, volume 119. The
MIT press, 1965. (Cited on pages 15 and 19.)

[13] Alexander Clark. PAC-learning unambiguous NTS languages.
In Yasubumi Sakakibara, Satoshi Kobayashi, Kengo Sato, Tetsuro
Nishino, and Etsuji Tomita, editors, ICGI 2006, volume 4201 of
LNCS (LNAI), pages 59–71, Heidelberg, 2006. Springer. (Cited on
pages 4, 6, 30, 31, 45, 46, 48, 50, 52, and 58.)

[14] Alexander Clark. Learning deterministic context free grammars:
The Omphalos competition. Machine Learning, 66(1):93–110, 2007.
(Cited on pages 6 and 88.)

[15] Alexander Clark and Rémi Eyraud. Polynomial identification in
the limit of substitutable context-free languages. J. Mach. Learn.
Res., 8, 2007. (Cited on page 45.)

[16] Stephen Clark and James R. Curran. Parsing the wsj using ccg
and log-linear models. In Proceedings of the 42nd Meeting of the
Association for Computational Linguistics (ACL’04), Main Volume,
pages 103–110, Barcelona, Spain, July 2004. (Cited on page 75.)

[17] Michael Collins. Head-Driven Statistical Models for Natural Lan-
guage Parsing. PhD thesis, University of Pennsylvania, 1999.
(Cited on pages 8, 69, and 81.)

[18] Colin de la Higuera. A bibliographical study of grammatical
inference. Pattern Recognition, 38(9):1332–1348, September 2005.
(Cited on page 5.)

[19] Colin de la Higuera. Grammatical Inference: Learning Automata
and Grammars. Cambridge University Press, April 2010. (Cited
on pages 5, 10, and 22.)

[20] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likeli-
hood from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society. Series B (Methodological), 39(1):1–38, 1977.
(Cited on pages 4 and 9.)

[21] Jason Eisner. Bilexical grammars and their cubic-time parsing al-
gorithms. In Harry Bunt and Anton Nijholt, editors, Advances in
Probabilistic and Other Parsing Technologies, pages 29–62. Kluwer

bibliography 101

Academic Publishers, October 2000. (Cited on pages 8, 63, 64,
and 76.)

[22] Jason Eisner and Giorgio Satta. Efficient parsing for bilexical
context-free grammars and head-automaton grammars. In Pro-
ceedings of the 37th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 457–464, University of Maryland,
June 1999. (Cited on pages 4, 10, 11, 63, and 76.)

[23] Jason Eisner and Noah A. Smith. Favor short dependencies: Pars-
ing with soft and hard constraints on dependency length. In
Harry Bunt, Paola Merlo, and Joakim Nivre, editors, Trends in
Parsing Technology: Dependency Parsing, Domain Adaptation, and
Deep Parsing, chapter 8, pages 121–150. Springer, 2010. (Cited on
pages 78 and 80.)

[24] Nissim Francez and Shuly Wintner. Unification Grammars. Cam-
bridge University Press, New York, NY, September 2011. (Cited
on pages 20 and 21.)

[25] Mark E. Gold. Language identification in the limit. Information
and Control, 10(5):447–474, 1967. (Cited on page 22.)

[26] Joshua Goodman. Parsing algorithms and metrics. In Proceedings
of the 34th Annual Meeting of the Association for Computational Lin-
guistics, pages 177–183, Santa Cruz, California, USA, June 1996.
Association for Computational Linguistics. (Cited on page 75.)

[27] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. In-
troduction to Automata Theory, Languages, and Computation (2nd
Edition). Addison Wesley, 2 edition, November 2000. (Cited on
page 21.)

[28] Daniel Hsu, Sham M. Kakade, and Tong Zhang. A spectral algo-
rithm for learning hidden markov models. In COLT 2009 - The
22nd Conference on Learning Theory, 2009. (Cited on pages 4, 11,
64, and 65.)

[29] Daniel Jurafsky and James H. Martin. Speech and Language Pro-
cessing (2nd Edition). Pearson Prentice Hall, 2nd edition, May
2008. (Cited on page 20.)

[30] Richard M. Karp. Reducibility among combinatorial problems.
In Complexity of Computer Computations, pages 85–103. 1972.
(Cited on page 37.)

[31] Michael J. Kearns and Umesh V. Vazirani. An introduction to
computational learning theory. MIT Press, August 1994. (Cited on
pages 5 and 23.)

102 bibliography

[32] Dan Klein and Christopher D. Manning. Corpus-based induc-
tion of syntactic structure: Models of dependency and con-
stituency. In Proceedings of the 42nd ACL, pages 478–485, 2004.
(Cited on pages 3, 7, 33, 41, 42, and 89.)

[33] Terry Koo and Michael Collins. Efficient third-order dependency
parsers. In Proceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1–11, Uppsala, Sweden,
July 2010. Association for Computational Linguistics. (Cited on
page 8.)

[34] Terry Koo, Xavier Carreras, and Michael Collins. Simple semi-
supervised dependency parsing. In Proceedings of ACL-08: HLT,
pages 595–603, Columbus, Ohio, June 2008. Association for Com-
putational Linguistics. (Cited on page 3.)

[35] Christopher D. Manning and Hinrich Schtze. Foundations of Sta-
tistical Natural Language Processing. The MIT Press, 1 edition,
June 1999. (Cited on page 11.)

[36] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge Univer-
sity Press, Cambridge, first edition, July 2008. (Cited on pages 15

and 71.)

[37] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. Building a large annotated corpus of English:
The Penn treebank. Computational Linguistics, 19(2):313–330, 1994.
(Cited on pages 4, 29, 69, and 79.)

[38] Andre Martins, Noah Smith, and Eric Xing. Concise integer lin-
ear programming formulations for dependency parsing. In Pro-
ceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, pages 342–350, Suntec, Singapore, Au-
gust 2009. Association for Computational Linguistics. (Cited on
page 8.)

[39] Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. Probabilis-
tic CFG with latent annotations. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05),
pages 75–82, Ann Arbor, Michigan, June 2005. Association for
Computational Linguistics. (Cited on page 9.)

[40] Ryan McDonald and Fernando Pereira. Online learning of ap-
proximate dependency parsing algorithms. In Proceedings of the
11th Conference of the European Chapter of the Association for Compu-
tational Linguistics, pages 81–88, 2006. (Cited on pages 8 and 64.)

bibliography 103

[41] Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic.
Non-projective dependency parsing using spanning tree algo-
rithms. In Proceedings of Human Language Technology Conference
and Conference on Empirical Methods in Natural Language Process-
ing, pages 523–530, Vancouver, British Columbia, Canada, Octo-
ber 2005. Association for Computational Linguistics. (Cited on
page 64.)

[42] Gabriele Antonio Musillo and Paola Merlo. Unlexicalised hid-
den variable models of split dependency grammars. In Pro-
ceedings of ACL-08: HLT, Short Papers, pages 213–216, Colum-
bus, Ohio, June 2008. Association for Computational Linguistics.
(Cited on page 9.)

[43] James D. Park and Adnan Darwiche. Complexity results and
approximation strategies for map explanations. Journal of Arti-
ficial Intelligence Research, 21:101–133, 2004. (Cited on pages 11

and 75.)

[44] Mark Paskin. Cubic-time parsing and learning algorithms for
grammatical bigram models. Technical Report UCB/CSD-01-
1148, University of California, Berkeley, 2001. (Cited on page 77.)

[45] Slav Petrov and Dan Klein. Improved inference for unlexical-
ized parsing. In Human Language Technologies 2007: The Confer-
ence of the North American Chapter of the Association for Computa-
tional Linguistics; Proceedings of the Main Conference, pages 404–
411, Rochester, New York, April 2007. Association for Computa-
tional Linguistics. (Cited on page 75.)

[46] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein.
Learning accurate, compact, and interpretable tree annotation.
In Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Compu-
tational Linguistics, pages 433–440, Sydney, Australia, July 2006.
Association for Computational Linguistics. (Cited on page 9.)

[47] Svatopluk Poljak. A note on stable sets and coloring of graphs.
Commentationes Mathematicae Universitatis Carolinae, 15(2):307–
309, 1974. (Cited on page 39.)

[48] Geoffrey K. Pullum and Gerald Gazdar. Natural languages and
context-free languages. Linguistics and Philosophy, 4(4):471–504,
December 1982. (Cited on page 21.)

[49] Yoav Seginer. Fast unsupervised incremental parsing. In Proceed-
ings of the 45th ACL, pages 384–391, 2007. (Cited on pages 3, 42,
and 89.)

104 bibliography

[50] Stuart M. Shieber. Evidence against the context-freeness of natu-
ral language. Linguistics and Philosophy, 8(3):333–343, 1985. (Cited
on page 21.)

[51] Mark Steedman. The syntactic process. MIT Press, Cambridge,
MA, USA, 2000. (Cited on page 20.)

[52] Jun Suzuki, Hideki Isozaki, Xavier Carreras, and Michael Collins.
An empirical study of semi-supervised structured conditional
models for dependency parsing. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language Processing: Vol-
ume 2 - Volume 2, EMNLP ’09, pages 551–560, Stroudsburg, PA,
USA, 2009. Association for Computational Linguistics. (Cited on
page 3.)

[53] Lucien Tesnière and Jean Fourquet. Eléments de syntaxe struc-
turale. Klincksieck, 1965. (Cited on page 17.)

[54] Ivan Titov and James Henderson. Loss minimization in parse
reranking. In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, pages 560–567, Sydney,
Australia, July 2006. Association for Computational Linguistics.
(Cited on page 75.)

[55] Menno van Zaanen. ABL: alignment-based learning. In Pro-
ceedings of the 18th conference on Computational linguistics, pages
961–967, 2000. (Cited on page 3.)

[56] Menno van Zaanen and Jeroen Geertzen. Problems with evalu-
ation of unsupervised empirical grammatical inference systems.
In Alexander Clark, François Coste, and Laurent Miclet, editors,
ICGI 2008, volume 5278 of LNCS (LNAI), pages 301–303, Heidel-
berg, 2008. Springer. (Cited on page 42.)

[57] Ryo Yoshinaka. Identification in the limit of k, l-substitutable
context-free languages. 2008. (Cited on page 45.)

	Resumen
	Abstract
	Agradecimientos
	Publications
	Contents
	List of Figures
	List of Tables
	Acronyms
	Preliminaries
	1 Introduction
	1.1 Non-Terminally Separated Grammars
	1.1.1 Weakly NTS Grammars
	1.1.2 k,l-NTS<= Grammars

	1.2 Non-Deterministic Dependency Parsing
	1.2.1 Modifier Sequences and the Spectral Algorithm
	1.2.2 Non-Deterministic Split Head Automata

	2 Background
	2.1 Formal Languages
	2.1.1 Regular Languages and Deterministic Finite Automaton
	2.1.2 Context-Free Languages and Grammars

	2.2 Linguistics Basics
	2.2.1 Phrase Structure Grammars
	2.2.2 Dependency Grammars

	2.3 Natural Language as a Formal Language
	2.3.1 Weak Adequacy vs. Strong Adequacy
	2.3.2 Natural Language into the Chomsky Hierarchy

	2.4 Grammatical Inference
	2.4.1 Identification in the Limit
	2.4.2 PAC Learning

	2.5 Parser Evaluation
	2.5.1 Phrase Structure Metrics
	2.5.2 Dependency Metrics

	Non-Terminally Separated Grammars
	3 Bounding the Parsing Performance of NTS Grammars
	3.1 Notation and Definitions
	3.1.1 UWNTS Grammars
	3.1.2 UWNTS-SC Grammars

	3.2 The W Measure and its Relationship to the F1
	3.3 The Optimization of W and R
	3.3.1 Solving for UWNTS Grammars
	3.3.2 Solving for UWNTS-SC Grammars
	3.3.3 NP-Hardness of the Problems

	3.4 Upper Bounds for the WSJ10 Treebank
	3.5 Discussion

	4 PAC-Learning k,l-UNTS<= Grammars
	4.1 Notation and Definitions
	4.1.1 k,l-NTS Grammars
	4.1.2 k,l-NTS<= Grammars

	4.2 Learning Algorithm for k,l-UNTS<= Grammars
	4.2.1 Towards a Proof of PAC-Learnability
	4.2.2 Parameters and Bounds

	4.3 Proof of PAC-Learnability
	4.3.1 The Left Marked Form of a Grammar
	4.3.2 The Right Contextualized Grammar of a Grammar
	4.3.3 Converting k,l-UNTS<= Grammars
	4.3.4 Extending the results to PCFGs
	4.3.5 The Theorems

	4.4 Discussion

	Non-Deterministic Dependency Parsing
	5 A Spectral Algorithm for Modeling Modifier Sequences
	5.1 Notation and Definitions
	5.1.1 Head-Automata Dependency Grammars
	5.1.2 Operator Models

	5.2 Learning Operator Models
	5.2.1 Preliminary Definitions
	5.2.2 Inducing a Hidden-State Space
	5.2.3 Recovering Observable Operators

	5.3 Experiments
	5.3.1 DFA Approximation
	5.3.2 Results Analysis

	6 Non-Deterministic Split Head Automata
	6.1 Parsing Algorithms
	6.1.1 An Inside-Outside Algorithm

	6.2 Experiments
	6.2.1 Fully Unlexicalized Grammars
	6.2.2 Experiments with Lexicalized Grammars

	Conclusion
	7 Conclusion
	7.1 On Non-Terminally Separated Grammars
	7.2 On Non-Deterministic Dependency Parsing
	7.3 General Conclusion

	Appendix
	A Proofs of Chapter 3
	A.1 Lemma 1
	A.2 Theorem 1

	B Proofs of Chapter 4
	B.1 Lemma 2
	B.2 Lemma 3
	B.3 Lemma 4
	B.4 Lemma 9
	B.5 Theorem 4

	Bibliography

