
Optimization of Automata for
Natural Language Dependency

Parsing

Martı́n Ariel Domı́nguez

Grupo de Procesamiento de Lenguaje Natural
Facultad de Matemática, Astronomı́a y Fı́sica

UNIVERSIDAD NACIONAL DE CÓRDOBA

Presentado ante la Facultad de Matemática, Astronomı́a y Fı́sica
como parte de los requisitos mı́nimos para la obtención del grado de

Doctor en Ciencias de la Computación.

junio, 2012

c©FaMaF - UNC - 2012

Director: Gabriel Infante-Lopez

mailto:mdoming@famaf.unc.edu.ar
http://www.famaf.unc.edu.ar
http://www.famaf.unc.edu.ar
http://www.unc.edu.ar
mailto:mdoming@famaf.unc.edu.ar

ii

1. Reviewer: Prof. Dr. Marcelo Luis Errecalde Departamento de Informática.
Universidad Nacional de San Luis (UNSL) . San Luis - Argentina.

2. Reviewer: Prof. Dr. Ricardo Medel Profesor Adjunto at Universidad Tec-
nológica Nacional - Facultad Regional Córdoba - Lider Técnico e Ingeniero de
Software en la empresa Intel.

3. Reviewer: Prof. Dra. Paula Estrella FaMAF, Universidad Nacional de
Córdoba.

Day of the defense: 4th june of 2012.

Signature from president of PhD committee:

iii

Abstract

Natural languages phenomena have been studied by linguistic tradition
well before the invention of computers. When computers appeared and
large quantities of data could be processed a new, more empirical, ap-
proach to the study of languages arose. Nowadays we can test and
derive hypotheses from the automatic processing of a huge amount of
digitalized texts.

This thesis is concerned with different ways of benefiting from the tech-
nological possibility to refine and justify former knowledge based on
more rationalistic treatments of Syntax in Natural Language Process-
ing (NLP). We present different approaches where we apply computa-
tional methods to NLP. In two of them, we employ Genetic Algorithms
to automatically infer data driven solutions to problems which were
treated manually in previous works. Namely, the construction of Part-
of-Speech tag sets and the finding of heads of syntactic constituents. In
the third approach, we go a step further and propose an architecture for
building multi-language unsupervised parsers that can learn structures
based just on samples of data.

We use the formalism of Bilexical Grammars as a way to model syntac-
tical structures of sentences throughout our whole thesis. As Bilexical
Grammars are based on finite automata, we inherit their good learnabil-
ity properties. In addition, our experiments with these grammars gave
us practical understanding about their properties.

From this three works we see that by using automata we can model syn-
tactic structures for different purposes. The results we obtain with our
three different approaches look promising. In the first two approaches
concerning supervised phrase structure parsing, we improve the per-
formance of two state-of-the-art parsers. In our third work, we ob-
tain state-of-the-art results with our unsupervised dependency parser
for eight different languages.

keywords: natural language processing, dependency trees, phrase structure trees,
syntactic parsing, supervised phrase structure parsing, unsupervised dependency
parsing, bilexical grammar, grammar induction, automata induction, genetic algo-
rithm, EM algorithm.

Classification:

• I.2.7 Natural Language Processing: Language models, Language parsing and
understanding.

• I.2.6 Learning: induction.

• G.1.6 Optimization.

• F.4.2 Grammars and Other Rewriting Systems .

• G.3 Probability and statistics.

v

vi

To my wife Victoria, my daughter Julieta and my parents Alfredo and
Maruca.

Acknowledgements

This thesis would not have been possible without the support of many
people. First and foremost I would like to thank my wife, Victoria, who
in addition to being the person I chose for sharing my life and dreams,
she helped me make this thesis ”readable” in English.

I would like to acknowledge the debt I owe to my parents, Alfredo
and Maruca, because they are a model to me and beside their scarce
academic training they have always encouraged me to keep studying to
achieve my goals. And to my siblings, Juan, Stella, Luis and Eduardo
who are also my role models and stayed by me through good and bad
times.

To my dear friend Demetrio who has always given me his generous and
priceless help all along my academic career; and specially to complete
the writing of this dissertation in the role of editor.

I would like to offer my special thanks to my PhD adviser, Gabriel, who
encouraged me to finish this thesis against all odds.

Also, I wish to acknowledge the help provided by Laura, Franco Paula,
Javier, Luciana and Carlos.

And finally, to my long standing friends, Walter, Federico, Demetrio,
Diego and Damián, for giving meaning to one of the most important
words for me, friendship.

Contents

List of Figures vii

List of Tables xi

1 Introduction 1
1.1 Brief history of Natural Language Processing and Syntactic Approach 1
1.2 Bilexical Grammars for Dependency Structures 8
1.3 What This Thesis Is All About . 10
1.4 The structure of this thesis . 13

2 Theoretical Framework 15
2.1 Syntactic Analysis . 15

2.1.1 Phrase Structure Parsing 16
2.1.1.1 Phrase Structure Grammars 17
2.1.1.2 Symbolic Parsing 19
2.1.1.3 Statistical Parsing 21
2.1.1.4 Treebanks PCFGs: 25
2.1.1.5 PCFG parsing 28
2.1.1.6 Lexicalized Grammars 29
2.1.1.7 Evaluation . 33

2.1.2 Dependency Structures . 33
2.1.2.1 Dependency Trees 34
2.1.2.2 Grammar and Treebank Dependency Parsing . . . 35
2.1.2.3 Evaluation . 37
2.1.2.4 Treebanks . 38

2.1.3 From Constituent to Dependency and Viceversa 38
2.1.4 Some Models . 39

2.1.4.1 Collins’ Parser 39

iii

CONTENTS

2.1.4.2 Stanford Parser 40
2.1.4.3 DMV Parser . 40

2.2 Optimization Techniques . 41
2.2.1 Genetic Algorithms . 41

2.2.1.1 The Selection Process 42
2.2.1.2 Making Changes 44
2.2.1.3 Why (and when) do Genetic Algorithms work? . . 45

2.2.2 Expectation Maximization 46
2.2.2.1 Some definitions 47
2.2.2.2 The algorithm 48

3 Joining automata to optimize split of POS tags 55
3.1 Introduction . 55
3.2 Related Work . 57
3.3 Quality Measure for Tag Sets . 58

3.3.1 Induction of Bilexical Grammars 58
3.3.2 Quality Measure for Grammars 60

3.4 Building and Traversing the Search Space 61
3.5 Parsing with New Sets of Tags . 64

3.5.1 Rewriting the Training Material 64
3.5.2 Modifying the Parser’s Training Algorithm 66
3.5.3 Experimental Results . 66

3.6 Future Work . 68
3.7 Discussion and Conclusions . 69

4 Looking for the best language for dependency structure 71
4.1 Introduction . 71
4.2 Related Work . 73
4.3 Head Finding Algorithms . 74
4.4 A quality measure for Head Finder Rules 75
4.5 A Genetic Algorithm Set-Up for Head Rules 77
4.6 Stability of Head Finders . 79
4.7 Experimental Results . 80
4.8 Discussion and Conclusions . 83

5 Optimizing Automata for Unsupervised Dependency Parsing 85
5.1 Introduction . 85
5.2 Learning Architecture . 87

iv

CONTENTS

5.3 Automata Learning Algorithms . 90
5.4 Experimental Results . 92
5.5 Our Model in Perspective . 98
5.6 Future Work . 100
5.7 Discussion and Conclusions . 101

6 Conclusion 103

A New set of POS Tags Optimized 107

B Optimized Head Rules 113

Bibliography 117

v

CONTENTS

vi

List of Figures

1.1 Phrase structure tree extracted from the Penn Treebank (MS93).
This is a widely used set of trees annotated by linguists. 3

1.2 An example of a dependency tree. 5
1.3 In the top of the figure, the phrase structure tree have marked head

word at each level, the dashed lines show the dependency relation
between the head words. In the bottom part of the figure, we found
the dependency tree associated to the tree in the top according with
these choose of heads. 7

1.4 An example of a non-projective dependency tree. 9

2.1 Phrase structure derived from grammar in table 2.1. Under each
label of a node, the rules used to derive the tree for each of its levels
are shown. 20

2.2 Two possible phrase structure trees for the sentence “She saw the
man with a telescope”. 21

2.3 Solving the ambiguity with the PCFG in Table 2.2 for sentence “She
saw the man with the telescope”. 24

2.4 Sentence number 2 from Section 2 of the Penn Tree Bank. The left
figure shows the graph of the tree, and on the left, the PTB style
annotation. 25

2.5 Lexicalized tree for a PTB tree. 32
2.6 Two possible dependency trees for the PTB tree from wsj 0297.mrg. 38
2.7 Creation of a generation in a Genetic Algorithm. 42
2.8 A treebank of trees. 51

3.1 Tree extracted from the PTB, file wsj 0297.mrg and transformed
to a dependency tree. 58

vii

LIST OF FIGURES

3.2 Description and examples of some of the features we used. Exam-
ples are obtained using t as the tree in Figure 3.1. 62

3.3 (a) Tag NEWTAG 10 is assigned to word number 4. (b) the new tag
is introduced in the phrase structure above the original tag. 65

4.1 Sentence 2 from Section 2 of the PTB. The nodes where the head
of each constituent is searched for are marked in boldface. 74

4.2 A simple phrase structure tree. 74
4.3 An example of Head Rule. 75
4.4 The algorithmic representation of an individual corresponding to

the Head Rule from Figure 4.3. 78
4.5 The first row shows the original Collins’s head rule for S. The sec-

ond row shows a random permutation of the original rule. The last
row is the reverse of the original rule. 80

5.1 Tree extracted from the PTB, file wsj 0297.mrg and transformed
to a dependency tree. 86

5.2 The general weak-EM algorithm. 87
5.3 Typical meta-tree building automaton. 89
5.4 An example of a GS-3 automaton. (a) The skeleton displaying the

number of times each arc has been used. Arcs with zero weight are
not shown. (b) The result of transforming weights into probabilities. 92

5.5 DMV (a) and EVG (b) automata. 96
5.6 Directed Accuracy evaluated for each language over the first 30 it-

erations of our parser. The (Y) axe plots the directed accuracy cal-
culated over the treebank obtained in the (X) axe iteration against
the gold trees of the training material. 98

5.7 Evolution of logarithmic likelihood for each language. We eval-
uated over the treebanks induced in the first 30 iterations of our
parser. 99

B.1 Original and optimized Head Rule for ADJP. 113
B.2 Original and optimized Head Rule for ADVP. 113
B.3 Original and optimized Head Rule for CONJP. 114
B.4 Original and optimized Head Rule for NAC. 114
B.5 Original and optimized Head Rule for PP. 114
B.6 Original and optimized Head Rule for QP. 114
B.7 Original and optimized Head Rule for RRC. 114

viii

LIST OF FIGURES

B.8 Original and optimized Head Rule for S. 115
B.9 Original and optimized Head Rule for SBAR. 115
B.10 Original and optimized Head Rule for SBARQ. 115
B.11 Original and optimized Head Rule for SINV. 115
B.12 Original and optimized Head Rule for SQ. 115
B.13 Original and optimized Head Rule for VP. 116
B.14 Original and optimized Head Rule for WHADJP. 116
B.15 Original and optimized Head Rule for WHADVP. 116
B.16 Original and optimized Head Rule for WHNP. 116
B.17 Original and optimized Head Rule for WHPP. 116

ix

LIST OF FIGURES

x

List of Tables

2.1 A simple CFG grammar. 19

2.2 A simple PCFG grammar. 24

2.3 POS tags from the PTB. 26

2.4 Constituent tags from the PTB. 27

2.5 An example of the input frequency for the example grammar from
Table 2.6. 50

2.6 Left: A CFG grammar G. Right: the left CFG with uniform proba-
bilities in its rules. 50

3.1 Bags of left and right dependents extracted from dependency tree
in Figure 3.1. Left dependents are to be read from right to left. All
displayed sets are singletons. 59

3.2 A subset of a new POS tag set which shows entries corresponding
to the new tags related to VB calculated with feature Depth. 63

3.3 Experiment results. The middle part shows a feature whose perfor-
mance results decreases. The bottom part shows features combina-
tions. 67

4.1 (A) Parsing results obtained by replacing one rule in the standard
set by a random rule. Each row shows the average, maximal and
minimal impact in the F1 measure for each parser. (B) Experiments
result for each Head finder built with the reverse of head rule. One
column for each parser. 81

xi

LIST OF TABLES

4.2 (A) The result of the experiments corresponding to the optimized
head finder. The upper part shows evaluation in Bikel’s parser,
while the bottom with Stanford parser.(B) First column shows the
F1 when all worst performing rules, reported in Table 4.1 (A), are
put together. Second and third columns show average F1 for the
always right-most, and always left most head finders. 82

4.3 Experiments result of random choice of rules, for each experiment
we show the impact in the F1 measure for the average, maximal and
minimal. 83

5.1 Directed accuracies on Section 23 of WSJ10 for several baselines
and recent systems. 94

5.2 size of the training corpus for each language and the number of
differents POS tags. 95

5.3 Our results expressed in (directed/undirected) accuracy for a variety
of languages compared with the baselines: right attach, left attach
and standard DMV results. We also report the state-of-the-art re-
sults for these languages. 97

A.1 New tags related to VB,MD that were calculated with feature Depth. 107
A.2 New tags related to VBN,VB,MD that were calculated with feature

Depth. 107
A.3 New tags related to VB,MD that were calculated with feature gFather.108
A.4 New tags related to VBN,VB,MD that were calculated with feature

gFather. 108
A.5 New tags related to VB,MD that were calculated with feature NumChanges.108
A.6 New tags related to VBN,VB,MD that were calculated with feature

NumChanges. 108
A.7 New tags related to VBN,VB,MD that were calculated with feature

VerbAllDepth. 109
A.8 New tags related to VBN,VB,MD that were calculated with feature

VerbDepth. 109
A.9 New tags related to VBN,VB,MD that were calculated with feature

VerbVBDepth. 109
A.10 New tags related to VBN,VB,MD that were calculated with feature

NumSib. 109
A.11 New tags related to VB that were calculated with feature FstRightDep.109

xii

LIST OF TABLES

A.12 New tags related to VBN,VB,MD -VBN,VB,MD that were calcu-
lated with combined features Depth-VerbVBDepth. 110

A.13 New tags related to VBN,VB,MD -VBN,VB,MD that were calcu-
lated with combined features Depth- gFather. 111

xiii

LIST OF TABLES

xiv

Chapter 1

Introduction

Syntactic structure has been widely studied with the aim of developing applications
capable of understanding natural language. However, researchers have always dealt
with the limitation that the syntactic structure is not directly found in observable
instances of language. Within this context, syntactic analysis has come to play
a central role in developing applications that can automatically obtain the syntac-
tic structure of the language we hear or read. This is why syntactic analysis has
acquired a leading role in the vast range of studies involving automatic natural lan-
guage processing.

This thesis attempts to contribute to the study of natural language processing
by developing different methods of optimization for the automatic analysis of natu-
ral language syntax. This contribution can be observed in the three research works
presented in this thesis. Two of them improve the performance of existing auto-
matic syntactic analyzers (parsers), while the third one develops a brand new multi-
language parser that yields state-of-the-arts results.

1.1 Brief history of Natural Language Processing and
Syntactic Approach

We present a succinct description of the tools used in the Natural Language Pro-
cessing (NLP) area, their history and motivation. In particular, the formalism of
Bilexical Grammars (BG) for dependency parsing is introduced. A more in-depth
coverage about BG will follow in Chapter 2.

In human history, the importance of information management and acquisition
has always been crucial. This is due to the fact that timely information is essential

1

1. INTRODUCTION

for any effective decision-making process. In the last fifty years, the media have ac-
quired an overwhelming massiveness. This vast expansion was further accentuated
in the 90s, when the Internet was first made available to mass audiences. Since then,
the amount of information available as written texts has become overwhelming.

Although access to information is highly connected to the notion of power, the
mere access to it becomes less relevant when the information cannot be fully pro-
cessed or understood. The fact is that the availability of information has come to
such extent that human beings cannot longer handle these volumes of information
by themselves.

This phenomenon has brought to mind the possibility of using computers as
means to overcome human limitations by developing computational models capable
of processing large amounts of information. Nonetheless, computers themselves
bump against another limit: the inability to understand human language.

In recent years, Computer Sciences have dedicated lots of effort to research dif-
ferent ways of making it possible for computers to interpret human language. This
approach towards language understanding is widely known as Natural Language
Processing (NLP). Since the 80s, Natural Language Processing has taken a leading
role within the scientific community.

To achieve its goal, an NLP system needs to create computer models that can
handle the structure of language. Usually, these models do so at three different
levels: morphological, semantic and syntactic. The morphological level deals with
information related to the structure and content of morphemes and other units of
meaning such as words, affixes and parts of speech (POS). The semantic level,
attempts to understand the meaning and relation of signifiers, such as words, phrases
and signs, in language. Finally, the syntactic level models the principles and rules
by which words are combined to build a sentence.

The rest of this section summarises the development of NLP; the theoretical for-
malisms coming from linguistics as well as technological devices applied to natural
language processing with focus in syntax.

The first electronic computers were built in the 40s, during World War II. In
those years, researchers were focused on building a system capable of translating
messages from and into different languages. Such computer programs were the first
to process natural language. This decade models only took into account the order
of words within sentences, and translated the text literally, looking up the words
in a dictionary. The results obtained at that time were very poor. This low level
achievements were believed to be, principally, due to the simplicity of the language
model used.

2

1.1 Brief history of Natural Language Processing and Syntactic Approach

S

VP

VP

ADJP

NP-TMP

CD

15

NNP

Feb

JJ

payable

VB

be

MD

will

NP

NN

rate

JJ

new

DT

The

Figure 1.1: Phrase structure tree extracted from the Penn Treebank (MS93). This is a
widely used set of trees annotated by linguists.

As a consequence of the poor results obtained in the first systems, NLP re-
searchers started focusing their studies on trying to model natural language in a
more formal way. Besides the effort made in these respects in the following years,
significant progress in this field had to wait until the 60s, when Chomsky published
(Cho65). In this work, Chomsky developed a grammatical theory to formalize nat-
ural language based on the notion of generation. Chomsky proposed a hierarchy
of grammars capable of both generate the strings of languages starting from an ini-
tial symbol and mimic the syntactical structure of sentences through that generating
process. Among Chomsky’s grammars, the so called Context Free Grammar (CFG)
were widely used for modeling syntactical phenomena of natural languages1. A
CFG is a formal grammar where each production rule is of the form N → w where
N is a single non-terminal symbol and w is a string counting one or more terminal
or non-terminal symbols. In the NLP area, a syntactic tree is usually thought as the
derivation tree of a certain CFG. More specifically, a derivation tree is thought as the
result of the application of CFG rules to generate the sentence. In detail, each label
of level i in the tree, is the left side of a CFG rule and the labels of the level i+1 are
the corresponding right side of the rule. For example, the tree in Figure 1.1 is gen-

1Of course, Chomsky never expected CFG could fully capture the syntax of natural languages.
Moreover, in his book he explains the limitations of CFGs and the features of natural languages that
they are unable to express.

3

1. INTRODUCTION

erated by a CFG which starts with the application of a rule S → NP V P , followed
by the application of the next two rulesNP → DT JJ NN and V P → MD V P .
The process continues applying CFG rules until the leaves, which contain a word of
the natural language, are produced.

This formalization supposes that the syntactic structure of a sentence is orga-
nized in phrases hierarchically regulated. In Figure 1.1, there is an example of an
English sentence organized hierarchically in phrases. The syntactic structure is rep-
resented using a tree. The root node spans the entire sentence. The rest of the nodes
represent the sub-phrases of the sentence. For example, we can observe that the
entire sentence (the node S) is divided in two sub-phrases: a noun phrase (node
NP) and a verb phrase (VP) . The“leaves” of the trees are the words of the sentence.
As having the full vocabulary of the language might be computationally costly, the
actual words are often pruned. Thus, Parts Of Speech (POS) tags that represent
the syntactical category of each word become the leaves of the tree1. In the tree
of Figure 1.1, the node located before a word is the part of speech tag. For exam-
ple, the word “will” have the MD POS tag which expresses that it is a modal verb.
Usually, these kinds of syntactic representations are called phrase structures trees
or constituent trees.

A few years later, as a reaction to Chomsky’s theory and following the concepts
of Schank (Sch72), Mel’c̆uk developed an alternative theory for the syntactic analy-
sis of natural language: the dependency grammar (Mel79). In this work, the author
claims that the constituent formalism describes how the elements of language are
combined to create larger elements, but it does not explain how the elements relate
to each other. Alternatively to the phrase structure tree, the dependency formalism
uses dependency trees.

An example of a dependency tree is introduced in Figure 1.2. In this directed
tree, we see that each node is a word from a sentence and the nodes are ordered
according to their position in the sentence. The arcs in that tree reflex the syntactic
relationships between each word in the sentence. For example, in SVO2 languages,
the root of a dependency tree is the main verb and its left dependent is the main
noun of the subject. If in a dependency tree there exists an arc from the word b

pointing to the word a, we say that b is a dependent of a.
As linguistic theory progressed toward formal approaches, advances in electron-

ics made computers practical and algorithms for NLP were devised and tried.

1A grammar using words as terminal symbols is said to be “lexicalized”.
2Languages are labeled as SVO, SOV . . . according to the prescribed order of main constituents

of the sentences (Subject, Verb, Object).

4

1.1 Brief history of Natural Language Processing and Syntactic Approach

0 : the 1 : new 2 : rate 3 : will 4 : be 5 : payable 6 : Feb 7 : 15 8 : root

DT JJ NN MD VB JJ NNP CD

Figure 1.2: An example of a dependency tree.

Following Chomsky’s work, Younger (You67) presented the the CockeYoungerKasami
(CYK) , an efficient bottom up parsing algorithm for Context Free Grammars. As a
consequence, in the 70s and early 80s the syntactic parsers (Ear70a, Mar80, Ram85)
were based on CYK algorithm.

At those times, the approaches to syntactic parsing were symbolic. This means
that they were based in deep analysis of linguistic phenomena. In general, the phe-
nomena are encoded in a formal grammar 1 whose rules were defined by humans
(for example, the rules created by Chomsky in (Cho65)).

In the nineties, a huge amount of text was available in digital format and the
computational power grew even stronger; so a new, empirical, approach was tried.
Instead of deriving the rules of natural language grammars from the work of lin-
guists (to a large extent aprioristic), researchers looked in the texts actually written
and took them as big sets of examples from which grammatical rules could be sim-
ply read. As an additional benefit, patterns of the frequencies with which rules
were used could also be extracted from these texts. This led to the use of statistical
models to approximate linguistic phenomena. Statistical methods look at the fre-
quencies of different phenomena in actual utterances in order to infer probabilistic
models of languages. It should be noted that statistical models often make much
weaker assumptions about the underlying structure of the language and incorporate
definite estimations of the probabilities of occurrence of certain phenomena. From
the 80s until the mid 90s, the statistical approach was widely used in syntactic pars-
ing, even the one that does not use a grammar to build a model (MM90). However,
the best parsing models, including state-of-the-art ones (Col97, KM03a, Cha00),
can be considered to a certain extent as hybrid. Although they use a grammar, most
of their rules are learned from a set of examples made of annotated sentences. The
grammars used by these parsers are called probabilistic, because their rules have
a probability associated. In general, these probabilities are proportional to the fre-

1It can be a Context Free Grammar (Cho65)

5

1. INTRODUCTION

quencies of data occurring in the examples. One kind of grammars widely used
during those years was the Probabilistic Context Free Grammar (PCFG).

The examples used by the statistical methods are commonly called treebanks.
These banks of trees are sentences which are usually annotated with syntactic in-
formation by a linguist. These treebanks are used to evaluate the syntactic parsers
and in some cases to learn the model to parse. For English, one of the most used
treebanks for phrase structure parsing is the Penn Treebank (PTB) (MS93).

Over the last years, the dependency formalism has become crucial for NLP
syntactic analysis. Dependency structures are used not only to build dependency
parsers, but they are also proved to be particularly useful in constituent parsers as
Wang argues in (WZ10): the complexity of parsing algorithms for dependencies is
better than that of constituent parsing1. Then efficiency of constituent parsing can
be improved using dependency trees as an intermediate result; lexicalized PCFGs
which use information about the head of constituents (Col96, Col97) perform bet-
ter than those that lack this information. It is believed full information about the
dependency structure can improve parsers’ performance further.

For using dependency information in constituent parsing, the newest algorithms
usually need to transform the phrase structure trees into dependency ones. For
example, in (DFM04) there is a complete study on how to transform constituent
trees into dependency ones. As the authors explain, for this transformation it is
necessary to have some way to choose the most important word for each sub-phrase
in the constituent tree. The most significant word in a constituent is usually called
the head of this constituent. For example, the head of the constituent containing
only the subject of the sentence is the main noun. For choosing the head in each
constituent, a table that contains rules for each type of constituent (S, NP, VP, etc)
is usually used. For example in Figure 1.3 the drawing at the bottom shows the
dependency tree obtained transforming the tree at the top.

Another step in the development of NLP was the adoption of methods from ma-
chine learning. In this area, (some) learning algorithms are classified as supervised
or unsupervised. For the parsing problem, supervised methods try to infer a gram-
mar from the structure annotations of a training corpus of sentences. Unsupervised
methods seek the underlying grammar that generates a set of utterances without
annotations. This problem is obviously much harder, but given the high cost of an-
notating a corpus manually, a lot of research is currently focusing in this kind of
algorithms (CGS08, CS09, HJM09, SAJ10a, GGG+10, BC10, WZ10).

1Linear time vs. cubic time for CYK algorithm.

6

1.1 Brief history of Natural Language Processing and Syntactic Approach

S

VP

VP

ADJP

NP

CD

15

NNP

Feb

JJ

payable

VB

be

MD

will

NP

NN

rate

JJ

new

DT

The

0 : DT 1 : JJ 2 : NN 3 : MD 4 : VB 5 : JJ 6 : NNP 7 : CD 8 : ROOT

Figure 1.3: In the top of the figure, the phrase structure tree have marked head word at
each level, the dashed lines show the dependency relation between the head words. In
the bottom part of the figure, we found the dependency tree associated to the tree in the
top according with these choose of heads.

7

1. INTRODUCTION

1.2 Bilexical Grammars for Dependency Structures

Dependency structures are used to perform many different tasks in natural language
processing. In particular, dependency structures are very useful in phrase structure
parsing and dependency parsing, for both supervised and unsupervised methods.
In this kind of theories, structure is modeled through a dependence relation be-
tween words. This relation carries information about headness and can overcome
difficulties arising from contiguity constraints in phrase structure grammars. Most
constituent supervised parsers (Col97, KM03a, Cha00) use dependency structures
in their models to keep information of heads in sentences, and with this information
they achieve better performance. Dependency models were also used in unsuper-
vised parsers (Kle05, HJM09, PBE11, Seg07, Bod06).

Given a dependency treebank, we can define the dependency language L of this
treebank. A word W = l1 . . . lk ∗N r1 . . . rl belongs to L if N is a node in certain
dependency tree with the following properties:

• li is dependent of N , 1 ≤ i ≤ k

• rj is dependent of N , 1 ≤ j ≤ l

• for each occurrence of a word, all of its dependents are listed

• the order of the occurrences of dependents is preserved. That is if l and l′ are
both left dependents of w and l occurs before l′, the subscript of l should be
lower than the subscript of l′ in the word corresponding to w.

Notice that we are linearizing dependency trees by listing the left and right im-
mediate dependents for each word. The word under consideration is marked with
the special symbol ∗.

For example, for the tree in Figure 1.2, the dependency words associated with
the first four POS of the sentences are:

{∗ DT, ∗ JJ, DT JJ ∗ NN, NN ∗ MD V B}

In this work we use Bilexical Grammars (Eis97) for modeling dependency lan-
guages. A Bilexical Grammar (BG) is equivalent to a Context Free Grammar
(Eis96), but with a distinctive property: it is built from a set of regular languages.
The idea behind this is to divide the entire dependency language into smaller sets
to model them later. In general learning smaller languages is simpler, even more
if they are regular. More precisely, we model dependencies for each word in the

8

1.2 Bilexical Grammars for Dependency Structures

0 : I 1 : ate 2 : fish 3 : yesterday 4 :which 5 : was 6: salmon 7: root

PRP VBD NN ADV PR VB NN

Figure 1.4: An example of a non-projective dependency tree.

lexicon splitting the right and the left dependencies. Once we have the right and left
regular grammars for each word, we put all together with a Bilexical Grammar.

Given that regular languages are equivalent to the languages recognized by fi-
nite automata, the regular languages of left and right dependents of each POS in
a Bilexical Grammar can be modeled in such way. As a consequence, we can say
that a BG can be learned by inducing its automata. The strong hypothesis behind
using a Bilexical Grammar to model dependencies structures is to assume that for
each word, its left and right dependency languages can be accurately approximated
by regular languages. This hypothesis is validated with the results obtained in three
different experiments where dependencies are modeled with BGs. Of course, we
can also make the standard addition of probabilities to the rules of the grammars
(or, equivalently, add the weights to the transitions of the automata) giving rise to
Probabilistic Bilexical Grammars (PBGs).

A characteristic of a dependency tree that was not mentioned before is that a
dependency tree can be projective or non-projective. A projective dependency tree
is one in which there are not crossing edges.

For example, the tree in Figure 1.1 is projective. In contrast a non-projective
tree is the one shown in Figure 1.4. Here the relative clause “which was a salmon”
and the object it modifies (“fish”) are separated by an adverb (“yesterday”). There is
no way to draw the dependency tree for this sentence in the plane without crossing
edges.

In this thesis, we consider only projective dependencies. This is because the
bilexical grammar cannot emulate crossing lines by construction. A generalization
of BG which enables the representation of projective trees is found in (MPRH05).
However, as this generalization of BGs is not represented by automata, it is out of
the scope of our thesis.

9

1. INTRODUCTION

1.3 What This Thesis Is All About

This thesis, widely speaking, introduces different ways to capture the regularities
of syntactic patterns of languages and apply them by computational means. We ex-
plore the behavior of dependency structures through the formalism of Probabilistic
Bilexical Grammars and study their automata and their languages. This exploration
is also done with strong use of computationally intensive procedures.

We address three main issues: how to obtain a “good” set of syntactical cate-
gories; how the manners of finding the leading words (heads) of constituents in-
fluence the performance of parsers and; how to infer grammatical structure of sen-
tences in absence of explicit annotations. The use of PBGs across the different
aspects of this study and the good results achieved gave us some insight about why
bilexical grammars work.

For the problem of optimizing the alphabet of syntactical categories, we should
point that these alphabets were chosen in somewhat aprioristic ways informed by
linguistic tradition. It may be the case that better performance can be achieved if
the choice of the set of syntactical categories is determined by the distributional
properties of the (classes of) words. We add new symbols to the dependency lan-
guage by splitting the POS tags. This idea is based on the fact that the syntactic
category represents many different words and these words may have different, but
by no means arbitrary, distributions. For this reason, the hypothesis is that we can
learn dependency languages more easily by looking at the left and the right regular
languages associated to each POS. For example, “I” and “them” are both pronouns,
but the former appears more often before the verb than the latter.

This algorithm is principally used for verbs. The reason to choose verbs is that,
in general, verbs are the most important words in the sentence, and therefore the
dependency relationships are more complicated. Besides, verbs differ in the kind of
arguments they usually take and show noticeable differences in usage.

We define an optimization method to find the best way of clustering the selected
POS. We start splitting a POS according to a certain feature that encodes syntactic
information. If we choose as a possible feature the POS of the left dependent, the
initial cluster will have as many elements as different POS appear as left depen-
dents in the training set. In each step we join those elements in the cluster which
have “similar” languages. We evaluate the grammar obtained in each step according
to the mistakes incurred by the parser in a test set and the simplicity of the gram-
mar1. Our optimization obtains as a result the “best” partition according to a certain

1The rationale behind this lies in that we try to capture general patterns of the syntax of a

10

1.3 What This Thesis Is All About

feature selected. In order to evaluate the resulting tag set, we add this information
into two different state-of-the-art phrase structure parsers.

For example, we can propose as a feature for a verb to be followed by infinitives
and the algorithm will cluster verbs like try and quit accordingly as if they shared
that behavior in the training corpus.

The second of the issues has to do with syntactic analysis. One of the most im-
portant tasks in the NLP area is the development of a syntactic parser. A syntactic
parser is a software system that when fed with a sentence of natural language, it
returns a structure which contains relevant syntactic information. The most recent
constituent parsers (cDMMM06, KM03b, Bik02, Col97, Cha00) use dependency
information in the rules of their grammars. The information codified in the rule
is the most important word in each sub-phrase; in other words they use the head
of each sub-phrase. In this work, we propose an optimization method to study the
“best” way to relate the words in a sentence and hence obtain the heads of con-
stituents. The idea is to implement it by changing the rules used by the constituent
parser to choose the heads in each level of a phrase structure tree.

The first naive option would be to implement a brute force algorithm which
traverses the space of all possibles head rules, and evaluates them based on the
performance obtained by the constituent parser selected. However, this solution is
impracticable, due to the huge amount of different ways of choosing heads. In fact,
the longest rule has length 18, so the number of possible alternatives amounts to
18!∗218. Our idea is to use genetic algorithms to select promising variations of head
finding rules according to their performance and the simplicity of the underlying
model.

In each step of our algorithm, we look for better versions of the rules one at a
time. With these candidates for improvement, a new rule set is used to transform
a training set of phrase structure trees into dependency ones. We infer a bilexical
grammar from this new set of dependency trees. The BG obtained in each step is
then evaluated in a way similar to our first approach. Note that, by changing the head
rules, we are changing the languages of the automata. As a result of this algorithm
we obtain a new set of head-rules. Our hypothesis is that with this optimization
process we can find the most convenient set of head rules for constituent parsers. In
addition, this is a good way to evaluate the new set of head rules.

Our third work, namely learning grammars starting from sets of plain sentences
falls in the area of unsupervised dependency parsing. This is, we hope to find regu-
larities in the languages by applying statistical methods to large quantities of data.

language. These patterns should not be too complex.

11

1. INTRODUCTION

An example of the kind of linguistic patterns we should be able to infer from a cor-
pus, consider that the dependant of a preposition is usually a noun occurring to the
right of that preposition. A rule like that can explain -that is, parse- a number of dif-
ferent sentences which other candidate rules can not. Then, a sound method should
prefer such a rule over competing alternatives and “discover” that grammatical rule.

The strength of unsupervised methods is that they don’t require high quality in
their input but are capable of getting useful information from sufficient quantities
of raw sentences. Moreover, they provide good insights of theoretical interest on
linguistics and machine learning. The downside of this is that they need rather
heavy computational resources and available data.

As in the two previous works, our algorithm is based on probabilistic bilexical
grammars. Our focus of this algorithm is on learning the best grammar by using
constraints in the complexity of their regular grammars. This idea is implemented
by fixing the structure of the automata whose languages correspond to the ones of
the grammars.

Given that the task is unsupervised, the input is a set of non-annotated sentences.
The grammar is learned from an initial set of trees, those trees are built based on
constraints aimed to start the learning process from simple models. In each iterative
step of the algorithm, we parse the set of sentences with the PBG and refine the
grammar by contrasting the parsed trees of the input sentences. As before, we
measure the quality of the grammar by means of a combination of performance and
simplicity.

The results of our three works are close to the state-of-the-art of the syntactic
parsing. We use dependency structures to improve the performance of state-of-the-
art supervised parsers and we developed a new unsupervised parser also based in
dependencies.

In the first approach, we obtain a split of the POS tags by clustering words
whose automata are “similar”, and we treat each cluster as a new POS tag. We try
out the resulting tag set in two different state-of-the-art phrase structure parsers and
we show that the induced part of speech tags significantly improves the accuracy of
the parsers.

In the second approach, we try to optimize the set of head finders rules used by
phrase structure parsers to determine all heads in a sentence. We do so by changing
the rules and evaluating them according to the languages of the automata inferred
in the bilexical grammar induced with those rules. In this optimization process we
look for the best language to be learned.

In our third work we build a novel unsupervised dependency parser whose flex-

12

1.4 The structure of this thesis

ibility of changing the structure of automata results in good performance in eight
different languages. We combine tests in different languages and different automata
structure and we obtain state-of-the-art results for English, Swedish, German, Turk-
ish, Bulgarian, Spanish, Portuguese and Danish. We also find out that our parser
engine can obtain competitive results even with a small amount of input sentences.
We discover an unsupervised way to decide which automata structure is suitable for
a given amount of sentences.

The results obtained by our three works show that Bilexical Grammar is a highly
useful formalism to represent natural language dependencies. Results indicate that
the use of information about heads leads to significant improvements in parser per-
formance while variations of head finding algorithms are not so important. We
conclude that the power of Bilexical Grammar lies mostly in its flexibility. The
bilexical grammar allows us to access to the dependency language of each word and
decide which learning mechanism is better to use in a particular word and in dif-
ferent training sets sizes. This flexibility allows us to decide, according to the task,
which aspect of the dependency structures must be taken into account to achieve the
better solution for a task.

1.4 The structure of this thesis

This thesis is structured as follows: in the next chapter we include some background
necessary to understand in detail the rest of this work. In chapter 3, we present our
approach to optimize the POS set for phrase structure parsing and how it improves
the results of Bikel’s implementation of Collins’ parser (Bik02).

In chapter 4, we present in detail the head finder rules optimization for con-
stituent parsing and we show how the performance of dependency parsers depends
strongly on the existence of a head finding phase, but the actual rules used in that
process have a much less significant impact.

Chapter 5 presents our unsupervised dependency parser. Our algorithms are
full-fledged and easily reproducible. We experiment in eight languages (English,
Swedish, German, Turkish, Bulgarian, Spanish, Portuguese and Danish) that inform
intuitions in training-size dependent parametrization.

Each of the three later chapters ends with a discussion about the placement of
each work in the context of current NLP research. Chapter 6 concludes our work.

13

1. INTRODUCTION

14

Chapter 2

Theoretical Framework

This chapter presents the theoretical background that is necessary to understand
the different notions introduced in this thesis. First, we start by defining all the
concepts related to syntactic analysis, phrase structure analysis and dependency
analysis. Then, we explain the optimization algorithms used in this thesis.

2.1 Syntactic Analysis

The “Syntax” studies the regularities and constraints of word order and phrase struc-
ture (Niv05). In a sentence of natural language, at first sight, we can only observe
a one-dimensional relation between words, i.e., the sequence as an ordered list of
strings. However, the central idea of a syntactic theory is to uncover the hierar-
chical relationship between words. Given that natural language is ambiguous, this
hierarchical structure can help to interpret the meaning of a sentence (MS02). For
example, the sentence “She saw a man with a telescope”, could have two hierarchi-
cal structures: one in which the telescope is related to “she” and another syntactic
analysis where “the telescope” is related to “man”.

Syntactic parsers are considered of great importance in the area of Natural Lan-
guage Processing. These algorithmic systems can analyze natural language and
identify the different functions words may have within a sentence. Moreover, they
are designed to break down a phrase into a tree structure and add the different gram-
matical categories. The relevance of the syntactic analysis lies in the fact that their
results are applicable to multiple areas of study such as automatic language genera-
tion, automatic translation, voice recognition, and many others.

15

2. THEORETICAL FRAMEWORK

2.1.1 Phrase Structure Parsing

Natural language has an underlying structure usually referred to as Syntax. The fun-
damental idea of syntax is that words group together and form constituents, which
are groups of words or phrases that behave as a single unit. These constituents can
combine together to form larger constituents and, eventually, sentences. The func-
tion of a Phrase Structure Parser is to discover the tree structure of a given input
sentence by detecting the sub-phrases that form such utterance and defining how
they are hierarchically related. One of the characteristics of constituents is that they
can occur in different positions. For example:

• She left the books on the desk.

• She left on the desk the books.

• On the desk, she left the books.

Another characteristic of constituents is that they can be replaced by a shorter
sequence of words while the sentence remains grammatically correct. To clarify
this idea, consider the following sentences:

• John and Terry walked through the park in a hurry.

• They walked through the park in a hurry.

The fact that we can substitute “John and Terry” by “They” shows that the for-
mer group of words is a constituent. On the contrary, “ John and Terry walked”
cannot be replaced in the same way, as we can see in the following sentence:

• They through the park in a hurry.

Within the context a Phrase Structure Tree, such as the one in Figure 1.1, each
node of the tree (including the words) is considered a constituent. In a tree view,
constituents at lower levels join together to form larger constituents. The higher
levels of constituents (above POS tag nodes) are the grammatical categories. The
most important grammatical categories are (MS02):

• Noun phrases. The noun usually embedded in a noun phrase (NP) is con-
sidered the head of the noun phrase; the main constituent that defines its syn-
tactic function. This syntactic unit provides information about the head noun.
Noun phrases usually function as the arguments of verbs. i.e., they represent

16

2.1 Syntactic Analysis

the participant in the action, activity or state described by the verb. Noun
phrases normally consist of the following elements: a determiner (optional),
adjectives phrases (optional), a noun head, and they may contain some post-
modifiers, such as prepositional phrases or relative clauses. The constituents
of a noun phrase usually appear in the order mentioned. Here is a large noun
phrase that includes many of the possibilities mentioned:

– The old country house on the hill is being remodeled.

• Prepositional phrases. Prepositional phrases (PPs) are led by a preposition
and contain a noun phrase which is the object of the preposition. They can
appear within all the other major phrase types. They are usually found in
noun and verb phrases where they normally express circumstantial attributes
(space, time, manner, etc.). For example:

– The girl in the blue dress is dancing with me.

• Verb phrases. The verb is the head of the verb phrase (VP). In general, the
verb phrase rules all elements of the sentence that depend syntactically on the
verb. Some examples of verb phrases are:

– He explained his master plan thoroughly.

– He was fighting for his freedom.

– The woman eats fruit.

• Adjective phrases. Adjective phrases (APs) are less common. They consist
of an adjective that functions as the head of the phrase and may contain other
elements such as modifiers, determiners, and qualifiers. Some examples of
such phrases are:

– He was quite sure he saw her last night.

– They were much more grateful than we expected.

2.1.1.1 Phrase Structure Grammars

The formalization of the constituent parsing was introduced by Chomsky in (Cho53,
Cho57) by using Phrase Structure Grammars (PSG). A phrase structure grammar is
defined as a four-uple (S, T, N, R) such that:

• T , the set of terminal symbols, the words of the language being defined.

17

2. THEORETICAL FRAMEWORK

• N , the non-terminal symbols: these are the union of two subsets GC ∪ POS

where GC are the grammatical categories and POS are the syntactical cate-
gories.

• R, a set of productions of the form V → W , where V is a sequence in
(T ∪ N)+ and W ∈ (T ∪ N)∗ is a sequence of zero or more symbols from
either alphabet. If V is just a member of POS, the right hand side W must
be a member of T .

• S, a start symbol, a member from N , that is a grammatical category.

A Phrase Structure Grammar is called Context Free when each of the produc-
tions in R is of the form V → W where V is a single symbol in N . For example,
Table 2.1 shows a very simple CFG phrase structure grammar.

For CFGs we can define derivation trees which can give us a graphical repre-
sentation of how a sentence can be obtained by applying the production rules to
the starting symbol. Formally, a derivation tree for the sentence w in the grammar
(S, T, N, R) is an ordered labeled tree such that:

• The root of the tree is labeled S.

• The labels of the leaves belong to T ∪ {ε}.

• The labels of non-leaves nodes belong to N , and if a node has label L and the
labels of its children are (L1, ..., Ln), then L → L1...Ln must be in R.

• w is the concatenation of the labels of the leaves.

We can now define the string language generated by a CFG G as the set L(G) =

{w : a derivation tree for w in G exists}. Similarly, we define the tree
language of G is the set of all possible derivation trees.

Figure 2.1 plots a constituent tree, where in each node, bellow the sintactic
category, it is shown the PSG rules from Table 2.1 that were used to derive the
sentence.

A CFG is considered ambiguous if a sentence in its string language has at least
two different derivations trees. The CFGs used to model natural languages are usu-
ally highly ambiguous. Therefore, it is necessary to have a method to decide which
of the many derivation trees of a given sentence captures best its true meaning.

For CFGs a well-known result is that for every CFG G, there is another CFG
G′ = (S, T, N, R) such that L(G) = L(G′) and G′ has the following properties:

18

2.1 Syntactic Analysis

S → NP VP
NP → DT NN DT → the
NP → NP PP NN → man
NP → PRP NN → telescope
VP → VP PP IN → with
VP → VBD NP PRP → she
PP → IN NP VBD → saw

Table 2.1: A simple CFG grammar.

• If ε ∈ L(G′) then S → ε ∈ R

• Each other production in R is of one of the following forms:

– A → BC, with A ∈ N and B, C ∈ N − {S}

– A → w, with w ∈ T

A grammar having the properties mentioned is considered to be in Chomsky
normal form (CNF). As there are algorithms to find the Chomsky normal form for
CFGs (HU79), some algorithms that use CFG as input assume, without generality
loss, that those grammars are in CNF. A relevant example of such algorithm is the
CYK algorithm for parsing which we will describe later on.

We summarize how CFG can model natural languages saying that non-terminal
symbols encode syntactical the categories of words as well as the ones of the con-
stituents of the language to be modeled; the production rules capture the permissible
ways of combining constituents. Finally, the derivation trees provide a description
of the underlying syntactical structures of sentences.

2.1.1.2 Symbolic Parsing

Given a context free grammar G and a sentence, the problem of deciding whether
the sentence belongs to the string language of G and, if so, yielding one or more of
its derivation trees is called syntactic parsing. In the case that there exist a derivation
tree for a given sentence in the language of G, de returned derivation tree are usually
called parse tree. This problem is known to be decidable and two basic approaches
to it are top-down parsing and bottom-up parsing.

• In the top-down approach, a parser tries to derive the given string from the
start symbol by rewriting non-terminals, one by one, using productions. The

19

2. THEORETICAL FRAMEWORK

S
(S→NP VP)

VP
(VB→VP PP)

PP
(PP→IN NP)

NP
(NP→DT NNM)

NN
(VB→telescope)

telescope

DT
(DT→the)

the

IN
(IN→with)

with

VP
(VB→VBD NP)

NP
(NP→DT NN)

NN
(NN→man)

man

DT
(DT→the)

the

VBD
(VBD→saw)

saw

NP
(NP→PRP)

PRP
(PRP→she)

She

Figure 2.1: Phrase structure derived from grammar in table 2.1. Under each label of a
node, the rules used to derive the tree for each of its levels are shown.

non-terminal on the left hand side of a production is replaced by its right hand
side in the string being parsed.

The most popular and efficient top-down algorithm was implemented by Ear-
ley (Ear70b) using dynamic programming. The Earley parser has an O(n3)

worst case time complexity, where n is the length of the parse sentence.

• In the bottom-up approach, a parser tries to transform the given string to the
start symbol, step by step, using productions. The right hand side of a pro-
duction found in the string being parsed is replaced by its left hand side. The
first efficient parser for CFG was a bottom-up parser called CYK algorithm
(You67). CYK stands for Cocke-Younger-Kasami, and such algorithm in-
volves parsing sub-strings of length 1, then length 2, and so on until the entire
string has been parsed. The reason why this algorithm is efficient is because
the shorter sub-strings from previous iterations can be used when applying
grammar rules to parse the longer sub-strings.

We will explain the CYK algorithm in detail because all of our parsers are based
on this algorithm. The Algorithm 1 shows the CYK algorithm, it takes as input
a grammar G and a sentence w. It considers every possible sub-sequence of the
sequence of words and sets B[l, r, a] to be true if the sub-sequence of words starting
from i of length l can be generated from Ra. Once it has considered sub-sequences

20

2.1 Syntactic Analysis

S

VP

PP

NP

NN

telescope

DT

the

IN

with

VP

NP

NN

man

DT

the

VBD

saw

NP

PRP

She

(A)

S

VP

NP

PP

NP

NN

telescope

DT

the

IN

with

NP

NN

man

DT

the

VBD

saw

NP

PRP

She

(B)

Figure 2.2: Two possible phrase structure trees for the sentence “She saw the man with
a telescope”.

of length 1, it moves to sub-sequences of length 2, and so on. For sub-sequences
of length 2 and greater, it considers every possible partition of the sub-sequence
into two parts, and checks to see if there is some production Xa → XbXc such that
Xb matches the first part and Xc matches the second part. If so, it records Xa as
matching the whole sub-sequence (from l to r). Once this process is completed,
the sentence is recognized by the grammar if the sub-sequence containing the entire
sentence is matched by the start symbol S.

It is easy to modify this algorithm to recover the parse tree. The tree nodes
should be stored in the array B, instead of booleans. Then the array in B[l, r, a]

should keep the list of all non-terminals that generate the span tree from l to r.

2.1.1.3 Statistical Parsing

The CFG is a good formalism to find all possible phrase structure trees. However,
this formalism does not solve the ambiguity; it produces all possible trees. Sen-
tences can have many parse tree according to the CYK algorithm. At some point,
to perform a task, we need to choose only one tree. For example, consider the trees
in Figure 2.2, both of them are generated by the grammar in Table 2.1. In order
to solve this type of ambiguity, NLP researchers started to use formal grammars
which include probabilities: Probabilistic Context Free Grammars (PCFG) (BT73).

21

2. THEORETICAL FRAMEWORK

Data: the CFG G = (S, T, N, R), N ∪ T = {X1, . . . , Xk}, the
input sentence w = {w1, . . . , wn}

Result: true if there is a parse tree, and also B contains the tree,
false if there is not a parse tree

1 for i = 1 to n do
2 foreach (Xj → x) ∈ R do //iterate in rules
3 if x == wi then //initialize the diagonal, for

unary rules

4 B[i; i; j] =true
5 end
6 end
7 end
8 for i = 2 to n do //set length of window for span

9 for l = 1 to n− i + 1 do //starting the span

/* the span window is s = wlwl+1 . . . wr. */

10 r = l + i− 1;
11 for m = l + 1 to r do //Splitting the span

/* span window s = wlwl+1 . . . wr */

/* x = wlwl+1 . . . wm−1, y = wmwm+1 . . . wr, and

s = xy */

12 foreach (Xa → XbXc ∈ R) do
/* Can we match Xb to x and Xc to

y? */

13 if B[l,m− 1, b] ∧B[m, r, c] then
14 B[l, r, a] =true;
15 end
16 end
17 end
18 end
19 end
20 if B[1, 1, n] then asda
21 return true;
22 end
23 else
24 return false;
25 end

Algorithm 1: The algorithm CY K(G, w).

22

2.1 Syntactic Analysis

A PCFG is simply a CFG with probabilities added to their rules, indicating how
likely different rewritings are. Formally, a PCFG is 5-uple (S, T, N, R, P)1 such
that:

• T , the set of terminal symbols, the words of natural language being defined.

• N , the non-terminal symbols: these are the union of two subsets GC ∪ POS

where GC are the grammatical categories and POS are the syntactical cate-
gories.

• R, a set of productions of the form w → W , where w is a non-terminal
symbol and W ∈ (T ∪ N)+ is a sequence of one or more symbols from
T ∪N .

• S, a start symbol, a member from N , that is a grammatical category.

• P , the probability, is a function with domain in R and image in the interval
[0, 1], such that,

∀X ∈ N
∑

y1...yn : X→y1...yn∈R

P (X → y1 . . . yn) = 1

In the rest of this work, for a grammar G = (S, T, N, R, P) the following notation
will be used: Rules(G) = R, Term(G) = T and NTerm(G) = N .

For example, Table 2.2 shows a PCFG grammar based on the rules of CFG used
in previous examples (Table 2.1). Using this PCFG we can show how to solve the
ambiguity in these sentences if the task requires to do so. The probability of a tree is
defined as the product of the probabilities of rules used to derive the parse tree. As a
consequence, using the rules in Table 2.2, Figure 2.3 shows how the PCFG can help
to solve the ambiguity. Considering the example mentioned, “with the telescope” is
more likely to be attached to “the man”.

Gold in (Gol67) showed that CFGs cannot be learned without the use of nega-
tive evidence (the provision of ungrammatical examples). He used the concept of
learning in the sense of identification in the limit - that is, whether one can iden-
tify a grammar if one is allowed to see as much data produced by the grammar
as one wants. However, PCFGs are good for grammar induction, as they can be

1It is expected that the sum of probabilities of all trees produced by a PCFG G to be 1. But this
is not always the case. However, as long as we only compare probabilities between trees this is not
a relevant constraint. Finally, some works which study PCFGs with the consistency property can be
found in (SB97, Chi99, NS06).

23

2. THEORETICAL FRAMEWORK

S → NP VP 1.0
NP → DT NN 0.6 DT → the 1.0
NP → NP PP 0.3 NN → man 0.6
NP → PRP 0.1 NN → telescope 0.4
VP → VP PP 0.2 IN → with 1.0
VP → VBD NP 0.8 PRP → she 1.0
PP → IN NP 1.0 VBD → saw 1.0

Table 2.2: A simple PCFG grammar.

t1

S1.0

V P0.2

PP1.0

NP0.6

NN0.4

telescope

DT1.0

the

IN1.0

with

V P0.8

NP0.6

NN0.6

man

DT1.0

the

V BD1.0

saw

NP0.1

PRP1.0

She

t2
S1.0

V P0.8

NP0.3

PP1.0

NP0.6

NN0.4

telescope

DT1.0

the

IN1.0

with

NP0.6

NN0.6

man

DT1.0

the

V BD1.0

saw

NP0.1

PRP1.0

She

The probabilities of t1 and t2:
P(t1)= 1.0∗0.1∗0.2∗1.0∗0.8∗1.0∗1.0∗0.6∗1.0∗0.6∗1.0∗0.6∗1.0∗0.4 = 0.0013824

P(t2)= 1.0∗0.1∗0.8∗0.1∗1.0∗0.3∗0.6∗1.0∗1.0∗0.61.0∗0.6∗1.0∗0.4 = 0.00020736

Figure 2.3: Solving the ambiguity with the PCFG in Table 2.2 for sentence “She saw
the man with the telescope”.

24

2.1 Syntactic Analysis

S

VP

NP

NNP

Elianti

VBZ

plays

NP-SBJ

NNP

Haag

NNP

Ms.

(S

(NP-SBJ (NNP Ms.) (NNP Haag))

(VP (VBZ plays)

(NP (NNP Elianti)))

(. .))

Figure 2.4: Sentence number 2 from Section 2 of the Penn Tree Bank. The left figure
shows the graph of the tree, and on the left, the PTB style annotation.

learned from positive data alone (Hor69). For syntactic parsing, the positive exam-
ples for learning a PCFG model for parsing are called treebanks. For phrase struc-
ture parsing, usually these treebanks are a set of sentences where the constituents
are marked and labeled with their syntactical and grammatical categories. The most
popular treebank for English is the Penn Treebank (PTB) (MS93). The PTB is a set
of English sentences which are annotated by linguists. These sentences are orga-
nized in sections. The style of the annotation used is “LISP style”1, bracketing the
constituent. For example, on the right of Figure 2.4 there is an example of such sen-
tences and, on the left, we draw the tree represented by the PTB annotation. In Table
2.4 we show the syntactic and grammatical categories used in the PTB annotation,
while in Table 2.3 the POS tags used are listed.

Other well-known corpus used for constituent parsing are: for English (FK79),
for German (BDH+02) and for Spanish (CMBN+03), among others.

2.1.1.4 Treebanks PCFGs:

When the PCFG is induced from a corpus such as the PTB, this type of learning
a grammar is called Supervised Learning. This is because we want to learn a
grammar, and we have positive examples of the rules of the grammar to be learned.

When we learn a grammar from a treebank, we take into account the rules ob-
served in the trees of the training material, and the probabilities of the rules are
estimated according to the Maximum likelihood estimation (MLE). That is, MLE
estimates from relative frequencies from a given treebank T :

1The tag of the considered constituent is in the place of the function name in the LISP style
writing. Recall that the function f(x, y) is written as (f x y) in LISP.

25

2. THEORETICAL FRAMEWORK

Num. Tag Description
1 CC Coordinating conjunction
2 CD Cardinal number
3 DT Determiner
4 EX Existential there
5 FW Foreign word
6 IN Preposition or subordinating conjunction
7 JJ Adjective
8 JJR Adjective, comparative
9 JJS Adjective, superlative
10 LS List item marker
11 MD Modal
12 NN Noun, singular or mass
13 NNS Noun, plural
14 NNP Proper noun, singular
15 NNPS Proper noun, plural
16 PDT Predeterminer
17 POS Possessive ending
18 PRP Personal pronoun
19 PRP$ Possessive pronoun
20 RB Adverb
21 RBR Adverb, comparative
22 RBS Adverb, superlative
23 RP Particle
24 SYM Symbol
25 TO to
26 UH Interjection
27 VB Verb, base form
28 VBD Verb, past tense
29 VBG Verb, gerund or present participle
30 VBN Verb, past participle
31 VBP Verb, non-3rd person singular present
32 VBZ Verb, 3rd person singular present
33 WDT Wh-determiner
34 WP Wh-pronoun
35 WP$ Possessive wh-pronoun
36 WRB Wh-adverbv

Table 2.3: POS tags from the PTB.

26

2.1 Syntactic Analysis

Num. Phrase Tag Description
1 S Simple declarative clause, i.e. one that is not introduced

by a subordinating conjunction and that does not exhibit
subject-verb inversion.

2 SBAR Clause introduced by a subordinating conjunction.
3 SBARQ Direct question introduced by a wh-word or a wh-phrase.
4 SINV Inverted declarative sentence, i.e. one in which the subject

follows the tensed verb or modal.
5 SQ Inverted yes/no question, or main clause of a wh-question,

following the wh-phrase in SBARQ.
6 ADJP Adjective Phrase.
7 ADVP Adverb Phrase.
8 CONJP Conjunction Phrase.
9 FRAG Fragment.
10 INTJ Interjection. Corresponds approximately to the part-of-

speech tag UH.
11 LST List marker. Includes surrounding punctuation.
12 NAC Not a Constituent; used to show the scope of certain

prenominal modifiers within an NP.
13 NP Noun Phrase.
14 NX Used within certain complex NPs to mark the head of the

NP.
15 PP Prepositional Phrase.
16 PRN Parenthetical.
17 PRT Particle. Category for words that should be tagged RP.
18 QP Quantifier Phrase (i.e. complex measure/amount phrase);

used within NP.
19 RRC Reduced Relative Clause.
20 UCP Unlike Coordinated Phrase.
21 VP Verb Phrase.
22 WHADJP Wh-adjective Phrase. Adjectival phrase containing a wh-

adverb, as in how hot.
23 WHAVP Wh-adverb Phrase. For example how or why.
24 WHNP Wh-noun Phrase. e.g. Who, which book, whose daughter,

none of which, or how many leopards.
25 WHPP Wh-prepositional Phrase. Prepositional phrase containing a

wh-noun phrase (such as of which or by whose authority).
26 X Unknown, uncertain, or unbracketable. X is often used for

bracketing typos.

Table 2.4: Constituent tags from the PTB.
27

2. THEORETICAL FRAMEWORK

P̂ (A → s1 . . . sn) =
Count(T, A → s1 . . . sn)

Count(T, A → ∗)

where Count(T, r) is the number of times that the rule r appears in treebank T ,
and Count(T, A → ∗) means the number of rules with the non-terminal A in its
left hand side. The problem with the MLE estimator is the data sparseness. That
is, even with a large corpus there exist elements in the training corpus which are
infrequent.

To solve this problem, usually “smoothing” techniques are applied (MS02). For
example, those rules appearing less often than a certain threshold are treated as
an only one rule. A similar strategy is used for words occurring just a few times.
Smoothing can also be used when the parser receives a word which does not appear
in the training data. In this case, such word will be treated as a non-frequent word.

To solve data sparseness, state-of-the-art parsers frequently implement the inside-
outside algorithm (Bak79). This algorithm is also used to train PCFGs when there
are unannotated treebanks, i.e. when only a set of sentences is available. This way
of inducing grammar is called Unsupervised Learning, because the grammar is
learned using as example elements that belong to the language of the PCFG, in this
case the NLP sentences.

The standard procedure for learning both, supervised and unsupervised gram-
mars, is to divide the available material in two:1 the training set, which is used to
learn the grammar, and another set for tests which is used to parse it and evaluate
the results obtained.

2.1.1.5 PCFG parsing

The idea of parsing is to be able to take a sentence s and to work out parse trees
according to some grammar G. In probabilistic parsing, we would like to place
a ranking on possible parses showing how likely each one is (kbest-parsing), or
maybe to just return the most likely parse of a sentence (best parsing). Given a
PCFG G = (S, T, N, R, P), it is important to explain the language that G defines.
In this sense, the probability assigned to each sentence s that belongs to the language
L(G) is:

P (s) =
∑

t:yield(t)=s

P (t|s)

1For supervised learning we have a set of annotated sentences, while for unsupervised learning
we have just sentences.

28

2.1 Syntactic Analysis

where yield(t) returns the sentence associated to the tree t. Additionally, using the
definition of conditional probability, and also, using the independence assumption
of PCFG, we can define the probability of a tree t for a given sentence s as follows:

P (t|s) =
P (t, s)

P (s)
=

P (t)

P (s)
=

∏
r∈Rules(t,G) P (r)

P (s)

where Rules(t, G) returns the rules from grammar G used to derive the tree t.
Given this language model, the best parsing algorithm for a sentence s can be

simply defined as:

argmax
t:s=yield(t)

(P (t|s)) = argmax
t:s=yield(t)

P (t) = argmax
t:s=yield(t)

∏
r∈Rules(t,G)

P (r)

For solving this optimization problem, a variant of the original CYK is pre-
sented in Algorithm 2. Note that the only change this algorithm has with re-
spect to the original CYK is found in lines 13 and 14. Once this algorithm com-
putes the matrix B, to reconstruct the parse tree it is necessary to call the function
Reconstruct(l,m, r, B). In Algorithm 31, we can see the code to do so. Note that
both algorithms can be implemented in only one, by storing the rule used in line 14

in the matrix B.
For implementing a K-Best parsing, the major change must be done in line 13

of the Algorithm 2. Instead of calling the max function, the algorithm must keep in
B[i, j, a] a list of the K best results of partial probability P (Xa → XbXc)∗B[l,m−
1, b] ∗B[m, r, c].

2.1.1.6 Lexicalized Grammars

The context-freeness property has desirable properties such as efficient parsing al-
gorithms and intuitive modelization of constituency. Nevertheless, the restriction
that production rules can be applied independently of the context introduces some
unrealistic features in the models.

• PCFGs assume that the expansion of any non-terminal is independent of its
parent. For example, NP → Pronoun is more likely for subjects (parent S)
than objects (parent VP).

• The way in which a category is rewritten depends on things outside the sub-
tree it dominates (plural verbs are more likely to occur with plural subjects).

1Both Algorithms 2 and 3 are variants of the ones published in http://web.cs.dal.ca/
∼vlado/csci6509/notes/nlp21.pdf.

29

http://web.cs.dal.ca/~vlado/csci6509/notes/nlp21.pdf
http://web.cs.dal.ca/~vlado/csci6509/notes/nlp21.pdf

2. THEORETICAL FRAMEWORK

Data: the PCFG G = (N ; T, R, S, P), N ∪ T = {X1, . . . , Xk}, the
input sentence w = {w1, . . . , wn}

Result: the probability of the best parse tree for sentence w in the
grammar G.

1 for i = 1 to n do
2 foreach (Xj → x) ∈ R do //iterate in rules

3 if x == wi then //initialize the diagonal, for

unary rules

4 B[i; i; j] =true
5 end
6 end
7 end
8 for i = 2 to n do //set length of window for span

9 for l = 1 to n− i + 1 do
/* the span window is s = wlwl+1 . . . wr */

10 r = l + i− 1;
11 for m = l + 1 to r do //Splitting the span

/* the span window is s = wlwl+1 . . . wr */

/* x = wlwl+1 . . . wm−1, y = wmwm+1 . . . wr, and

s = xy */

12 foreach (Xa → XbXc ∈ R) do
/* have better prob. Xb to x and

Xc to y? */

13 B[l, r, a] = max(B[l, r, a], P (Xa →
XbXc) ∗B[l,m− 1, b] ∗B[m, r, c])

14 end
15 end
16 end
17 end
18 return B[1, r, 1]

Algorithm 2: The algorithm CY KPCFG(G, w) is a generalization of
the CYK algorithm for PCFG grammars.

30

2.1 Syntactic Analysis

Data: B the table from CYK - i index of the first word cosidered in
the sentence - j length of the sub string considered - a the
index of the non-terminal which is the root of the tree to be
reconstructed.

Result: the tree t which yield(t) = wi . . . wj−1, and root(t) = Xa.
1 if j == 1 then
2 return the tree with root Xa and child wl;
3 end
4 for l = 2 to j do
5 foreach (Xa → XbXc ∈ R) do
6 if (B[i, j, a] == max(B[i, j, a], P (Xa →

XbXc) ∗B[i, l − 1, b] ∗B[l, j, c]) then
7 create a tree t with root Xa;
8 t.left child = Reconstruct(i, l − 1, b, B);
9 t.right child = Reconstruct(l, j, c, B);

10 return t

11 end
12 end
13 end
Algorithm 3: The algorithm Reconstruct(l,m, r, B).

31

2. THEORETICAL FRAMEWORK

Splays

V Pplays

NPElianti

NNPElianti

Elianti

V BZplays

plays

NPHaag

NNPHaag

Haag

NNPMs

Ms

Figure 2.5: Lexicalized tree for a PTB tree.

• PCFGs ignore lexical content: green is more likely to be followed by leaf
than by cat, or ideas, but PCFGs cannot capture this. How V is rewritten is
independent of the choice of Subject and how the VP is expanded.

Some approaches (MM90, CCCC92, Mag95a, Col96, Col97) were proposed
to deal with the problem of incorporating known features of natural languages to
the models while keeping them simple enough to preserve their good properties
related to efficiency and descriptiveness. A possible answer is with lexicalization,
which means, adding to the non-terminal symbols, information about the words
of sentences. One of the most popular lexicalized models are the Head Driven
Grammars (PS94). This is the most straightforward and common way to lexicalize
a PCFG by having each phrasal node marked with its head word. For example,
Figure 2.5 shows how to lexicalize a tree from the Figure 2.41. The process of
learning a lexicalized PCFG is simple.

Lexicalization adds numerous new grammar rules, one for each lexical item
added. A lexicalized PCFG can be learned from a corpus by adding the head infor-
mation to their trees and then proceed as in standard PCFG learning algorithm. The
CYK algorithm can be used for parsing the lexicalized PCFG in a straightforward
way. State-of-the-art parsing algorithms (Col97, KM03a, Cha00), use head driven
grammars or similar variants.

It is important to remark that it is possible to do a variant of Head Driven Gram-
mars by using the head POS instead of the head word. These models are usually
called Unlexicalized-Models.

1In Figure 2.5 we exclude from the grammatical categories the additional information usually
included in the PTB trees after the symbol −. For example we use NP instead of NP − SBJ .

32

2.1 Syntactic Analysis

2.1.1.7 Evaluation

The accuracy in constituent parsing is usually measured using the recall and preci-
sion metrics. Given a set of parsed trees PT for a given set of sentences S, and the
set of trees GT assumed as correct for the same set of sentences S, for each tree we
have:

• Recall is the the number of correct non-terminal labeled constituents divided
by the number of such constituents in the GT .

• Precision is the number of correctly identified constituents divided by the
number of constituents produced in the parsed tree.

In other words, precision gives an idea of how much of what was produced is
correct, while recall measures how much of what should have been produced was
actually obtained. The idea of “correct” means that we compare the tree obtained
by the model to be tested with the corresponding sentences in a gold-standard trees,
assumed to be well-annotated. The precision and recall of the complete treebank
PT is obtained as the mean of each of these measures calculated for each tree.

The comparison of the constituents considering the dominating non-terminal
is called labeled precision/recall. If only the start and ending are considered it is
called unlabeled. For example, the standard way to proceed for training and testing
in the PTB corpus is to use section 2-21 to train the parser model, and then test it
by feeding the parser with the section 23, and then, calculate precision and recall
against the trees of PTB in that section.

Over the last years it is standard to report the harmonic mean of precision and
recall, defined as:

F1 =
2 ∗ precision ∗ recall

precision + recall

2.1.2 Dependency Structures

Despite a long and venerable tradition in descriptive linguistics, dependency gram-
mar has until recently played a fairly marginal role both in theoretical linguistics
and in natural language processing. The increasing interest in dependency-based
representations in natural language parsing in recent years appears to be motivated
both by the potential usefulness of bilexical relations in disambiguation and by the
gains in efficiency that result from the more constrained parsing problem for these
representations (Niv05). In contrast with the constituent parsing, the dependency
approach does not need to be “lexicalized” to solve ambiguity because this model is

33

2. THEORETICAL FRAMEWORK

already lexicalized. The first relevant work in dependency syntactic analysis was by
Tesnière (Tes59). In his work, the author defines explicitly the notion of dependency
syntax1:

“The sentence is an organized whole, the constituent elements of which are
words. [1.2] Every word that belongs to a sentence ceases by itself to be iso-
lated as in the dictionary. Between the word and its neighbors, the mind per-
ceives connections, the totality of which forms the structure of the sentence.
[1.3] The structural connections establish dependency relations between the
words. Each connection in principle unites a superior term and an inferior
term. [2.1] The superior term receives the name governor. The inferior term
receives the name subordinate. Thus, in the sentence Alfred parle [. . .],
parle is the governor and Alfred the subordinate.[2.2]”

Although this work was very influential in linguistics, it was not taken into ac-
count in the area of computer sciences. The formalization of this syntactic approach
had to wait until (Gai65). In his work, the author encoded dependency structures
with CFG. He proved that his formalization of dependency grammar is weakly
equivalent to CFG2. Maybe it was the reason to not pay attention to dependency
parsing, because it was considered equivalent to phrase structure parsing.

2.1.2.1 Dependency Trees

Formally, a dependency tree is defined in terms of a directed graph G = (V, E, L).
Given a possibly empty set R of dependency types (arc labels), a dependency graph
for a sentence x = (x1, . . . , xn) is a labeled directed graph, where:

• V = {1, . . . , n, n + 1}

• E ⊆ V × V

• L : E → R

The following list contains some terminology for a dependency tree T :

• Since arcs are used to represent dependency relations, we will say that i is the
head and j is the dependent of the arc (i, j).

1Translation made by Nivre in (Niv05) of the original work (Tes59).
2It is true for projective dependency trees.

34

2.1 Syntactic Analysis

• As usual, we will use the notation j → i to mean that there is an arc connect-
ing i and j (i.e., (i, j) ∈ E) .

• The notation j →∗ i if there is a directed path connecting the node j with the
node i.

• The function L assigns a dependency type (arc label) r ∈ R to every arc
e ∈ E. The set R is the set of type of dependency relation. The basic type of
relation are for example, SUBJECT , OBJECT and MODIFIER. If the
set R is empty, the tree is called unlabeled.

A dependency tree T is well-formed if and only if:

1. every word of index i in the sentence is a node 1 ≤ i ≤ n and there is a
special node n + 1, which does not correspond to any token of the sentence
and which will always be the unique root of the dependency tree.

2. from every node i 6= n + 1 in the graph there exists a path i →∗ n + 1. It
implies T is connected (Connectedness).

3. the tree is acyclic ¬(j → i ∧ i →∗ j)

4. projectivity: ∀ : i, j : (i → j ∨ j → i) ⇒ (∀k, n : i < k < j < n : ¬(k →
n) ∧ ¬(n → k)). It is the same to say that there are no crosses arcs in T .

It is important to remark that the dependency trees that we used in this work
are unlabeled. This decision was taken not only because Bilexical Grammar does
not support labeled dependencies, but also due to the high computational cost of
using optimization algorithms. Consequently, the underlying model to be used in
an optimization algorithm should be as less complex as possible. Moreover, in
unsupervised dependency parsing in general the dependency models are unlabeled
(NHN+07, CGS08, CS09, HJM09, SAJ10a, GGG+10, BC10, WZ10).

2.1.2.2 Grammar and Treebank Dependency Parsing

As for natural language parsing in general, the first attempt to dependency pars-
ing using a treebank was implemented by using a grammar and a corpus to induce
a probabilistic model for disambiguation. Thus, in (CCCC92) the authors essen-
tially use a PCFG model, where the CFG is restricted to be equivalent to a Gaifman
(Gai65) type dependency grammar. They used an artificial corpus of POS tags.

35

2. THEORETICAL FRAMEWORK

They report experiments trying to induce such a probabilistic grammar using un-
supervised learning on an artificially created corpus and using an inside-outside
algorithm to induce the PCFG’s probabilities. In those years there was not a depen-
dency corpus available. The results obtained were very poor. After the PTB was
created, dependency corpus started to be available. It is due to the fact that it is
possible to transform a constituent corpus into a dependency one (Mag95b, Col97).

A few years later, Eisner (Eis96, Eis97) defined several probabilistic models for
dependency parsing and evaluated them using supervised learning with data from
the Wall Street Journal section of the Penn Treebank. In that work, Eisner showed
how other models of dependencies in the literature (AB96, Col96) can be expressed
under the general notion of a Probabilistic Bilexical Grammar (PBG)1.

Formally, a PBG B is defined as a 3-uple (C, {rc}c∈C , {lc}c∈C ,) where:

• C is a set of words tags, C contains a distinguished symbol ROOT .

• For each tag c ∈ C, lc and rc there are two probabilistic automata with start
symbols Slc and Src respectively.

• The probability of a dependency tree y under the PBG G is defined as the sum
over all word tokens c in y, of the weight with which lc accepts cs sequence
of left children plus the probability with which rc accepts cs sequence of right
children.

Where a probabilistic automaton A =< M,P > is defined as:

• M a deterministic finite automaton (DFA) and P is a probability model, that
assigns probabilities to its transitions.

• The sum of the probabilities P of all transitions for a symbol c outgoing from
state a is equal to 1.

• To each accepting path through A a probability is assigned, namely the prod-
uct of all arc probabilities on the path.

• The probability of string x being accepted by A is the sum of the probabilities
of its accepting paths.

1In the original definition of Eisner he calls it Weighted Bilexical Grammar (WBG), because the
sum of all elements that belong to the language of a WBG is not necessarily 1. We use this abuse of
notation as well as in the case of PCFG.

36

2.1 Syntactic Analysis

Although the definition of C is a set of words, the experiments made by Eisner used
C as a set of POS tags.

To parse with the PBG, Eisner in (Eis00) showed how to transform the PBG
in a PCFG, and uses a CYK algorithm to parse it in cubic time. A PBG can
be seen as a PCFG (SROOT , C, C̄ ∪ (

⋃
c∈C NTerm(Glc) ∪ NTerm(Grc)), R ∪

(
⋃

c∈C Rules(Glc) ∪Rules(Grc)), P) where:

• SROOT is a new starting symbol associated with the Starting symbol of the
PRG GlROOT

.

• C is the same set as in the PBG definition, which are considered the terminal
symbols.

• C̄ a set of non-terminal, defined : c̄ ∈ C̄ iff c ∈ C.

• Given Glc and Grc two probabilistic regular grammars PRG that accept the
same language that the automata lc and rc respectively, then c̄ → SGl

cSGr ∈
R, where SGl

and SGr are the starting symbols of the regular grammars. Also
the rules from the regular grammars belong to R. For each c SROOT → c̄ ∈ R.

• The probability P of each rule is c̄ → SGl
cSGr ∈ R, and the probabilities of

the rules from regular grammars are kept.

As we can see, the dependencies modeled in Eisner’s work are unlabeled. In
this thesis, as we based the representation in a PBG, the dependencies are unlabeled
too and we will not give details of labeled dependencies approaches. For details
about other dependency approaches that are not based on PCFG we refer to (Sam00,
Niv04). (Niv05) is a more in depth coverage of the topics omitted.

2.1.2.3 Evaluation

The first NLP works using dependency structures (CCCC92, AB96, Eis00) were
evaluated using bracketing precision and recall, as in the phrase structure parsing.
As it is formally explained in (Kle04), the procedure is to transform the depen-
dencies into constituent trees and then calculate the measures for phrase structure
parsing.

In more recent works (Seg05, CGS08, HJM09, CS09, SAJ10a) the measures
used are directed and undirected precision. Given a gold treebank GT of depen-
dency trees and a set of parsed tree TP for the same sentences, the measures
are defined as follows for each trees tG and tP in TG and TP respectively, with
Y IELD(tP) = Y IELD(tG):

37

2. THEORETICAL FRAMEWORK

1:NNP 2:NNP 3:VBZ 4:NNP 5:ROOT

Miss Hagg plays Elianti
1:NNP 2:NNP 3:VBZ 4:NNP 5:ROOT

Miss Hagg plays Elianti

Figure 2.6: Two possible dependency trees for the PTB tree from wsj 0297.mrg.

• directed: number of arcs in tP with the same direction and the same origin
and destination that in tG divided by the total number of arcs in tG.

• undirected: as the directed but not taking into account the direction of the
arcs.

The measures for the whole treebank PT against GT are calculated as the aver-
age of individual measures in each tree. For example considering the trees in Figure
2.6, suppose that the left tree is the GT and the right one PT , then the directed
measure is 2

4
= 0.5 while the undirected measure is 3

4
= 0.75.

In dependency parsing, there exist two common baselines of evaluation, left at-
tach and right attach. Right attach, means a treebank built with all the dependencies
pointing to the right word in the sentence. That is for a sentence X = x1 . . . xn the
dependencies of a right attach tree are: E = {(1, 2) . . . (n, n+1)}. In an analogous
way the left attach tree can be defined.

2.1.2.4 Treebanks

For English the PTB transformed to dependencies is used. But there exists corpora
for other languages such as German (BDH+02) and Czech (BHHH01) which are
originally dependency corpora, that is, they have dependencies annotated. In the last
five years, the standard dependencies corpora in dependency parsing are the ones
used for the multilingual parsing competition “the ConNLL-X special task on pars-
ing” (BM06). In that competition 13 different languages were used: Arabic, Bul-
garian, Chinese, Czech, Danish, Dutch, German, Japanese, Portuguese, Slovene,
Spanish, Swedish and Turkish. In our work on unsupervised parsing we used those
corpora to train and evaluate our model.

2.1.3 From Constituent to Dependency and Viceversa

If we think of constituent and dependency grammars as two formalisms to describe
underlying structures of the sentences, we can hope for a way to translate annota-

38

2.1 Syntactic Analysis

tions from one formalism to the other. Given the high cost of constructing treebanks,
automatic translators are desirable. For the dependency to constituent part, we no-
tice constituents are formed by words and their dependents. Hence the algorithm
should make the constituent structure explicit and provide the proper labels for the
constituents.

For both parts, a more in depth coverage can be found in (UK04).
In order to translate a constituent structure to a dependency one, we must find

among the words of a constituent which of them is the constituent head. These
head-finding algorithms are based in sets of rules defined by linguistic theories.
The first of these sets of rules was described in (Mag95b), and later works such as
(Bik04a, Col97, KM02) use variants of that rule set. We use (Col97) as the current
standard.

In every case, the rule sets were built by hand and not automatically optimized,
as such they may be suboptimal for statistical parsers.

2.1.4 Some Models

In this section we provide a brief description of Collins’ parser and the Factored
Stanford Parser. Both parsers were used to evaluate the techniques implemented
in Chapters 3 and 4. Also, the DMV parser (Dependency Model with Valence) is
described, since it is a standard and baseline model in unsupervised dependency
parsing and it is used to evaluate our work described in Chapter 5.

2.1.4.1 Collins’ Parser

The Collins’ parser is one of most accurate models for phrase structure parsing.
Although the parser operates bottom-up, based on CKY algorithm, the probability
and the rules of the grammar are defined in a top-down way. Every non-terminal
label in every tree is lexicalized: the label is augmented to include a unique head
word that the node dominates. The lexicalized PCFG that lies behind this model
has rules of the form:

P → Ln . . . L1HR1 . . . Rm

where P , Li ,Ri and H are all lexicalized non-terminals, and P inherits its
lexical head from its distinguished head child H . In this generative model, first
P is generated, then its head-child H , then each of the left- and right-modifying
non-terminals are generated from the head outward. The modifying non-terminals

39

2. THEORETICAL FRAMEWORK

Li and Ri are generated conditioning on P and H , as well as a distance metric
(based on what material intervenes between the currently-generated modifying non-
terminal and H). The process works recursively, treating each newly-generated
modifier as a parent and then generating its head and modifier children; the process
terminates when (lexicalized) pre-terminals1 are generated. The results that this
parser achieved were state-of-the-art with 88.63 of recall and 88.53 in precision. For
more details about Collins parser, the reader can find a more in detail explanation
in (Bik04c).

2.1.4.2 Stanford Parser

The version of the Stanford parser used to report the experiments in Chapter 4 is the
parser described in (KM03a). In that work, the authors use a PCFG unlexicalized
grammar. They use a similar structure that a head driven grammar, but instead of
words the POS was percolated in the non-terminals of the grammar. They also used
a split of POS according with the parent POS tag. They obtained a result close to
the state-of-the-arts with F1 = 86.36% using an unlexicalized model.

2.1.4.3 DMV Parser

This unsupervised dependency parser, the Dependency Model with Valence (DMV)
(KM04) which was the first to beat the simple right-branching2 baseline uses a prob-
abilistic grammar for unlabeled dependency structures. It is defined as follows: the
root of the sentence is first generated, and then each head recursively generates its
right and left dependents. The underling grammar learned by DMV model can be
seen as a PBG, where each automaton associated with a POS has a fixed structure,
that we will describe in more detail in Chapter 5. The probabilistic model of au-
tomata is defined by two probabilities:PSTOP and PATTACH . PSTOP (dir, h, adj)

determines the probability to stop generating arguments, and it is conditioned by
3 arguments: the head h, the direction dir ((L)eft or (R)ight) and adjacency adj

(whether the head already has dependents ((Y)es) in direction dir or not ((N)o)).
PATTACH(arg|h, dir) determines the probability to attach the dependent arg to the
head h with direction dir. For the estimation of the probabilities, the optimization
method EM algorithm is used, such algorithm will be explained in detail in the next
Section. The performance obtained was 43.2 and 63.7 in directed and undirected

1The pre-terminals are usually the POS tags.
2The right attach performance of PTB for sentences with 10 words or less are 33.6 and 56.7 of

directed and undirected accuracy respectively.

40

2.2 Optimization Techniques

accuracy respectively, evaluated for English sentences from PTB which contain 10
words or less, ignoring punctuation marks.

2.2 Optimization Techniques

In this section we describe two different optimization techniques: Genetic Algo-
rithms (GA) and the Expectation Maximization Algorithm (EM). For GA we used
(Whi94, Mar04) as reference to write this section. The EM algorithm explanation
is based on the contents of Prescher’s work in (Pre03).

2.2.1 Genetic Algorithms

Genetic Algorithms work by analogy with evolution in biology. Starting with an
initial population of solutions to a given problem, a new generation is created by
combining and/or modifying the best members of the population. The process is
then iterated until some adequate criterion for termination is reached.

Taking the analogy further, we assume that we have a genetic description of
candidate solutions. That is, a solution can be represented as a vector of roughly
independent parameters which will be modified from each generation to the next.
We also need a practical method for evaluating the goodness of candidate solutions
and hence select the best members of the population.

A generic implementation of a genetic algorithm is shown in Algorithm 4. We
shall briefly comment on each of the stages of the algorithm.

Initialization: a set of candidate solutions can be generated completely at ran-
dom, manually selecting candidates in promising areas of the search space, or using
some hybrid method.

The phases of evaluation, selection and reproduction are not necessarily per-
formed sequentially, but often they are. For the evaluation stage, a good fitness
function should be fast to evaluate and able to discriminate among the candidate
solutions. It is common to sacrifice adequacy of the evaluation against efficiency of
the implementation, allowing for approximations to the “real” objective function to
be used.

The selection of the candidates to pass their genes to the next generation has
been implemented in various ways. One can simply choose the k best solutions,
do so with some bias towards better solutions, take into account the “ages” of the
individuals, use some sort of threshold, human picking, and so on.

41

2. THEORETICAL FRAMEWORK

Individual 1

Individual 2

Individual 3

Individual 4
. . .
. . .

Current
generation t

Selection

(duplication)

Individual 1

Individual 2

Individual 2

Individual 4
. . .
. . .

Intermediate
generation t

Recombination

(crossover)

offspring (1 × 2)

offspring (2 × 1)

offspring (2 × 4)

offspring (4 × 2)

. . .

. . .

Next
generation

t + 1

Figure 2.7: Creation of a generation in a Genetic Algorithm.

The phase of reproduction is where the potential for improvement of the solu-
tion arises. The main two mechanisms for modifying solutions are mutation and
crossover.

Mutation operates by changing the values for one or more chromosomes of the
parent individual. Its purpose is to maintain diversity among the populations and
so give the algorithm a chance to explore different regions of the search space and
avoid getting stuck at a local optimum.

Crossover involves the construction of a solution by combining two (or more)
“parent” solutions. The logic behind it is to accelerate the propagation of “good”
parts of the solutions. For example, a quick frog can mate a green frog and then
green and quick frogs will appear in the population. (Slower and not-so-green frogs
are not expected to survive; and if they do, they are lucky frogs who could be kissed
by zoophilic princess.)

The criterion for termination may vary. One can choose among different possi-
bilities such as running the algorithm for a fixed amount of time or iterations, stop-
ping when an acceptable solution is found, when a number of rounds have passed
without improvements, and so on.

2.2.1.1 The Selection Process

It is helpful to view the execution of a GA as a two stage process. It starts with the
current population. First a selection stage is applied to the population to create an
intermediate population. Second, the recombination and mutation are applied to

42

2.2 Optimization Techniques

Data:

• f the evaluation function

• CS a constant of stop criteria

• n the size of population

• r the probability for applying crossover

• m the probability of apply mutation

Result: pCS the best individual according with the evaluation
function.

1 for i = 1 to n do
2 add a random p in P ; calculate f(p)

3 end
4 ;
5 AV G Q PREV := ∞; AV G Q NEW := AV G(f, P);
6 while |AV G Q PREV − AV G Q NEW | < CS do

/* Create a intermediate population PI :

*/

7 Selection:
for all pi ∈ P calculate FITNESS(pi) = f(pi)P

pj∈P f(pj)

select (1− r) ∗ n ind. from P , proportional to FITNESS();
add those members to PI ;

8 Crossover:
select r∗p

2
ind. from P , proportional to FITNESS();

for each pair (p1, p2) apply cross over;
add the new children to PI

9 Mutation:
chose an m percent of members from PI ;
apply mutation to the chosen elements;
add the new children to PI

10 P := PI ;

11 Evaluate:
calculate f for each element in PI ;
AV G Q PREV := AV G Q NEW ;
AV G Q NEW := AV G(P, f)

12 end
13 return argmaxf (P);

Algorithm 4: The algorithm GA(f, CS, n, r, m).

43

2. THEORETICAL FRAMEWORK

the intermediate population to create the next population. This two state process
is completed and it forms a generation in a GA execution. There are many ways to
do the selection process to build the intermediate population, the following are the
most used criteria:

• Elitist selection: The most fit members of each generation are guaranteed to
be selected. (Most GAs do not use pure elitism, but instead use a modified
form where the single best, or a few of the best, individuals from each gen-
eration are copied into the next generation just in case nothing better turns
up.)

• Fitness-proportionate selection: More fit individuals are more likely, but not
certain, to be selected.

• Roulette-wheel selection: A form of fitness-proportionate selection in which
the chance of an individual of being selected is proportional to the amount by
which its fitness is greater or less than its competitors’ fitness. (Conceptually,
this can be represented as a game of roulette - each individual gets a slice of
the wheel, but more fit ones get larger slices than less fit ones. The wheel
is then spun, and whichever individual ”owns” the section on which it lands
each time is chosen.)

• Scaling selection: As the average fitness of the population increases, the
strength of the selective pressure also increases and the fitness function be-
comes more discriminating. This method can be helpful in making the best
selection later on when all individuals have relatively high fitness and only
small differences in fitness distinguish one from another.

• Tournament selection: Subgroups of individuals are chosen from the larger
population, and members of each subgroup compete against each other. Only
one individual from each subgroup is chosen to reproduce.

2.2.1.2 Making Changes

After the selection process occur, the intermediate population have been created,
and the recombination is carried out followed by the mutation, as can be seen in
Figure 2.7. After this process the next generation is created. The recombination
process is implemented by applying to randomly paired individuals with a proba-
bility pc

1. The crossover entails choosing two individuals with the probability pc

1The population should be shuffled by the selection process.

44

2.2 Optimization Techniques

to swap segments of their code, producing artificial “offspring” that are combina-
tions of their parents. This process is intended to simulate the analogous process of
recombination that occurs to chromosomes during sexual reproduction. Common
forms of crossover include single-point crossover, in which a point of exchange is
set at a random location in the two individuals’ genomes, and one individual con-
tributes all its code from before that point and the other contributes all its code
from after that point to produce an offspring. For example, suppose that in a GA
with individuals encoded in binary strings of length 10, and we want to crossover
the two strings: 1111111111 and 0000000000, suppose that the selected point is 3,
then, the new two individuals generated are 0001111111 and 1110000000. Other
common method is the uniform crossover, in which the value at any given location
in the offspring’s genome is either the value of one parent’s genome at that location
or the value of the other parent’s genome at that location, chosen with fifty-fifty
probability.

After the recombination the mutation procedure is performed. In this process the
individuals must be randomly altered in hopes of improving their fitness for the next
generation according with a probability pm. For example, in implementations of GA
individuals using binary strings, the mutation is usually performed by flipping the
value of some bits of the individual, and in other cases the implementation of some
bits of the individuals are randomly generated.

Although pc and pm are estimated by running the GA and analyzing the fitness
evolution across a few generations, usually pc is close to 0.6 and pm is around 0.01.

2.2.1.3 Why (and when) do Genetic Algorithms work?

Genetic Algorithms are robust enough to be able to solve a wide variety of problems,
nevertheless there are some problems more suitable than others to be solved by this
technique. Some characteristics that the problem must satisfy are:

• The problem and its solutions must to be encoded as a combination of mul-
tiple parameters. The good news here is that these parameters do not have to
be necessarily homogeneous but may include real-valued parameters mixed
with discrete ones.

• As we evaluate the fitness of solutions repeatedly, the function that does so
must be fast and be able to order the goodness of candidate solutions; a yes/no
valued function does not help too much.

45

2. THEORETICAL FRAMEWORK

• GAs are best when we try to optimize a set of interdependent parameters
simultaneously. Better methods exist if we can solve the problem optimizing
the parameters sequentially (linear programming is an example).

The following are the properties of GAs that were taken in consideration to solve
the optimization problems presented in our work.

• The first and very important point is that genetic algorithms are intrinsically
parallel. The fitness function can be calculated over each individual in parallel
and so can the crossover and mutation be implemented.

• GAs explore the solution space in different regions and diverse directions at
the same time. Moreover, they work by quickly combining multiple “good”
solutions for parts of the problem in a globally better solution. Other algo-
rithms usually work by trying to refine a single solution at a time and they
have a tendency to get stuck at local minimal. Since the population in GAs is
a set of solutions, the diversity among the population amounts to this parallel
exploration of the search space.

• Genetic Algorithms excel at working with multi-parameter, mixed-valued so-
lutions. They are fast to find promising regions of the search space that can
be seeded to other methods for further refinement.

• The knowledge about the solution space of the problem that is implicitly put
in the algorithm is limited as that solution must admit genetic descriptions.
The down side is that hard-wiring domain knowledge may be difficult, but the
other side of the coin is that we can gain insight about an unknown solution
space from the results of a Genetic Algorithm.

2.2.2 Expectation Maximization

As saw earlier in this chapter, in many cases of NLP research a common problem
to solve is to receive a corpus and try to find the unknown probability distribution
which generates it. As we have previously seen the MLE (Maximum Likelihood
Estimation) is a good estimator for a probability distribution when we have available
a large corpus of annotated trees. However, if such corpus is not available we cannot
apply MLE directly. The Expectation Maximization algorithm (EM algorithm) is
designed to estimate a probability distribution that maximises the likelihood when
not all the parameters are necessary to estimate it. For example, this is the case of

46

2.2 Optimization Techniques

PCFG parser which does not have a large corpus of annotated sentences. The next
section introduces some definitions necessary to describe the EM-Algorithm.

2.2.2.1 Some definitions

We will start formalizing the concept of corpus which is defined as a real-valued
function f : Y → Real, with Y a numerable set such that:

• f(y) ≥ 0 for all y ∈ Y

• for each y ∈ Y the value f(y) returns the frequency of the element y

• the size of the corpus is defined as |f | =
∑

y∈Y f(y)

• the corpus is finite and non-empty if 0 < |f | < ∞

We now give the formal definition of the probability of f , a non-empty finite
corpus over Y , being generated by a probability distribution. Let M be the set of
all possibles probabilities that can be defined for Y and let p ∈ M , then:

• the probability of the corpus based on the probability p is a function L such
that: L(f, p) =

∏
y∈Y, f(y) 6=0 p(y)f(y)

• a probability function p̂ ∈ M is called a Maximum Likelihood Estimator of
M on f , iff the corpus f have the probability L(f, p̂) = argmaxp∈M L(f, p)

• as it is shown in (Pre03), when f is finite and non-empty, then the MLE is
unique and it is the same that the probability function calculated by using the
relative frequency

p̂(x) =
f(x)

|f |

We now formalize the notion of an analyzer. A symbolic analyzer is a device
that assigns to each incomplete data type a set of analysis, each analysis being
a complete data type. Let X and Y two non-empty numerable sets. A function
A : Y → 2X is called:

• symbolic analyzer if the set of analysis A(y) ⊆ X are pair-wise disjoint, and
the union is complete X =

⋃
y∈Y A(y)

47

2. THEORETICAL FRAMEWORK

• the set Y is called incomplete-data type and X are called the incomplete-data
set. As it is shown in (Pre03) the analysis A form a partition of the complete-
data set X . Therefore, for each x ∈ X exists a unique y ∈ Y , usually named
the yield of x, such that x is an analysis of y:

For example, if we are working with the CFG as PSG, like earlier in this Chapter,
the incomplete-data type Y is a corpus of sentences and the phrase structure trees
are the complete data type X . Tipically, the symbolic analyzer is the parser for the
CFG, where the parser assign to each sentence a set of the possible phrase structures
trees for this sentence.

As it was done for parsers, we now will define the statistical version of analyz-
ers.

• A pair < A, p > where A : Y → 2X is an symbolic analizer and p a proba-
biliistic distribution over X , is called a statistical analyzer.

• The statistical analyzer is used to induce probabilities for the incomplete-data
elements y ∈ Y , such that p(y) =

∑
x∈A(y) p(x).

• To solve the ambiguity, given that for each element of x there may be many el-
ements associated by A(x), we use conditional probablities defined as: p(x|y) =
p(x)
p(y)

where y = yield(x).

• It is easy to check that p(y) and p(x|y) are well-formed probability distribu-
tions, you can find a proof by Prescher in (Pre03) page 10.

2.2.2.2 The algorithm

The input of an EM algorithm is an incomplete data set together with a symbolic
analyzer. The idea of EM-algorithm is to induce a probabilistic model for the sym-
bolic analyzer, which is capable of “solving” the ambiguity present in the analyzer.
This ambiguity is present because for each element y ∈ Y , A associates a set of
elements on X . The induced probability model p will decide which of the analysis
of each element is more likely. This optimization algorithm performs a sequence
of runs. In each run the algorithm performs a step of “Expectation” followed by
the “Maximization” step. In the E-step the symbolic analyzer is paired with the
probability model pi−1 calculated in the previous loop, this combination solves the

48

2.2 Optimization Techniques

Data:

• the symbolic analyzer A : Y → 2X ,

• a non empty incomplete-data corpus, i.e a frequency function

f : Y → Real, such that ∀y ∈ Y : f(y) ≥ 0 and 0 < |f | < ∞

• a randomly start probability for the incomplete data type p0 such that
< A, p0 > form the initial statistical analyzer

Result: p[i] the probability distribution for the incomplete data corpus Y

1 for i = 1 to MAX ITER do
2 q = p[i− 1];
3 E-Step : compute fq : X → Real:

fq(x) = f(y) ∗ q(x|yield(x))

;
4 M-Step : compute the MLE p̂ of M (probability models over Y) on fq:

L(fq, p̂) = argmax
p∈M

L(fq, p) =
∏

x∈X, fq 6=0

p(x)fq(x)

;
5 p[i] = p̂;
6 end
7 return p[i];

Algorithm 5: The EM algorithm.

49

2. THEORETICAL FRAMEWORK

f(y) y

10 y1 = ”n p p”

5 y2 = ”n p”

Table 2.5: An example of the input frequency for the example grammar from Table
2.6.

S → N P
P → P N P → p
P → P P
N → N P N → n

S → N P 1.0
P → P N 0.33 P → p 0.33
P → P P 0.33
N → N P 0.5 N → n 0.5

Table 2.6: Left: A CFG grammar G. Right: the left CFG with uniform probabilities in
its rules.

ambiguity present in A. The M-step calculates a MLE p̂ based in the statistical
analyzer < A, pi−1 >. In Algorithm 5 a pseudo code of EM-algorithm is shown.

As it can be observed, this algorithm ensures that the likelihood of each p1, . . . , pn

as given in each step of the EM-algorithm and calculated over the complete-data set
Y is monotonic increasing. That is:

L(f, p0) ≤ . . . L(f, pn) ≤ . . .

.

Next, we introduce an example of how to use the EM-algorithm to induce the
probabilities of a given PCFG. Suppose that we have the following CFG G =

(S, {N, P}, {n, p}, R) as shown at the left side of Table 2.6. In this example, our
corpus of sentences is Y = {y1, y2}, the input frequency f(y) is shown in Table
2.5.

The input Treebank X = {x1, x2, x3} is the one shown in Figure 2.8. For the
initial probability model for G we will use an uniform distribution for each left hand
side of the rules p0.We show at the right side of Table 2.6 the PCFG < G, p0 >.

The first step of the EM-algorithm is performed as follows: the E-Step will
calculate the frequency of fTq , which is the frequency of the treebank, based on
q = p0. The initial probability p0 for the sets X and Y is generated as follows:

50

2.2 Optimization Techniques

S

P

p

N

P

p

N

n
(x1)

S

P

P

p

P

p

N

n

(x2)

S

P

p

N

n
(x3)

Figure 2.8: A treebank of trees.

p0(x1) =
∏

r∈Rules(G) p(r)fr(x1) (fr(x) is the #occurrence of rule r in the tree x)
= p(s → N P) ∗ p(N → N P) ∗ p(N → n) ∗ p(P → P) ∗ p(P → p)

= 1 ∗ 0.5 ∗ 0.5 ∗ 0.33 ∗ 0.33

= 0.027225

p0(y1) =
∑

yield(x)=y1
p(x)

= p(x1) + p(x2)

= 0.027225 + 0, 017968

= 0.045193

After calculating all elements we have induced all values of p0:

x p0(x)

x1 0.027225

x2 0, 017968

x3 0, 165

y p0(y)

y1 0.045193

y2 0, 165

Now using the probability q = p0 we can calculate the fTq as in line (3) of the
EM-algorithm.

fTq = f(yield(x1)) ∗ q(x1|yield(x1))

= f(y1) ∗ q(x1|y1)

= f(y1) ∗ q(x1)
q(y1)

= 10 ∗ 0.027225
0.045193

= 6.02

finally the complete values of fTq(x) are:

x fTq(x)

x1 6

x2 4

x2 5

51

2. THEORETICAL FRAMEWORK

In the M-step of the EM-algorithm used to estimate the underlying distribution
of a PCFG, the idea is to induce the probability pTq(x) for the grammar G from the
frequency corpus fTq(x) calculated in the E-step. We use the MLE to calculate the
probabilities of the rules. The frecuency of a given rule r in a corpus fTq(x) is:

f(r) =
∑
x∈X

fTq(x) ∗ fr(x)

For the rules in our example we have:

f(P → P N) =
∑

x∈X fTq(x) ∗ fP→P N(x)

= fTq(x1) ∗ fP→P N(x1) + fTq(x2) ∗ fP→P N(x2) + fTq(x3) ∗ fP→P N(x3)

= 6 ∗ 0 + 4 ∗ 0 + 5 ∗ 0

= 0

f(N → N P) =
∑

x∈X fTq(x) ∗ fN→N P (x)

= fTq(x1) ∗ fN→N P (x1) + fTq(x2) ∗ fN→N P (x2) + fTq(x3) ∗ fN→N P (x3)

= 6 ∗ 1 + 4 ∗ 0 + 5 ∗ 0

= 6

f(P → P P) =
∑

x∈X fTq(x) ∗ fP→P P (x)

= fTq(x1) ∗ fP→P P (x1) + fTq(x2) ∗ fP→P P (x2) + fTq(x3) ∗ fP→P P (x3)

= 6 ∗ 0 + 4 ∗ 1 + 5 ∗ 0

= 4

f(P → P) =
∑

x∈X fTq(x) ∗ fP→P (x)

= fTq(x1) ∗ fP→P (x1) + fTq(x2) ∗ fP→P (x2) + fTq(x3) ∗ fP→P (x3)

= 6 ∗ 2 + 4 ∗ 2 + 5 ∗ 2

= 30

f(N → N) =
∑

x∈X fTq(x) ∗ fN→N(x)

= fTq(x1) ∗ fN→N(x1) + fTq(x2) ∗ fN→N(x2) + fTq(x3) ∗ fN→N(x3)

= 6 ∗ 1 + 4 ∗ 1 + 5 ∗ 1

= 15

Using this frequency the probability for a rule r = s → t can be calculated as:

pTq(x) =
f(r)∑

ri=s→∗:ri∈Rules(G) f(ri)

The probabilities of rules of the grammar G after the first step of the EM-algorithm
are:

52

2.2 Optimization Techniques

S → N P 1.0
P → P N 0 P → p 0.833
P → P P 0.1667
N → N P 0.285 N → n 0.715

As a consequence of this calculation, p1 = pTq and the next iteration of the
probabilistic model p2 . . . can be performed using these values as input.

53

2. THEORETICAL FRAMEWORK

54

Chapter 3

Joining automata to optimize split of
POS tags

The work described in this chapter is based on the article published in (DIL08). In
this research task we introduce a technique for inducing a refinement of the set of
part of speech tags related to verbs. Each of the resulting sets defines a new POS
tag. We try out the resulting tag set in a state-of-the art phrase structure parser and
we show that the induced part of speech tags significantly improves the accuracy of
the parser.

3.1 Introduction

A part-of-speech (POS) tag is a linguistic category of words that are characterized
by their particular syntactic behaviors. Originally, POS tags were defined in eight
basic categories, derived from Latin grammar. However, for NLP research this
categorization was not descriptive enough to capture the syntactic information nec-
essary for syntactical structure processing. For example, the developers of the PTB
defined more than thirty grammatical categories.These POS tags are usually defined
within a syntactic theory. Supervised algorithms for parsing use POS tags as they
are defined.

The importance of POS definitions for parsing lies in the fact that the gram-
mars inferred to build the parser uses these categories to define the grammar rules.
Nevertheless, a given definition of POS tags may not be the best for supervised al-
gorithms for parsing; indeed when POS tag sets are defined they are not intended
for this particular research purpose. It is in principle possible that words might be

55

3. JOINING AUTOMATA TO OPTIMIZE SPLIT OF POS TAGS

grouped differently in order to improve parsing performance.
Our main research question is: Can we redefine the set of POS tags so that when

a state-of-the-art parser is trained using this new set its performance improves? We
answer this question by presenting an algorithm that induces sets of POS tags capa-
ble of improving state-of-the-art-parsing performance. We show that our POS tag
sets improve parsing by means of encoding some additional linguistic information
into the new set of tags, which is clearly useful for the parsing model.

We extract information from dependency trees based on Bilexical Grammars
(Eis97). As we described in Section 2.1.2.2, in Bilexical Grammars there are two
automata for each word in the lexicon. These automata model, respectively, right
and left dependents. We cluster words whose automata are “similar”, and we treat
each cluster as a new POS tag.

We design a procedure that implements this simple idea; a procedure that aims
at finding the best possible POS tag set clustering words whose automata show sim-
ilar behaviors. The procedure is defined as an optimization problem. As usual in
optimization problems, we define the quality measure it has to optimize, its search
space, and strategy it should follow to find the optimal POS tag set among all pos-
sible tag sets.

The search space also defines the type of information that will be codified into
the POS tags. Different syntactic features are used to generate different search
spaces and, consequently, different resulting POS tag sets. The quality measure for
a tag set is computed by tagging a dependency tree-bank using the POS tag to be
evaluated, inducing a bilexical grammar and evaluating the grammar’s quality, so
that the quality measure for POS tags is evaluated using quality measures for bilex-
ical grammars. Finally, the strategy for traversing the search space is implemented
using Genetic Algorithms.

The set of new POS tags can be used to retag a phrase structure corpus. In our
case, we retag the Penn Treebank (PTB) (MS93) to test our new sets of POS tags in
a phrase structure setting. POS tag sets are evaluated using Collins parser (Col97)
by means of Bikel’s implementation (Bik04b). We add our new POS tags to the
training material, we re-train the parser and we evaluate the parser performance,
showing a significant improvement on parsing results.

The rest of the chapter is organized as follows. Section 3.2 gives an overview of
different approaches to the same problem from the literature. Section 3.3 provides
details on how to compute the quality measure, Section 3.4 explains how to build
and traverse the search space, Section 3.5 explain how the new tag sets are used for
training a phrase structure parser and it also reports the performance for the differ-

56

3.2 Related Work

ent tag sets we build. Section 3.6 hints some possible future directions. Finally,
Section 3.7 present a Discussion of the placement of our work in the research area,
and also concludes the Chapter.

3.2 Related Work

Two relatively recent approaches studied the use of automatic split of non-terminals
to improve parsing performance. In (MMT05) the authors induce a parsing model
by using a generative process which starts with a standard PCFG and splits each
non-terminal in a fixed number of categories. The resulting model is a genera-
tive unlexicalized grammar named PCFG-LA. Using this parser they obtained a F1

measure comparable to state of the art unlexicalized parsers. Similarly, in (PBK06)
the authors induce a PCFG grammar using an automatic split and merge of non-
terminal symbols to maximize the likelihood of training treebank. The hierarchical
split and merge used also captures linguistic phenomena that used to be added man-
ually in previous works. Furthermore, they obtain a lexicalized parser model with a
performance comparable to the parser in (Cha00) and the grammar induced is sig-
nificantly smaller. In contrast, our approach uses an automatic unlexicalized split
only for pre-terminal symbols, and we use the new POS set to rewrite the training
material for a given parser to improve its performance.

Rewriting the training material is an important aspect of our work that has been
studied in the literature. For example, Mohri and Roark (MR06) present a technique
that induces better performing PCFGs. They split and factorize non-terminals that
have been detected as structural zeros in a given training material. Our approach
differs from theirs in that we split only pre-terminal and that our splitting is based
on syntactic behavior.

Klein and Manning (KM01) split POS tags related to verbs in order to detect
constituents. They did this in the context of induction of rules for grammars. All
categories used, such as transitive, intransitive, etc., were set in advance. In (SJ01)
the authors use a fixed number of categories that are based on universal language
rules to build an unsupervised POS tagger. In contrast to the latter two approaches,
our approach induces all categories automatically and, moreover, the resulting cate-
gories are tested in phrase structure-grammars, providing a better way to assess the
quality of the resulting tags.

57

3. JOINING AUTOMATA TO OPTIMIZE SPLIT OF POS TAGS

0:Researchers 1:can 2:apply 3:for 4:permission 5:to 6:use 7:the 8:probes 9:for 10:brain 11:studies 12: .

NN MD VB IN NN TO VB DT NN IN NN NN ROOT

Figure 3.1: Tree extracted from the PTB, file wsj 0297.mrg and transformed to a
dependency tree.

3.3 Quality Measure for Tag Sets

This section introduces the quality measure q that we used for evaluating and opti-
mizing POS tag sets. This measure is defined using a further quality measure q′ for
a particular flavor of bilexical grammars. Briefly speaking, the quality q of a tag set
C is computed by means of retagging a dependency tree-bank with C, inducing a
bilexical grammar B from it, and computing a quality function q′ on B.

This section shows how bilexical grammars are induced from dependency tree-
banks and how the measure q is defined in terms of q′. It also discusses why we
think q is a good measure of the quality of a tag set C.

This measure q′ takes into account the quality of all automata that define the
grammar B.

3.3.1 Induction of Bilexical Grammars

Bilexical grammars can be induced from a dependency tree-bank by inducing two
automata for each tag in C. Once the tag set C is defined, the induction of a bilexical
grammar is straightforward. The induction of Bilexical Grammars is carried out in
a supervised fashion. Our training material comes from Sections 02–21 of the PTB.
Trees are first transformed to dependency trees using Collins rules as implemented
by Bikel’s parser. All words in the PTB are removed and original POS tags are
replaced by tags in a given tag set C. This means that for each candidate POS tag
set C the training material has to be rewritten.

Once the training material reflects the tag set C, two bags T c
L and T c

R of strings
for each tag c in C are extracted. An example illustrates the extraction procedure
better: Figure 3.1 shows a dependency tree and Table 3.1 shows some of the bags of
left and right dependents that are extracted. Left dependents are read from right to

58

3.3 Quality Measure for Tag Sets

left, while right ones from left to right. In both cases, all strings in the bag showed
in Table 3.1 start with the word w and end with #. Note that in the example, the
tag set C is the PTB tag set, and all sets of strings displayed in the table are strings
extracted from the example tree only. In the actual setting, T c

L and T c
R are built

joining strings coming from all trees in the tree-bank.

Once T c
L and T c

R are extracted, two probabilistic automata Ac
L and Ac

R are built.
For this purpose, we use the minimum discrimination information (MDI) (TDdlH00)
algorithm. The MDI algorithm receives as arguments a bag of strings and it out-
puts a probabilistic deterministic automata that accepts and generalizes over the
input bag of strings. The MDI algorithm has a unique parameter 0 ≤alpha≤ 1,
which controls how the resulting automata generalizes the training material;with
alpha= 0 the automata generates only the training material, while values close
to 1 have the opposite behaviour, i.e. the automata over genealizes the training
material. Such parameter is optimized during the grammar optimization phase as
explained in Section 3.4. Since a bilexical grammar is defined through its automata,
once all automata Ac

L and Ac
R, c in C are induced, the bilexical grammar associated

to the tag set C is completely defined.

Word # i T i
L T i

R

0 NN {NN #} {NN #}
1 MD {MD NN #} {MD VB #}
2 VB {VB #} {VB IN #}
3 IN {IN #} {IN NN #}
4 NN {NN #} {NN TO #}
5 TO {TO #} {TO VB #}
6 VB {VB #} {VB NN IN #}
7 DT {DT #} {DT #}
8 NN {NN DT #} {NN #}
9 IN {IN #} {IN NN #}
10 NN {NN #} {NN #}
11 NN {NN NN #} {NN #}
12 ROOT {ROOT MD #} {ROOT #}

Table 3.1: Bags of left and right dependents extracted from dependency tree in Fig-
ure 3.1. Left dependents are to be read from right to left. All displayed sets are single-
tons.

59

3. JOINING AUTOMATA TO OPTIMIZE SPLIT OF POS TAGS

3.3.2 Quality Measure for Grammars

The measure q′ for bilexical grammars is based on two quality measures for proba-
bilistic automata (ILdR04). The first, called test sample perplexity (PP), is the per
symbol log-likelihood of strings belonging to a test sample according to the distri-
bution defined by the automaton. The minimal perplexity PP = 1 is reached when
the next symbol is always predicted with probability 1, while PP = |Σ| corresponds
to uniformly guessing from an alphabet Σ of size |Σ|. The second measure is given
by the number of missed samples (MS). A missed sample is a string in the test
sample that the automaton fails to accept. One of such instance suffices to have PP

undefined. Since an undefined value of PP only witnesses the presence of at least
one MS we count the number of MS separately, and compute PP without consider-
ing MS. The test sample that is used to compute PP and MS comes from all trees
in sections 00-01 of the PTB. These trees are transformed to dependency trees and
they reflect tag sets C as the training material.

We can now define the measure q′ for bilexical grammars. q′ has two parts, one
considering all automata related to right-hand side dependents, and one considering
left-hand side. To simplify our exposition, we give the component referring to the
right-hand side; the other component is obtained by replacing R in the superscripts
with L.

Let C = {c1, . . . , cn} be a candidate tag set. Let Aci
R , i = 1, . . . , n be the

automata induced as described previously. Let PPci
R and MSci

R be the values of PP

and MS respectively for the automaton Aci
R . We combine all values of PPi and MSi

to obtain a quality value for the whole grammar.

PP and MS values can not simply be summed up as the importance of an au-
tomaton is proportional to the number of times it is used in parsing, as a conse-
quence we combine the different values of PP and MS using weights. Let’s define
pci

R = |T ci
R |/|TR|, where i = 1, . . . , n; where TR is union of all T ci

R ; we view pci
R as

the probability of using the automata Aci
R . Let E[MSR

C] and E[PPR
C] be the expected

value of MS and PP for a right automata, defined as E[MSR
C] =

∑n
i=1 pci

RMSci
R,

and E[PPR
C] =

∑n
i=1 pci

RPPci
R, respectively. Let E[MSL

C] and E[PPL
C] be the corre-

sponding values for the left sides. The expected values depend on a tag set, hence
the subscript C.

The quality measure q′ for a bilexical grammar B is defined using E[PPR
C],

E[MSR
C], E[PPL

C] and E[MSL
C]. Formally, the function q′C0

that we minimize for

60

3.4 Building and Traversing the Search Space

grammars is

q′C0
(B) =

‖X‖+ k if E[PPR
C] > E[PPR

C0
]

‖X‖+ k if E[MSR
C] > E[MSR

C0
]

‖X‖+ k if E[PPL
C] > E[PPL

C0
]

‖X‖+ k if E[MSL
C] > E[MSL

C0
]

‖X‖ otherwise,

where
X=(E[PPR

C], E[MSR
C], E[PPL

C], E[MSL
C]),

‖(x1, x2, . . . , xn)‖ =
√

x2
1 + x2

2 + . . . + x2
n,

k is a constant used to penalize configurations that we know are not part of the set
of possible solutions, and C0 is the set of POS tags defined by the PTB. Finally, the
function q(C) for a given candidate POS tag C is defined as q′(B) where B is the
bilexical grammar that can be induced using C as the tag set. Note that, q′ and q

are essentially the same function, they only differ on the type of the argument they
take. Given that q uses C0 as a referent, we can see q as a function that penalizes
POS tag sets whose expected values of PP and MS are worse than those values
obtained by the PTB tag set. Better values of MS and PP for a grammar mean that
its automata capture better the regular language of dependents by producing most
strings in the automata target languages with fewer levels of perplexity.

Another point of view on q comes from formal language theory: for a given tag
c, the automata Ac

R and Ac
L model the probabilistic regular language of right and

left dependents respectively. The idea behind q′ is that these probabilistic languages
might be better described as the disjoint union of several smaller probabilistic reg-
ular languages. The two measures (PP and MS) in which q is based, indirectly
measure the diversity of languages that are associated to each POS tag. Such analy-
sis was first introduce in (ILdR04). As we show in the next section, the optimization
tries to detect which are these several languages and to define a new POS tag for
each of them.

3.4 Building and Traversing the Search Space

The search space is built by means of 2 elements: a subset V of PTB POS tags and a
function f called feature. V is the portion of the PTB tag set that we want to refine.
f is a function that takes two arguments, a dependency tree t and a number i. The
number i refers to the i-th node, from left to right, in the dependency tree t. Since

61

3. JOINING AUTOMATA TO OPTIMIZE SPLIT OF POS TAGS

words in the yield of t are in direct correspondence to its nodes, the index i also
corresponds to the i-th word in the yield of t. A feature returns some information
around the i-th node in the tree; they are meant to characterize the dependents a
verb might take. Figure 3.2 lists a few features and it shows examples of features
applied to the tree in Figure 3.1.

VerbAllDepth: the number of nodes labeled with {VB,VBD,VBN,VBZ,MD,TO}
in the path that goes from node i to the ROOT node. f(t, 6) = 3.

VerbDepth: the number of nodes labeled with {VB,VBD,VBN,VBZ,MD} in the
path that goes from node i to the ROOT node. f(t, 6) = 2.

VerbVBDepth: the number of nodes labeled with {VB,VBD,VBN,VBZ} in the
path that goes from node i to the ROOT node. f(t, 6) = 1.

NumSib: the number of sibling. f(t, 2) = 1.

NumDep: the number of dependents. f(t, 6) = 2.

NumChanges: the number of times the label changes in consecutive nodes in the
path that goes from node i to the ROOT node. f(t, 10) = 7.

Depth: The length of the path that goes from node i to the ROOT node. f(t, 6) = 5.

GFather: The POS tag of the grand-father of node i. f(t, 6) = NN.

FstRightDep: The POS tag of first dependent to the right of node i. f(t, 6) =
NONE.

Figure 3.2: Description and examples of some of the features we used. Examples are
obtained using t as the tree in Figure 3.1.

Given f and V , the search space is built using a 2-step procedure. The first step
defines an initial tag set Ci while the second uses Ci to define the family of all
possible candidate tag sets in the search space. The initial tag set is built by applying
f(t, i) to all trees t in the tree-bank, and for their words i that have their original
tags in the PTB tag set. The result of applying f to one tree t and to one word w

of t whose tag belongs to V is added to Ci. Suppose that the tree in Figure 3.1 is
processed for building Ci with feature father , and V = {V B}; then tags VB-MD
and VB-TO are added to Ci. Formally, Ci is defined as (O − V) ∪ Img(f) where
O is the set of PTB POS and Img(f) is the image of f .

If original tags are replaced by the results of f , the training material can be
completely retagged. In the previous example, VB-MD and VB-TO replace V B in

62

3.4 Building and Traversing the Search Space

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 6 NEWTAG 4 4 NEWTAG 7 11
NEWTAG 2 2 NEWTAG 5 5 NEWTAG 8 7,12
NEWTAG 3 8 NEWTAG 6 10 NEWTAG 9 17,18,20,15,24
NEWTAG 10 1,16,13,9 NEWTAG 11 0,3,14

Table 3.2: A subset of a new POS tag set which shows entries corresponding to the
new tags related to VB calculated with feature Depth.

position 2 and 6 respectively.

The second step builds the family of possible candidate tag set. The search space
for feature f and tag set V is defined as all possible tags sets that are the product
of merging arbitrary tags c1, . . . , ck, ci in Ci. Building a tag set C by merging tags
c1, . . . , ck means that a new tag symbol t is introduced and that C is defined as
Ci − {c1, . . . , ck} ∪ {t}. Merging tags also means that the training material has to
be rewritten; this is done by replacing tags c1, . . . ck by tag t.

Since the family of possible tag sets is constructed by merging subsets of the
initial tag set, the size of the search space is exponential. The traversing strategy
for inspecting the search space is based on Genetic Algorithms. Genetic Algorithms
need for their implementation (1) A definition of individuals: our individuals codify
both a value of alpha to be used for building the automata and candidate tag set
of the training material. (2) A fitness function defined over individuals: the quality
measure q′ we defined in Section 3.3. (3) A strategy for evolution: we apply two
different operations to genes, namely two point crossover and mutation (see Chapter
2.2.1); crossover gets 0.95 probability of being applied, while mutation gets 0.05.
We select individuals using the roulette wheel strategy (GC97). Finally, at each
generation the population consists of 50 individuals; we let the population evolve
for 100 generations.

The outcome of our optimization method is a set of new tags. The algorithm also
outputs a table that assigns a new tag to each possible outcome of the feature used
during the optimization procedure. This table, together with the feature f , can be
used for retagging the training material with the new set of POS tags. For example,
using Table A.13 together with feature Depth it is possible to calculate the new
tag for word number 4 of Figure 3.3 (a). Note that feature Depth(4) returns 1 and
that Table A.13 states that for words with value 1 for this feature should receive
NEWTAG 10. Words that are originally not tagged with VB keep their old tags. All
diferent set of POS tags induced with our algorithm are included in Appendix A.

As such, the algorithm for inducing our POS tag sets is a mixture between al-

63

3. JOINING AUTOMATA TO OPTIMIZE SPLIT OF POS TAGS

gorithms for inducing automata and genetic algorithms. Genetic algorithms were
chosen because they provide a direct map from our problem to their representation.
Genetic algorithms are used to search for the best way to merge POS tags from the
initial tagging. Measure PP was chosen because it is the standard measure to eval-
uate automata (TDdlH00). Before trying genetic algorithms we tried out standard
clustering algorithms, but they fail to capture the idea behind the q measure.

3.5 Parsing with New Sets of Tags
All tags computed in the previous section encode information regarding some syn-
tactic feature. Even though these features are computed using dependency trees, the
information codified in the new tags help phrase structure parsers to improve their
performance. Our tag sets are introduced in the training material of a supervised
parsing model.

3.5.1 Rewriting the Training Material

The parser is trained in a modified version of Sections 02–21 of the PTB. All trees
in those sections are modified to reflect the new set of POS tags: Our tags are
introduced as new nodes above the original POS tags, as depicted in Figure 3.3 (b),
by adding a new node with the new tag (in the example, NEWTAG 10) above the
original node (VB). The new tag comes from the retagging schema for dependency
trees returned by our optimization algorithm as explained in the previous section.

Note that instead of replacing the original POS tags with the new POS tags, we
choose to add an extra-node above the original POS tag. The reason for the extra-
node is given by the way the parser deals with POS tagging: The parser might guess
the POS tags or they can be given with the sentence. Formally, the parser can be fed
either with a sequence of pairs 〈(w1, c1), . . . , (wk, ck)〉, wi and ci being words and
tags respectively or with a sequence of words 〈w1, . . . , wk〉.

If extra-nodes are not used in the training material, we can not resort to the first
type of sequences because syntactic trees are needed to obtain the correct sequence
of POS tags. In other words, in order to tag the sentence with our new POS tag set,
we need to know the syntactic tree that yields the sentence, which is not available
during testing. The extra-nodes are used to reflect a new set of POS tags. Adding
one extra-node above each original POS tag allows reflecting one of our POS tag
sets, while using two extra-nodes we can reflect two of our sets of new POS tags.

Still, without using extra-nodes, the second type of sequences can be used. We

64

3.5 Parsing with New Sets of Tags

(a)
S

VP

VP

ADJP-PRD

NP-TMP

CD

15

NNP

Feb

JJ

payable

NEWTAG 10

VB

be

MD

will

NP-SBJ

NN

rate

JJ

new

DT

The

(b)

Figure 3.3: (a) Tag NEWTAG 10 is assigned to word number 4. (b) the new tag is
introduced in the phrase structure above the original tag.

65

3. JOINING AUTOMATA TO OPTIMIZE SPLIT OF POS TAGS

tried out replacing old tags with our new tags and we let the parser guess the correct
new POS tags. Unfortunately, the performance of such approach drops dramati-
cally. We believe that this is due to the fact that the tagger that is being used inside
the parser is incapable of recovering our tags. We speculate that, since new POS
tags encode syntactic information, they can not be recovered with a POS tagger;
however, this point requires further research.

It is important to note that the generative model that results from training in our
own version of the training material does not suffer from the extra nodes. In order to
empirically try this out, we carried out a dummy experiment consisting of adding an
extra node CLUSTER above the tag VB in the training material. That is, we just add
an extra node that does not codify extra information. The resulting model reports
the same result as the original model. This experiment shows that the generative
model that is built from the material containing the extra node behaves exactly as
the model without extra nodes.

3.5.2 Modifying the Parser’s Training Algorithm

The parser’s training algorithm was modified to make it aware of the new set of
POS tags. During the training phase, Bikel’s parser transforms phrase structure
trees into dependency trees. During this process, the parser uses a function to de-
termine the head symbol of each constituent. The aforementioned function uses a
head-definition table that provides all the necessary information for finding heads
in context-free grammar rules. Since entries in this table are non-terminal symbols,
the table should be aware of the new set of extra-nodes that were introduced in the
training material.

There are two different ways to make the head finding function aware of the
new set of non-terminals: The first approach adds the new set of labels to the head-
definition table. This approach is straightforward but it presents some problems
when features are applied to redefine more than one syntactic category. The second
approach changes the algorithm that computes heads using the head-definition table
so that the new POS are completely ignored. The second approach is the one we
use in our experiments.

3.5.3 Experimental Results

The results reported in this sections were performed on sentences in Section 23 of
the PTB. Since the parser returns trees with extra-nodes, they are deleted before

66

3.5 Parsing with New Sets of Tags

Num. Feature Tags L. R. L. P. pval R. pval P. F1

Baseline 88,53 88,63 0,8858
(1) Depth VB,MD 88,64 88,78 0,067 0,020 0,8871
(2) Depth VBN,VB,MD 88,65 88,86 0,120 0,004 0,8875
(3) gFather VB,MD 88,69 88,80 0,047 0,044 0,8874
(4) gFather VBN,VB,MD 88,64 88,80 0,160 0,047 0,8872
(5) NumChanges VB,MD 88,69 88,80 0,030 0,020 0,8874
(6) NumChanges VBN,VB,MD 88,62 88,81 0,200 0,030 0,8871
(7) VerbAllDepth VBN,VB,MD 88,67 88,79 0,047 0,024 0,8873
(8) VerbDepth VBN,VB,MD 88,67 88,78 0,069 0,051 0,8872
(9) VerbVBDepth VBN,VB,MD 88,70 88,83 0,017 0,008 0,8876

(10) NumSib VBN, VB,MD 88,66 88,77 0,079 0,048 0,8871

(11) FstRightDep VB 88,52 88,57 0,439 0,260 0,8854

(2)-(9)
Depth- VBN,VB,MD-

88,68 88,86 0,081 0,010 0,8876
VerbVBDepth VBN,VB,MD

(2)-(4)
Depth- VBN,VB,MD-

88,62 88,82 0,210 0,020 0,8872
gFather VBN,VB,MD

Table 3.3: Experiment results. The middle part shows a feature whose performance
results decreases. The bottom part shows features combinations.

evaluation. Standard measures of labeled precision and labeled recall are reported.

We tested 17 different features applied to different sets of tags related to verbs.
None of our experiments showed significant decrease in parsing performance, but
many showed significant increases. Table 3.3 reports 11 experimental results, 10 of
them show improvements. Features were selected without any optimization method.
We selected features by hand using intuitions provided in (IL05) and by selecting
new features that take into consideration the syntactic structure above a tree node.
Such information was shown to be useful in (KM03a) and it is not being modeled
by Collins’ model.

Each row displays the feature that was used (see Table 3.2 for explanation),
the tag set that was redefined, the results on labeled precision, labeled recall and
the significance level pval of the result; the latter was computed against baseline re-
sults. The baseline row reports the performance of Bikel implementation for Collins
model.

The table is divided in three. The upper part shows statically significant results.
The middle part provides an example of a feature that does decrease parser perfor-
mance but whose decrease is not statistically significant. The bottom part reports
results where features are combined with statistically significant improvements. In
all cases, we consider a result statistically significant if its significance level pval

is below 0.05. Performance is measured using evalb script while significance is
measured using Bikel’s Randomized Parsing Evaluation Comparator script.

67

3. JOINING AUTOMATA TO OPTIMIZE SPLIT OF POS TAGS

From Table 3.3, it can be seen that the combination of features (2) and (4) does
not necessarily improve the results obtained by each of the features separately. For
this particular example, the parser loses both performance and significance. We
think that the reason for the decrease lies in the fact that the parser suffers the extra
number of rules that it is has to handle. Recall from the previous section that two
extra-nodes are added for every possible combination of new POS tags. Combina-
tion of features are not intended to obtain the best performance, but to investigate
the impact of the combination. We tried also to combine two features by using their
Cartesian product in the GA search space. In this way, we could rewrite the training
material by using only one extra-node which combines both features. However, the
resulting number of new tags obtained was too large and the parsing performance
decreased significantly.

Our experimental results show that even though our approach hardly increases
the performance figures for Bikel’s parser, improvements are significant. We think
that this is due to the syntactic information codified in the new set of extra-nodes.
In some cases, e.g., when gFather feature is used, non-local information is stored
in these extra-nodes. The experimental results show that not only the parser is
able to recover the extra-nodes but it is also capable of taking advantage of the
information stored in these nodes. Our approach minimally modifies the learning
algorithm; we can state that the underlying parsing model has been left intact. Our
approach mainly modifies the training material trying to incorporate information
that is present there but which is not currently used by the parser.

3.6 Future Work

Our tags were tested by means of one particular parsing model. Clearly, the set of
experiments we present here can be run using other parsing models. We think that
such experiments can help understanding how different models take advantage of
the information that is coded in our non-terminals. Since our tags are built using
dependency trees, we believe that they can better help parsers that do not rely so
heavily on dependencies e.g. (Cha00, HT05) as Collins model. This is because as
they do not use dependency structures, our POS tags may help to add the syntactical
information obtained from dependencies. During our experiments we could not
directly replace old POS tags with our new tags because the parser’s built in tagger
did not handle our tags correctly. This puts forward questions that require further
research, such as: can we build POS taggers that are able to recover complex tags
that encode deep syntactic information? or, more generally, which information can

68

3.7 Discussion and Conclusions

be coded in tags so that it can be recovered using taggers? Some answers to this
question have been given in the literature (Osb00).

Another experiment that could be interesting to perform consists in using the
MLE estimator as the function to be optimized, instead of the perplexity of the au-
tomaton; or in using a combination of both. The reason is that, although calculating
perplexity is the standard procedure to qualify automata, the MLE estimator is con-
sidered standard in syntactic parsing for an unsupervised measure of the quality of
a treebank. The calculation of MLE can be performed computing the average of
probabilities of the “dependency words” included in the training material, which is
also used to calculate the Missed Samples quality measure. Finally, note that mea-
sures used in this work are principally related to “how well the automaton reflex
the training material”. However, a very interesting measure with a more general
purpose such as Minimum Description Length (MDL) (Ris78)1, could help us to
determine “how good is the automaton itself”. This notion could be a third measure
to be combined.

3.7 Discussion and Conclusions

When we have to decide which tag set is the best for our task, we should take into
account the purpose of the tags sets and the results obtained from an evaluation
methodology which gives us an idea of how good these tag sets are for that specific
task. As an example, the purpose of LOB corpus (Mar83) was to be used in English
language teaching and research, thus the designers developed a comparatively com-
plex tag set to reflect fine distinctions of English grammar for learners and teachers.
In the case of PTB corpus, tags were mainly intended to be used in language engi-
neering; for example, as a training set for Machine Learning systems because they
would work better with smaller tag sets. In this work we adopt a similar criterion
for evaluating POS tag sets based on how much they improve the performance of
syntactic parsers, coupled with the test sample perplexity.

In general the POS sets are far too general to capture the syntactic information
of words. Taken to an extreme, we can say that each word may have its own unique
syntactic information, especially for modern parsers where a lexicalized grammar
is used. However, in practice, given the limited training data available and the
resulting data sparseness, the syntactic relationship between words may be more

1MDL is a formalization in which the best hypothesis for a given set of data is the one that
minimizes the amount of information for both data and hypothesis.

69

3. JOINING AUTOMATA TO OPTIMIZE SPLIT OF POS TAGS

accurately modeled at a partition level between POS tags and the lexical identity of
each word. In this work, we aim to find the more accurate POS tag set for syntactic
parsers, by implementing an optimization procedure which splits and merges tags
according to the similarity of the syntactic behavior of words. These behaviors were
characterized by means of probabilistic regular automata in a dependency syntax
setting.

At this stage of the NLP research area, it is known that a naive PCFG which
induces its rules in a canonical way does not perform well. This naive grammar
yields a low performance because, as it is well summarized in (PBK06), its context-
freeness assumptions are too strong in some places (e.g. it assumes that subject and
object NPs share the same distribution) and too weak in others (e.g. it assumes that
long rewrites are not decomposable into smaller steps). As a consequence, better
results are obtained by passing contextual clues through tag labels, and this gain
in performance is bounded by the problem of sparse statistics. We propose in this
work, to add structural information to the syntactic categories tag set, and in this
way, feed the parser with that information. Our results show that the resulting tags
encode structural syntactic information that was used by an state-of-the-art parser
to significantly improve its performance.

70

Chapter 4

Looking for the best language for
dependency structure

Head finders have been usually inspired on linguistic bases and they have been used
by parsers as such. In this Chapter, we present an optimization set-up that tries
to produce a head finder algorithm that is optimal for syntactic parsing. This idea
arises from the work described in the previous Chapter, as we found that improve-
ment in parsing performance can be achieved by changing the head finder to make
it aware of the new POS tags. We then sought to appraise the impact of head finders
in parsing and whether better head finding rules could be automatically derived. All
the results presented in this Chapter were published in (DIL10).

4.1 Introduction

Head-finder algorithms are used by supervised syntactic parsers to transform phrase
structure trees into dependency ones. The transformation is carried out by selecting
a word as the head in every constituent. Head-finder algorithms are based on a set of
head-finder rules which provides instructions on how to find the head for every type
of constituent. For every internal node of a tree, the head-finder rules specify which
children of the node contains the head word. The first set of head-rules, based on
linguistic principles, was introduced in (Mag95a) and it is used by many state-of-
the-art statistical parsers, like (Cha00, KM03a, Bik04b, Col97) with only minimal
changes.

The standard set of head-finder rules was handcrafted and, consequently, not
optimized for parsing; therefore, there might exist different sets of head-finder rules

71

4. LOOKING FOR THE BEST LANGUAGE FOR DEPENDENCY
STRUCTURE

that can improve parsing performance. In this chapter we investigate their role in
parsing and we experiment with two different state of the art parsers. We present an
optimization algorithm that improves the standard set of head finders, one rule at the
time, with the goal of finding an optimal set of rules. Even though our optimization
algorithm produces statistically significant improvements, it hardly obtains a better
performance. In order to better understand why our optimization algorithm cannot
produce bigger improvements, we test the stability of the search space. We test this
by generating different head finders: we generate head finders that always select
the rightmost and leftmost sub-trees as the trees containing the headword. We also
generate 137 random sets of rules, and we test head finders that are not consistent,
that is, head finders whose set of rules changes during the same training session.

Our optimization procedure aims at finding the best possible set of rules that im-
proves parsing performance. Our procedure is defined as an optimization problem,
and as such, it defines the quality measure that it has to optimize, its search space,
and the strategy it should follow to find the optimal set of rules among all possible
solutions. The search space is the possible sets of rules; our procedure optimizes
one rule in the set at a time. A new set of rules is then created by replacing an orig-
inal rule in the standard set with its optimized rule. The quality measure for a rule
set is computed in a serie of steps. First, the training material is transformed from
phrase structure trees into dependency ones using the rule to be evaluated; second, a
bilexical grammar (Eis97) is induced from the dependency tree bank, and finally, the
quality of the bilexical grammar is evaluated. The quality of the grammar is given
by the perplexity (PP) and missed samples (MS) found in the automata of the gram-
mar as explained in Section 4.4. Finally, the strategy for traversing the search space
is implemented by means of Genetic Algorithms. Once we obtain an optimized set
of rules, we proceed to evaluate its impact in two parsers, Collins’ parser (Col97)
by means of Bikel’s implementation (Bik04b), and the Stanford parser (KM01).

The source code of these two parsers is available and their head finder algo-
rithms are rather easy to modify. We considered experimenting also with the Malt-
parser (NHN+07) but its performance is hard to evaluate when its head finder is
modified. Our experiments show that the parsing performance of the two parsers
is insensitive to variations in head finders. They also show that among all possible
head-finders, our optimization procedure is capable of finding improvements. Our
experiments also show that in the presence of inconsistent head finder rules, parsers
performance drops 1.6% and 0.9% for Bikel’s and for Stanford respectively. Our
experimental results with random head finders show that modifications in the rule
for VP produced the biggest impact in the performance of the two parsers. More

72

4.2 Related Work

interestingly, our experiments show that inconsistent head finders are more stable
than random deterministic head finder. We argue that this is the case because the
variance on the structures the later produces is considerably bigger with respect to
the former. Our experiments also show that Stanford parser performance is more
stable with respect to variations in the head finder rules than Bikel’s.

All in all, our experiments show that, even though it is possible to find some new
set of rules that improves parsers performance, head finding algorithms do not have
a decisive impact on the performance of these two state-of-the-art syntactic parsers;
this also indicates that the reason for their performance lies beyond the procedure
that is used to obtain dependencies.

The rest of the Chapter is organized as follows. Section 4.3 explains head find-
ing algorithms. Section 4.4 presents the quality measure used in our optimization
algorithm, while Section 4.5 discusses the search space and the strategy to traverse
it. Section 4.6 presents how random rules are generated, Section 4.7 presents the
results of our experiments and Section 4.2 introduces related work. Finally, in Sec-
tion 4.8 we include a discussion about the contribution of our work, and also, con-
cludes the Chapter.

4.2 Related Work

Similar work has been published in (CB02), and an improved version can be found
in the Bikel’s thesis (Bik04b). In this work, the authors tried to induce head rules by
means of defining a generative model that starts with an initial set of rules and uses
an EM-like algorithm to produce a new set of rules that maximize the likelihood.
They used different sets of rules as seeds for the EM, but the approach only shows
improvement when the standard set of rules is used. In contrast to our approach,
none of their improvements were statistically significant. They also show that when
the seed is a set of random rules, the overall performance decreases.

In a different approach (SZ09) the authors present different unsupervised algo-
rithms for head assignments used in their Lexicalized Tree Substitution Grammars.
They study different types of algorithms based on entropy minimization, familiar-
ity maximization, and several variants of these algorithms. Their results show that
using the head finder they induced, an improvement of 4% over a PCFG parser us-
ing standard head assignments is obteined. In our work, we don’t use lexicalized
grammars. Our approach is based on improvements to a given rule set, as opposed
to theirs where they use unsupervised methods to find assignments for heads.

73

4. LOOKING FOR THE BEST LANGUAGE FOR DEPENDENCY
STRUCTURE

S

VP

NP

NNP

Elianti

VBZ

plays

NP

NNP

Haag

NNP

Ms

Figure 4.1: Sentence 2 from Sec-
tion 2 of the PTB. The nodes
where the head of each constituent
is searched for are marked in bold-
face.

g

TrsTr1 . . .TlkTl1 . . .

Figure 4.2: A simple phrase struc-
ture tree.

4.3 Head Finding Algorithms

For each internal node of a phrase structure tree, the head finder (HF), determines
which of its subtrees contains the head word of the constituent. The procedure of
transforming a phrase structure into a dependency one starts in the root of the tree
and moves downwards up to the tree preterminals. The HF has as a parameter
a set of head finder rules R. R contains one rule for each possible grammatical
category. Formally, let R be {rgc1 , ..., rgck

}, where rgci
is the head-finder rule

associated with the grammatical category gci; the set {gc1, ..., gck} is the set of
all grammatical category tags like S, VP, ADJP, ADVP, SBAR, for the Penn
Tree-Bank (MS93) (PTB).

A head finding rule rgc is a vector of pairs ((d1, t1), . . . , (dkn , tkn)), where ti is
a non-terminal and dm ∈ {left, right} is a search direction. We also use the no-
tation of direction vector to refer to the vector (d1, . . . , dki

) which is the projection
of the first component of the head-finding rule vector. Similarly, the tags vector
(t1, . . . , tki

) is the projection of the second component. We refer to a head-finder
rule as one vector of pairs, or as a pair of vectors. For example, in Figure 4.3
is shown the rule that is associated with tag VP in the standard set of head-finder
rules. Note that, in the standar set of rules l is used to represent the left direction,
and similarly r is used for the right one.

It is important to highlight that our definition of head-finder rule is a simplifica-
tion of the standard head-finder rule. In the standard definition of rules for tags NP

74

4.4 A quality measure for Head Finder Rules

((l TO)(l VBD)(l VBN)(l MD)(l VBZ)(l VB)(l VBG)(l VBP)(l VP)(l ADJP)(l NN)(l

NNS)(l NP))

Figure 4.3: An example of Head Rule.

and NX, sets of non-terminals are used instead of simple non-terminals. Our defini-
tion excludes this situation because, otherwise, the size of the search space makes
the optimization procedure unfeasible.
In order to show how the head finder algorithm works, we introduce a few aux-
iliary functions. root(T) returns the root node of the phrase structure tree T ;
children(T, g) returns the list of children of node g in T and, subtreeList(T) re-
turns the list of sub-trees of T ordered from left to right. For example, if T is the
tree in Figure 4.2 then root(T) = g,
children(T, g) = [root(Ti1), . . . , root(Tlk), root(Tr1), . . . , root(Trs)] and
subtreeList(T) = [Tl1 , . . . , Tlk , Tr1 , . . . , Trs]. Using this definition, we formally
define in Algorithm 6 the algorithm HFR that transforms a phrase structure tree
into a dependency one, where R is a set of head finder rules.

Consider the tree in Figure 4.1. Suppose that the head-finder rule for tag VP is
((l TO)(l VBD)(l VBN)(l MD)(l VBZ)(l VB)(l VBG)(l VBP)(l VP)(l ADJP)(l NN)(l NNS)(l

NP)). When the head finder algorithm reaches the node VP, it looks from left to right
a tag TO; since it cannot find such tag, it looks from left to right a tag VBD, it keeps
changing what it is looking for until it looks from left to right for a tag VBZ. Once
it has found it, it marks that subtree as head and it recursively inspects all subtrees.

4.4 A quality measure for Head Finder Rules

This section introduces the quality measure used in our optimization procedure for
finding the best set of head finder rules for syntactic parsers. Our procedure is based
on the optimization of a quality measure q defined over a set of head-finder rules.

The measure q of a set of head-finder rules is defined as a measure of the gram-
mar that is built from using the head-finder rule to transform the PTB into depen-
dencies. The measure is then defined over the automata that defined the grammars.
The measure over bilexical grammars contains two components: test sample per-
plexity (PP) and missed samples (MS), with the same idea that in Section 3.3.2.

75

4. LOOKING FOR THE BEST LANGUAGE FOR DEPENDENCY
STRUCTURE

Data: the input tree T , rgci
= ((d1, t1), .., (dki

, tki
)) is a rule from R

defined for tag root(T) = gr

Result: the tree T with the head marked

1 s = length(children(T, gr));
2 foreach (dl, tl) ∈ rgci

do
/* iterate in each element of the rule */

3 if di == left then
4 for j = 1 to s; j = j + 1 do

/* seek from left to right in children(T, groot)

*/

5 if children(T, groot)[j] == ti then
/* if the tag matches, the head is

marked. */

6 Mark(children(T, groot)[j]);
7 end
8 end
9 end

10 else
11 for j = s to 1; j = j − 1 do

/* seek from right to left in children(T, groot)

*/

12 if children(T, groot)[j] == ti then
/* if the tag matches, the head is

marked. */

13 Mark(children(T, groot)[j]);
14 end
15 end
16 end
17 ;
18 end
19 foreach Tk ∈ subtreeList(T) do

/* recursively call to subtrees */

20 HFR(Tk);
21 end

Algorithm 6: The Head Finder Algorithm.

76

4.5 A Genetic Algorithm Set-Up for Head Rules

Better values of MSand PPfor a grammar mean that its automata capture better the
regular language of dependents by producing most strings in the automata target
languages with fewer levels of perplexity. The quality measure of grammar is then
the mean of PP’s and MS’s for all automata in the grammar.

In order to compute q for a given set of rules, we proceed in a similar way that
of the previous Chapter. We transform Sections 01-22 of PTB into dependency
structures. Using the resulting dependency treebank we build a bilexical grammar,
and finally, we compute a quality measure on this grammar. The test sample that
is used to compute PP and MS comes from all trees in sections 00-01 of the PTB.
These trees are transformed to dependency ones by using HFRc , where Rc is the
candidate set of rules.

4.5 A Genetic Algorithm Set-Up for Head Rules

This section introduces the search space and the strategy to traverse it in our opti-
mization procedure. The search space consists of different sets of head rules. The
standard set of rules contains 26 rules. The longest is the one associated with ADJP;
it contains 18 entries. Finding a new set of rules means that we should find a new
set of 26 vectors. For each candidate rule we have to transform the PTB, build the
bilexical grammar, and compute PPand MSfor all automata. Our algorithm takes
1.2 minutes to evaluate one candidate set of rules.

In principle, all possible head-rules can be candidate rules, but then the search
space would be huge and it would be computationally unfeasible to traverse it. In
order to avoid such search space, we run a series of experiments where we optimize
one rule at a time. For example, one of our experiments is to optimize the rule
associated with VB. Our search space contains all possible set of rules where all
rules except the one associated to VB are as in the standard set of head-finder rules.

To optimize one rule we traverse the search space with Genetic Algorithms. Ge-
netic Algorithms need for their implementation (1) Definition of individuals: each
individual codifies one candidate of the head-finder rule that is being optimize. (2) A
fitness function defined over individuals: the quality measure is computed by con-
structing a set of head-finder rules by adding the candidate rule to the standard set
of rules, building a bilexical grammatical and evaluating it as described in Sec-
tion 4.4. Finally, (3) A strategy for evolution: we apply two different operations
to individuals: ad-hoc crossover and mutation; crossover gets 0.95 probability of
being applied, while mutation gets 0.05. We test two different selection strategies:
roulette wheel strategy and tournement selection (see Chapter 2.2.1), and we ob-

77

4. LOOKING FOR THE BEST LANGUAGE FOR DEPENDENCY
STRUCTURE

Tag array:

TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP

0 1 2 3 4 5 6 7 8 9 10 11 12

Direction array:

false false false false false false false false false false false false false

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.4: The algorithmic representation of an individual corresponding to the Head
Rule from Figure 4.3.

tained similar results. In our experiments, in each generation there is a population
of 50 individuals; we let the population evolve for 100 generations.

Our definition of individuals codifies a head rule. We define an individual as two
arrays, one of type String1 which represents the tag vector of a rule, and a boolean

array that represents its direction vector. Similarly we map the direction vector in
the boolean array and, true maps with left and false with right. In Figure 4.4 we
show how a head rule from Figure 4.3 is represented as an individual of the GA.
Note that if we permute elements from arrays, this means permutations in the rule
definition.

The mutation function is easily defined by computing a random permutation of
the rule tags vector and a random sample of its direction vector. The crossover
operation is defined as follows. Let [g1, . . . , gi, . . . , gn] and [h1, . . . , hi, . . . , hn] be
the tag vectors of two different individuals and let i be random number between 1

and n. The crossover produces two new individuals. The tag vector of one of the
individuals is defined as follows:

sub([g1, . . . , gn], [hi+1, . . . , hn]) · [hi+1, . . . , hn]

where the operator (·) appends two arrays, and sub(x, y) deletes the elements in x

that are in y. The tag vector of the other individual is defined similarly by changing
g by h and vice versa. The direction vectors of the new individuals are obtained by
using the usual definition of single point crossover for boolean vector. In this way,

1In fact, the implementation uses Integer, and there is a mapping function which assigns each
number from the array vector with the coordinate of the corresponding tag in the original tag vector.
We use String to make it easy for explanation, and it is just an implementation detail.

78

4.6 Stability of Head Finders

crossover ensures that the resulting head rules do not have repeated tags.

4.6 Stability of Head Finders

As it is shown in Section 4.7, our optimization method only improves the perfor-
mance of Bikel’s parser. The reason for the lack of improvement of Stanford parser
can be either because our optimization method is ill defined or because the parser
is indifferent to the set of head-finders rules. However, using no head finder, that is,
non dependency grammars, performance never reaches beyond 75%. So, heads and
dependencies based on heads are an important element in parsing performance.

In this section we present experiments that try to shed light on this issue. We
tested (1) randomly generated head finder rules, (2) head finders whose rules were
reversed, (3) head finders that always choose right or left, and (4) inconsistent head
finders.

Random Head Finders: We experiment generating several sets of head finder
rules. A random set of head finder rules is created by replacing one rule in the
standard set of head finder rules by one random rule. A random rule is created by
randomly permuting the elements of both the tags vector and the direction vector.
Experimental results for this head finder are shown in Table 4.1 (A).

In Figure 4.5, the first row shows the head rule defined in the standard set for
category S. The second row shows a random permutation of this rule. The last row
shows a reverse permutation of the original one. The reverse permutation of a rule
is obtained by reversing the order of its tag vector and leaving its direction vector
unchanged. In this example, the rule presented in the second row is calculated us-
ing the permutation [7, 1, 4, 8, 2, 3, 6, 5] for the tags vector and its random direction
vector was (l, r, r, l, l, l, l, l). We generate 119 rules and, consequently, 119 different
head finder rule sets. Each of these sets differs in one rule from the standard set. In
this way, we show the impact of each rule in the overall parsing performance.

We also experiment with a set of rules were all of its rules were randomly gen-
erated. We test 7 of such random sets for each parser. Experimental results for this
head finder are shown in Table 4.3.

Reverse Rules: There are 26 rules in the standard set of head finder rules. We
generate 26 new sets by changing one rule at a time by its reverse. The reverse of

79

4. LOOKING FOR THE BEST LANGUAGE FOR DEPENDENCY
STRUCTURE

Original
(S (l TO)(l IN)(l VP)(l S)(l SBAR)(l ADJP)

(l UCP)(l NP))

sampled (S (l UCP)(r TO)(r S)(l NP)(l IN)(l VP)

rule (l ADJP)(l SBAR))

reverse (S (l NP)(l UCP)(l ADJP)(l SBAR)(l S)(l VP)

rule (l IN)(l TO))

Figure 4.5: The first row shows the original Collins’s head rule for S. The second
row shows a random permutation of the original rule. The last row is the reverse of the
original rule.

a rule is constructed by reading it from left to right. The impact of reverse rules in
parsing performance is shown in Table 4.1 (B).

Leftmost and Rightmost Head Finders: We define two special algorithms for
finding heads. The always-leftmost and always-rightmost algorithm chooses for
each internal node the leftmost and rightmost subtree respectively. These are special
cases of head finder algorithms that cannot be expressed with a set of rules. In
order to implement these algorithms, we modified both parser implementations.
The results are shown in Table 4.2 (B).

Non-deterministic Head Finders: All previous experiments were based on de-
terministic head finders: every time they are used to transform a given phrase struc-
ture tree, they transform into the same dependency tree. We implemented a non-
deterministic head finder algorithm, this algorithm flips a coin every time it has to
decided where the head is. When this head finder is used to transform a phrase
structure into a dependency tree it produces different dependency trees for every
time it is called. We report results for 7 of these experiments for each parser, they
can be seen in Table 4.3.

4.7 Experimental Results

In this section, we analyze the results of all our experiments. In all experiments
we used Sections 02-21 of the PTB for training and Section 23 for testing. The
optimization algorithm use Sections 00-01 for computing the quality measure de-
fined on automata. Our experiments aim to analyze the variation in performance by

80

4.7 Experimental Results

Bikel Stanford
rule tag avg. max. min. avg. max. min.

WHADJP 88,589 88,596 88,583 85,739 85,739 85,739
CONJP 88,586 88,601 88,582 85,739 85,739 85,739
WHNP 88,586 88,596 88,577 85,739 85,739 85,739
SINV 88,485 88,608 88,009 85,749 85,772 85,730

QP 88,538 88,604 88,474 85,747 85,759 85,732
RRC 88,588 88,595 88,583 85,739 85,739 85,739

S 88,092 88,569 87,458 85,689 85,726 85,652
ADVP 88,586 88,615 88,564 85,740 85,743 85,739
NAC 88,594 88,607 88,581 85,743 85,743 85,743

SBAR 88,195 88,653 88,013 85,734 85,739 85,733
VP 87,330 88,471 85,870 85,247 85,612 84,918
SQ 88,571 88,592 88,562 85,739 85,739 85,739

ADJP 88,616 88,698 88,566 85,727 85,739 85,718
WHPP 88,583 88,583 88,583 85,739 85,739 85,739

SBARQ 88,583 88,583 88,583 85,739 85,739 85,739
PP 88,617 88,668 88,583 85,740 85,740 85,739

WHADVP 88,607 88,706 88,583 85,739 85,739 85,739

(A)

Gram.tag F B
1 F S

1

WHADJP 88,596 85,739
SBAR 87,990 85,733
CONJP 88,600 85,739

VP 85,820 84,249
WHNP 88,596 85,739

SQ 88,562 85,739
SINV 88,465 85,758
ADJP 88,626 85,726

QP 88,490 85,748
WHPP 88.583 85,739
RRC 88,595 85,739

SBARQ 88.583 85,739
S 88,178 85,670

PP 88.583 85,739
ADVP 88,613 85,739

WHADVP 88.593 85,739
NAC 88,603 85,743

(B)

Table 4.1: (A) Parsing results obtained by replacing one rule in the standard set by
a random rule. Each row shows the average, maximal and minimal impact in the F1

measure for each parser. (B) Experiments result for each Head finder built with the
reverse of head rule. One column for each parser.

changing one or more head rules in the standard set of head rules. The rules that are
modified by our experiments correspond to tags:
{WHADJP, CONJP, WHNP, SINV, QP, RRC, S, ADVP, NAC, SBAR,

VP, SQ, ADJP, WHPP, SBARQ, PP, WHADVP }.
Table 4.1 (A) include the parsing results obtained by replacing one rule in the

standard set by a random rule. Each row of this table shows the average, maximal
and minimal impact in the F1 measure for the considerd parsers. Table 4.1 (B)
shows F1 measure for the 17 rules that were obtained by reversing one of the rules
in the standard set at a time.

From Tables 4.1 (A) and (B) we can see that the rule defined for tag VP has the
greatest impact on the performance of both parsers.

Table 4.2 (A) shows the performance of the set of rules produced by the op-
timization procedure. Each row displays labeled precision, labeled recall, signifi-
cance level pval, and harmonic mean F1. The baseline row reports the performance
of both parsers using the standard set of rules. pval was computed against the
baseline. We consider a result as statistically significant if its significance level
pval is below 0.05. Performance value were computed using the evalb script,

81

4. LOOKING FOR THE BEST LANGUAGE FOR DEPENDENCY
STRUCTURE

Num. L. R. L. P. pval R. pval P. F1

Bikel Baseline 88,53 88,63 88,583
optimal head 88,72 88,85 0,006 0,002 88,785

Stanford Baseline 85,26 86,23 85,742
optimal head 85,24 86,22 0,098 0,131 85,727

(A)

Parser F1 worst choice F1 Rightmost F1 Leftmost
Bikel 82,486 83,024 85,102

Stanford 84,092 84,206 85,566

(B)

Table 4.2: (A) The result of the experiments corresponding to the optimized head
finder. The upper part shows evaluation in Bikel’s parser, while the bottom with Stan-
ford parser.(B) First column shows the F1 when all worst performing rules, reported
in Table 4.1 (A), are put together. Second and third columns show average F1 for the
always right-most, and always left most head finders.

significance values were measured using Bikel’s Randomized Parsing Evaluation
Comparator script. The table shows that the performance in the Stanford parser
using our optimized head finder set of rules is below the baseline, however, this de-
crease in performance is not statistically significant. The best set of head rules was
obtained by combining all rules that our optimization method produced. Table 4.3
shows the results of the random head rule generation. The Table contains one row
per each rule that was permuted. We consider 17 different rules, for each, we build
7∗17 new random rules. Each row shows the maximal, the minimal and the average
F1 measure we obtained.

The first column of Table 4.2 (B) shows the results for the head finder that is
built by using the 17 rules with the worst performance in experiments in Table 4.3.
The second and the third columns show the results for the head finder algorithms
that choose always the leftmost and always the rightmost respectively.

Table 4.3 shows results for the non-deterministic and deterministic head find-
ers. The set of rules are obtained by changing rules for the 17 tags considered in
our work. We run 7 tests for deterministic and 7 tests for non-deterministic head
finders. In both cases, we calculate the average, the maximum and the minimum,
obtained for the measure F1. The results show that the non-deterministic head finder

82

4.8 Discussion and Conclusions

Rand. No Det. Random Det
Parser avg. max. min. avg. max. min.
Bikel 86,976 87,166 86,754 86,001 87,974 83,857

Stanford 84,810 84,997 84,691 84,805 85,625 84,360

Table 4.3: Experiments result of random choice of rules, for each experiment we show
the impact in the F1 measure for the average, maximal and minimal.

is more stable because the variation between the minimum and the maximum results
is lower. A priori, this is a surprising result, because the dependency trees used to
induce the grammar during the training phase have percolated inconsistent heads.
We think that the non-deterministic head finders are more stable because, in aver-
age, they make more “correct” choices. In contrast, if deterministic head finders
contain an erroneous rule, all the resulting dependency trees are wrong. This fact
is also supported by the results reported in Table 4.2 (B). It shows that using the
head finder built out of the worst performing rules is the one with the worst perfor-
mance in both parsers. The performance drops nearly 6% and 1.9% for Bikel and
Stanford respectively. The right-most head finder decline is the next considering the
performance downfall.

4.8 Discussion and Conclusions

Algorithms for automatically choosing heads are very important both for NLP, and
for linguistic theory. In our approach, we try to find the “optimal” way of choosing
heads for syntactic parsers. To do so, we vary the head rules that are used by the
head finders algorithms when transforming constituent trees into dependency ones.

The evaluation of the assignments of heads in each constituent is not easy, es-
pecially because there is not an agreement in what a “gold standard” (SZ09) should
be. For example, to evaluate a dependency annotated version of the PTB, we first
transform it from its original constituent form using classical Magerman-Collins
rules. In contrast, the Tiger corpus can be compared directly since it is already
annotated with dependencies. Moreover, the criteria for the dependency annota-
tion also varies in the two methods mentioned (SZ09). Instead of these types of
evaluation, we choose to evaluate the head assignment indirectly, by evaluating the
labeled precision and labeled recall reached by the parser when our optimized rules
are used. This criteria of evaluation is taken, because making an evaluation using
the rules we are trying to optimize would have no sense.

83

4. LOOKING FOR THE BEST LANGUAGE FOR DEPENDENCY
STRUCTURE

It is important to mention that in (Bik04c) the author does not perform a com-
plete analysis on how each head rule affects the parsing performance, although he
studies how the choice of heads affects the Collins model. Moreover, he bases his
studies on just one parser. In our work, we decide to make a more in depth anal-
ysis on how the heads selection helps the syntactic parsing performance: on the
one hand, we try to find which is the maximal performance reached by the parser
changing the heads rules. On the other hand, we aim to quantify how the choice of
heads affects the parsing performance, not only for Collins’ but also for Stanford
parser.

We find some new rules which hardly improve parsers performance. Just like
the previously mentioned researchers, we find that variations in head finding algo-
rithms do not have a decisive impact on the performance of syntactic parsers. The
variations have less impact than expected, to the extent that, as long as it preserves
constituency, an aleatory translation of the phrase structure trees into dependency
ones can be used without damaging considerably the parsing performance. We also
make a complete analysis on how each head rule defined for each grammatical cat-
egory affects the parsing performance. We find that the choice of heads in a verb
phrase, even without looking further at NN tags, have the more relevant impact.

The sensibility to the change of head rules among the diferent parsers studied is
somewhat different. The main finding is that Collins’ parser is much more sensitive
to the change of rules. For example, the variance between the worst and best per-
formance is about 6.5%, while in Stanford parser, the variance is only around 2%.
We think this difference lies in that Collins’ model is fully lexicalized which makes
it much more sensitive to the changes of the heads, due to data sparseness.

Finally, removing head finding altogether produces about a 12% decrease in
performance, considerably higher than the 1.9% and 6% decreases in performance
produced by the worst possible head finders. Therefore, as in (Bik04c) we reach
at similar conclusions, that is, head finders are crucial for the performance of de-
pendency parsers but their variations are not. We think that the use of dependency
structure is crucial in syntactic parsing because it encodes contextual information,
which standard PCFGs do not have. In addition, another reason to take into account
is that as the measures are calculated over constituent trees and many dependency
trees may have the same corresponding constituent one, different ways of choosing
heads may produce the same results.

84

Chapter 5

Optimizing Automata for
Unsupervised Dependency Parsing

Unsupervised parsing induction has attracted a significant amount of attention over
the last few years. However, current systems exhibit a degree of complexity that
can shy away newcomers to the field. In this Chapter we present a new unsupevised
parser which is fully fleshed and easily reproducible. We experiment in eight lan-
guages that inform intuitions in training-size dependent parameterization. All the
results included in this Chapter where published in (DIL11, DILL10).

5.1 Introduction

Over the last years, unsupervised dependency parsing has acquired increasing rel-
evance (KM04, SE05, CGS08, CS09, HJM09, SAJ10a, GGG+10). Unsupervised
methods, in contrast with supervised and semi-supervised methods, do not require
training from hand-annotated corpora which is usually expensive. Therefore, un-
supervised parsing might be a solution for languages and domains with minimal
resources.

Currently dependency parsers exhibit a degree of complexity that can shy away
newcomers to the field. We challenge such complexity and present a straightforward
weak-EM based system. We achieve results close to state-of-the-art ones, while
making it simple to experiment with sub-components (see below).

In unsupervised dependency parsing the goal is to produce dependency relations
such as those shown in Figure 5.1, where each arc is a relation between a head and
its argument. Since the task is unsupervised, correct dependency structures are

85

5. OPTIMIZING AUTOMATA FOR UNSUPERVISED DEPENDENCY
PARSING

0:Researchers 1:can 2:apply 3:for 4:permission 5:to 6:use 7:the 8:probes 9:for 10:brain 11:studies 12: .

NN MD VB IN NN TO VB DT NN IN NN NN ROOT

Figure 5.1: Tree extracted from the PTB, file wsj 0297.mrg and transformed to a
dependency tree.

not available and our input consists only of sequences of parts of speech (POS)
tags. Our dependency relations are modeled with Probabilistic Bilexical Grammars
(PBGs) (Eis96) for which we have implemented a novel learning algorithm. Our
algorithm is a weak version of the EM-algorithm (DLR77). As shown in (Pre01) an
EM algorithm for inducing grammars can be described as an iteration between an E-
step and an M-step. During the E-step a new treebank is computed, while during M-
step a grammar together with its probabilities is read out from the treebank. Usual
implementations of the EM do not actually compute the treebank but they compute
the new grammar using inside-outside probabilities from the previous step.

We take a different approach. We present an algorithm based on 4 different mod-
ules that mainly computes an approximation of the treebank. These 4 components
are: a supervised PBGS INDUCTOR (simulating the M-step), a k-BEST PBG PARSER,
plus a TREEBANK REPLICATOR (together simulating the E-step), and an initial TREE-
BANK GENERATOR (in charge of building the initial seed). The resulting weak-EM
algorithm is well defined for different PBG learning algorithms and for different
initial treebanks. Consequently, the componets PBGS INDUCTOR and TREEBANK

GENERATOR can be instantiated differently at almost no effort.
Thanks to the versatility offered by our schema, we are able to test three different

ways to generate initial treebanks, and two different schemas for learning automata.
Most of the recent work in this area, e.g., (HJM09, CS09, SAJ10a), has focused
on variants of the Dependency Model with Valence (DMV) (Kle05). DMV was the
first unsupervised dependency grammar induction algorithm to achieve accuracy
above a right-branching baseline. With all its strengths, DMV is still limited in the
type of dependencies it can model. The DMV model can be seen as a sort of PBG
with the particularity that all of its automata have similar structures and that they
only differ in the probabilities of their arcs. In contrast with our model, DMV and
others in the literature are still in need of a well understood learning mechanism.

86

5.2 Learning Architecture

treebank

generator
PBGs

inductor

k-best

PBG

parser

treebank

replicator

sentences

grammar

k-best treestreebank

Figure 5.2: The general weak-EM algorithm.

By using a generalization of EM we can tap into a large body of learning expertise.
Our results show a very good performance in 5 languages. Particularly, for En-

glish these are very close to the state-of-the-art performance for sentences with a
restricted length of up to 10 POS. For languages with enough available training ma-
terial (German, Portuguese and Danish), we have state-of-the-art results or close to
them such as for Swedish. For the rest of languages, our performance is consider-
ably higher than the standard DMV performance.

This Chapter is organized as follows: Sections 5.2 and 5.3 present our frame-
work and the algorithms for learning automata. Section 5.4 shows experimental
results, Section 5.5 discuses related work, 5.6 describes some research lines which
may improve our parser. Finally, Section 5.7 discusses and concludes the Chapter.

5.2 Learning Architecture

The learning algorithm (Figure 5.2) consists of 4 modules: the TREEBANK GENER-
ATOR, the PBGS INDUCTOR, a k-BEST PBG PARSER, and a TREEBANK REPLICATOR.
The learning algorithm starts by creating a treebank over a given set of sentences.
The resulting treebank is used by the PBGS INDUCTOR module to induce a PBG.
Once a grammar has been induced, it is used by the k-BEST PBG PARSER to parse all
original sentences. The k-BEST PBG PARSER returns the k-best trees for each sen-
tence with their corresponding probabilities. All these trees are used by the TREE-

87

5. OPTIMIZING AUTOMATA FOR UNSUPERVISED DEPENDENCY
PARSING

BANK GENERATOR to create a new treebank that reflects the probabilities of all trees.
Once the new treebank has been created, the algorithm cycles between the PBGS

INDUCTOR, k-BEST PBG PARSER and TREEBANK REPLICATOR until the likelihood of
the k-best trees hopefully converges. We will now describe each component.

PBGS INDUCTOR. This module is one of the key components of our algorithm. Its
task is to find a probabilistic bilexical grammar from a collection of dependency
trees. We use the same ideas explained in Section 3.3.1 to induce a PBG B =

(W, {rw}w∈W , {lw}w∈W ,), but we try with different mechanism to learn automata.
In Section 5.3, we describe some algorithms capable of induce the automata lw and
rw.

k-BEST PBG PARSER. Since PBGs are a particular case of probabilistic context
free grammars, our parser for PBG is based on an implementation of a k-best CYK
parser for Chomsky Normal Form PCFGs. The k-BEST PBG PARSER returns the
k-best trees together with their probabilities.

TREEBANK REPLICATOR. Intuitively, this module uses the k-best trees for creating
a new treebank that resembles the known probabilities of individual trees. Although
we know the probabilities of the sentences, we need to replicate them because it al-
lows us to use any automata inductor, for example MDI, which accepts only a set of
sentences as a training material. Since the grammar inductor only takes a treebank
as input, it is not aware of their probabilities. The TREEBANK REPLICATOR module
replicates the k-best trees in such a way that the probability mass associated to each
tree is proportional to the probability assigned by the parser. The TREEBANK REPLI-
CATOR produces a new treebank that contains as many trees for each sentence as
are required to reproduce the sentence probability. In order to mark the boundaries
of the number of possible replicas, we introduce a constant M that states the max-
imum number of trees a sentence will have in the resulting treebank. Suppose that
C = {c1 . . . cN} of N sentences are the input senteces. Suppose also that tj1 . . . tjk
are the k trees returned by the parser for the sentence cj and let pj

1 . . . pj
k be their

probabilities. tji is replicated Rj
i times, where:

Rj
i = round

(
M ∗ pj

i∑k
l=1 pj

l

)
Finally, the size of the resulting treebank is

∑N
j=1

∑k
i=1 Rj

i . Note that, under this
definition, if the probability of a tree is too small, it will not be a part of the new

88

5.2 Learning Architecture

1start 2

end

wi, 1
wi+1,pi+1

#, 12

. . . wN ,pN

Figure 5.3: Typical meta-tree building automaton.

treebank at all. For computational reasons both k and M cannot be too large. In all
our experiments, k and M are both set to 100.

TREEBANK GENERATOR. The aim of the TREEBANK GENERATOR is to build the first
treebank that is given to the grammar inductor. This module uses meta-trees. A
meta-tree of size n is a tree with a particular fixed structure of arcs, similar to a
dependency tree, but with n variable nodes, where any sentence of length n can
be fitted. These meta-trees have the particularity that their leaves are all different
and that they are grouped by sentence length. Given an initial sentence of length
n, a small treebank for this sentence is built via a two step procedure. First, all
meta-trees whose yield has length n are selected and, second, all terminal symbols
in the meta-trees are replaced by those in the sentence. The TREEBANK GENERATOR

produces a new treebank by joining individual treebanks for all sentences. As a
consequence, the resulting treebank contains the same trees for all sentences with
the same length independently of the sentence words.

To generate the meta-trees that correspond to all n-long sentences, a special
sentence w0, . . . , wn, with all wi different symbols, is processed by the parser and
the tree replicator modules. The sentence is parsed with an ad-hoc PBG that we
built specifically for each possible length. The ad-hoc PBG is defined by describing
the automata for each word in the sentence. If wi is the i-th terminal, then its right
automaton is like the one shown in Figure 5.3. That is, the automaton has three
states, one is final and absorbing, one is initial and has only one outgoing transition
that is labeled with label wi and probability 1. The third state is in between the two
previous ones. It is connected to the final state by means of an arc labeled with
probability 0.5 and label #. Moreover, it has n − i loops with labels wi+1 . . . wn

89

5. OPTIMIZING AUTOMATA FOR UNSUPERVISED DEPENDENCY
PARSING

and probabilities pj defined as:

pj =

1
ds

ij

2 ∗
∑n−1

d=1
1
ds

,

where dij is the distance between wi and wj , and the exponent s is a parameter in our
model that modifies the mass of probability that are assigned to long dependencies.
The three initializations, namely init-1, init-2 and init-3, we report in Section 5.4 are
obtained by setting s to 1, 2 and 3 respectively. All pi are such that their sum is not
equal to 1, and in order to correctly define a probabilistic automaton, a fourth non-
final and absorbing state is required to normalize the probability. The probability
of going to this state is 1 − (0.5 + 0.5 ∗

∑m
l=i+1 pl). This state is not shown in the

picture. Intuitively, the probability of having many dependents and of having long
distance dependents diminishes with an exponential factor s. The bigger the s the
less likely are these two situations. The 2 ∗ m automata, 2 per terminal symbol in
the sentence, plus one automaton for the root symbol, are used to define a PBG G.
Following the general schema, G is used to produce the k-best parsers of sentence
w0, . . . , wm. These k trees are fed into the TREEBANK GENERATOR, and it produces
the treebank of meta-trees.

5.3 Automata Learning Algorithms

We use two different algorithms for learning probabilistic automata. First, we pro-
pose the Minimum Discrimination Information (MDI) algorithm (TDdlH00), which
infers automata in a fully unsupervised fashion. It takes a bag of strings and returns
a probabilistic deterministic automaton. Briefly, the MDI algorithm produces an
automaton by first building a prefix tree that accepts only the training material.
Moreover, the prefix tree contains one path for each string and it contains as many
final states as there are different strings. All arcs in the prefix tree are marked with
the number of times each arc is traversed while mapping strings into paths. These
numbers are then transformed into probabilities which results in a probabilistic au-
tomaton that recognize exactly the training material. The algorithm proceeds to
look for pairs of states that can be merged into one single state. Two states can
be merged if the probability distribution defined by the automata that results from
the merge is not too far away1 from the distribution defined by the prefix tree. The

1The difference between the two probability distributions is computed by means of the Kullback-
Leibler divergence(KL51).

90

5.3 Automata Learning Algorithms

algorithm proceeds greedily until no further merges can be done. MDI has only
one parameter, α, that can be used to control the maximal allowed distance between
two distributions before a merge is performed. α is a real number between 0 and 1;
when it is equal to 0, no merges are allowed while when equal to 1 all merges are
allowed. The MDI algorithm receives a bag of strings together with a value for the
parameter α, and it outputs a probabilistic automaton.

Second, we contribute an ad hoc algorithm that only learns the transitions prob-
abilities of a given automaton backbone structure. A backbone structure is a de-
terministic finite automaton without probabilities. It receives a bag of strings and
a automaton backbone structure and returns the automaton backbone structure plus
their probabilities. The backbones we use are general enough to warranty that they
accept all strings in the training material. In contrast, our second algorithm is not
fully unsupervised because it receives, along with a bag of strings, the backbone of
the automaton it should produce. The backbone consists of the states and the arcs
of the automaton, but it is missing the transition probabilities. It is the task of our
Given Structure (GS) algorithm to find them. As we see in Section 5.5, DMV and
EVG define a particular skeleton to their automata and as is the GS, the skeleton is
information that is given to the algorithm as prior knowledge. In this sense, MDI
is fairer learner than GS given that is works with less information. In our exper-
iments we show that even with less information, MDI works better than GS. We
currently experiment with different skeletons, but all of them have similar structure:
They have a unique absorbing final state, and N intermediate states S1 . . . SN . The
skeleton has one arc between states Si and Si+1 for each possible label, and one
arc between states Si and the final state, labeled with the end of production symbol
#. The GS algorithm uses the training material to estimate all arcs probabilities.
Since the skeleton is both deterministic and expressive enough, there is a path in the
automaton for each sequence in the training material. The GS algorithm maps each
sentence to a path in the automaton, it records the number of times each arc has
been used, and, finally, it transforms those counters into probabilities. GS-N refers
to the GS algorithm when it uses a backbone with N states as describe above.

For example, with N = 3, and the following training material:

{NN #,NN VB #,NN NN #,NN VB NN #}

Figure 5.4 (a) shows the skeleton with the corresponding weights (zero weights
arcs have been removed), and Figure 5.4 (b) shows the same automata with weights
transformed into probabilities.

We use these skeletons because they are the easiest structure that can be manu-

91

5. OPTIMIZING AUTOMATA FOR UNSUPERVISED DEPENDENCY
PARSING

1start 2 3

end

NN, 4

#,1

VB,2

NN,1
NN,1

#,3

(a)

1start 2 3

end

NN, 1

#,0.25

VB,0.50

NN,0.25
NN,0.25

#,0.75

(b)

Figure 5.4: An example of a GS-3 automaton. (a) The skeleton displaying the number
of times each arc has been used. Arcs with zero weight are not shown. (b) The result
of transforming weights into probabilities.

ally described without making strong assumptions about the underlying language.
We experiment with two different skeletons both having 3 and 4 states respectively.
The skeleton with 3 states pays special attention to the first dependent while the
one with 4 to the first two dependents. Moreover, GS-3 automata generate depen-
dents independently of their siblings. GS-4 automata can recall if a dependent is
the first one or not. In general the GS-i can recall if there has been less that i − 1

dependents. Our GS algorithm is also a generalization over n-grams which can be
seen as instances of GS-n where the skeleton has a particular shape. Moreover,
Section 5.5 shows that they can be seen as instances of a version of GS that allows
non-deterministic backbones.

5.4 Experimental Results

Our model was tested on sentences with a restricted length up to 10 POS. Due to
computational costs, the current version of our parser cannot deal with long sen-
tences. However, we have some experiments which use sentences with up to 20
POS with promising results.

We report results for English, German, Swedish, Turkish, Bulgarian, Spanish,
Portuguese and Danish. We tested 3 different initializations in the TREEBANK GEN-
ERATOR module, and two different algorithms for learning automata in the PBGS

INDUCTOR module. This showcases the flexibility of our framework . All of our
experiments used syntactic categories —POS tags— instead of words. The English
model was induced using sentences in the Penn treebank (PTB) (MS93) with at
most ten words (usually called WSJ10 (Kle05, HJM09, SE05)). Sections 2 to 21,
that is, 6,007 sentences in total, were used for training. Testing was done using

92

5.4 Experimental Results

the 398 sentences of Section 23. Table 5.1 compares our English results with oth-
ers in the literature. We report percentage of good attachment both directed and
undirected. From the table, it can be seen that our results are comparable with the
state-of-the-art ones, even for lexicalized instances. Our best result is what we call
MDI-0: MDI with α = 0 using init-2.

Our best performing models are those that can model the language of dependents
as finite languages. Moreover, an inspection on the resulting automata shows that
all models tend to create very short sequence of dependents, mostly of length up to
one. To better understand our results, it is important to think our learning algorithm
as a two-step process. First, the parser and the replicator define the training material
that is going to be given to the automata learning algorithms. In a second phase, all
the automata are learned. It is interesting to note that both the MDI and the GS-n
algorithms generalize less over the training material as their respective parameters
α and n go to zero and ∞, respectively. The MDI algorithm ends up building a
tree like automata that recall all and only those strings in the training material. The
probability assigned to each string is proportional to the number of times it occurs
in the training material. In contrast, a GS-n automaton recalls the number of times
each tag occurs as the i-th dependent. In this sense, MDI-0 generalizes less than
any GS-n. In both cases, the resulting automaton accepts only finite languages.

From the experiments, it is clear that GS-4 improves over GS-3, and both EVG
and DMV. It is surprising that our models obtain good results without resorting to
smoothing which is usually applied in other models. As the experiments show, good
results are obtained with initializations that penalize long distance dependencies and
a high number of dependents. In other words, the models that work better are those
that use initialization where words have fewer dependents and where dependents
are close to their heads. If we compare the automata that results at the end of our
algorithm, when init-2 and init-3 is used, the most noticeable feature is that, even
for GS-3 and GS-4, the probabilities associated to cycling arcs are zero or very close
to zero. When init-1 is used, cycles occur in the final automata of GS-3 but only a
few in GS-4. Note that MDI-0 is stable across different initializations. If we look at
the resulting automata, they all accept finite languages and moreover, all elements
in the languages contain only a few symbols per string.

Since there are many parameters in our setup, it might be the case that our mod-
els are optimized for English. To validate our model, and unsupervised models
in general, it is important to test their performance also in languages other than
English. Table 5.3 compares our results for other languages. We compare them
against standard baselines like right and left attachment, DMV, and the best results

93

5. OPTIMIZING AUTOMATA FOR UNSUPERVISED DEPENDENCY
PARSING

model accuracy

Attach-Right (KM04) 33.4
DMV-standard (KM04) 45.8

DMV-babysteps (@15) (SAJ10a) 55.5
DMV-babysteps (@45) (SAJ10a) 55.1

DMV-diriclet (CGS08) 45.9
Log-Normal Families (CGS08) 59.4

Shared Log-Normals (tie-verb-noun) (CS09) 61.3
Bilingual Log-Normals (tie-verb-noun) (CS09) 62.0

EVG-Smoothed (skip-head) (HJM09) 65.0
EVG-Smoothed (skip-val) (HJM09) 62.1

Viterbi EM (SAJM10) 65.3
EVG-Smoothed (skip-head), Lexicalized (HJM09) 68.8

Hypertext Markup (SAJ10b) 69.3
LexTSG-DMV (Plcfg, Pcfg, Psh) (BC10) 67.7

our model (parameters) accuracy
MDI, α = 0, init-1 67.4
MDI, α = 0, init-2 69.0
MDI, α = 0, init-3 67.1

GS-3, init-1 50.7
GS-3, init-2 66.5
GS-3, init-3 67.0
GS-4, init-1 55.5
GS-4, init-2 66.7
GS-4, init-3 67.6

Table 5.1: Directed accuracies on Section 23 of WSJ10 for several baselines and recent
systems.

94

5.4 Experimental Results

Lang. #sen. #POS Lang. #sen. #POS

English 6007 36 German 12089 51
Turkish 3203 28 Swedish 3255 40
Bulgarian 5713 40 Portuguese 2406 19
Danish 1757 24 Spanish 595 23

Table 5.2: size of the training corpus for each language and the number of differents
POS tags.

reported in results reported in (GGG+10). According to (GGG+10), German and
Turkish best results are obtained by one model while the score for English and
Swedish by two other different models. The fourth row display the highest score
independently of the model used to obtain it. All corpora were part of the ConNLL-
X special task on parsing (BM06). We show results using treebanks for Swedish
(NHN05), German (BDH+02), Turkish (OSHTT03, AOS03), Bulgarian (SOS+02),
Spanish (CM04), Portuguese (ABHS01) and Danish (KML03). Trees that were
non-projective or that had more that one root were discarded as well as all trees
whose sentences were longer that 10 words. Except Turkish, where the best per-
forming model is the right attach baseline, all instances of our algorithm improve
over DMV and the baselines.

Figure 5.6 and Figure 5.7 show the evolution of the directed accuracy and log-
arithmic likelihood respectively. Figure 5.6 shows, for each language, the directed
accuracy in the 30 first iterations measured against the gold trees from the train-
ing material. More specifically, while the X axe vary in the number of iteration,
the Y axe plots, the directed accuracy of the trees that consists only of the most
probably trees returned by the k-BEST PBG PARSER for each sentence in the train-
ing material1. For iteration number 0 we use the treebank returned by TREEBANK

GENERATOR instead of k-BEST PBG PARSER.
Similarly, in Figure 5.7 we plot the logarithmic likelihood for each treebank in

the first 30 iterations. It is important to remark that the gold trees are used only for
analysis purposes, and they are not used inside the algorithm.

Two variables must be taken into account to decide which parameterization of
our system should be used for a given language: the number of sentences available
for training and the number of POS tags.2 Table 5.2 shows the variables for the

1This treebank is the same that produces as a result the 1-BEST PBG PARSER.
2More tags means a larger number of automata to be induced and thus less training material for

each automaton.

95

5. OPTIMIZING AUTOMATA FOR UNSUPERVISED DEPENDENCY
PARSING

1start 2 2′ 3

end

H, 1 ε,P (!st|H, 0)

#,P (st|H, 1)

Tn, P (!st, Tn|H)

T1, P (!st, T1|H)

#,P (st|H, 0)

.

..

ε, P (!st|H, 0)

(a)

1start 2 3

end

H, 1

#,P (st|H, 1)

T1n, P (!st, T1n|H, 1)

T2n,P (!st, T2n|H, 0)

#,P (st|H, 0)

...

ε, P (!st|H, 0)

T11, P (!st, T11|H, 1)

...

T21,P (!st, T21|H, 0)

(b)

Figure 5.5: DMV (a) and EVG (b) automata.

96

5.4 Experimental Results

model English German Turkish Swedish Bulgarian Spanish Portuguese Danish
(GGG+10)

45.8/- 35.7 / - 46.8/- 39.4 / - 37.8 / - 40.3/- 35.7/- 47.2/-
DMV results

left attach 24.1/54.6 25.9 / 53.2 5.1 / 54.8 28.5 / 56.3 40.5 / 59.9 29.0 / 55.2 34.1 / 61.7 43.7 / 60.1

right attach 33.4 / 56.3 29.0 / 52.1 63.8 / 68.5 28.5 / 55.5 20.2 / 56.3 29.4 / 55.2 27.9 / 55.5 17.2 / 57.5

(GGG+10)
64.4 / - 47.4 / - 56.9 / - 48.6 / - 59.8 / - 62.4 / - 54.3 / - 46.6 / -

best result

GS-3 Init-1 50.7 / 64.9 48.4 / 60.3 52.6 / 65.1 45.8 / 59.8 48.6 / 63.9 57.1 / 68.2 55.4 / 66.2 36.6 / 59.4

GS-3 Init-2 66.5 / 72.1 49 / 60.4 20.3 / 53.8 47.4 / 61.1 48.3 / 63.6 45.4 / 63.3 39.3 / 62.9 47.8 / 66.2

GS-3 Init-3 67.0 / 71.5 46.5 / 59.3 20.2 / 53.4 41.5 / 58.3 33.8 / 54.9 38.2 / 58.9 37.9 / 61.7 44.2 / 62.8

GS-4 Init-1 55.5 / 66.6 48.4 / 60.8 53.0 / 65.3 46.2 / 60.2 34.4 / 55.3 55.2 / 66.8 55.6 / 66.6 38.9 / 59.6

GS-4 Init-2 66.7 / 72.2 48.5 / 60.4 43.2 / 60.2 47.5 / 61.1 47.5 / 63.0 44.9 / 63.3 39.3 / 62.9 41.5 / 60.5

GS-4 Init-3 67.6 / 71.8 47.8 / 60 25.4 / 53.5 42.5 / 59.2 48.6 / 63.9 38.2 / 58.9 37.9 / 61.7 43.0 / 63.5

MDI-0 Init-1 67.4 / 72.4 47.7 / 59.9 52.4 / 64.8 45.4 / 59.3 35.8 / 55.5 51.0 / 62.4 49.4 / 63.5 35.3 / 57.7

MDI-0 Init-2 69.0 / 73.3 54.1 / 63.3 38.4 / 58.2 48.1 / 61.3 55.0 / 68.6 48.7 / 64.6 30.6 / 55.5 44.1 / 64.2

MDI-0 Init-3 67.2 / 72.4 53.8 / 63.3 24.5 / 53.0 46.2 / 60.7 38.1 / 56.5 46.0 / 64.0 30.8 / 55.8 44.7 / 65.0

Table 5.3: Our results expressed in (directed/undirected) accuracy for a variety of lan-
guages compared with the baselines: right attach, left attach and standard DMV results.
We also report the state-of-the-art results for these languages.

languages used in this work. Table 5.3 shows that MDI-0 is very robust for those
languages that have available a corpus with a significant number of sentences. This
is the case of languages such as English, German and Bulgarian. For languages with
a reduced number of sentences or a big number of POS, we should use GS-3 or GS-
4. Intuitively, if we have less training material, models like GS-3 or GS-4 perform
better because they generalize over the training material better than MDI-0.

where dij is the distance between wi and wj , and the exponent s is a parameter in our
model that modifies the mass of probability that are assigned to long dependencies.
The three initializations, namely init-1, init-2 and init-3, we report in Section 5.4 are
obtained by setting s to 1, 2 and 3 respectively. All pi are such that their sum is not
equal to 1, and in order to correctly define a probabilistic automaton, a fourth non-
final and absorbing state is required to normalize the probability. The probability
of going to this state is 1 − (0.5 + 0.5 ∗

∑m
l=i+1 pl). This state is not shown in the

97

5. OPTIMIZING AUTOMATA FOR UNSUPERVISED DEPENDENCY
PARSING

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

english turkish swedish german spanish bulgarian portuguesse danish

z

Figure 5.6: Directed Accuracy evaluated for each language over the first 30 iterations
of our parser. The (Y) axe plots the directed accuracy calculated over the treebank
obtained in the (X) axe iteration against the gold trees of the training material.

picture. Intuitively, the probability of having many dependents and of having long
distance dependents diminishes with an exponential factor s. The bigger the s the
less likely are these two situations. The 2 ∗ m automata, 2 per terminal symbol in
the sentence, pl

5.5 Our Model in Perspective

Most unsupervised approaches to unsupervised parsing are based on Dependency
Model with Valence (DMV). DMV implements an EM algorithm that maximizes
the likelihood of a particular grammar. This grammar can be seen as PBG where
all its automata are like the one in Figure 5.5 (a). The probability between states 1

and 2 is the probability of generating a particular head. The one between states 2

and 2′ is the probability of generating any dependent using a ε movement; the one
between states 2 and end is the probability of not generating any dependent; the
one between 2′ and 3 is the probability to generate a particular dependent with its
corresponding probability, the one between 3 and 2′ is the probability of generat-
ing a new dependent, modeled again with an ε move, and finally, the probability
between 3 and end is the probability of stop generating. In general, is not possible
to transform a non-deterministic automaton to a deterministic one (DDE05). But
for this particular case, the automata can be transformed to one without ε moves,
but having in mind that some of the its arc probabilities are correlated and conse-

98

5.5 Our Model in Perspective

-23.500

-21.500

-19.500

-17.500

-15.500

-13.500

-11.500

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

turkish english spanish swedish german bulgarian portuguesse danish

Figure 5.7: Evolution of logarithmic likelihood for each language. We evaluated over
the treebanks induced in the first 30 iterations of our parser.

quently can not be learned independently. Smith and Eisner Cohen et al. (CGS08)
derive a Variational Bayes EM for the DMV model. They investigate two priors for
the variational Bayes (VB) algorithm, the Dirichlet and the Logistic Normal prior.
They also initialize this variant of EM with the Klein and Manning initialization.
Their best results were obtained with the Logistic Normal distribution, it was 59.3

of directed accuracy.

Spitkovsky et al. (SAJ10a) use the DMV model, but they introduce two interest-
ing techniques. First, they use an incremental initialization that starts with sentences
of length 1, and only later uses longer sentences. Second, they analyze the trade-
off between complexity and quality in the training phase. They found that training
with sentences up to length 15 performs better than training with longer sentences
when testing in section 23 of WSJ10, WSJ20, WSJ30, WSJ100 and WSJ∞, among
others.

Headden et al. (HJM09) extend DMV by adding a parameter that distinguishes
the probabilities of the first dependent from the probabilities of the subsequent ones.
As in the DMV, even with the automata not being explicitly defined, they can be re-
built from the definition of the model. Figure 5.5 (b) shows such an automaton.
The probability between states 1 and 2 is the probability of generating a particular
head, between 2 and 3, are the probabilities of generating a particular dependent as
the first one, between 3 and 3 are the probabilities of generating a dependent that

99

5. OPTIMIZING AUTOMATA FOR UNSUPERVISED DEPENDENCY
PARSING

is not the first one anymore, the probability between 2 and end is the probability
of not having any dependents, and finally the probability between 3 and end is the
probability of stopping generating dependents. To maximize the likelihood of their
model they use a Variational Bayes EM algorithm with a Dirichlet prior (similar to
(CGS08)) and they used a linearly smoothed model to deal with the data sparseness.
As their initialization, they randomly sample some sets of trees and choose the best
ones using some iterations of a Variational Bayes EM algorithm. They show that,
by including smoothing, they improve over DMV obtaining the best result that is
known for unsupervised parsing. The unsmoothed version of the EVG model cor-
responds exactly to our GS-3 model. The DMV model without the one-side-first
parameter, is in between GS-2 and GS-3. It does not distinguish the probabilities
for the dependent generation, as in GS-2, but the probability of stopping is distin-
guished like in GS-3. Gillenwater et al. (GGG+10) used a posterior regularization
(PR) framework (GT07) instead of the traditional EM algorithm. They model their
dependencies as in DMV, and as variants of the EVG model. They argue that the
main problem with unsupervised parsing is data sparseness and their model deals
with such problem adding constraint that control for long dependencies. They re-
port substantial gains over the standard EM algorithm, but they are not stable across
languages. Finally, our weak-EM corresponds to a full EM algorithm (Pre01) when
a k-BEST PBG PARSER with k = ∞ is used. Full EM is not feasible in our setup
because a ∞-best parsing requires an exponential amount of space and time.

Spitkovsky et. al. (SAJM10) is in one sense, the work most similar to ours,
as we are also estimating the probabilities of a model given the previous model,
albeit using k-best parse trees. They obtain good scores 44.8% for English, in long
sentences (all sentences in section 23 of PTB).

Blunsom and Cohn (BC10) replace the simple underlying grammar commonly
used by a probabilistic tree substitution grammar. This formalism is capable of
better representing complex linguistic structures because they can learn long de-
pendencies. To limit the model’s complexity they used a Bayesian non-parametric
prior. They obtained state-of-the-art results for English in long sentences 55.7%.

Using standard DMV, Spitkovsky et al. (SAJ10b) use Web mark-up for improv-
ing parsing up to 50.4% of directed accuracy.

5.6 Future Work

One of the most important aspects to continue our work is to extend our experiments
to longer sentences. To do so, we should optimize our implementation of the parser

100

5.7 Discussion and Conclusions

to make it parallel. We performed some experiments with wsj15 and we obtained
promising results, about 49% of directed accuracy, which is close to the state-of-
the-art ones, about 53%.

Another experiment that we will perform is to use ideas from Chapter 3 in our
dependency parser. Fully lexicalized models may be costly and too sensitive to data
sparseness, nevertheless we think unsupervised parsers can benefit of a more ap-
propiate granularity of POS tag sets. This idea may be implemented by selecting
a POS tag and splitting the words with this POS by using a chosen feature func-
tion. For example, by selecting the POS VB, and splitting it using the distance of
the word to the root node. We think of applying the split of POS tags starting with
the initial tree-bank, which is obtained as in section 5.2. This split should be recal-
culated in each step of our learning architecture, after the new set of dependency
trees is calculated by using the K-best parser. We hope that this idea may help to
obtain more accurate dependency trees, specially with longer sentences because it
could distinguish more complex dependency relationships by using more automata
specialized according to the dependency languages of each POS tag considered.

Finally, our model allows us to choose different kinds of automata structures.
Another interesting idea to improve this parsing model is to benefit from this flexi-
bility of our model. An interesting experiment is to choose the automaton structure
to be associated with a given POS tag according with the size of its training set. As
the results obtained for different languages suggest, the automata structure1 can be
adapted to the size of dependency the tree-bank; our idea is to investigate potential
relationships between the size of the training set associated with each POS tag.

5.7 Discussion and Conclusions

Over the last years NLP research have been focused in unsupervised dependency
parsing, specially after that Klein presented the DMV parser (KM04). Most of the
newest parsers like (CGS08, CS09, HJM09, GGG+10, BC10) are essentially the
DMV model which uses a different bias function in each step of its EM algorithm
definition. This bias function penalizes long dependencies of the utterances. This
penalization is needed, as it is explained in (SAJ09), because DMV reserves too
much probability mass for what might be unlikely productions at the beginning,
and the classic EM is not enough to redistribute such probability mass across the
parse trees.

1Recall that we use the same automata structure for all POS tags.

101

5. OPTIMIZING AUTOMATA FOR UNSUPERVISED DEPENDENCY
PARSING

We chose to take a different approach. Our algorithm implements a weak-EM
algorithm that instead of computing the probability distribution over the whole for-
est of trees, uses a tree-replicator module that builds tree-banks resembling the most
likely area of the probability distribution. The resulting algorithm allows us to test
different ways to model dependents and different ways to compute automata.

Instead of using a penalization in each iteration of the EM algorithm, in our
model we use different biased tree-banks which perform the penalization of long
dependencies. We show experimental results using three different initializations,
two automata learning algorithms and eight different languages.

Our experiments showed that, for a given language, we have to choose a param-
eterization of our system that generalizes across different training sets depending
on the size of training material available for this language. We show training size
influences parameterization in a predictable manner.

102

Chapter 6

Conclusion

In NLP we try to build a language model that is a formal construct that gives account
of the patterns appearing in the utterances of a language. Methods are developed
in order to make explicit the hidden linguistic structure from examples of actual
sentences of a given language.

Among the main formalisms used to describe natural languages structures, Con-
text Free Grammars occupy a prominent place in spite of their limitations. Indeed,
what characterizes Context Free Languages is the independence assumption of con-
stituents with respect to their contexts. Other formalisms were proposed that seek
to enrich CFGs with some annotations which add mild contextual information to
the rules of the grammar. Dependency grammars do not make the notion of rule of
generative grammars explicit, though a kind of Context-Free-like grammar can be
easily obtained from a dependency one. Moreover, these grammars make explicit
the dependency relations between words.

One formalism for dependency grammars is the so called Probabilistic Bilexical
Grammars. This model assumes that the language of dependencies at right and
left of each POS are regular. Given the results obtained in this work, BGs have
proved to be useful and accurate for the study and representation of dependencies
in language. Indeed, we used them as a formalism all across our work and obtained
state-of-the-art results in different parsing models (Sections 3.5.3, 4.7 and 5.4).

Data-driven methods attempt to address the problem of language modeling us-
ing two different approaches: so-called supervised methods incorporate as input the
result of human-intensive work in the form of linguistic analysis and annotations
while unsupervised methods look for the syntactic structures in the bare sentences
in a given language.

Naive models obtained by simply assuming that the phenomena found in a large

103

6. CONCLUSION

enough sample of data are exact representatives of the model of the whole language
don’t generalize too well to unseen data. On the other hand, heuristic methods
based on aprioristic intuition about the structure of the language may lack empirical
evidence when applied to real data. In this work we developed algorithms that
automatically search linguistic patterns.

In Chapter 3, we addressed the issue of granularity of the POS-tag set and de-
scribed a method as well as a measure that can be used to find potential splitting
or merging of POS-tags. The criterions for optimallity of POS-tag sets are strongly
task dependent, but our method can be used to improve parsing as shown in Sec-
tion 3.5.3. The measure we use, and some others we propose are combinations of
statistical data and “intrinsic” properties of the automata. In fact, words are tagged
depending of the expected contexts in which they appear and this tagging creates a
context for accompanying words to be tagged. Appendix A shows different split-
tings of POS-tags, according which information is implicitly encoded in tags. As
this information is obtained from dependencies, we expect higher improvements in
constituent based parsers.

While looking for optimizations of head finder rules, our findings of Section 4.7
confirm those by Bikel (Bik04b) in the sense that their presence is crucial for the
performances of dependency parsers but their variations are not. The reason lies
in that the importance of head finding is the passing of context information, which
is actually what improves the behavior of parsers, rather than rules definitions and
variations. Indeed, head finding algorithms look and search words belonging to
special grammatical classes in order to determine where the head of a constituent
lies. So, the marking of heads amounts to pass information obtained from contexts.
Which information should be considered more or less relevant is to a large extent
task dependent and a universal best method of head finding might make little sense.
We perform analysis of the individual impact of each rule and in Appendix B we
list a number of improvements found by our algorithm to Magerman original rules.
We also found higher variance in Collins’ parser than Stanford parser when head
finding rules are changed. This fact can be attributed to the full lexicalization in
Collins’ parser that makes it more sensitive to variations.

We found that it is possible in to add useful information obtained in our research
works to the existing supervised parsers. The results described in Sections 3.5.3 and
4.7 show that state-of-the-art parsers perform better both when the parser is fed with
our new set of POS, and when the new set of head-rules is used.

Working on unsupervised dependency parsing, we found that state-of-the-art
performances can be achieved using a simple and flexible method. This result is

104

validated across a dozen languages. As shown in Section 5.4. As far as we know,
with the exception of (GGG+10), previous works on unsupervised parsing are based
principally in English or some other single language. Cross language validation
provides further evidence of the robustness of the methods applied. In fact, good
behavior in different languages indicates that this unsupervised method can learn
about regularities of different sorts as opposed to achieve good results in a language
just because the method has an implicit bias for the features of this particular case.

The flexibility of our method can also accomodate to different sizes of train-
ing sets. We have freedom to choose the automata structure which best adapts to
existing data (Section 5.4).

Finally, as some researchers state in their work, we think that while the NLP
supervised methods for parsing are well-studied and well-understood, the unsuper-
vised methods for parsing are only well-studied, and an open area of research. This
fact explains why our results on supervised methods may have less impact; because
their learning architectures are very optimized and tuned with a lot of features in-
cluding contextual dependency information. As a consequence, the information that
we provide to them hardly improves their performance.

In contrast, the results we achieved in unsupervised dependency parsing are
comparable to the state-of-the art ones with a very simple, flexible and easily repro-
ducible architecture.

105

6. CONCLUSION

106

Appendix A

New set of POS Tags Optimized

In this Appendix we include the different POS obtained in our research task on
Chapter 3. Each table describes how the original PTB tag selected is split by our
optimization procedure. Such process starts with an initial split and applies a given
feature from Table 3.2.

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 2 NEWTAG 4 10 NEWTAG 7 6,17,18,20
NEWTAG 2 4 NEWTAG 5 0,16,7 NEWTAG 8 7,11
NEWTAG 3 8 NEWTAG 6 1,13,9,12 NEWTAG 9 3,14,15

Table A.1: New tags related to VB,MD that were calculated with feature Depth.

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 11,7,0,3 NEWTAG 4 19 NEWTAG 7 1,16
NEWTAG 2 9,12 NEWTAG 5 2 NEWTAG 8 17,18,20
NEWTAG 3 10 NEWTAG 6 5,13 NEWTAG 9 6,15
NEWTAG 10 8 NEWTAG 11 4,14

Table A.2: New tags related to VBN,VB,MD that were calculated with feature Depth.

107

A. NEW SET OF POS TAGS OPTIMIZED

new POS Feature Value new POS Feature Value
NEWTAG 1 VBN NEWTAG 4 WRB, DT
NEWTAG 2 PRP NEWTAG 5 PDT,CC,RBR,-LRB-,RB,NNPS,POS,-RRB-,JJS,RBS
NEWTAG 3 IN NEWTAG 6 NNP,VBG
NEWTAG 7 MD,NN NEWTAG 10 NNS
NEWTAG 8 WP$,VBZ NEWTAG 11 VBD
NEWTAG 9 TO NEWTAG 12 VB
NEWTAG 13 JJ NEWTAG 16 WDT
NEWTAG 14 CD,NONE NEWTAG 17 WP,JJR,$,ROOT
NEWTAG 15 VBP

Table A.3: New tags related to VB,MD that were calculated with feature gFather.

new POS Feature Value new POS Feature Value
NEWTAG 1 CD NEWTAG 4 WP$
NEWTAG 2 PDT,CC,RBR,-LRB-,NNPSPOS,-RRB-,JJS,RBS NEWTAG 5 PRP
NEWTAG 3 RP NEWTAG 6 TO
NEWTAG 7 SYM NEWTAG 10 WDT
NEWTAG 8 RB,NNS NEWTAG 11 VBP
NEWTAG 9 VBN NEWTAG 12 MD
NEWTAG 13 NN,NONE NEWTAG 16 JJ
NEWTAG 14 VB NEWTAG 17 VBD
NEWTAG 15 IN NEWTAG 18 WP,$,ROOT
NEWTAG 19 NNP,VBG
NEWTAG 20 WRB,DT
NEWTAG 21 JJR

Table A.4: New tags related to VBN,VB,MD that were calculated with feature
gFather.

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 2 NEWTAG 4 8 NEWTAG 7 6,12
NEWTAG 2 9 NEWTAG 5 1 NEWTAG 8 0,16,3,14
NEWTAG 3 13,4 NEWTAG 6 6,17,18,15,19 NEWTAG 9 11,7
NEWTAG 10 10,5

Table A.5: New tags related to VB,MD that were calculated with feature
NumChanges.

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 20 NEWTAG 4 12 NEWTAG 7 5
NEWTAG 2 3 NEWTAG 5 11,7,16 NEWTAG 8 1
NEWTAG 3 9 NEWTAG 6 2 NEWTAG 9 17,18,19
NEWTAG 10 13,14 NEWTAG 13 8
NEWTAG 11 4 NEWTAG 14 10
NEWTAG 12 0

Table A.6: New tags related to VBN,VB,MD that were calculated with feature
NumChanges.

108

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 8 NEWTAG 4 5 NEWTAG 7 6
NEWTAG 2 3 NEWTAG 5 0 NEWTAG 8 4,10
NEWTAG 3 1 NEWTAG 6 11,7,9,12,2,14,13

Table A.7: New tags related to VBN,VB,MD that were calculated with feature
VerbAllDepth.

new POS Feature Value new POS Feature Value
NEWTAG 1 3 NEWTAG 4 5
NEWTAG 2 7,8,1 NEWTAG 5 9,12,2,10
NEWTAG 3 6,0 NEWTAG 6 4

Table A.8: New tags related to VBN,VB,MD that were calculated with feature
VerbDepth.

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 4 NEWTAG 4 9,8,0,10 NEWTAG 7 3
NEWTAG 2 1 NEWTAG 5 7
NEWTAG 3 5 NEWTAG 6 6,2

Table A.9: New tags related to VBN,VB,MD that were calculated with feature
VerbVBDepth.

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 15 NEWTAG 4 7,5 NEWTAG 7 6,11,9,12,13,10
NEWTAG 2 2 NEWTAG 5 4 NEWTAG 8 8,1
NEWTAG 3 3 NEWTAG 6 0

Table A.10: New tags related to VBN,VB,MD that were calculated with feature
NumSib.

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 VBZ NEWTAG 4 WDT NEWTAG 7 DT
NEWTAG 2 NNPS NEWTAG 5 EX NEWTAG 8 :
NEWTAG 3 VBG NEWTAG 6 WRB NEWTAG 9 RBR
NEWTAG 10 MD NEWTAG 13 VBP NEWTAG 16 JJ,-RRB-
NEWTAG 11 CC,VBN NEWTAG 14 JJR NEWTAG 17 VBD
NEWTAG 12 JJS NEWTAG 15 RP,NONE NEWTAG 18 NN
NEWTAG 19 RB NEWTAG 22 $ NEWTAG 24 IN
NEWTAG 20 VB NEWTAG 23 CD NEWTAG 25 TO
NEWTAG 21 WP NEWTAG 26 NNP
NEWTAG 28 , NEWTAG 27 FW,POS,NNS,RBS,PRP$
NEWTAG 29 -LRB-,PRP

Table A.11: New tags related to VB that were calculated with feature FstRightDep.

109

A. NEW SET OF POS TAGS OPTIMIZED

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 (7,3),(13,7) NEWTAG 4 (20,4) NEWTAG 7 (16,6),(16,5)
NEWTAG 2 (17,5) NEWTAG 5 (11,1) NEWTAG 8 (15,8)
NEWTAG 3 (19,8) NEWTAG 6 (5,2) NEWTAG 9 (5,3)
NEWTAG 10 (11,3) NEWTAG 13 (14,2) NEWTAG 16 (8,4),(7,4)
NEWTAG 11 (8,3) NEWTAG 14 (9,4) NEWTAG 17 (3,2),(0,0)
NEWTAG 12 (14,8) NEWTAG 15 (13,6) NEWTAG 18 (17,4),(5,4)

NEWTAG 19
(14,6),(6,5),(15,4),(15,3),(18,8),(20,10),(15,7),(11,7),(12,7),(10,7),(14,7),(5,0),(17,8),(18,6),
(15,6), (10,2),(16,9),(7,0),(13,3),(14,3),(16,3),(18,5),(16,8),(17,6),(16,4),(20,9),(15,2),(8,0),

(10,1),(8,1),(18,10),(9,1)
NEWTAG 20 (9,3),(6,0),(16,7),(10,3),(4,0),(7,5),(1,0),(13,4) NEWTAG 24 (17,2)
NEWTAG 21 (5,1),(9,2),(10,4),(2,0) NEWTAG 25 (7,1)
NEWTAG 22 (4,1) NEWTAG 23 (7,2),(6,3) NEWTAG 26 (11,4)
NEWTAG 27 (3,0) NEWTAG 30 (8,6),(12,5) NEWTAG 33 (10,6),(3,1)
NEWTAG 28 (11,5),(14,5) NEWTAG 31 (6,2) NEWTAG 34 (18,4)
NEWTAG 29 (10,5),(12,2) NEWTAG 32 (12,6) NEWTAG 35 (6,1),(15,5)
NEWTAG 36 (9,5) NEWTAG 39 (13,1) NEWTAG 42 (13,5)
NEWTAG 37 (13,2) NEWTAG 40 (11,2),(4,2),(9,6) NEWTAG 43 (6,4),(8,2)
NEWTAG 38 (12,3),(12,4) NEWTAG 41 (9,0) NEWTAG 44 (11,6)
NEWTAG 45 (4,3)
NEWTAG 46 (8,5),(2,1),(14,4)

Table A.12: New tags related to VBN,VB,MD -VBN,VB,MD that were calculated
with combined features Depth-VerbVBDepth.

new POS Feature Value new POS Feature Value new POS Feature Value
NEWTAG 1 (12,TO) NEWTAG 4 (5,TO) NEWTAG 7 (10,NN)
NEWTAG 2 (3,VB) NEWTAG 5 (14,IN) NEWTAG 8 (5,WDT)
NEWTAG 3 (15,NN) NEWTAG 6 (10,VBP) NEWTAG 9 (4,JJS)

NEWTAG 10

(8,-LRB-),(9,-LRB-),(5,CD),(2,NNP),(17,NN),(4,CD),(2,VB),(20,JJ),(12,VBD),(3,JJS),
(4,-LRB-),(10,WRB),(6,PDT),(3,JJR),(18,TO),(13,VBG),(5,JJS),(15,VBN),(2,WDT),

(3,CD),(11,RBR),(3,RBR),(13,VBZ),(2,JJ),(7,DT),(15,VB),(12,JJ),(7,$),(13,MD),
(2,WP),(14,JJ),(17,WP),(18,VB),(9,RBR),(13,IN),(13,WP$),(18,WDT),(15,VBZ),
(17,VBN),(6,CC),(15,WDT),(18,NNS),(9,DT),(6,NNP),(13,TO),(4,CC),(5,CC),

(5,NNPS),(10,RB),(2,VBG),(12,VBP),(2,RB),(6,WP$),(16,WDT),(14,TO),(8,DT),
(12,RB),(11,VBD),(14,MD),(10,TO),(13,VBP),(5,RB),(12,MD),(15,IN),(13,VB),
(7,RB),(3,RBS),(6,JJR),(10,JJ),(5,-LRB-),(2,VBN),(11,NNS),(12,NN),(12,DT),

(9,$),(6,RB),(6,-LRB-),(13,JJ),(13,RB),(2,WRB),(6,DT),(6,$),(15,WP),(12,JJR),
(11,VBG),(6,JJS),(7,CD),(12,WRB),(11,WRB),(11,VBP),(14,VBD),(15,VBD),(17,VB),

(16,NN),(14,WDT),(12,VBZ),(16,VBN),(11,WP),(8,NNP),(12,RBR),(9,RB),(3,NNPS),(15,TO),
(5,NNP),(3,$),(8,CC),(10,JJS),(10,WP$),(14,VBZ),(3,CC),(2,-RRB-),(16,JJ),

(17,VBP),(18,VBG),(15,VBG),(16,NNS),(8,RB),(4,DT),(3,-LRB-),(13,WP),(10,MD),
(15,NNS),(20,VB),(8,CD),(9,WP),(2,-LRB-),(7,CC),,(14,VBG),(5,POS),

NEWTAG 11 (7,TO) NEWTAG 14 (17,TO) NEWTAG 17 (16,IN)
NEWTAG 12 (6,VBD) NEWTAG 15 (18,IN) NEWTAG 18 (9,NNS)
NEWTAG 13 (19,VBN) NEWTAG 16 (8,VBP) NEWTAG 19 (6,JJ)
NEWTAG 20 (2,VBD) NEWTAG 23 (3,RB) NEWTAG 26 (5,VB)
NEWTAG 21 (2,VBZ) NEWTAG 24 (13,VBN) NEWTAG 27 (5,VBD)
NEWTAG 22 (9,VBZ) NEWTAG 25 (3,NNP) NEWTAG 28 (4,MD)
NEWTAG 29 (3,VBP),(10,NNS) NEWTAG 32 (12,VB) NEWTAG 35 (2,NNPS)
NEWTAG 30 (17,VBZ) NEWTAG 33 (12,NNP) NEWTAG 36 (6,VBZ)
NEWTAG 31 (7,VBG),(4,VBP) NEWTAG 34 (7,WDT) NEWTAG 37 (4,TO)

110

NEWTAG 38 (14,NNP) NEWTAG 41 (4,NNS) NEWTAG 44 (7,VBZ)
NEWTAG 39 (20,WP) NEWTAG 42 (2,TO) NEWTAG 45 (9,MD)
NEWTAG 40 (12,IN),(5,MD) NEWTAG 43 (6,RBR) NEWTAG 46 (16,WP)
NEWTAG 47 (17,VBG),(12,VBN) NEWTAG 50 (3,IN) NEWTAG 53 (9,VB)
NEWTAG 48 (6,TO),(11,TO) NEWTAG 51 (13,VBD) NEWTAG 54 (4,RBR)
NEWTAG 49 (13,WRB),(10,WDT) NEWTAG 52 (8,VBZ) NEWTAG 55 (4,IN)
NEWTAG 56 (15,MD) NEWTAG 59 (10,IN) NEWTAG 62 (14,WRB)
NEWTAG 57 (3,POS) NEWTAG 60 (6,NNPS) NEWTAG 63 (3,PRP)
NEWTAG 58 (2,SYM) NEWTAG 61 (4,VBD) NEWTAG 64 (4,NNP)
NEWTAG 65 (10,VBZ) NEWTAG 68 (11,WP$) NEWTAG 71 (14,NN)
NEWTAG 66 (5,VBN) NEWTAG 69 (12,VBG),(9,VBN),(4,RB)
NEWTAG 67 (5,WRB) NEWTAG 70 (4,$),(12,NNS),(7,VBD),(14,VBN)
NEWTAG 72 (3,VBG),(14,VB) NEWTAG 75 (11,NN),(7,VB),(3,TO)
NEWTAG 73 (4,VBG) NEWTAG 78 (10,VBG) NEWTAG 76 (6,VBG)
NEWTAG 74 (4,PDT) NEWTAG 79 (8,TO) NEWTAG 77 (5,WP$)
NEWTAG 83 (3,NN),(2,NN) NEWTAG 86 (3,VBZ) NEWTAG 89 (7,-LRB-)
NEWTAG 84 (6,IN) NEWTAG 87 (4,NNPS) NEWTAG 90 (9,JJR)
NEWTAG 85 (5,$) NEWTAG 88 (7,VBP) NEWTAG 91 (8,NNS)
NEWTAG 92 (17,IN) NEWTAG 95 (3,MD) NEWTAG 98 (6,VB)
NEWTAG 93 (3,WP) NEWTAG 96 (11,VBZ) NEWTAG 99 (8,NNPS)
NEWTAG 94 (2,IN) NEWTAG 97 (17,VBD) NEWTAG 100 (6,CD)
NEWTAG 100 (16,VBG) NEWTAG 102 (4,WRB) NEWTAG 105 (16,TO)
NEWTAG 101 (6,NN) NEWTAG 103 (16,VBZ) NEWTAG 106 (13,WDT)
NEWTAG 102 (12,WDT) NEWTAG 104 (6,VBN) NEWTAG 107 (4,VBZ)
NEWTAG 108 (2,$) NEWTAG 111 (5,VBZ) NEWTAG 114 (4,NN)
NEWTAG 109 (9,NN) NEWTAG 112 (11,JJ) NEWTAG 115 (10,RP)
NEWTAG 110 (3,DT) NEWTAG 113 (7,NNP) NEWTAG 116 (8,VBN)
NEWTAG 117 (9,TO) NEWTAG 120 (3,VBD) NEWTAG 123 (18,MD)
NEWTAG 118 (6,MD) NEWTAG 121 (3,NNS) NEWTAG 124 (10,NNP)
NEWTAG 119 (7,WP),(5,NNS) NEWTAG 122 (5,DT) NEWTAG 125 (9,VBP)
NEWTAG 126 (4,WDT) NEWTAG 129 (9,VBD) NEWTAG 132
NEWTAG 127 (7,IN) NEWTAG 130 (10,VBD) NEWTAG 133
NEWTAG 128 (8,VBG) NEWTAG 131 (7,VBN),(9,WRB),(3,VBN),(8,WDT)
NEWTAG 134 (5,JJR) NEWTAG 137 (10,$) NEWTAG 140 (10,VBN)
NEWTAG 135 (8,WRB) NEWTAG 138 (8,IN) NEWTAG 141 (8,VB)
NEWTAG 136 (11,RB) NEWTAG 139 (4,VB) NEWTAG 142 (16,VBP)
NEWTAG 143 (4,JJ),(10,VB) NEWTAG 146 (9,WP$) NEWTAG 149 (11,VB)
NEWTAG 144 (2,VBP),(8,JJ) NEWTAG 147 (9,NNP) NEWTAG 150 (13,NNP)
NEWTAG 145 (6,WRB),(7,MD) NEWTAG 148 (14,WP) NEWTAG 151 (8,WP$)
NEWTAG 152 (8,NN),(4,VBN) NEWTAG 155 NEWTAG 158 (14,NNS)
NEWTAG 153 (11,VBN),(5,IN) NEWTAG 156 NEWTAG 159 (5,NN)
NEWTAG 154 (3,WRB) NEWTAG 157 (10,DT) NEWTAG 160 (5,WP)
NEWTAG 161 (0,NONE),(12,WP),(7,NN) NEWTAG 164 NEWTAG 167 (9,IN)
NEWTAG 162 (7,WP$) NEWTAG 165 (8,JJR) NEWTAG 168 (3,JJ)
NEWTAG 163 (11,NNP) NEWTAG 166 (5,VBP),(13,NNS),(9,VBG),(13,NN)
NEWTAG 169 (8,$) NEWTAG 172 (5,RBR) NEWTAG 175 (7,WRB)
NEWTAG 170 (6,VBP) NEWTAG 173 (3,RP) NEWTAG 176 (7,NNS)
NEWTAG 171 (9,JJ),(5,VBG) NEWTAG 174 (8,RP) NEWTAG 177 (5,JJ)
NEWTAG 178 (4,JJR),(10,JJR) NEWTAG 181 ,(6,WDT) NEWTAG 183 (7,JJR)
NEWTAG 179 (11,MD),(11,WDT),(6,WP),(11,IN),(8,WP),(4,WP),(10,WP),(6,NNS),(3,WDT),(1,ROOT)
NEWTAG 180 (2,NNS),(8,VBD) NEWTAG 182 (2,MD),(4,WP$),(9,WDT),(8,MD)

Table A.13: New tags related to VBN,VB,MD -VBN,VB,MD that were calculated
with combined features Depth- gFather.

111

A. NEW SET OF POS TAGS OPTIMIZED

112

Appendix B

Optimized Head Rules

In this appendix we show the set of optimized head rules obtained with the optimiza-
tion procedure described in Chapter 4. Each table contains the original Magerman-
Collins (Mag95b, Col97) (original) and the optimized head rule (optimized) for
each grammatical categorie.

original

(ADJP (l NNS) (l QP) (l NN) (l $) (l ADVP)

(l JJ) (l VBN) (l VBG) (l ADJP) (l JJR) (l NP)

(l JJS) (l DT) (l FW) (l RBR) (l RBS) (l SBAR)

(l RB))

optimized

(ADJP (l NP) (l NN) (l NNS) (r JJR) (l RBR)

(l SBAR) (r JJ) (l JJS) (r RB) (r ADVP) (l VBN)

(r VBG) (r RBS) (l QP) (r DT) (r FW) (l $)

(r ADJP))

Figure B.1: Original and optimized Head Rule for ADJP.

original
(ADVP (r RB) (r RBR) (r RBS) (r FW)

(r ADVP) (r TO) (r CD) (r JJR) (r JJ) (r IN)

(r NP) (r JJS) (r NN))

optimized
(ADVP (l JJS) (l JJ) (l ADVP) (l RBR)

(l CD) (r JJR) (l NP) (l IN) (r RB) (r FW)

(r NN) (l TO) (r RBS))

Figure B.2: Original and optimized Head Rule for ADVP.

113

B. OPTIMIZED HEAD RULES

original (CONJP (r CC) (r RB) (r IN))

optimized (CONJP (l IN) (l RB) (r CC))

Figure B.3: Original and optimized Head Rule for CONJP.

original
(NAC (l NN) (l NNS) (l NNP) (l NNPS) (l NP)

(l NAC) (l EX) (l $) (l CD) (l QP) (l PRP) (l VBG)

(l JJ) (l JJS) (l JJR) (l ADJP) (l FW))

optimized
(NAC (l JJS) (r NNP) (l CD) (r NAC) (r VBG)

(r ADJP) (l QP) (l NNS) (l FW) (r NP) (l EX) (l JJR)

(l NNPS) (r JJ) (l NN) (r PRP) (l $))

Figure B.4: Original and optimized Head Rule for NAC.

original (PP (r IN) (r TO) (r VBG) (r VBN) (r RP) (r FW))

optimized (PP (r TO) (r VBG) (l IN) (l VBN) (r FW) (r RP))

Figure B.5: Original and optimized Head Rule for PP.

original
(QP (l $) (l IN) (l NNS) (l NN) (l JJ) (l RB)

(l DT) (l CD) (l NCD) (l QP) (l JJR) (l JJS))

optimized
(QP (l IN) (r JJ) (r RB) (r NN) (l DT) (l NCD)

(l $) (l NNS) (r CD) (l JJS) (r QP) (r JJR))

Figure B.6: Original and optimized Head Rule for QP.

original (RRC (r VP) (r NP) (r ADVP) (r ADJP) (r PP))

optimized (RRC (r ADJP) (l NP) (l ADVP) (r PP) (l VP))

Figure B.7: Original and optimized Head Rule for RRC.

114

original
(S (l TO) (l IN) (l VP) (l S) (l SBAR) (l ADJP)

(l UCP) (l NP))

optimized
(S (l S) (r ADJP) (l NP) (r TO) (r VP) (r UCP)

(l SBAR) (r IN))

Figure B.8: Original and optimized Head Rule for S.

original
(SBAR (l WHNP) (l WHPP) (l WHADVP) (l WHADJP)

(l IN) (l DT) (l S) (l SQ) (l SINV) (l SBAR)

(l FRAG))

optimized
(SBAR (r SBAR) (r WHADVP) (l SINV) (l SQ) (l FRAG)

(r IN) (l WHADJP) (r DT) (l S) (l WHPP)

(r WHNP))

Figure B.9: Original and optimized Head Rule for SBAR.

original (SBARQ (l SQ) (l S) (l SINV) (l SBARQ) (l FRAG))

optimized (SBARQ (l S) (l FRAG) (r SBARQ) (l SINV) (r SQ))

Figure B.10: Original and optimized Head Rule for SBARQ.

original
(SINV (l VBZ) (l VBD) (l VBP) (l VB) (l MD) (l VP)

(l S) (l SINV) (l ADJP) (l NP))

optimized
(SINV (r SINV) (l VP) (l VBP) (l VBZ) (r MD)

(l VB) (r VBD) (r S) (r NP) (l ADJP))

Figure B.11: Original and optimized Head Rule for SINV.

original
(SQ (l VBZ) (l VBD) (l VBP) (l VB) (l MD) (l VP)

(l SQ))

optimized
(SQ (l VB) (l MD) (l VBD) (l VP) (r VBZ) (r VBP)

(l SQ))

Figure B.12: Original and optimized Head Rule for SQ.

115

B. OPTIMIZED HEAD RULES

original
(VP (l TO) (l VBD) (l VBN) (l MD) (l VBZ) (l VB)

(l VBG) (l VBP) (l VP) (l ADJP) (l NN) (l NNS) (l NP))

optimized
(VP (r VBZ) (r MD) (l VB) (r VBN) (r VBD) (l NNS)

(l VBP) (l TO) (l VBG) (l ADJP) (l VP) (l NP) (r NN))

Figure B.13: Original and optimized Head Rule for VP.

original (WHADJP (l CC) (l WRB) (l JJ) (l ADJP))

optimized (WHADJP (l CC) (r JJ) (r WRB) (l ADJP))

Figure B.14: Original and optimized Head Rule for WHADJP.

original (WHADVP (r CC) (r WRB))

optimized (WHADVP (r CC) (r WRB))

Figure B.15: Original and optimized Head Rule for WHADVP.

original
(WHNP (l WDT) (l WP) (l WP$) (l WHADJP) (l WHPP)

(l WHNP))

optimized
(WHNP (l WHADJP) (l WHNP) (l WP) (r WP$) (r WDT)

(l WHPP))

Figure B.16: Original and optimized Head Rule for WHNP.

original (WHPP (r IN) (r TO) (r FW))

optimized (WHPP (l TO) (r IN) (l FW))

Figure B.17: Original and optimized Head Rule for WHPP.

116

Bibliography

[AB96] Hiyan Alshawi and Adam L. Buchsbaum. Head automata and bilin-
gual tiling: Translation with minimal representations. In Proceed-
ings of the 34th Annual Meeting of the ACL, pages 167–176, 1996.
36, 37

[ABHS01] S. Afonso, E. Bick, R. Haber, and D. Santos. Floresta sinta(c)tica: a
treebank for portuguese. In Proceedings of International Conference
on Language Resources and Evaluation (LREC 2002), pages 216–
219, 2001. 95

[AOS03] N. B. Atalay, K. Oflazer, and B. Say. The annotation process in the
Turkish treebank. In Proceedings of the 4th Intern. Workshop on
Linguistically Interpreteted Corpora (LINC), pages 117–120, 2003.
95

[Bak79] J. K. Baker. Trainable grammars for speech recognition. In D. H.
Klatt and J. J. Wolf, editors, Speech Communication Papers for the
97th Meeting of the Acoustical Society of America, pages 547–550,
1979. 28

[BC10] P. Blunsom and T. Cohn. Unsupervised induction of tree substitu-
tion grammars for dependency parsing. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing
(EMNLP 2010), pages 1204–1213, October 2010. 6, 35, 94, 100,
101

[BDH+02] S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. The
TIGER treebank. In IEEE Journal for Transactions on Learning
Technologies (TLT1), 2002. 25, 38, 95

117

BIBLIOGRAPHY

[BHHH01] Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora Hladká. The
prague dependency treebank: Three-level annotation scenario. In
Anne Abeillé, editor, Treebanks: Building and Using Syntactically
Annotated Corpora. Kluwer Academic Publishers, 2001. 38

[Bik02] Daniel M. Bikel. Design of a multi-lingual, parallel-processing sta-
tistical parsing engine. In Proceedings of the second international
conference on Human Language Technology Research, HLT ’02,
pages 178–182. Morgan Kaufmann Publishers Inc., 2002. 11, 13

[Bik04a] D. Bikel. A distributional analysis of a lexicalized statistical parsing
model. In Proceedings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP 2004), 2004. 39

[Bik04b] D. Bikel. On the Parameter Space of Generative Lexicalized Statis-
tical Parsing Models. PhD thesis, University of Pennsylvania, 2004.
56, 71, 72, 73, 104

[Bik04c] Daniel M. Bikel. Intricacies of collins’ parsing model. COMPUTA-
TIONAL LINGUISTICS, 30:479–511, 2004. 40, 84

[BM06] S. Buchholz and E. Marsi. CoNLL-X shared task on multilingual
dependency parsing. In Conference on Computational Natural Lan-
guage Learning (CoNLL-X). SIGNLL, 2006. 38, 95

[Bod06] Rens Bod. Unsupervised parsing with u-dop. In Proceedings of
the Tenth Conference on Computational Natural Language Learn-
ing, CoNLL-X ’06, pages 85–92, Stroudsburg, PA, USA, 2006. 8

[BT73] T.L. Booth and R.A. Thompson. Applying probability measures to
abstract languages. IEEE Transactions on Computers, C-22(5):442–
450, 1973. 21

[CB02] D. Chiang and D. Bikel. Recovering latent information in treebanks.
In Proceedings of the 19th international conference on Computa-
tional linguistics (COLING ’02) - Volume 1, pages 1–7, 2002. 73

[CCCC92] Glenn Carroll, Glenn Carroll, Eugene Charniak, and Eugene Char-
niak. Two experiments on learning probabilistic dependency gram-
mars from corpora. In Working Notes of the Workshop Statistically-
Based NLP Techniques, pages 1–13. AAAI, 1992. 32, 35, 37

118

BIBLIOGRAPHY

[cDMMM06] Marie catherine De Marneffe, Bill Maccartney, and Christopher D.
Manning. Generating typed dependency parses from phrase struc-
ture parses. In Proceeding of International Conference on Language
Resources and Evaluation (LREC 2006), 2006. 11

[CGS08] S. B. Cohen, K. Gimpel, and N. A. Smith. Logistic normal priors for
unsupervised probabilistic grammar induction. In Proceedings of
Advances in Neural Information Processing Systems (NIPS), 2008.
6, 35, 37, 85, 94, 99, 100, 101

[Cha00] E. Charniak. A maximum-entropy-inspired parser. In Proceedings
of North American Chapter of the Association for Computational
Linguistics - Human Language Technologies (NAACL’00), 2000. 5,
8, 11, 32, 57, 68, 71

[Chi99] Zhiyi Chi. Statistical properties of probabilistic context-free gram-
mars. Comput. Linguist., 25:131–160, March 1999. 23

[Cho53] Noam Chomsky. Systems of syntactic analysis. J. Symb. Log., pages
242–256, 1953. 17

[Cho57] N. Chomsky. Syntactic structures. Mouton, Den Haag, 1957. 17

[Cho65] Noam Chomsky. Aspects of the Theory of Syntax. The MIT Press,
1965. 3, 5

[CM04] Montserrat Civit and Ma Antnia Mart. Building cast3lb: A spanish
treebank. Research on Language and Computation, pages 549–574,
2004. 95

[CMBN+03] M. Civit, Ma. A. Mart, N. Bufi B. Navarro, B. Fernndez, and R. Mar-
cos. Issues in the syntactic annotation of cast3lb. 4th Interna-
tional Workshop on Linguistically Interpreted Corpora (LINC03) -
EACL03, 2003. 25

[Col96] Michael J. Collins. A new statistical parser based on bigram lexical
dependencies. In Proceedings of the 34th Annual Meeting of the
ACL, pages 184–191, 1996. 6, 32, 36

119

BIBLIOGRAPHY

[Col97] Michael Collins. Three generative, lexicalised models for statistical
parsing. In Proceedings of the eighth conference on European chap-
ter of the Association for Computational Linguistics (EACL ’97),
pages 16–23, 1997. 5, 6, 8, 11, 32, 36, 39, 56, 71, 72, 113

[CS09] S. B. Cohen and N. A. Smith. Shared logistic normal distributions
for soft parameter tying in unsupervised grammar induction. In Pro-
ceedings of North American Chapter of the Association for Com-
putational Linguistics - Human Language Technologies (NAACL-
HLT), pages 74–82, 2009. 6, 35, 37, 85, 86, 94, 101

[DDE05] P. Dupont, F. Denis, and Y. Esposito. Links between probabilis-
tic automata and hidden Markov models: probability distributions,
learning models and induction algorithms. Pattern Recognition,
38(9):1349–1371, September 2005. 98

[DFM04] Michael Daum, Kilian A. Foth, and Wolfgang Menzel. Automatic
transformation of phrase treebanks to dependency trees. In Proceed-
ings of International Conference on Language Resources and Eval-
uation (LREC 2004), pages 1149–1152, 2004. 6

[DIL08] Martı́n Ariel Domı́nguez and Gabriel Infante-Lopez. Searching for
part of speech tags that improve parsing models. In Proceedings of
the 6th international conference on Advances in Natural Language
Processing, GoTAL, Gothenburg, Sweden, pages 126–137, 2008. 55

[DIL10] Martı́n Ariel Domı́nguez and Gabriel Infante-Lopez. Head finders
inspection: An unsupervised optimization approach. In Proceed-
ings of the 7th International conference on Advances in Natural
Language Processing, IceTAL, Reykjavik, Iceland., pages 127–137,
2010. 71

[DIL11] Martı́n Ariel Domı́nguez and Gabriel Infante-López. Unsupervised
induction of dependency structures using probabilistic bilexical
grammars. In Proceeding of 7th International Conference on Nat-
ural Language Processing and Knowledge Engineering (NLPKE),
pages 314–318. IEEE, 2011. 85

[DILL10] Martı́n Ariel Domı́nguez, Gabriel Infante-López, and Franco Luque.
Análisis de dependencias no supervisado basado en gramáticas

120

BIBLIOGRAPHY

biléxicas. In Proceeding of Workshop on NLP and Web-based tech-
nologiesheld in conjunction with IBERAMIA 2010, 2010. 85

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. JOURNAL OF THE
ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38, 1977. 86

[Ear70a] Jay Earley. An efficient context-free parsing algorithm. In Commu-
nications of the ACM, pages 451–455, 1970. 5

[Ear70b] Jay Earley. An efficient context-free parsing algorithm. Commun.
ACM, 13:94–102, February 1970. 20

[Eis96] J. Eisner. Three new probabilistic models for dependency pars-
ing: An exploration. In Proceedings of International Conference
on Computational Linguistics (LING-96), Copenhagen, 1996. 8, 36,
86

[Eis97] J. Eisner. Bilexical grammars and a cubictime probabilistic parser. In
Proceedings of the International Workshop on Parsing Technologies
(IPWT’04), pages 54–65, 1997. 8, 36, 56, 72

[Eis00] Jason Eisner. Bilexical grammars and their cubic-time parsing algo-
rithms, 2000. 37

[FK79] W. N. Francis and H. Kucera. Brown corpus manual. Technical
report, Department of Linguistics, Brown University, Providence,
Rhode Island, US, 1979. 25

[Gai65] Haim Gaifman. Dependency systems and phrase-structure systems.
Information and Control, pages 304–337, 1965. 34, 35

[GC97] M. Gen and R. Cheng. Genetic Algorithms and Engineering Design.
John Wiley, 1997. 63

[GGG+10] Jennifer Gillenwater, Kuzman Ganchev, João Graça, Fernando
Pereira, and Ben Taskar. Sparsity in dependency grammar induc-
tion. In Proceedings of the ACL 2010 Conference Short Papers,
ACLShort ’10, pages 194–199, Morristown, NJ, USA, 2010. As-
sociation for Computational Linguistics. 6, 35, 85, 95, 97, 100, 101,
105

121

BIBLIOGRAPHY

[Gol67] E. Mark Gold. Language identification in the limit. Information and
Control, 10(5):447–474, 1967. 23

[GT07] K. Ganchev Graa and B. Taskar. Expectation maximization and pos-
terior constraints. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), 2007. 100

[HJM09] W. P. Headden, M. Johnson, and D. McClosky. Improving unsu-
pervised dependency parsing with richer contexts and smoothing. In
Proceedings of North American Chapter of the Association for Com-
putational Linguistics - Human Language Technologies (NAACL-
HLT), pages 101–109, 2009. 6, 8, 35, 37, 85, 86, 92, 94, 99, 101

[Hor69] James Jay Horning. A study of grammatical inference. PhD thesis,
Stanford University, Stanford, CA, USA, 1969. 25

[HT05] J. Henderson and I. Titov. Data-defined kernels for parse rerank-
ing derived from probabilistic models. In Proceedings of the 43rd
Annual Meeting of the ACL, pages 181–188, 2005. 68

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley Publishing,
Reading Massachusetts, 1979. 19

[IL05] G. Infante-Lopez. Two-Level Probabilistic Grammars for Natural
Language Parsing. PhD thesis, Universiteit van Amsterdam, 2005.
67

[ILdR04] G. Infante-Lopez and M. de Rijke. Alternative approaches for gen-
erating bodies of grammar rules. In Proc. 42nd ACL, 2004. 60, 61

[KL51] S. Kullback and R.A Leibler. On information and sufficiency. In
Annals of Mathematical Statistics, pages 79–86, 1951. 90

[Kle04] Dan Klein. Corpus-based induction of syntactic structure: Models
of dependency and constituency. In Proceedings of the 42nd Annual
Meeting of the ACL, pages 479–486, 2004. 37

[Kle05] D. Klein. The Unsupervised Learning of Natural Language Struc-
ture. PhD thesis, Stanford University, 2005. 8, 86, 92

122

BIBLIOGRAPHY

[KM01] D. Klein and C. Manning. Distributional phrase structure induction.
In Proceedings of the Conference on Computational Natural Lan-
guage Learning (CoNLL’01), 2001. 57, 72

[KM02] Dan Klein and Christopher D. Manning. Fast exact inference with a
factored model for natural language parsing. In NIPS, 2002. 39

[KM03a] D. Klein and C. Manning. Accurate unlexicalized parsing. In ACL,
2003. 5, 8, 32, 40, 67, 71

[KM03b] Dan Klein and Christopher D. Manning. Fast exact inference with a
factored model for natural language parsing. In Advances in Neural
Information Processing Systems. MIT Press, 2003. 11

[KM04] D. Klein and C. Manning. Corpus-based induction of syntactic struc-
ture: Models of dependency and constituency. In Proceedings of the
42nd Annual Meeting on Association for Computational Linguistics,
2004. 40, 85, 94, 101

[KML03] M.T. Kromann, L. Mikkelsen, and S.K. Lynge. Danish dependency
treebank. In Proceedings TLT, page pages, 2003. 95

[Mag95a] David M. Magerman. Natural language parsing as statistical pat-
tern recognition. PhD thesis, Stanford Univercity, 1995. 32, 71

[Mag95b] David M. Magerman. Statistical decision-tree models for parsing. In
ACL Conference, 1995. 36, 39, 113

[Mar80] Mitchell Marcus. A theory of syntactic recognition for natural lan-
guage. MIT Press, 1980. 5

[Mar83] I. Marshall. Choice of grammatical word-class without global syn-
tactic analysis: tagging words in the lob corpus. Computers and the
Humanities, pages 139–150, 1983. 69

[Mar04] Adam Marczyk. Genetic algorithms and evolutionary computation,
2004. 41

[Mel79] Igor A. Mel’c̆uk. Studies in dependency syntax. Ann Arbor:
Karoma, pages 23–90, 1979. 4

123

BIBLIOGRAPHY

[MM90] David M. Magerman and Mitchell P. Marcus. Parsing a natural lan-
guage using mutual information statistics. In Proceedings of AAAI-
90, 8th National Conference on AI, pages 984–989, 1990. 5, 32

[MMT05] Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. Probabilistic
cfg with latent annotations. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics (ACL ’05), pages
75–82, Stroudsburg, PA, USA, 2005. Association for Computational
Linguistics. 57

[MPRH05] Ryan Mcdonald, Fernando Pereira, Kiril Ribarov, and Jan Haji. Non-
projective dependency parsing using spanning tree algorithms. In
Proceedings of Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language Processing,
pages 523–530, 2005. 9

[MR06] M. Mohri and B Roark. Probabilistic context-free grammar induc-
tion based on structural zeros. In Proceedings of North American
Chapter of the Association for Computational Linguistics - Human
Language Technologies (HLT-NAACL’06), 2006. 57

[MS93] M. Marcus and B. Santorini. Building a large annotated corpus of
English: The Penn treebank. Computational Linguistics, 19:313–
330, 1993. vii, 3, 6, 25, 56, 74, 92

[MS02] C.D. Manning and H. Schütze. Foundations of Statistical Natural
Language Processing. MIT Press, 2002. 15, 16, 28

[NHN05] J. Nilsson, J. Hall, and J. Nivre. MAMBA meets TIGER: Recon-
structing a Swedish treebank from antiquity. In Proceedings of the
Nordic Conference on Computational Linguistics (NODALIDA) Spe-
cial Session on Treebanks, 2005. 95

[NHN+07] Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülsen
Eryigit, Sandra Kübler, Svetoslav Marinov, and Erwin Marsi. Malt-
parser: A language-independent system for data-driven dependency
parsing. In Natural Language Engineering, pages 95–135, 2007. 35,
72

124

BIBLIOGRAPHY

[Niv04] Joakim Nivre. Incrementality in deterministic dependency parsing.
In Proceedings of the Workshop on Incremental Parsing (ACL’04),
pages 50–57, 2004. 37

[Niv05] Joakim Nivre. Dependency grammar and dependency parsing. Tech-
nical report, Vxj University, 2005. 15, 33, 34, 37

[NS06] Mark-Jan Nederhof and Giorgio Satta. Estimation of consistent
probabilistic context-free grammars. In HLT-NAACL’06, pages –1–
1, 2006. 23

[Osb00] M. Osborne. Shallow parsing as part-of-speech tagging. In Conll,
2000. 69

[OSHTT03] K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür. Building
a Turkish treebank. In A. Abeillé, editor, Treebanks: Building and
Using Parsed Corpora, volume 20 of Text, Speech and Language
Technology, chapter 15. Kluwer, 2003. 95

[PBE11] Elias Ponvert, Jason Baldridge, and Katrin Erk. Simple unsupervised
grammar induction from raw text with cascaded finite state models.
In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies - Vol-
ume 1, HLT ’11, pages 1077–1086, Stroudsburg, PA, USA, 2011.
Association for Computational Linguistics. 8

[PBK06] S. Petrov, L. Barrett, and D. Klein. Learning accurate, compact, and
interpretable tree annotation. In ACL, 2006. 57, 70

[Pre01] D. Prescher. Inside-outside estimation meets dynamic EM. In Pro-
ceedings of the 7th International Workshop on Parsing Technologies
(IWPT), 2001. 86, 100

[Pre03] D. Prescher. A tutorial on the expectation-maximization algorithm
including maximum-likelihood estimation and EM training of prob-
abilistic context-free grammars. European Summer School in Logic,
Language and Information (ESSLLI), 2003. 41, 47, 48

[PS94] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Gram-
mar. The University of Chicago Press, Chicago, 1994. 32

125

BIBLIOGRAPHY

[Ram85] Allan Ramsay. Effective parsing with generalised phrase structure
grammar, 1985. 5

[Ris78] J. Rissanen. Modeling By Shortest Data Description. Automatica,
1978. 69

[SAJ09] V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. Baby Steps: How
“Less is More” in unsupervised dependency parsing. In NIPS:
Grammar Induction, Representation of Language and Language
Learning, 2009. 101

[SAJ10a] V. Spitkovsky, H. Alshawi, and D. Jurafsky. From baby steps to
leapfrog: How less is more in unsupervised dependency parsing. In
Proceedings of North American Chapter of the Association for Com-
putational Linguistics - Human Language Technologies (NAACL-
HLT), pages 751–759, 2010. 6, 35, 37, 85, 86, 94, 99

[SAJ10b] Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. Prof-
iting from mark-up: Hyper-text annotations for guided parsing. In
Proceedings of ACL-2010, 2010. 94, 100

[SAJM10] Valentin I. Spitkovsky, Hiyan Alshawi, Daniel Jurafsky, and Christo-
pher D. Manning. Viterbi training improves unsupervised depen-
dency parsing. In Proceedings of the Fourteenth Conference on
Computational Natural Language Learning, CoNLL ’10, pages 9–
17, Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics. 94, 100

[Sam00] Christer Samuelsson. A statistical theory of dependency syntax,
2000. 37

[SB97] Joan-Andreu Snchez and Jos-Miguel Bened. Consistency of stochas-
tic context-free grammars from probabilistic estimation based on
growth transformations, 1997. 23

[Sch72] Roger C. Schank. Conceptual dependency: A theory of natural lan-
guage understanding. Cognitive Psychology, 3(4):pages 532–631,
1972. 4

126

BIBLIOGRAPHY

[SE05] N. Smith and J. Eisner. Guiding unsupervised grammar induction
using contrastive estimation. In IJCAI, Workshop on Grammatical
Inference Applications, pages 73–82, Edinburgh, July 2005. 85, 92

[Seg05] Yoav Seginer. Learning Syntactic Structure. PhD thesis, Universiteit
van Amsterdam, 2005. 37

[Seg07] Yoav Seginer. Fast Unsupervised Incremental Parsing. In Proceed-
ings of the 45th Annual Meeting of the Association of Computational
Linguistics, pages 384–391, Prague, Czech Republic, June 2007. As-
sociation for Computational Linguistics. 8

[SJ01] P. Schone and D. Jurafsky. Language-independent induction of part
of speech class labels using only language universals. In IJCAI’01,
2001. 57

[SOS+02] Kiril Simov, Petya Osenova, Milena Slavcheva, Sia Kolkovska,
Elisaveta Balabanova, Dimitar Doikoff, Krassimira Ivanova,
Alexander Simov, Er Simov, and Milen Kouylekov. Building a lin-
guistically interpreted corpus of bulgarian: the bultreebank. In Pro-
ceedings of International Conference on Language Resources and
Evaluation (LREC 2002), Canary Islands, page pages, 2002. 95

[SZ09] Federico Sangati and Willem Zuidema. Unsupervised methods for
head assignments. In Proceedings of the eighth conference on Eu-
ropean chap- ter of the Association for Computational Linguistics
(EACL ’09), pages 701–709, 2009. 73, 83

[TDdlH00] F. Thollard, P. Dupont, and C. de la Higuera. Probabilistic DFA
inference using Kullback-Leibler divergence and minimality. In
Proceedings of International Conference on Minority Languages
(ICML), Stanford, 2000. 59, 64, 90

[Tes59] Lucien Tesnière. Eléments de Syntaxe Structurale. Klincksieck,
1959. 34

[UK04] Tylman Ule and Sandra Kübler. From constituent structure to depen-
dencies, and back. In Proceedings of the International Conference
on Linguistic Evidence, 2004. 39

127

BIBLIOGRAPHY

[Whi94] Darrell Whitley. A genetic algorithm tutorial. Statistics and Com-
puting, 4:65–85, 1994. 41

[WZ10] Zhiguo Wang and Chengqing Zong. Phrase structure parsing with
dependency structure. In Proceedings of the 23rd International Con-
ference on Computational Linguistics: Posters, COLING ’10, pages
1292–1300, Stroudsburg, PA, USA, 2010. Association for Compu-
tational Linguistics. 6, 35

[You67] Daniel H. Younger. Recognition and parsing of context-free lan-
guages in time n3. In Information and Control, pages 189–208, 1967.
5, 20

128

	List of Figures
	List of Tables
	1 Introduction
	1.1 Brief history of Natural Language Processing and Syntactic Approach
	1.2 Bilexical Grammars for Dependency Structures
	1.3 What This Thesis Is All About
	1.4 The structure of this thesis

	2 Theoretical Framework
	2.1 Syntactic Analysis
	2.1.1 Phrase Structure Parsing
	2.1.1.1 Phrase Structure Grammars
	2.1.1.2 Symbolic Parsing
	2.1.1.3 Statistical Parsing
	2.1.1.4 Treebanks PCFGs:
	2.1.1.5 PCFG parsing
	2.1.1.6 Lexicalized Grammars
	2.1.1.7 Evaluation

	2.1.2 Dependency Structures
	2.1.2.1 Dependency Trees
	2.1.2.2 Grammar and Treebank Dependency Parsing
	2.1.2.3 Evaluation
	2.1.2.4 Treebanks

	2.1.3 From Constituent to Dependency and Viceversa
	2.1.4 Some Models
	2.1.4.1 Collins' Parser
	2.1.4.2 Stanford Parser
	2.1.4.3 DMV Parser

	2.2 Optimization Techniques
	2.2.1 Genetic Algorithms
	2.2.1.1 The Selection Process
	2.2.1.2 Making Changes
	2.2.1.3 Why (and when) do Genetic Algorithms work?

	2.2.2 Expectation Maximization
	2.2.2.1 Some definitions
	2.2.2.2 The algorithm

	3 Joining automata to optimize split of POS tags
	3.1 Introduction
	3.2 Related Work
	3.3 Quality Measure for Tag Sets
	3.3.1 Induction of Bilexical Grammars
	3.3.2 Quality Measure for Grammars

	3.4 Building and Traversing the Search Space
	3.5 Parsing with New Sets of Tags
	3.5.1 Rewriting the Training Material
	3.5.2 Modifying the Parser's Training Algorithm
	3.5.3 Experimental Results

	3.6 Future Work
	3.7 Discussion and Conclusions

	4 Looking for the best language for dependency structure
	4.1 Introduction
	4.2 Related Work
	4.3 Head Finding Algorithms
	4.4 A quality measure for Head Finder Rules
	4.5 A Genetic Algorithm Set-Up for Head Rules
	4.6 Stability of Head Finders
	4.7 Experimental Results
	4.8 Discussion and Conclusions

	5 Optimizing Automata for Unsupervised Dependency Parsing
	5.1 Introduction
	5.2 Learning Architecture
	5.3 Automata Learning Algorithms
	5.4 Experimental Results
	5.5 Our Model in Perspective
	5.6 Future Work
	5.7 Discussion and Conclusions

	6 Conclusion
	A New set of POS Tags Optimized
	B Optimized Head Rules
	Bibliography

