
Type-Checking and
Normalisation By Evaluation for

Dependent Type Systems

Miguel M. Pagano

Directores: Thierry Coquand y Daniel E. Fridlender

Presentada ante la Facultad de Matemática, Astronomía y Física como parte
de los requerimientos para la obtención del grado de Doctor en Ciencias de la
Computación de la

Universidad Nacional de Córdoba

Marzo,

©FaMAF - UNC

Abstract

This thesis presents a new algorithm for Normalisation by Evaluation for different
type theories. This algorithm is later used to define a type-checking algorithm and to
prove other meta-theoretical results about predicative type systems.

I first present it for simply typed lambda calculus, both with and without η-rule.
We use this simple setting to introduce and explain the techniques used for proving the
main properties of NbE.

The NbE algorithm is later adapted to Martin-Löf type theory; this algorithm gives
rise to a decision procedure for equality. Deciding equality is important because it leads
to a type-checking algorithm. We define a type-checking algorithm for a Martin-Löf
extended with singleton types and proof-irrelevant types, among other more common
types (one universe of small types, dependent function spaces, sigma type, enumeration
types, natural numbers). We proved the correctness and completeness of the type-
checker. Both algorithms, NbE and type-checking, were implemented in Haskell.
At the end of the thesis we sketch an extension of the NbE algorithm to deal with
commutativity in MLTT.

We also present a new formulation of Pure Type Systems with explicit substitutions
and de Bruijn indices. There are two possible notion for the equality between types:
untyped equality between pre-terms and typed equality; it was already know that these
two presentations are equivalent. We present a new proof method for that equivalence
between predicative PTS. We formalised partially this proof in Agda.

Keywords: Type theory, Normalisation by Evaluation, Type-checking algorithm,
Martin-Löf type theory, Pure Type Systems.

Resumen

Esta tesis presenta un nuevo algoritmo de Normalización por Evaluación (NbE)
para diferentes teorías de tipos. Utilizamos el algoritmo de normalización para definir
un algoritmo de chequeo de tipos y para probar otros meta-teoremas sobre sistemas de
tipos predicativos.

Primero consideramos NbE para el cálculo lambda simplemente tipado, tanto con la
regla η como sin ella. Utilizando este sistema más sencillo, introducimos y explicamos
las técnicas necesarias para probar las principales propiedades del algoritmo.

Luego adaptamos el algoritmo de NbE para una teoría de tipos à la Martin-Löf; este
algoritmo da lugar a un procedimiento de decisión para la igualdad. Poder decidir la
igualdad formal es importante porque eso permite definir un algoritmo de chequeo
de tipos. En la tesis, definimos este algoritmo para una teoría con tipos con un sólo
elemento canónico (singleton types) y para proof-irrelevant types (además de otros tipos
más comunes y ya considerados en la literatura). Finalmente, probamos la corrección
y la completitud del algoritmo de chequeo de tipos. En la última parte de la tesis,
bosquejamos cómo se puede extender el algoritmo de decisión de la igualdad para tratar
conmutatividad en teoría de tipos.

También se presenta una nueva formulación de Sistemas de Tipos Puros (PTS) con
sustituciones explícitas e índices de de Bruijn. Hay dos posibles nociones de igualdad en-
tre tipos: igualdad no tipada sobre pre-términos e igualdad tipada; ya se sabía que estas
dos presentaciones son equivalentes. Nosotros presentamos un nuevo método de prueba
para dicha equivalencia para PTS predicativos. Hemos formalizado, parcialmente, esta
prueba en Agda.

Palabras claves: Teoría de tipos, Normalización por Evaluación, Algoritmo de
chequeo de tipos, Teoría de tipos à la Martin-Löf, Sistemas de tipos puros.

 ACM Subject Classification: F..Mathematical Logic.

Contents

 Introduction
. Type Theories .
. Using dependent types .
. Type-Checking: Deciding the Typing Relation
. Related work .
. Our contributions .

 Normalisation By Evaluation
. Syntax of λ→ .
. Normalisation by Evaluation for λβ
. Normalisation by Evaluation for λ→
. Correctness of NbE .
. A Haskell Implementation of NbE

 NbE for Martin-Löf Type Theory
. The calculus λΠ .
. Semantics and Normalisation by Evaluation
. Correctness of NbE via logical relations
. Implementation of a type-checker for λΠ

 Extended Martin-Löf Type Theory
. The Calculus .
. Semantics .
. Correctness of NbE .
. Type-checking algorithm .
. Normalisation by evaluation
. Type-checking algorithm .

 Pure Type Systems
. Formal systems .
. Equivalence between λσ and λσ=
. Semantics for λσ= .
. Correctness of Nbe .
. From λσ to λσ= .

 Conclusion
. Commutativity in Martin-Löf type theory
. Further work .

Bibliography

ii

Acknowledgements

I’d like to start expressing my gratitude to Daniel Fridlender: he started all
this seven years ago when he asked me if I was interested in pursuing a Ph.D.
He was always patient with my impatience to learn and to express my vague
intuitions; he encouraged me when I was not too confident in my abilities. Our
meetings were the source of several ideas in the thesis. I also appreciate very
much Daniel’s humanity and intellectual honesty.

I am thankful to Thierry Coquand for accepting to be my advisor at
Chalmers. My year in Sweden was crucial for my progressing, and a part
of that should be credited to Thierry: he taught me several of the techniques
employed on this thesis and suggested to look at various of the issues covered.

Most of the chapters of this thesis are based on joint works with Andreas
Abel, Thierry Coquand, and Daniel Fridlender. I am grateful to them for they
kindly granted me to include these works in the thesis. Andreas explained to
me various points about dependent type theory; I learned a lot working with
him. Danke schön!

I am grateful to Peter Dybjer for accepting to be in the jury, in spite of
the long trip from Sweden, and for his valuable suggestions. I thank also to
Eduardo Bonelli and Carlos Areces, the Argentinian members of the jury, for
reading the thesis and pointing out omissions and errors.

My Ph.D. was supported by scholarships from Agencia Nacional de Promo-
ción Científica y Tecnológica, Consejo Nacional de Investigaciones Científicas y
Técnicas, and the LerNet project funded by the EU. Part of my activities and
travels were supported by funds provided by Ministerio de Ciencia de Córdoba
and Secretaría de Ciencia y Técnica - UNC.

My roommates and colleagues at FaMAF made of the workplace a nice en-
vironment. In particular, I have great times sharing teaching times with Héctor
(el Flaco) and Pedro ST. I liked my talks with Ara, Renato, and Javier; with
them I discovered a taste for understanding more deeply our daily activities,
specially as computer scientist, and questioning the usual state-of-affairs.

I enjoyed the last year at office ; its atmosphere was so pleasant that
someone call it the smiling office. I thank my friends Any, Cristian, Chun, Eze,
Franco, and Leti for the good time in the office and for the after office hours.

During my stance in Gothenburg I lived with Ruben, who opened his house
to me although we did not know before, just because Mónica y Juan asked
him to receive me. In great part, I felt at home in Gothenburg, because Ruben
adopted me. ¡Muchas gracias! Every meeting with my dearest friends Anna
och Anders was joyful: Tack så mycket! I also enjoyed talking with Ana Bove
and Andrés Sicard-Ramírez.

My parents and siblings have been supportive in many ways all this time;
they never doubted to assist me in every situation when I asked for their help.
They respected all my weird decisions, no matter the outcome and always
helped me to paid the prices (sometimes literally so). I’d like to thank also to
Rafa for his generosity and his hospitality in Barcelona. ¡Muchas gracias!

iii

iv

Vale has been mi compañera for most of this journey. She always had tender
words when I was anxious or depressed; her backing was most important in
the moments of doubt and disappointment. Vale sustained me, even when it
meant to live separate for almost a year. Gracias, muchas gracias por todo eso
[...] y [por] lo que paso en silencio.

Introduction

1The type systems studied in this thesis can be seen from two perspectives. They
can be used as a foundation for constructive mathematics []; for example,
Martin Löf type theory was originally meant as a formal language for intuition-
ism []. Dependent type systems can also be seen as functional programming
languages whose type discipline can be used for enconding the specification
of programs []. The main contributions of this thesis are the definition of
a normalisation algorithm that leads to type-checking algorithms and new proof
methods for some meta-theoretical results for predicative type theories.

In the following sections we briefly introduce type theory; then we ex-
plain the relationship with constructivism and show a program with a strong
specification; finally we shortly discuss some issues related to type-checking
dependent type systems and we introduce normalisation by evaluation. In the
last section we comment on the organisation of the thesis and the contributions
of each chapter.

. Type Theories

The use of types in logic was first proposed by Russell to avoid the paradoxes
discovered in formal systems at the dawn of the twentieth century. In this
section we briefly expound the type theories studied in the rest of the thesis.

Simple Type Theory: Church and Curry

The simple theory of types was introduced by Church [] to classify terms of
his lambda calculus []. In his axiomatisation, types were built up from two
basic constants — called the types of individuals and the types of propositions,
with symbols ι and o, respectively — and by forming A→ B, where A and B
are already defined type expressions.

To better explain simple type theory (STT), we introduce the formal terms
of Church’s lambda calculus: given a set V of variables, the set Λ of terms of
the untyped lambda calculus are constructed by the following clauses:

(var)

x ∈ V
x ∈ Λ

(app)

t ∈ Λ t ′ ∈ Λ
t t ′ ∈ Λ

(abs)

x ∈ V t ∈ Λ
λx.t ∈ Λ (.)

The rules of the formal system are presented in the following definition.

Definition (Rules of conversion). Let x, y ∈ V and r, t, s, s ′ ∈ Λ; then s =
s ′ if they are provably equal by using the rules derived from the reflexive,
symmetric, transitive, and contextual closure of the following equations:

We refer the reader to [, , ,] for the history of type-theory.
Lambda calculus was intended to be a formal system for predicate logic, thus the original

presentation also had constants for logical connectives. We restrict our presentation to the pure
lambda calculus and omit the logical constructors and the formal postulates related with them.

 . Introduction

(α) If y does not occur freely in t, λx.t = λy.t[x/y]

(β) (λx.t) r = t[x/r].

(η) If x does not occur freely in t, λx.t x = t.

Rule (β) makes clear how the lambda notation formalises the notion of
function and application of functions to arguments: if t is a term where
the variable x occurs, then λx.t is the function such that when applied to
r yields the value t[x/r], this being the notation for substituting r for the
free occurrences of x in t. In λx.t, x is say to be a bound variable. Rule (α)
formalises that names of bound variables are absolutely irrelevant and they
can be changed (carefully). Finally rule (η) together with congruence under
abstraction makes the system extensional; i.e. we can show that two terms are
equal iff their application to every term is equal.

Already in [] there was an idea of computation: the equations are called
reductions when interpreted as, in modern terminology, rewrite rules trans-
forming the left hand side into the right hand side; in particular one is usu-
ally interested in the rewriting relation generated by considering only (β).
Given a term t0 we say that it evaluates to tn if there is a reduction sequence
t0 t1 . . . tn, where ti is transformed into ti+1 by applying rule (β)
to a sub-term of ti. We say that tn is a normal form if it cannot be further
reduced; then we say that tn is the normal form of t0 — note that there are
terms without normal forms; i.e. terms with all theirs reduction sequences
infinite. The lambda calculus is consistent in the sense that a given term can
have at most one normal form, up to renaming of bound variables using (α).

After Kleene and Rosser’s [] proof of the inconsistency of logic based on
lambda calculus, this untyped version was disregarded as a feasible foundation
for logic. The discipline of types of STT [] avoided the inconsistency; but it
also imposed a serious restriction on the expressiveness of the lambda calculus
(for example, every typed term is strongly normalising). Instead of adding
types on top of untyped terms, Church considered types as part of terms in
the form of subscripts: for example, if A and B are distinct types, then xA and
xB are two different variables. Well-formed terms are given by the following
rules:

xA ∈ Λ
tA→B ∈ Λ t ′A ∈ Λ

(t t ′)B ∈ Λ
xA ∈ V tB ∈ Λ
(λxA.t)A→B ∈ Λ

(.)

Church’s STT is still alive as the theoretical foundation of HOL [] and
Isabelle/HOL [], two of the most prominent proof-assistants based on type
theory.

Curry Curry, cf.[, ,], adopted a different approach to types from that
of Church. Instead of building terms out of typed variables, Curry started
with untyped terms, those generated by the rules in (.); types were later
assigned to those terms. Of course, not every untyped lambda term can be
assigned a type, and each typeable term can have an infinitude of types. For
instance, while in STT (λxA.xA)A→A was a particular term for each type A, in
Curry’s view λx.x had any type of the form A→ A, for any type A. In [] it is
proved the existence of a type-checking algorithm: given a term t and a type
A, decide if t can be assigned the type A. Both Hindley [] and Curry []

.. Type Theories

proved that it is decidable if one can assign any type to a given term; in fact
both of them proved that if any type can be given, there exists a most general
schema, called the principal schema, which can be inferred from the structure
of the term. Hindley’s algorithms basically builds a unification problem, over
type expressions, by postulating the types each sub-term should have; this
procedure is defined by recursion on the structure of the term. The unification
problem, then, is to find a substitution for type variables that satisfies all the
constraints.

Stronger type-systems: Polymorphism, Martin-Löf, and PTSs

In the last paragraph we saw that in typings à la Curry more than one type can
be assigned to a single term. The next step was to understand that phenomenon
by adding type variables in the system and analysing the most general type
expression assignable by a unification algorithm on type expressions. Gir-
ard [] and Reynolds [] considered independently the explicit addition of a
universal quantifier (Girard’s system features also an existential quantifier) to
STT à la Curry. This extension is known as the polymorphic lambda calculus;
a simpler form of that type system is at the core of functional languages like
SML, OCaml, and Haskell. For example we can internalise the fact that the
identity function λx.x has type A→ A for each type A by assigning the type
∀α.α → α; in the following we use t : A to say that the term t has the type
A. Milner [] extended Hindley’s type-inference algorithm to polymorphic
languages where the quantification is only allowed at the top level.

Martin-Löf [] presented another type theory where types can depend on
terms. The most fundamental dependent type is the cartesian product: if A
is a type and Ba is also a type for each a : A, then Π(x : A)B(x) is the type of
functions mapping each a : A to an element in Ba. This sort of dependency
was previously considered by Howard [] and by N. G. de Bruijn [] in his
project Automath. The dependently typed programming language Agda []
is based on Martin-Löf type theory.

Coquand and Huet [] proposed the Calculus of Constructions (CoC),
an impredicative type theory with dependent types. The Edingburgh Logical
Framework [] is weaker than CoC in that dependent types can be only first
order: this is enforced by introducing kinds, that are to types (called families
in LF) as types are to terms. Kinds are also present in languages like Haskell
and SML. In Haskell, for instance, basic types, Bool or Int, have kind ⋆; type
constructors, like List, have kind ⋆→ ⋆; so it will be a type once it is applied
to some type of kind ⋆. Berardi [] and Terlouw [] presented uniformly
several type systems, collectively referred as Pure Type Systems. The basic
idea is that all forms of function spaces, from the non-dependent and non-
polymorphic of STT, up to the dependent, polymorphic, and impredicative one
of CoC, can be captured by the same typing rules by parameterizing the formal
system by a set of sorts. We refer the reader to Barendregt’s [], the standard
reference for PTSs, for more information about them. An extended version
of CoC, the Calculus of Inductive Constructions, serves as the theoretical
foundation for Coq [].

 . Introduction

. Using dependent types

In this section I explain how dependent type systems can be used both as a
basis for writing formal proofs of mathematical theorems and as programming
languages whose type systems allow expressing the specification of programs as
types. We first explain the use of dependent types as the theoretical foundation
of proof assistants; then, we show how to program correctly a type-inference
algorithm for STT.

Curry-Howard Isomorphism

In the previous section I sketched the introduction of types and the emergence
of more complicated systems; as we moved from the beginning to the present
we cited some languages and proof assistants based on the different type
systems we mentioned. If we go back to Church’s pure lambda calculus we
see how logic was treated as a formal system with logical connectives as terms
(or term constructors) of the calculus. In this section we review a deeper
connection between typing systems and logical formalisms.

Curry was the first to notice that the type schema of his combinators I, K,
and S correspond to the axioms of Hilbert’s minimal intuitionistic logic. In fact,
if we express the combinators as their corresponding lambda terms and then
apply Hindley’s algorithm we get the following type-schemas (→ associates to
the right):

• I = λx.x : A→ A,

• K = λx.λy.x : A→ B→ A, and

• S = λx.λy.λz.(x z) (y z) : (A→ B→ C)→ (A→ B)→ A→ C.

We can think that Hindley’s algorithm builds a tree guided by the structure
of the term whose type we want to infer. If the algorithm succeeds for some
term t, the built tree corresponds to a logical derivation of the propositional
formula represented by the inferred type. This means that we can decide if
a purported proof of a given theorem is in fact a proof by building a term
out of the proof and then applying the type-checking algorithm. Howard
[] later made this correspondence precise and showed how normalisation of
terms corresponds to cut-normalisation in proofs. This correspondence was
also noticed by Lambek [], who extended the correspondence of STT with
cartesian closed categories.

Identifying proposition with types is one in a series of readings across
the history and the different schools of constructivism, which are collectively
referred as the Brouwer-Heyting-Kolmogorov interpretation [, , ,].
Kolmogorov viewed propositions as problems; thus to know a proposition
true, is to have a method for solving the problem. Brouwer and Heyting’s []
reading is based on the idea that proofs of a composed propositional formula
consist in constructions built from the ones corresponding to the sub-formulas
involved. For example, a universal statement is intuitionistically true if one
has a method to produce, for each element of the domain of discourse, a proof
of the instance of the predicate for that particular element; in symbols, say P is
a predicate over some type A, the domain of discourse, a proof of ∀x ∈ A, Px

.. Using dependent types

should be a method f which when applied to every a ∈ A yields a proof of Pa;
which fits with the description of dependent products of the previous section.

Let us analyse a concrete example of a proposition to see the formalisation
of proofs in type theory. Suppose we want to prove “1+ 1 is even”. First of all,
we need to define a basic type corresponding to the set of natural numbers and
define the adding operation; then we need to define a type corresponding to
the proposition “n is even”.

Martin-Löf proposed [] that new types can be added to the formal system
by giving, and explaining: the conditions for forming the type, the valid forms
of constructing (canonical) elements for the new type, the elimination operators
for each type, and a method for deciding when two canonical elements of the
new type are equal. These conditions are formalised by rules of some form of
judgement: formation rules, introduction rules, elimination rules, and axioms
for equalities.

The formation rule for the type of natural numbers is

Nat type

there are two introduction rules for canonical elements of Nat:

0 : Nat
n : Nat

Sucn : Nat

Natural numbers can be used, eliminated, by the induction operator:

[n : Nat]
····

An type a : A0

[m : Nat b : Am]
····

f m b : A (Sucm)

natrec(n,A, a, f) : An

Notice that A is not a type by itself, but a family of types indexed by natural
numbers; we indicate this dependency by putting the hypothesis in brackets.
Using the elimination principle for natural numbers we can define addition
n+m = natrec(n,Nat,m, λn ′.λp.Sucp).

Equality rules include those making equality an equivalence relation and
also a congruence with respect to constructors. For natural numbers we also
have axioms involving the eliminator:

natrec(0,A, a, f) = a natrec(Sucn,A, a, f) = f n natrec(n,A, a, f)

For example, using these axioms, and beta-reduction, we can prove Suc 0 +
Suc 0 = Suc (Suc 0).

The predicate “n is even” is introduced also with rules; the formation
rule for the type corresponding to that propostion should make explicit the
condition that n is a natural number:

n : Nat

Even n type

We can say that Even is a family of types indexed by Nat; the introduction rules
correspond to the inductive definition of even numbers:

EvZ : Even 0
n : Nat evn : Even n

EvInd evn : Even (Suc (Sucn))

 . Introduction

Notice that EvZ has not, a priori, the type Even (Sucn), for any n : Nat. In
the proposition-as-type correspondence, a proposition P is true if the type
representing P has some inhabitant; i.e., if there is some term with that type.
For example, let 1 be Suc 0 and 2 be Suc 1, we can derive EvInd EvZ : Even 2.
On the other hand we can derive that Even 1+ 1 is equal, as a type, to Even 2;
so, it is to be expected that EvInd EvZ had also the type Even 1+ 1. In general,
different representations of the same proposition should have the same proofs;
that means that we need a conversion rule:

(conv)

A type B type A = B a : A

a : B

Applying conversion we know that a proof of Even 2 also counts as a proof of
Even (1+ 1).

The proposition-as-types principle that we have described justifies the use
of type systems as the formalism on which mathematical knowledge is pre-
cisely written and proofs can be carried out. In particular, if the type system is
decidable, see Sec. ., then it is possible to program a type-checker to verify
that some construction, represented as a term, is a proof for some proposition,
represented as a type. Geuvers [] reviews the history of proof assistants,
explains the differences between several proof assistants and their theoretical
background (some of them are not based on the proposition-as-types principle),
and discusses a few issues arising when large pieces of mathematics are formal-
ised. Wiedijk’s compilation [] of formalised proof of the irrationality of

√
2

can give an idea of the outlook of formalisations in different proof assistants.
Wiedijk [] lists the following four theorems as the most impressive pieces
of formalised mathematics:

. Gödel’s first incompleteness theorem.

. Jordan curve theorem.

. Prime number theorem.

. Four-colour theorem.

Programming with Correctness

In the previous section we have explained the reasons for constructing proof
assistants as implementations on computers of type systems and referred to
some papers discussing formalisations of mathematical results. Dependent
types allow to program in a correct way by making it possible to write the
specification of each function as its type. We illustrate this point by the
following implementation in Agda of a type-inference algorithm for a variant
of the simple typed lambda calculus.

We only explain the most peculiar aspects of the program; an introduction
to Agda can be found in [].

module STT where

open import Data.Product
open import Data.Sum hiding (map)

.. Using dependent types

The underscores that appear in definitions are used to indicate arguments of
mixfixed operators, be them variables, type constructors, or term constructors.
Arguments enclosed between curly braces are implict and can be inferred by
Agda. When one needs to know the implicit parameters in an application, they
are also enclosed in curly brackets.

infixl 10 _ ◦ _
infixr 20 _⇒_

_ ◦ _ : {A B C : Set}→ (B→ C)→ (A→ B)→ A→ C
g ◦ f = λ x→ g (f x)

id : {A : Set}→ A→ A
id x = x

Note that the type False lacks any constructor; this fact is recognised by
the compiler that permits to define magic. This function can be thought as the
elimination principle for falsehood.

data False : Set where

magic : {A : Set}→ False→ A
magic ()

¬_ : Set→ Set
¬A = A→ False

The following type, called intensional equality, has only one constructor for
equality. We use this type to prove that each term has at most one type. A type,
or predicate, is decidable if we know if it has or not any member.

data _ ≡ _ {A : Set} : A→ A→ Set where
refl : {a : A}→ a ≡ a

data Dec (A : Set) : Set where
yes : (a : A)→ Dec A
no : ¬A→ Dec A

In the next snippet we introduce the types and prove that their intensional
equality is decidable. The with construct brings the result of some function
call to the left hand side of a definition, allowing to do pattern-matching in
the result of the function call.

data Ty : Set where
int : Ty
⇒ : Ty→ Ty→ Ty

arrEq : {t t ′ s s ′ : Ty }→ (t⇒ t ′) ≡ (s⇒s ′)→ (t ≡ s) (t ′ ≡ s ′)
arrEq refl = refl, refl

_ ≃ _ : (t t ′ : Ty)→ Dec (t ≡ t ′)
int ≃ int = yes refl
(t⇒ t ′) ≃ (s⇒s ′) with t ≃ s | t ′ ≃ s ′

(.s⇒ .s ′) ≃ (s⇒s ′) | yes refl | yes refl = yes refl
(_⇒ t ′) ≃ (s⇒s ′) | _ | no p = no (p ◦ proj2 ◦ arrEq)
(t⇒_) ≃ (s⇒s ′) | no p | _ = no (p ◦ proj1 ◦ arrEq)

 . Introduction

int ≃ (t⇒ t ′) = no (λ ())
(t⇒ t ′) ≃ int = no (λ ())

The untyped terms are either constants (natural numbers), addition, vari-
ables (we explain after the whole program our encoding of variables), abstrac-
tions (we use a bold lambda to distinguish the term constructor from the
internal abstraction operator of Agda), and applications.

data Nat : Set where
zero : Nat
suc : Nat→ Nat

data Tm : Set where
nat : Nat→ Tm
_ + _ : Tm→ Tm→ Tm
V : Tm↑ : Tm→ Tm
λ_._ : Ty→ Tm→ Tm
_ ·_ : Tm→ Tm→ Tm

The typing relation depends on a context assigning types to free variables;
each constructors of the type _⊢_ :_ corresponds to a typing rule. We point out
that the typing rules are too strong; for example, we cannot type the weakening
of closed terms in the empty context. We accept this artificiality for the sake of
simplicity of the algorithm.

data Ctx : Set where
⟨⟩ : Ctx
▹ : Ctx→ Ty→ Ctx

data _⊢_ :_ : Ctx→ Tm→ Ty→ Set where
Con : forall {c n}→ c⊢nat n : int
Add : forall {c e e ′ }→ c⊢e : int→ c⊢e ′ : int→ c⊢e + e ′ : int
Var : forall {c t}→ (c▹ t)⊢V : t
Weak : forall {c t t ′ e}→ c⊢e : t→ (c▹ t ′)⊢↑e : t
Abs : forall {c t t ′ e}→ (c▹ t)⊢e : t ′ → c⊢λ t .e : t⇒ t ′

App : forall {c t t ′ e e ′ }→ c⊢e : t⇒ t ′ → c⊢e ′ : t→ c⊢e ·e ′ : t ′

_ ⊢ _ : Ctx→ Tm→ Set
c ⊢ e = ∃ (λ t→ c⊢e : t)
_ 0 _ : Ctx→ Tm→ Set
c 0 e = ¬(c ⊢ e)

In this part we prove several properties for this presentation of STT: unique-
ness of typing, some inversion properties, and some properties showing the
impossibility of assigning any type to some terms (under particular contexts).

uniqTy : (c : Ctx)→ (e : Tm)→ (t t ′ : Ty)→ (c⊢e : t)→
(c⊢e : t ′)→ t ≡ t ′

uniqTy c (nat k) .int .int Con Con = refl
uniqTy c (e + e ′) .int .int (Add _ _) (Add _ _) = refl
uniqTy .(c▹ t) V .t t (Var {c}) Var = refl
uniqTy .(c▹ t ′′) (↑e) t t ′ (Weak {c} {.t} {t ′′ } jdg) (Weak jdg ′)

.. Using dependent types

= uniqTy c e t t ′ jdg jdg ′

uniqTy c (λ t .e) .(t⇒ t ′) .(t⇒ t ′′) (Abs { .c} {.t} {t ′ } jdg)
(Abs { .c} {.t} {t ′′ } jdg ′)
with uniqTy (c▹ t) e t ′ t ′′ jdg jdg ′

uniqTy _ (λ s ._) .(s⇒ t ′) .(s⇒ t ′) (Abs jdg) (Abs jdg ′)
| refl = refl

uniqTy c (e ·e ′) t t ′ (App { .c} {s} {.t} jf ja)
(App { .c} {s ′ } {.t ′ } jf ′ ja ′)
with uniqTy c e (s⇒ t) (s ′⇒ t ′) jf jf ′

uniqTy c (e ·e ′) t .t (App { .c} {s} {.t} jf ja)
(App { .c} {.s} {.t} jf ′ ja ′)
| refl = refl

The first two results prove that both variables and terms applied to the
shifting operator cannot be typed in the empty context. Then we have the
inversion lemmas for typing of weakenings and abstractions.

varEmptyCtx : ⟨⟩ 0 V
varEmptyCtx (t, ())

weakEmptyCtx : (e : Tm)→ (⟨⟩ 0 ↑e)
weakEmptyCtx e (t, ())

weakTy : (c : Ctx)→ (t : Ty)→ (e : Tm)→ (c▹ t) ⊢ (↑e)→ c ⊢ e
weakTy c t e (t ′,Weak je) = t ′, je

absTy : (c : Ctx)→ (t : Ty)→ (e : Tm)→ (c ⊢ (λ t .e))→
((c▹ t) ⊢ e)

absTy c t e (.(t⇒ t ′),Abs { .c} {.t} {t ′ } je) = t ′, je

The following lemmata state properties about the typing of sums.

invAdd : (c : Ctx)→ (e e ′ : Tm)→ (c ⊢ (e + e ′))→
(c⊢e : int) (c⊢e ′ : int)

invAdd c e e ′ (int,Add je je ′) = je, je ′

invAdd c e e ′ (t⇒ t ′, ())

addFunL : (c : Ctx)→ (t t ′ : Ty)→ (e e ′ : Tm)→ (c⊢e : t⇒ t ′)→
c 0 (e + e ′)

addFunL c t t ′ e e ′ jdg (.int, (Add je je ′))
with uniqTy c e (t⇒ t ′) int jdg je

addFunL jdg e ′ _ _ _ _ (.int, (Add je je ′)) | ()

addFunR : (c : Ctx)→ (t t ′ : Ty)→ (e e ′ : Tm)→ (c⊢e : t⇒ t ′)→
c 0 (e ′ + e)

addFunR c t t ′ e e ′ jdg (.int, (Add je je ′))
with uniqTy c e (t⇒ t ′) int jdg je ′

addFunR jdg e ′ _ _ _ _ (.int, (Add je je ′)) | ()

This last group of properties deal with typing judgements of applications.

invApp : (c : Ctx)→ (e e ′ : Tm)→ (c ⊢ (e ·e ′))→
∃2 (λ t t ′ → c⊢e : t⇒ t ′ c⊢e ′ : t)

invApp .c .e .e ′ (.t ′,App {c} {t} {t ′ } {e} {e ′ } je je ′)
= t, t ′, je, je ′

 . Introduction

appFunTy : (c : Ctx)→ (e e ′ : Tm)→ (c ⊢ (e ·e ′))→ (c ⊢ e)
appFunTy c e e ′ japp with invApp c e e ′ japp
... | t, t ′, je, _ = t⇒ t ′, je

appArgTy : (c : Ctx)→ (e e ′ : Tm)→ (c ⊢ (e ·e ′))→ (c ⊢ e ′)
appArgTy c e e ′ japp with invApp c e e ′ japp
... | t, _, _, je ′ = t, je ′

appFunInt : (c : Ctx)→ (e : Tm)→ (c⊢e : int)→ (e ′ : Tm)→
c 0 (e ·e ′)

appFunInt c e jint e ′ (t, (App { .c} {s} {.t} y y ′))
with uniqTy c e int (s⇒ t) jint y

appFunInt t _ t ′ _ (_, (App y y ′)) | ()

appArgOther : (c : Ctx)→ (e e ′ : Tm)→ (t t ′ s : Ty)→
(c⊢e : t⇒ t ′)→ (c⊢e ′ :s)→ ¬(t ≡ s)→ c 0 (e ·e ′)

appArgOther c e e ′ t t ′ s jdge jdge ′ neq (s ′′, (App { .c} {r } {.s ′′ } y y ′))
with uniqTy c e (t⇒ t ′) (r⇒s ′′) jdge y | uniqTy c e ′ s r jdge ′ y ′

appArgOther c e e ′ .s .s ′′ s jdge jdge ′ neq (s ′′, (App y y ′))
| refl | refl = neq refl

appEqTy : (c : Ctx)→ (t s t ′ : Ty)→ (e e ′ : Tm)→ (c⊢e : t⇒ t ′)→
(c⊢e ′ :s)→ t ≡ s→ c⊢e ·e ′ : t ′

appEqTy c .s s t ′ e e ′ ce ce ′ refl = App ce ce ′

The previous results are useful to program the function to infer types; note
the strong type of this function: given a context and a term we either infer
a type, in that case we also build a derivation showing that the term can be
typed in that context, or we prove that there is no type assignable to the term.

tyInf : (c : Ctx)→ (e : Tm)→ (c 0 e) ⊎ ∃ (λ t→ c⊢e : t)
tyInf c (nat n) = inj2 (int,Con)
tyInf c (e + e ′) with tyInf c e | tyInf c e ′

... | inj1 er | _ = inj1 (λ ih→ (magic ◦ er) (int, proj1
(invAdd c e e ′ ih)))

... | _ | inj1 er = inj1 (λ ih→ (magic ◦ er) (int, proj2
(invAdd c e e ′ ih)))

tyInf c (e + e ′) | inj2 (t⇒ t ′, je) | _ = inj1 (addFunL c t t ′ e e ′ je)
tyInf c (e + e ′) | _ | inj2 (t⇒ t ′, je ′) = inj1 (addFunR c t t ′ e ′ e je ′)
... | inj2 (int, p) | inj2 (int, p

′) = inj2 (int,Add p p ′)
tyInf ⟨⟩ V = inj1 varEmptyCtx
tyInf (c▹ t) V = inj2 (t,Var)
tyInf ⟨⟩ (↑e) = inj1 (weakEmptyCtx e)
tyInf (c▹ t) (↑e) with tyInf c e
... | inj1 er = inj1 (λ ih→ (magic ◦ er) (weakTy c t e ih))
... | inj2 (t

′, prf) = inj2 (t
′,Weak prf)

tyInf c (λ t .e) with (tyInf (c▹ t) e)
... | inj1 er = inj1 (λ ih→ (magic ◦ er) (absTy c t e ih))
... | inj2 (t

′, prf) = inj2 (t⇒ t ′,Abs prf)
tyInf c (e ·e ′) with tyInf c e | tyInf c e ′

... | inj1 er | _ = inj1 (λ ih→ (magic ◦ er) (appFunTy c e e ′ ih))

... | inj2 _ | inj1 er = inj1 (λ ih→ (magic ◦ er) (appArgTy c e e ′ ih))

... | inj2 (s, ie) | inj2 (s
′, ie ′) with s

... | int = inj1 (appFunInt c e ie e
′)

.. Type-Checking: Deciding the Typing Relation

... | t⇒ t ′ with t ≃ s ′

... | no neq = inj1 (appArgOther c e e
′ t t ′ s ′ ie ie ′ neq)

... | yes eq = inj2 (t
′, appEqTy c t s ′ t ′ e e ′ ie ie ′ eq)

Let us explain briefly the variation of the calculus with respect to that of
Sec. .. Rule (α) in Def. says that names of bound variables are irrelevant.
Explicit use of (α) becomes tedious and it is customary to avoid it by using
some convention over the terms – for example, identify α-equivalent terms
or assume all bound variables to be different. De Bruijn [] was the first to
notice that what is relevant is the “distance”, measured by how many binders
we should cross over by going upwards in the abstract syntax tree, between
an occurence of a bound variable and its binder. He replaced the set Var of
variables by natural numbers; if a natural number is greater than the distance
to the outer-most binder, then it represents a free variable. In our case, free
variables should be thought as assumptions referring to some hypotheses in
the context. Let us consider some examples showing how to translate to de
Bruijn notation. The combinator K = λx.λy.x becomes λλ1, and combinator
S = λx.λy.λz.(x z) (y z), λ(λ(λ(2 0) (1 0))). If we consider a term with free
variables as in λx.f x we can use any index greater than 0 for f: λ1 0.

Some of the subtleties of substitution become more apparent with indices;
for instance to avoid the capture of free variables in r when substituting r
inside an abstraction one needs to shift the free variables in r; that is, if n is an
occurrence of a free variable in r, it should become n+ 1 under the abstraction.
On the other hand, this shifting should not act on bound-variables. This
informal considerations can be internalised in the formal system by adding a
new grammatical category for explicit substitutions. In that case, the shifting
operator belongs to the category of substitutions; in the Agda formalisation,
shifting is ↑. Note that we use an unary representation of natural numbers, V
denotes 0 and ↑ denotes Suc. In the rest of the thesis, 0 is denoted by q and
Suc by p.

. Type-Checking: Deciding the Typing Relation

In the previous section we showed an algorithm for type-checking simple
typed lambda calculus. The algorithm proceeds by recursion on the structure
of the term, for example to type-check an application, it infers the type of
the term in the function place and if the inferred type was of the form s →
t, then it checks that the argument has type s. When we try to apply the
same idea for dependent types, we rapidly discover a problem: the argument
can have a syntactically different type s ′, but convertible to the expected
type s; thus the rule for application can still be used, but only after using
(conv) on the argument. We came across a similar situation when proving
EvInd EvZ : Even (1+1). So to decide type-checking we need to decide equality
between types; and since types can depend on terms, we also need to decide
equality between terms.

To check if two terms, or types, are equal, we may put them in normal form
and compare if they are syntactically equal. This method yields a decision

We refer to [, , ,] for further information on explicit substitutions.

 . Introduction

procedure for equality, provided that equal terms have the same normal form
and each term is provably equal to its normal form. Sometimes it is possible
to obtain a normalisation algorithm by orienting the equality rules; if the
resulting rewrite system has some properties (confluence and termination),
then it can be used to decide equality. This approach of orienting the axioms
cannot be applied for the type of an abelian monoid:

Mon type 0 : Mon
a : Mon b : Mon

a ∗ b : Mon

with axioms

0 ∗ a = a a ∗ b = b ∗ a

It is clear that in whatever direction we orient the second axiom, the rewrit-
ing rule could be used indefinitely; thus making the rewriting system non-
terminating. In the next section we introduce another normalisation algorithm
that can be used to handle equality rules as these.

Normalisation By Evaluation: Using Semantics to Normalise

In order to explain the normalisation algorithms defined in this thesis, we need
to introduce the notion of formal semantics, in particular of denotational se-
mantics. Remember that one of the points of formal systems is to devoid of any
meaning its constructions. Denotational semantics provides a mathematical
intrepretation, called a model, to the syntactical elements of a formal system. In
the case of STT, for example, there are two kinds of syntactical elements: types
and terms. A standard model for STT, as defined by Henkin [], is one where
o is interpreted as the set Do = {T,F} of truth values, ι is interpreted by some
arbitrary set Dι, and A→ B, as the set of all the (total) functions from DA to
DB. Terms are interpreted as elements of those sets. Given an interpretation
of the syntax — we use JaK to denote the interpretation of a — the definition
of a model should also say when a judgement is valid under the interpretation.
In the standard model, a judgement with conclusion a : A is valid if JaK ∈ JAK.
An equality judgement a = b : A is valid if JaK = JbK and JaK ∈ JAK.

Berger and Schwichtenberg [] noticed that one can set up a certain model
from where normal forms can be extracted. This technique, called Normalisa-
tion by Evaluation (NbE), uses semantical rather than syntactical concepts, as
in more traditional methods where one speaks of reduction sequences and the
like. The idea of NbE is to build a model such that one can go back from the
semantics to the syntax; i.e. one not only has the evaluation function J_K but
also a reification function R(_) ∈

ADA → Λ, see Fig. .. If this reification

function maps elements in the image of J_K to terms in normal form, then
we can compose the two functions and get a normal form for each term. The
reification function will be useful if we can prove that the composition of the
two functions maps terms to their normal form; that is, we need a proof that
t = R(JtK) is provable in the formal system. In order to use NbE for deciding
the equality in a theory we need another property: if t = t ′ is provable, then
we need to know that R(JtK) ≡ R(Jt ′K), where ≡ denotes syntactic equivalence.

.. Related work

t

R JtK

ΛA

Nf

Syntax

JtK

DA

R−1(Nf)

SemanticsJ K

R

Figure .: Normalisation by Evaluation

. Related work

In this section I revise the state-of-the-art in the main themes of this thesis; in
the next section I highlight the contribution of each chapter with respect to
the literature mentioned here.

The technique of NbE for STT was introduced by Berger and Schwichten-
berg []; but a model of normal forms has been already considered for a
dependent type systems (but without conversion under abstractions) in [],
where some combinatorial results are proved by reasoning over the model. As
far as I know, most of the literature of NbE for STT [, , , , , ,],
in various presentations and under different points of view, considered βη-
long-normal forms; one exception is [] where the normalisation algorithm
does not η-expand terms.

The first paper on NbE for Martin-Löf type theory (MLTT) is [], the cal-
culus considered here has an untyped notion of conversion. NbE for MLTT
with equality under types is considered in []. These papers are followed by
[], which presents an incremental type-checking algorithm based on [] and
uses ideas coming from the previous two works to prove the correctness and
completeness of the decision procedure for equality. Another related work
is [] which uses hereditary substitution to decide equality and presents a
type-checking algorithm for MLTT without (η). A proof of the correctness and
completeness of type-checking for a weaker logical framework is in []. In
[] the type-checking algorithm is extended to a logical framework with
singleton types and subtyping. Pollack [] developed a formal proof of the
decidability of type-checking for ECC []. Barras [] implemented in Coq a
correct and complete type-checking algorithm for the Calculus of Construc-
tions; later Barras [] considered stonger type systems closer to the actual
implementation of Coq.

 . Introduction

In the previous paragraph we mentioned two presentations of MLTT: with
typed-equality (two terms are equal under a type) and with equality generated
by a reduction relation on untyped-terms. Geuvers [] conjectured that both
presentations are equivalent for PTSs. For PTSs without (η), Adams [] proved
the equivalence for functional PTSs. Later, Herbelin and Siles [] extended
and formalised Adams’ result to semi-full systems; Siles finally settled in his
PhD thesis [] the equivalence for every PTS.

. Our contributions

In this section I briefly comment on the contributions of the following chapters.
Most of them are based on work that I have done in collaboration with other
people; for each chapter I refer to the relevant papers and also make explicit
my personal contributions to them. Let us invoke the preface paradox, any
mistake or oversight of this thesis is my own responsibility.

A common trait of all the chapters is a NbE algorithm, suggested by Thierry
Coquand in the context of dependent type systems. The NbE algorithm is first
presented for STT in Chap. ; we use STT to explain the technical issues to be
solved in NbE and how the algorithm handles them. One novelty of this NbE
algorithm is that it separates the phases of reification from that of η-expansion;
thus the same architecture can be used for calculi with and without (η). All the
chapters are organised in a similar way as that of Chap. : first we introduce
the formal system. Then we introduce a model suitable for the definition
of NbE. Correctness of the NbE algorithm is based on logical relations and
deserves a separate section. The normalisation algorithm is used in the last
section of each chapter.

In Chapter we define NbE for Martin-Löf type theory with a universe and
dependent function spaces without rule (η). From the proof of the correctness
of the normalisation function we prove the injectivity of the constructor of
dependent functions spaces; as far as we know, that result has not been proved
by elementary syntactical arguments. This chapter is based on a paper in
preparation, co-authored with Thierry Coquand and Daniel Fridlender; this
work is based on the papers mentioned in the next paragraph. My contribution
to the paper is the adaptation of the NbE algorithm for a calculus without (η).

Chapter is an adapted version of joint-work with Andreas Abel and
Thierry Coquand. In this work we considered Martin-Löf type theory extended,
among others, with singleton types and proof-irrelevant types. This was first
presented in TLCA [] and later published in a journal version []; these articles
benefited and can be considered as follow-ups of [, ,]. My contribution to
that work consisted in carrying on the proofs; in particular, I came up with the
method of proving completeness for the type-checker and the conservativity
of MLTT with a canonical element for proof-irrelevant types. The emphasis of
this chapter is on the use of NbE to define a type-checking algorithm; as far as
I know, there is no proof of correctness and completeness for MLTT.

In Chapter we define NbE for a class of Pure Type Systems; this chapter
is based on joint-work with Daniel Fridlender. As in Chap. , we prove the
injectivity of the constructor of dependent function spaces for predicative PTSs;
the model construction also leads to a proof of equivalence between systems

.. Our contributions

with typed equality and untyped conversion for predicative PTSs. As I said, this
result has been already proved for every PTS by Siles []; the contribution is
the proof method; which can be useful to study the equivalence for some PTSs
with (η). The particular presentation of PTSs with explicit substitutions of this
chapter is a novelty in itself and we formalised some of their meta-theory. A
preliminary report of the results on this chapter was presented at Types-
[]. My contribution to the results on this chapter are the formalisation of
the equivalence proof in Agda and the adaptation of the proof method of
correctness of NbE.

In Chapter I show that the NbE algorithm can be adapted for theories in-
volving axioms like commutativity. Moreover I suggest some more applications
of NbE for dependent type systems.

Normalisation By Evaluation

2This chapter is a technical introduction to NbE and the methods used in the
proofs of completeness and correctness of NbE. We study them in the more
elementary setting of STT. We first present the formal system of STT, denoted
by λ→. Then we present and explain NbE for λβ, a variant of λ→ without (η);
we skip the proofs of completeness and correctness for λβ. Later we adapt
that algorithm for λ→, for which we give full proofs of completeness and
correctness of NbE.

. Syntax of λ→
The formal system of λ→ is presented as a generalised algebraic theory. This
notion, introduced by Cartmell [], extends many-sorted logic in that it
includes dependent sorts; semantically, this kind of sorts may denote, for
instance, family of sets (contrast this with the situation of many-sorted logic
where each sort denotes a fixed set). GATs are an abstraction of Martin-Löf
type theory, and can be understood also as the logical framework used to define
our formal systems.

A GAT is defined by prescribing sorts and operators, rules for the intro-
duction of sorts, introductory rules for operators, and axioms postulating the
equality of sort, or operator, expressions. We explain some technicalities of
GATs as we encounter them.

Our particular presentation of λ→ is close to that of categorical combinators
of Curien et al. [, ,]. The theory of λ→ has four sorts: contexts, types,
substitutions and terms; their introductory rules are shown in Fig. .. From
the rules we can observe that Ctx, the sort for well-formed contexts, and Type
are constant sorts, whereas Γ → ∆, the sort for substitutions, depends on
contexts, and Term(Γ,A), on contexts and types.

We use the following conventions: capital Greek letters denote metavari-
ables ranging over contexts, small Greek letters are for substitutions, upper-
case Latin letters stand for types, and minuscules for terms. Constants are
printed in sans. While we are discussing notation, it is in place to contrast the

(ctx-sort)

Ctx is a sort

(subs-sort)

Γ, ∆ ∈ Ctx

Γ → ∆ is a sort

(type-sort)

Type is a sort

(term-sort)

Γ ∈ Ctx A ∈ Type

Term(Γ,A) is a sort

Figure .: Sort introductory rules

 . Normalisation By Evaluation

format of the typing rules given below with the more traditional ones. It is
customary in type theory to differentiate the various forms of judgement by
the way they are written; for example, the judgement for Γ being a well-formed
context is written Γ ⊢ and to have a proof of “t being of type A under context
Γ” is printed as Γ ⊢ t : A. In GAT both judgements are represented uniformly
as Γ ∈ Ctx and t ∈ Term(Γ,A). Setting aside equality, the other form of judge-
ments that we will encounter are δ ∈ Γ → ∆ for substitutions, and A ∈ Type
for types; in type theory they are written as Γ ⊢ δ : ∆ and Γ ⊢ A, respectively.
From this parallel it is easy to go from one presentation style to the other. We
use the GAT style for the introductory rules of λ→; in the rest of the chapter we
present examples, axioms, and judgements in the more familiar style of type
theory.

Introductory rules

In this section we introduce the rules for λ→ in small steps; rules are grouped
by the form of judgement of their conclusion. We explain the rôle of each
operator after its introductory rule.

Contexts A context corresponds to a list of assumptions. The empty context
is denoted by �; sometimes we write ⊢ t : A, instead of � ⊢ t : A. If we have
made some assumptions, say Γ , then we can make some more; since types act
as assumptions, we can extend Γ with a type A: this context is written Γ.A.

(empty-ctx)

� ∈ Ctx

(ext-ctx)

Γ ∈ Ctx A ∈ Type

Γ.A ∈ Ctx

Usually when one adds assumption A to the context Γ (read “Γ is extended
with type A”), this new assumption is named. Of course this name should be
fresh with respect to names of other assumptions in Γ . In our calculus there is
no need to name assumptions because they are referred by de Bruijn indices.

Substitutions The introductory rules of operators for substitutions are shown
in Fig. .. A substitution σ ∈ Γ → ∆ can be understood as assigning well-
typed terms under Γ to assumptions in ∆. Another possible reading, coming
from the categorical origin of explicit substitutions [], is that a substitution
σ ∈ Γ → ∆ is a morphism in the category of contexts (which also explains that
σ can be thought as a mapping Term(∆,A)→ Term(Γ,A)).

The operators can be easily understood using the first reading: the identity
substitution idΓ maps every variable to itself. The empty substitution ⟨⟩ should
map no variable to anything. Composition is writen as juxta-position; the
extension operator, noted by pairing, makes patent that substitutions assigns
well-typed terms under one context to variables in another. Finally, p is the
shifting operation, also called weakening substitution, needed when extending
a context with a new assumption.

In the introductory rules for substitutions we note an asymmetry between
the rule for the identity substitution and the rule for the shifting and empty
substitutions: whereas the identity operator is applied to a context, but the

.. Syntax of λ→

(id-subs)

Γ ∈ Ctx

idΓ ∈ Γ → Γ

(empty-subs)

Γ ∈ Ctx

⟨⟩ ∈ Γ → �

(fst-subs)

Γ ∈ Ctx A ∈ Type

p ∈ Γ.A→ Γ

(comp-subs)

Γ, ∆, Σ ∈ Ctx δ ∈ ∆→ Σ σ ∈ Σ→ Γ

σ δ ∈ ∆→ Γ

(ext-subs)

Γ, ∆ ∈ Ctx σ ∈ ∆→ Γ A ∈ Type t ∈ Term(∆,A)

(σ, t) ∈ ∆→ Γ.A

Figure .: Introductory rules for substitutions

operators ⟨⟩ and p are not. In the formal syntax of GATs every “polymorphic”
operator should be fully applied; in our case, the conclusions should read
⟨⟩Γ ∈ Γ → � and p(Γ,A) ∈ Γ.A → Γ , respectively. In the following, we will
present polymorphic operators without applying all the arguments to make
them monomorphic. A further informality that we allow ourselves in the
presentation of introductory rules is the omission of some premises that can
be inferred from premisses depending on them or from the conclusion.

Types We consider only a basic type N and the formation of non-dependent
function spaces, A→ B.

(iota-I)

N ∈ Type

(Fun-I)

A ∈ Type B ∈ Type

A→ B ∈ Type

Terms The introductory rules for terms are presented in Fig. .. Note the
rule (subs-term) for applying substitutions to terms which was not present in
Def. .; in this rule t is a term with variables under ∆ and σ assigns terms,
typed under Γ , to those variables; thus after applying σ to t we have a well-
typed term under Γ .

As we explained at the end of Sec. ., we use a variant of unary de Bruijn
indices: q corresponds to 0 and the succesor of n is obtained by applying
the substitution p to n; e.g. the penultimate assumption is referred by q p,
the previous one by (q p) p, and so on. The following example illustrates our
encoding of variables.

Example .
...

N→ N.N ⊢ q : N

...

N→ N.N ⊢ q p : N→ N

N→ N.N ⊢ App (q p) q : N

N→ N ⊢ λ(App (q p) q) : N→ N

⊢ λλ(App (q p) q) : (N→ N)→ N→ N

 . Normalisation By Evaluation

(hyp)

Γ ∈ Ctx A ∈ Type

q ∈ Term(Γ.A,A)

(Abs-I)

Γ ∈ Ctx A ∈ Type t ∈ Term(Γ.A, B)

λt ∈ Term(Γ,A→ B)

(App-I)

Γ ∈ Ctx A,B ∈ Type t ∈ Term(Γ,A→ B) r ∈ Term(Γ,A)

App t r ∈ Term(Γ, B)

(subs-term)

Γ, ∆ ∈ Ctx A ∈ Type σ ∈ Γ → ∆ t ∈ Term(∆,A)

tσ ∈ Term(Γ,A)

Figure .: Introductory rules for terms

Axioms The second data of a GAT are its equality rules between sort expres-
sions and between expressions having the same sort. In the case of STT there
is no axiom for sort expressions and there are only rules for substitutions
and terms. Although we show the rules making the equality an equivalence
relation and a congruence with respect to operators, these derived rules do not
need to be added as axioms, because they are part of the logical framework.

Equalities on terms The first set of axioms correspond to rules (β) and (η) of
Def. . Note that each axiom has a type and one can prove that both sides of
the equation have that type. For example, in (β) the body t of the abstraction
λt has type B under the context Γ.A; by extending idΓ with r and applying the
resulting substitution to t, we map the first free variable of t to r. In contrast
with implicit substitutions, t (idΓ , r) is not the result of substituting all the
occurences of the first free variable of t by r; that result can still be obtained
by using axioms to resolve substitutions applied to terms and composition of
substitutions.

(beta)

Γ.A ⊢ t : B Γ ⊢ r : A
Γ ⊢ App (λt) r = t (idΓ , r) : B

(eta)

Γ ⊢ t : A→ B

Γ ⊢ λ(App (t p) q) = t : A→ B

In rule (η) the weakening substitution is explictly applied to term t, thus none
of its free variables are bound by the binder.

Substitutions on terms The following rules axiomatise substitution; if we
read these axioms as rewrite rules, we can observe that they reduce redices
involving substitutions applied to terms. Keeping in mind our explanation
of substitutions, we can see that (snd-sub) corresponds to the replacement
of the first free variable for the second component. Consider, for example,
an application Γ ⊢ App (λq) t : A, we can first reduce the β-redex to get
App (λq) t = q (idΓ , t) and then apply (snd-sub) to get App (λq) t = t. In
(abs-sub) we realise the need of extending the substitution, while σ assigns
terms under Γ , inside the binder we should have a substitution assigning terms
under Γ.A; note also that by composing σ with p we lift all free variables in σ

.. Syntax of λ→

to avoid them being captured.

(sub-ass)

Σ ⊢ t : A Σ ⊢ σ : ∆ Γ ⊢ δ : ∆
Γ ⊢ t (σ δ) = (t σ) δ : A

(sub-id)

Γ ⊢ t : A
Γ ⊢ t idΓ = t : A

(snd-sub)

Γ ⊢ t : A Γ ⊢ σ : ∆
Γ ⊢ q (σ, t) = t : A

(abs-sub)

∆ ⊢ λt : A→ B Γ ⊢ σ : ∆
Γ ⊢ (λt)σ = λ(t (σ p, q)) : A→ B

(app-sub)

∆ ⊢ t : A→ B ∆ ⊢ r : A Γ ⊢ σ : ∆
Γ ⊢ (App t r)σ = App (t σ) (r σ) : B

Substitutions The following rules can be understood as the equational theory
of a category with finite products: associativity of composition, identity is the
neutral element of composition, the universal property for the terminal object,
and properties for binary products: post-composition with the first projection,
identity for products, and post-composition with a mediating morphism to a
product object.

(sub-ass)

Θ ⊢ σ : Σ Σ ⊢ δ : ∆ Γ ⊢ γ : ∆
Γ ⊢ (σ δ)γ = σ (δ γ) : Θ

(sub-empty)

Γ ⊢ σ : �
Γ ⊢ ⟨⟩σ = ⟨⟩ : �

(sub-idl)

Γ ⊢ σ : ∆
Γ ⊢ idΓ σ = σ : ∆

(sub-idr)

Γ ⊢ σ : ∆
Γ ⊢ σ idΓ = σ : ∆

(sub-id-empty)

� ⊢ id� = ⟨⟩ : �

(sub-id-ext)

Γ.A ⊢ idΓ.A = (p, q) : Γ.A

(sub-fst)

Γ ⊢ t : A Γ ⊢ σ : ∆
Γ ⊢ p (σ, t) = σ : ∆

(sub-map)

Γ ⊢ t : A Γ ⊢ σ : ∆ Σ ⊢ δ : ∆
Γ ⊢ (σ, t) δ = (σ δ, t δ) : Σ.A

Congruence The last two groups of rules correspond to reflexivity, symmetry,
transitivity, and contextual clousure of equality.

(refl)

Γ ⊢ t : A
Γ ⊢ t = t : A

(refl-subs)

Γ ⊢ σ : ∆
Γ ⊢ σ = σ : ∆

(sym)

Γ ⊢ t = r : A
Γ ⊢ r = t : A

(sym-subs)

Γ ⊢ σ = σ ′ : ∆

Γ ⊢ σ ′ = σ : ∆

(trans)

Γ ⊢ t = r : A Γ ⊢ r = s : A
Γ ⊢ t = s : A

(trans-sub)

Γ ⊢ σ = δ : ∆ Γ ⊢ δ = γ : ∆
Γ ⊢ σ = γ : ∆

 . Normalisation By Evaluation

(cong-app)

Γ ⊢ t = t ′ : A Γ ⊢ r = r ′ : A
Γ ⊢ App t r = App t ′ r ′ : A

(cong-abs)

Γ.A ⊢ t = t ′ : B
Γ ⊢ λt = λt ′ : A→ B

(cong-subs)

∆ ⊢ t = t ′ : A Γ ⊢ σ = σ ′ : ∆

Γ ⊢ t σ = t ′ σ ′ : A

(cong-map)

Γ ⊢ t = t ′ : A Γ ⊢ σ = σ ′ : ∆

Γ ⊢ (σ, t) = (σ ′, t ′) : ∆.A

(cong-comp)

Γ ⊢ σ = σ ′ : ∆ ∆ ⊢ δ = δ ′ : Σ
Γ ⊢ σ δ = σ ′ δ ′ : Σ

Properties of the formal system

In our encoding of de Bruijn variables can be identified with q, q p1, q p2, . . .
where the notation pi denotes the i-times composition of p with itself:

pi =

id if i = 0
p if i = 1
p pi−1 if i > 1 .

Note that this substitution can be typed in a context Γ by extending it by
successive applications of rules (comp-subs) and (fst-subs). In general we will
say that ∆ 6i Γ if ∆ ⊢ pi : Γ . So, it is clear that if Γ ⊢ t : A then for any ∆ 6i Γ
we can derive ∆ ⊢ t pi : A.

Remark (Pre-order between contexts). The relation ∆ 6i Γ defines a preorder
on contexts; in fact

• Γ 60 Γ , by (id-subs); and

• if ∆ ′ 6j ∆ and ∆ 6i Γ , then ∆ ′ 6i+j Γ , by (comp-subs) and associativity of
composition.

Remark (Inversion of substitution). It is clear that any substitution ∆ ⊢ σ : Γ.A
is judgmentally equal to some substitution ∆ ⊢ (σ ′, t) : Γ.A:

σ = idΓ.A σ = (p, q)σ = (pσ, qσ) .

Finally we characterise the set of terms in normal form. The shape of
normal forms, in the setting of untyped lambda calculus with named variables,
is λx1.λx2. . . . λxn.(. . . ((y t1) t2) . . .) tm, where m > 0, n > 0, and every ti has
also that shape; it is easy to see that the following grammar captures those
terms.

Ne ∋ k ::= x | App k v

Nf ∋ v ::= λx.v | k .

After replacing indexed variables for named variables in that grammar we
arrive at the definition of normal forms and neutral terms.

Definition (Neutral terms and normal forms).

Ne ∋ k ::= q | q pi+1 | App k v

Nf ∋ v ::= λv | k

.. Normalisation by Evaluation for λβ

. Normalisation by Evaluation for λβ

As we explained in Sec. ., NbE is based on the idea of constructing a model
from where it is possible to go back to the terms. In this section we first
consider a model for λβ and define the reification function going back to the
syntax. Then we recall that models for STT are cartesian closed categories.
Finally we analyse the subtleties of NbE and comment briefly on its historical
development.

A suitable model for NbE

Our model for normalisation is based on a domain [, ,] coming from
the solution D of the following domain equation

D ≈ O⊕D×D⊕ [D→ D]⊕ Var⊥ ⊕D×D ; (.)

where Var is a denumerable set (we write xi and assume xi ̸= xj if i ̸= j, for
i, j ∈ N), O = {⊥,⊤} (called the Sierpinski’s space), [D → D] is the set of
continuous functions from D to D, and D ×D is the cartesian product of D
with itself. The set Var is viewed as a flat pre-domain. Every element of D
which is not ⊥, is an element of some component of the smashed sum in the
right hand side of Eq. .; in this case we write ⊤ ∈ D for ⊤ ∈ O and

pair : D×D→ D lam : [D→ D]→ D

Var : N→ D App : D×D→ D .

Reification We define a partial readback function R which given an element
in D returns a term of the calculus. This function is similar as the readback
function introduced by Gregoire and Leroy [] to define a normalisation
procedure by means of an evaluator. When the evaluator returns an abstraction
λx.t, the readback function creates a new abstracion λy.v, where v is the normal
form that results from the evaluation and reading back the term (λx.t) ỹ; the
constant ỹ is later substituted for y by the readback function. In our case, in
an element of D of the form lam f, the function f can be thought of as being
the normaliser of the body of some abstraction, so we need only to apply f to
get a value which can be reified.

Definition (Reification function).

Rj (Appdd
′) = App (Rj d) (Rj d

′)

Rj (lam f) = λ(Rj+1 (f(Var j)))

Rj (Var i) =

q if j 6 i+ 1
q pj−(i+1) if j > i+ 1

Recall that in Fig. .we identified a subset ofD by taking the inverse image
of R over the set of normal forms; we also need to consider semantical neutral
values. Since our R is a family of functions indexed by a natural number, we
should consider all the indices:

Ne =

i∈N

{d ∈ D | Ri d ∈ Ne} and Nf =

i∈N

{d ∈ D | Ri d ∈ Nf} .

 . Normalisation By Evaluation

Notice that if the case j < i+ 1 were undefined in the clause for variables
in Def. , then for any m ∈ N the application R0 (Varm) would be undefined;
hence Varm ̸∈ Ne and, consequently, Ne would be empty. Since we depend on
having a semantic representation of variables and neutrals we add the case
j < i+ 1. This case will not arise in our use of the readback function.

Note that we can extend the projection functions π1, π2 : D ×D → D to
functions over D:

p d =

d1 if d = (d1, d2)

⊥ otherwise
q d =

d2 if d = (d1, d2)

⊥ otherwise
.

We also define an application operation on D:

d · e =

f e if d = lam f

Appd e if d ∈ Ne

⊥ otherwise

.

With these functions we can construct an environment model for λβ over
the applicative structure ⟨D, ·⟩. The interpretation of terms and substitutions
is given by mappings J_Kt_ : Terms × D → D and J_Ks_ : Substs × D → D,
respectively. The second argument for both functions is an environment
assigning values to free variables.

JApp t rKtd = JtKtd · JrKtd

JλtKtd = lam (e →→ JtKt(d, e))

Jt σKtd = JtKt(JσKsd)

JqKtd = q d

J⟨⟩Ksd = ⊤
JidΓ Ksd = d

J(σ, t)Ksd = (JσKsd, JtKtd)

JpKsd = p d

Jσ δKsd = JσKs(JδKsd)

Our model is completed by fixing the interpretation of types JNK = Ne
and JA → BK = {d ∈ D | d · e ∈ JBK, for all e ∈ JAK}. This model can be
viewed as a cartesian closed category, cf. next section; so we have soundness
for free. As a corollary we obtain a normalisation function. In fact, let Γ =
A1.An and Γ ⊢ t : A we only need to specify an appropiate environment
d for interpreting t. Since Var ⊆ JAK for every type A, we can let d be the
sequence ((. . . (⊤,Var 0) . . .),Varn− 1) and define our normalisation function

nbeΓ (t) = Rn (JtKtd) .

We claim that nbe(_) is a normalisation function that can be used to decide
equality; but to support our claim we should prove:

. normalisation: Γ ⊢ t : A, then nbeΓ (t) ∈ Nf;

. correctness: if Γ ⊢ t : A, then Γ ⊢ t = nbeΓ (t) : A; and

. completeness: if Γ ⊢ t = t ′ : A, then nbeΓ (t) ≡ nbeΓ (t ′).

These results will be proved for λ→ in Sec. . and .. In Chap. we define
NbE and prove these three properties for a class of PTS, one of which is λβ.

.. Normalisation by Evaluation for λβ

Cartesian closed categories

The categorical models of STT are cartesian closed categories (CCC) [,]. A
cartesian closed category is a category with:

. a terminal object,

. binary products, and

. exponentials.

Now we give the interpretation of λβ in this more abstract setting. The
semantic function is given parametrically on the underlying category and on
an object DN, the interpretation of N.

Types and Contexts

JNK = DN

JA→ BK = JBKJAK

J�K =
JΓ.AK = JΓK × JAK

Terms and Substitutions

JApp t rK = ϵ ◦⟨JtK, JrK⟩

JλtK = JtK
JtγK = JtK ◦JγK
JqK = π2

J⟨⟩K = !JΓK

JidΓ K = 1JΓK

J(γ, t)K = ⟨JγK, JtK⟩
JpK = π1

Jγ δK = JγK ◦JδK

The notion of validity in this setting consists of showing that the semantics
of two equal terms are equal as morphisms in the underlying category of the
model and the semantic of equal substitutions are also equal as morphisms.

Definition (Validity).

• Terms: Γ � t = t ′ : A iff JtK = Jt ′K : JΓK→ JAK

• Substitutions: Γ � σ = σ ′ : ∆ iff JσK = Jσ ′K : JΓK→ J∆K.

Since the formal system is the initial object in the category of cartesian
closed categories, soundness follows from initiality. This result is valid both
for λβ and λ→; because (η) is modeled in every CCC.

Theorem (Soundness [, Part I,]). if Γ ⊢ J, then Γ � J in any model.

Analysing NbE

It is clear that one cannot define an inverse of J_K satisfying properties ,,
and in p. , for any model; the immediate counter-example is a proof-
irrelevant model, where all the terms of the same type are interpreted as
the same element. So, let us consider in more detail what we need in the
model to be able to define the reification function: first we need to interpret
distinct variables as distinct values, for variables are already in normal form
and otherwise we would not be able to prove x = nbe(x), for some variable x.

 . Normalisation By Evaluation

The same reason applies also to neutral values, so we also need to be able to
represent neutrals in the model. The term model clearly has this property
of separating distinct normal forms, but it lacks the capacity of normalising
terms. A possible remedy for this can be to take the set Nf of normal forms as
the interpretation of each basic type and interpret higher order types, A→ B,
as JAK→ JBK, the set of functions from JAK to JBK.

Let us try to see how far we can go with the interpretation in that model.
It looks like we can interpret variables as themselves; then abstractions are
interpreted as usual

Jλx.tKd = d ′ →→ JtK[d | x : d ′] .

The problem with this naïve interpretation is that if application is inter-
preted as regular evaluation of functions, we cannot interpret open terms:
e.g., JApp x tKd is not well-defined, because x (JtKd) does not make sense —
remember that variables are interpreted as themselves. What we do instead is
to redefine the semantics of application. This is achieved by tagging elements
in JA → BK as neutral terms or functions, an idea coming from NbE for the
untyped lambda calculus []; now we can use the tag of the value in the
function place to redefine application:

ιfun f · d = f d

ιneut t · d = App t d .

When we use this operator to interpret application and consider ιneut t·d, where
t is a neutral with type N→ B and d is the semantics of some term with type N,
we know that d is a normal form and the right hand side makes sense. On the
other hand, if t has type J(A→ B)→ CK and d ∈ JA→ BK, then the argument
d can be a function and the right hand side does not make sense. To solve
this, we can switch to a domain-theoretic model based on the solution of the
domain equation

D ≈ Var ⊕D×D⊕ [D→ D] ,

analogous to the domain of Eq. .. An element d ∈ D will be called a neutral
value if d = Var x, with x ∈ Var, or if d = App e e ′, and e is a neutral value —
this terminology will become clearer later. Now we define the application _ · _
as a binary operation on D:

d · e =

f e if d = lam f

Appd e if d is neutral
⊥ otherwise .

Coming back to the interpretation of types, we can set JNK to be the set of
neutral values, and JA→ BK = {d | d · e ∈ JBK, for all e ∈ JAK}. The next step
is to define the reification function: R : DJAK→ Terms.

R(Var x) = x

R(Appd e) = App R(d) R(e)

R(lam f) = λx.R(f (Var x)) .

The reification of functions looks suspicious, because we are putting a binder
without checking that x, the binding variable, is fresh. One possibility, cf. [],

.. Normalisation by Evaluation for λ→

is to use a dummy variable x̃, calculate the set of free-variables in the resulting
term, V = FV(R(f (Var x̃))) and pick any variable z ∈ Var\V to finally compute
λz.R(f (Var z)). This method is clearly inefficient, but it illustrates the problem
of freshness: a fresh binder is needed to avoid capturing other variables, and
the chosen variable should not be captured by any binder in the reification of
the body of the new abstraction.

In Berger and Schwichtenberg’s [] seminal paper, they solved the problem
of fresh name generation by using the gensym facility of Scheme — in a pure
functional language one would resort to a state monad, as in Filinski’s [].
However, Berger and Schwichtenberg came up with another solution based
on a model where ground types are interpreted as term families indexed by
natural numbers, by fixing the index one gets a term with de Bruijn levels;

higher-order typesA→ B are still interpreted as the set of functions JAK→ JBK.
The interpretation of open terms depends on a family of reflection functions↑A : Terms→ JAK, indexed by types. Reification is also different; it is defined
by induction on types and turns semantical elements into term families: RA :
JAK→ (N → ΛA). Note that when reifying a function f ∈ JA → BK we have
at our disposition an index k telling that we can freely construct a term with
binding variable xk and, if we increment that index to k+ 1, no bound variable
will be used in the reification of the body: RA→B(f, k) = λxk.R

B(f (↑ xk), k+1).
The normalisation of a closed term t : A is obtained by RA(JtK, 0). A similar
approach is used by Aehlig and Joachimski [], but they use de Bruijn indices
instead of levels, so more accounting is needed when injecting variables into
the model and in the reification.

In this thesis the problem of generating fresh variable while reifying are
based on the same strategy presented in Sec. .: free variables are interpreted
as (semantical) variable corresponding to the position of the variable in the
context but in reversed order — note that this correspond to pass from indices
to levels. When we reify values into terms, we keep a counter (as an extra
parameter of the reification function) of how many variables we have already
used.

. Normalisation by Evaluation for λ→
In this section we define a concrete CCC for interpreting λ→; this model can
be seen as what Reynolds [] calls an extrinsic semantics.

PER semantics

Our model for normalisation is based on the domain D defined in Eq. (.) in
Sec. .. Since we want to model λ→ we change the definition of the application
operation; thus we obtain a different applicative structure. We use D to refer
to the new applicative structure.

d · d ′ =

f d ′ if d = lam f

⊥ otherwise
(.)

Like with de Bruijn indices, variables are taken to be natural numbers, but now the binders
are counted downwards, if we see terms as abstract trees, λx.λy.x becomes λ.λ.0.

 . Normalisation By Evaluation

Instead of interpreting typing derivations — this is problematic because
one needs to prove a coherence result: if there are two derivations of the same
judgement, the interpretation of both derivations are equal — we interpret
every term and substitution expression in the environment model arising from
the new applicative structure.

Interpretation

JApp t rKd = JtKd · JrKd
JλtKd = lam (e →→ JtK(d, e))
JtσKd = JtK(JσKd)
JqKd = q d

J⟨⟩Kd = ⊤
JidσKd = d

J(σ, t)Kd = (JσKd, JtKd)
JpKd = p d

Jσ δKd = JσK(JδKd)

PER semantics Now we define a PER model for the calculus; this amounts
to defining a relation for each type which models the equality of the formal
system. Let us recall the definition of partial equivalence relations.

Definition . A partial equivalence relation (PER) over a set A is a binary
relation over A which is symmetric and transitive.

The class of all PERs over a set A is written PER(A). If R ∈ PER(A) then
its domain is dom(R) = {a ∈ A | (a, a) ∈ R}. Clearly, R is an equivalence
relation over its domain. If (d, e) ∈ R, sometimes we will write d =R e or
d = e ∈ R, and if d ∈ dom(R), we tend to write d ∈ R. It seems natural to
try to build a category of PERs over a set A; the objects of PER(A) are PERs
over A and morphisms are functions preserving the relation; i.e. functions
f : dom(R)→ dom(S), such that fd =S fe, for all d =R e.

If A is an applicative structure ⟨A, _ · _⟩, then we can define a notion of
exponential in PER(A) as follows. For R, S ∈ PER(A) we say f = g ∈ SR iff
f ·d =S g ·e for all d =R e. It is clear that ⟨D, _ ·_⟩, with the application defined
in Eq. ., is an applicative structure. As the following lemma shows, PER(D)
is also a cartesian closed category.

Lemma . The category PER(D) is cartesian closed.

Proof. We define the terminal object, the product and the exponential together
with the required morphisms.

• The terminal object is given by = {(⊤,⊤)}. The proof of its universal
property is trivial. Note that for any non-empty D ′ ⊆ D, D ′ × D ′ is
isomorphic to ; in particular D×D as in [,].

• The product ofA and B is given byA×B = {(d, e) | p d =A p e and q d =B

q e}. The projection morphisms are p and q. The morphism ⟨f, g⟩ : C→
A×B is given by ⟨f, g⟩ d = (f d, g d). We leave the proof of the universal
property for products; for it follows straightforward from the definition.

We refer the reader to [] for a short report on the historical developments of PER models.
To be precise, two functions f, g : dom(R) → dom(S) are considered to be the same morphism

if f d =S g e, for all d =R e.

.. Normalisation by Evaluation for λ→

• The exponential of A and B is BA = {(f, g) | f · d =B g · e, for all d =A e}.
The adjunction between Hom(_, CB) and Hom(_ × B,C) is given by:

φA : Hom(A× B,C)→ Hom(A,CB)

φAf = d →→ lam (e →→ f(d, e))

ψA : Hom(A,CB)→ Hom(A× B,C)
ψAg = d →→ g(pd) · (qd)

Now that we have a cartesian closed category of PERs over D, we can
construct the model and get soundness of this model by Thm. . As we said
previously, for STT it is enough to choose an object of the category, PER(D) in
our case, for base types; the rest of the structure is obtained by the cartesian
structure of the category. In our case, N is interpreted by Ne ∈ PER(D), which
is analogous to Ne of Sec. .. The PER Ne equates elements of D that are
invariably reified as the same neutral term.

Definition (Semantical neutrals and normal forms).

• d = e ∈ Ne if, for all i ∈ N, Ri d and Ri e are both defined, Ri d ≡ Ri e,
and Ri d ∈ Ne.

• d = e ∈ Nf if, for all i ∈ N, Ri d and Ri e are both defined, Ri d ≡ Ri e,
and Ri d ∈ Nf.

Remark . These are clearly PERs over D: symmetry is trivial and transitivity
follows from transitivity of the syntactical equality.

Remark (Closure properties over Nf and Ne).

. Var ⊆ dom(Ne).

. Since Ne ⊆ Nf, Ne ⊆ Nf.

. If k = k ′ ∈ Ne and d = d ′ ∈ Nf, then Appkd = Appk ′ d ′ ∈ Ne.

. Let f, g ∈ [D → D] such that f d = g d ′ ∈ Nf, for all d = d ′ ∈ Nf, then
lam f = lamg ∈ Nf:

Ri (lam f) = λ(Ri+1 (f (Var i))) = λ(Ri+1 (g (Var i))) = Ri (lamg) .

If we choose JNK = Ne, then we have a model of STT given by the cartesian
structure of PER(D):

J�K = JΓ.AK = JΓK × JAK JA→ BK = JBKJAK .

We recast soundness (Thm.) in our concrete model. Of course, soundness can
be proved straightforwardly by induction on derivations.

Theorem . Let d = d ′ ∈ JΓK;

. If Γ ⊢ t : A, then JtKd ∈ JAK.

. If Γ ⊢ σ : ∆, then JσKd ∈ J∆K.

. If Γ ⊢ t = t ′ : A, then JtKd = Jt ′Kd ′ ∈ JAK.

 . Normalisation By Evaluation

. If Γ ⊢ δ = δ ′ : ∆, then JδKd = Jδ ′Kd ′ ∈ J∆K.

Remark . Clearly ⊥ ̸∈ dom(JNK); since ⊥ ·d = ⊥ we conclude ⊥ ̸∈ JAK for any
type A. Moreover if d ∈ dom(JA→ BK), then d = lam f, for some f ∈ [D→ D].

We have explained in Sec. . why the model should contain some syn-
tactical material as to reflect neutral terms. Our model can indeed represent
variables and neutrals; but as an immediate consequence of Rem. we cannot
interpret syntactic variables with a higher-order type as mere semantic vari-
ables. In fact, from that remark we know that injection of variables should
transform variables into functions lam f; this has the pleasing side effect of
η-expanding variables of type A→ B — while Var i is reified as some variable
q or q pn for some n, lam f is read back as λt for some term t. Remember that
injection was done by a family of functions ↑A _ indexed by types; in Berger
and Schwichtenberg’s work that function turned syntactical variables into term
families. Our approach consists in defining reflection ↑A _ completely in the
semantic realm; as we explain after its definition, reflection needs a mate ↓A _.
These functions are defined simultaneously by induction on types.

Definition (Up and down).

↑N k = k ↑A→B k = lam (d →→ ↑B (Appk (↓A d)))↓N v = v ↓A→B d = lam (e →→ ↓B (d · ↑A e))
Notice that we do not restrict the domain of the reflection function to

elements in Var; in fact, since we want to simulate η-expansion by means of↑A→B, it is necessary to take into account representation of any neutral term
and not only variables. The need of ↓A arises as we want to avoid to reify
values as in Berger and Schwichtenberg’s approach: since the body of the
newly created function is in turn expanded, we need to know that it is morally
a neutral value. That would be the case if the second argument of Appk _
is a normal value, cf. Rem. ; the mate of reflection, ↓A maps elements of
dom(JAK) to dom(Nf).

The following lemma states precisely that the pair of functions do what we
claimed. We can also read the lemma as showing that every PER denoting a
type can be seen as a saturated object [, Ch.].

Lemma . For all A ∈ Type.

. If k = k ′ ∈ Ne then ↑A k = ↑A k ′ ∈ JAK, and

. if d = d ′ ∈ JAK, then ↓A d = ↓A d ′ ∈ Nf.

Proof. (By induction on types) We show only the case for functional types.

. Let k = k ′ ∈ Ne and d = d ′ ∈ JA ′K. To prove ↑A ′→B k = ↑A ′→B k
′ ∈

JA ′K → JBK, we prove (↑A ′→B k) · d = (↑A ′→B k
′) · d ′ ∈ JBK. By i.h. on

the second part for A ′ we know ↓A ′ d = ↓A ′ d ′ ∈ Ne. Hence by Rem. ,
Appk (↓A ′ d) = Appk ′ (↓A ′ d ′) ∈ Ne and by i.h. on the first part for B we
conclude ↑B (Appk (↓A ′ d)) = ↑B (Appk ′ (↓A ′ d ′)) ∈ JBK.

. Let d = d ′ ∈ JA ′K → JBK. From Rem. and by i.h. on the first part A ′

we have ↑A ′ Var i = ↑A ′ Var i ∈ JA ′K, so by definition d · ↑A ′ (Var i) =
d ′ · ↑A ′ (Var i) ∈ JBK, therefore we conclude, by i.h. on the second part
for B, ↓B (d · (↑A ′ Var i)) = ↓B (d ′ · (↑A ′ Var i)) ∈ Nf.

.. Correctness of NbE

Theorem (Completeness). If Γ ⊢ t = t ′ : A and d = d ′ ∈ JΓK, then ↓A (JtKd) =↓A (Jt ′Kd ′) ∈ Nf.

Proof. By Thm. and Lem. .

We still do not have a normalisation algorithm because we do not know how
to construct a suitable environment. Let us illustrate this point by postulating
a base type with two values, call it Bool with constructors True and False. Since
these are normal forms, we need to reflect them on the domain; so we extend
the domainDwith {T,F}⊥. Now in the context Γ = Bool.Bool we can derive Γ ⊢
q : Bool and Γ ⊢ q p : Bool. Note that d = (F,F) ∈ dom(Γ), so Rj (↓Bool (JqKd)) ≡
F ≡ Rj (↓Bool (Jq pKd)), but q and q p were distinct normal forms and none was
F. In the next section we construct an appropiate environment for NbE and
obtain correctness of NbE by using logical relations.

. Correctness of NbE

As with many other results for STT, it is not possible to prove correctness by
induction on terms — as usual the induction hypotheses for application are not
strong enough. To have stronger induction hypotheses we use logical relations;
these are families of relations, indexed by types, relating two models. In our
case, the models involved are the term model and the PER model: that means
that we should relate equivalence classes of terms and equivalence classes over
the domain of PERs. To understand our use of logical relations let us state
soundness of NbE:

If Γ ⊢ t : A, then Γ ⊢ t = Rn (↓A (JtKd)) : A, for some n ∈ N, d ∈ JΓK .

To prove that property for every well-typed term we first define the relations
between well-typed terms and elements in (the domain of) the interpretation
of types and prove the more general statement

If Γ ⊢ t : A ∼ d ∈ JAK, then Γ ⊢ t = Rn (↓A d) : A for some n ∈ N . (.)

The logical relations are defined by induction on types. For the basic
type N, we say that a term t is logically related with d ∈ JNK if Γ ⊢ t =
Rn (↓N d) : N holds — note that we are not relating equivalence classes of
terms with equivalent classes over dom(JNK); we then prove that the relations
preserve both equivalences. For higher-order types A → B, the relation is
defined by using the relations for A and B:

Γ ⊢ t : A→ B ∼ d ∈ JAK→ JBK if Γ ⊢ App t t ′ : B ∼ d · d ′ ∈ JBK,
for all Γ ⊢ t ′ : A ∼ d ′ ∈ JAK .

As we try to prove (.) for abstractions we discover that we need to gen-
eralise its statement to be able to change the context. The reason is that the
term model is a Kripke model, with contexts taking the rôle of possible worlds;
this leads us to Kripke logical relations []. At this point we would have

A thorough explanation of logical relations can be found in [, Chap.].

 . Normalisation By Evaluation

proved that if a well-typed term Γ ⊢ t : A is related with some element d, then
Γ ⊢ t = R|Γ | (↓A d) : A. The missing step is to prove that each term is logically
related with its denotation. This property is known as the fundamental theorem
of logical relations: the denotations of every term in both models are logic-
ally related. To prove the fundamental theorem we extend logical relations
to environments; in the term model, environments are substitutions. In λ→,
substitutions are internalised in the system; so we introduce logical relations
for substitutions and elements in the interpretation of contexts. Finally, by
constructing an environment logically related with the identity substitution
we can conclude that every term is logically related with its denotation.

Definition (Logical relations).

• For the basic type N: Γ ⊢ t : N ∼ d ∈ JNK if ∆ ⊢ t pi = R|∆| (↓N d) : N, for
all ∆ 6i Γ .

• For function spaces, A → B: Γ ⊢ t : A → B ∼ d ∈ JA → BK if ∆ ⊢
App (t pi) s : B ∼ f · d ∈ JBK, for all ∆ 6i Γ and ∆ ⊢ s : A ∼ d ∈ JAK.

The following two lemmas show that the relations introduced over sets
of well-typed terms and domains of the PERs are indeed relations between
equivalence classes of terms and equivalence classes over the domain of PERs.

Lemma (Preservation of the logical relation by PERs). If Γ ⊢ t : A ∼ d ∈ JAK
and d = d ′ ∈ JAK, then Γ ⊢ t : A ∼ d ′ ∈ JAK.

Proof. (By induction on types)

• For N is obtained directly from the definition of the logical relation and
from the definition of Ne.

• For A ′ → B: let ∆ 6i Γ and ∆ ⊢ s : A ′ ∼ e ∈ JA ′K. From e = e ∈ JAK
we have d · e = d ′ · e ∈ JBK and by definition of the logical relation
we have ∆ ⊢ App (t pi) s : B ∼ d · e ∈ B. By ind. hypothesis we have
∆ ⊢ App (t pi) s : B ∼ d ′ · e ∈ B.

Lemma (Preservation of the logical relation by judgemental equality). If
Γ ⊢ t : A ∼ d ∈ JAK and Γ ⊢ t = t ′ : A, then Γ ⊢ t ′ : A ∼ d ∈ JAK.

Proof. (By induction on types).

• For N : we have Γ ⊢ t = R|Γ | (↓N d) : N and Γ ⊢ t = t ′ : N, by transitivity
we conclude Γ ⊢ t ′ = R|Γ | (↓N d) : N

• For A ′ → B : Let ∆ 6i Γ and ∆ ⊢ s : A ′ ∼ e ∈ JAK. From the hypothesis
of equality we derive ∆ ⊢ t pi = t ′ pi : A → B and ∆ ⊢ App (t pi) s =
App (t ′ pi) s : B. From the hypothesis about the logical relation we know
∆ ⊢ App (t pi) s : B ∼ d·e ∈ JBK. By i.h. on Bwe have∆ ⊢ App (t ′ pi) s : B ∼

d · e ∈ JBK.

Lemma (Monotonicity of the logical relation). If Γ ⊢ t : A ∼ d ∈ JAK and
∆ 6i Γ , then ∆ ⊢ t pi : A ∼ d ∈ JAK.

Proof. (By cases on A) Let ∆ 6i Γ . In both cases we need to prove a property
involving a new context ∆ ′ such that ∆ ′ 6j ∆. By Rem. we know ∆ ′ 6i+j Γ .

.. Correctness of NbE

• To prove ∆ ⊢ t pi : N ∼ d ∈ JNK, we need to show ∆ ′ ⊢ (t pi) pj =
R|∆ ′| d : N, for any ∆ ′ 6j ∆. So by definition of the logical relation we
have ∆ ′ ⊢ t pi+j = R|∆ ′| d : N; we conclude by using associativity of
substitutions and Lem. .

• For A ′ → B : Let ∆ ′ 6j ∆ and ∆ ′ ⊢ s : A ′ ∼ e ∈ JA ′K and show ∆ ′ ⊢
App ((t pi) pj) s : B ∼ d · e ∈ JBK. Again, by definition of logical relation
for function spaces ∆ ′ ⊢ App (t pi+j) s : B ∼ d · e ∈ JBK; we conclude by
using associativity of substitutions and Lem. .

The following lemma is one of the key results to prove correctness. Note
that we are interested in the second part, which is the general statement of
(.); the first part is needed to prove the second part for higher-order types.

Lemma (In-out Lemma).

 Let Γ ⊢ t : A, k ∈ dom(Ne) and ∆ ⊢ t = R|∆| k : A for all ∆ 6i Γ , then
Γ ⊢ t : A ∼ ↑A k ∈ JAK.

 If Γ ⊢ t : A ∼ d ∈ JAK, then ∆ ⊢ t pi = R|∆| (↓A d) : A, for all ∆ 6i Γ .

Proof. (We prove simultaneously both points by induction on types) We show
only the case for functional types.

. To prove Γ ⊢ t : A ′ → B ∼ ↑A ′→B k ∈ JA ′K → JBK, let ∆ 6i Γ and
∆ ⊢ s : A ′ ∼ d ∈ JA ′K to prove

∆ ⊢ App (t pi) s : B ∼ (↑A ′→B k) · d ∈ JBK .

Note that by definition of ↑A ′→B k, that amounts to prove

∆ ⊢ App (t pi) s : B ∼ ↑B (Appk (↓A ′ d)) ∈ JBK .

In turn, this can be proved by i.h. of . on B, because k ∈ Ne and↓A ′ d ∈ Nf, by Rem. , Appk (↓A ′ d) ∈ Ne; so we take ∆ ′ 6j ∆ and prove

∆ ′ ⊢ App (t pi+j) (s pj) = R|∆ ′| (Appk (↓A ′ d)) : B .

Note that by definition of readback, our new goal is

∆ ′ ⊢ App (t pi+j) (s pj) = App (R|∆ ′| k) (R|∆ ′| (↓A ′ d)) : B .

We know by hypothesis ∆ ′ ⊢ t pi+j = R|∆ ′| k : A
′ → B and, by i.h. of .

on A ′, ∆ ′ ⊢ s pj = R|∆ ′| (↓A ′ d) : A ′ We use congruence to conclude.

. Let ∆ 6i Γ and let n = |∆|. First we notice that ∆.A ′ ⊢ q : A ′ ∼ Varn ∈
JA ′K by i.h. of . on A ′. By definition of the logical relation on the main
hypothesis, we know ∆.A ′ ⊢ App (t pi+1) q : B ∼ d · ↑A ′ (Varn) ∈ JBK. By
i.h. of . on B we have

∆.A ′ ⊢ App (t pi+1) q = Rn+1 (↓B (d · (↑A ′ (Varn)))) : B .

By (cong-abs),

∆ ⊢ λ(App (t pi+1) q) = λ(Rn+1 (↓B (d · (↑A ′ (Varn))))) : A ′ → B .

 . Normalisation By Evaluation

Now, by (η), we have ∆ ⊢ λ(App (t pi+1) q) = t pi : A ′ → B; on the right
hand side, in turn, we have by definition of readback

λ(Rn+1 (↓B d · (↑A ′ Varn))) = Rn (↓A ′→B d) .

By transitivity, we conclude ∆ ⊢ t pi = Rn (↓A ′→B d) : A
′ → B.

We extend the logical relations to substitutions and environments. This
family of relations is defined by induction on the codomain of substitutions.

Definition (Logical relations for substitutions).

• Γ ⊢ σ : � ∼ d ∈ J�K if d ∈ J�K.

• Γ ⊢ (σ, t) : ∆.A ∼ (d, d ′) ∈ J∆.AK if Γ ⊢ σ : ∆ ∼ d ∈ J∆K and Γ ⊢ t : A ∼

d ′ ∈ JAK.

Of course we need to prove analogous results for substitutions to that of
Lem. , , and . Note that Lem. is not needed because we do not reify
substitutions.

Lemma . Let Γ ⊢ σ : ∆ ∼ d ∈ J∆K.

. If Γ ⊢ σ = σ ′ : ∆, then Γ ⊢ σ ′ : ∆ ∼ d ∈ J∆K.

. If d = d ′ ∈ J∆K, then Γ ⊢ σ : ∆ ∼ d ′ ∈ J∆K.

. If Γ ′ 6i Γ , then Γ ′ ⊢ σ pi : ∆ ∼ d ∈ J∆K.

Let us recapitulate how far we went towards correctness of NbE, the goal of
this section: we have defined a relation between the term model and the PER
model; we have proved that if a term t is related with some semantic element
d, then the reification of d will be provable equal to the t. The next theorem
states that every term (and substitution) is related to its denotation.

Theorem (Fundamental theorem of logical relations).

. If Γ ⊢ t : A and ∆ ⊢ σ : Γ ∼ d ∈ JΓK, then ∆ ⊢ t σ : A ∼ JtKd ∈ JAK.

. If Γ ⊢ δ : Σ and ∆ ⊢ σ : Γ ∼ d ∈ JΓK, then ∆ ⊢ δ σ : Σ ∼ JδKd ∈ JΣK.

Proof. (By simultaneous induction on Γ ⊢ t : A and Γ ⊢ δ : Σ). In several
cases, Lem. and are used to get the right premises that permit us to apply
induction hypotheses.

. Terms:

• (hyp) Γ.A ⊢ q : A. Let ∆ ⊢ σ : Γ.A ∼ d ∈ JΓ.AK. By definition of
logical relation for substitutions we have Γ ⊢ σ = (σ ′, t) : ∆ and
∆ ⊢ t : A ∼ q d ∈ JAK. We finish by Lem. on Γ.A ⊢ q (σ ′, t) = t : A.

• (app-i): Γ ⊢ App t t ′ : B. By inversion we know Γ ⊢ t : A → B and
Γ ⊢ t ′ : A; by i.h. on each judgement we have ∆ ⊢ t σ : A → B ∼

JtKd ∈ JAK → JBK and ∆ ⊢ t ′ σ : A ∼ Jt ′Kd ∈ JAK. By definition of
logical relations we conclude ∆ ⊢ App (t σ) (t ′ σ) : B ∼ JtKd · Jt ′Kd ∈
JBK. On one side we have JtKd · Jt ′Kd = JApp t t ′Kd and on the other,
∆ ⊢ App (t σ) (t ′ σ) = (App t t ′)σ : B. We conclude by Lem. .

.. Correctness of NbE

• (abs-i) Γ ⊢ λt : A→ B. To prove ∆ ⊢ (λt)σ : A→ B ∼ JλtKd ∈ JAK→
JBK, we need to take ∆ ′ 6i ∆ and ∆ ′ ⊢ s : A ∼ e ∈ JAK and show
∆ ′ ⊢ App (((λt)σ) pi) s : B ∼ JλtKd · e ∈ B. Notice that we can derive
Γ ⊢ App ((λt)σ) pi s = t ((σ pi), s) : B by the following equational
reasoning:

App ((λt)σ) pi s = App ((λt) (σ pi)) s

= App λ(t (σ pi+1, q)) s = (t (σ pi+1, q)) (id, s)

= t (σ pi+1, q) (id, s) = t ((σ pi+1) (id, s), q (id, s))

= t ((σ pi) id, s) = t (σ pi, s)

On the other hand, we have by Lem. and definition of logical
relation for substitutions ∆ ′ ⊢ (σ pi, s) : Γ.A ∼ (d, e) ∈ JΓ.AK. So
by i.h. on Γ.A ⊢ t : B, with this extended substitution, we get ∆ ′ ⊢
t (σ pi, s) : B ∼ JtK(d, e) ∈ JBK. Note that JλtKd · e = JtK(d, e), thus
by Lem. , we get ∆ ′ ⊢ App (((λt)σ) pi) s : B ∼ JλtKd · e ∈ JBK.

• (subs-term) Γ ⊢ t δ : A. By i.h. on Γ ⊢ δ : Σ we have ∆ ⊢ δ σ : Σ ∼

JδKd ∈ JΣK. By i.h. using that substitution and environment on
Σ ⊢ t : A we conclude ∆ ⊢ t (δ σ) : A ∼ JtK(JδKd) ∈ JAK. We conclude
by Lem. on ∆ ⊢ t (δ σ) = (t δ)σ : A.

. Substitutions: we omit some trivial cases.

• (comp-subs). Let Γ ⊢ δ γ : Σ and ∆ ⊢ σ : Γ ∼ d ∈ JΓK. By inversion,
we have Γ ⊢ γ : Θ and Θ ⊢ δ : Σ. By i.h. on the first one, we have
Σ ⊢ γσ : Θ ∼ JγKd ∈ JΘK and using that and the second premise by
i.h. , we get ∆ ⊢ δ (γσ) : Σ ∼ JδK(JγKd) ∈ JΣK. By using Lem. we
conclude ∆ ⊢ (δ γ)σ : Σ ∼ Jδ γKd ∈ JΣK.

• (ext-subs). Let Γ ⊢ (δ, t) : Σ.A. By inversion, we know Γ ⊢ δ : Σ and
Γ ⊢ t : A. By i.h. we have ∆ ⊢ δ σ : Σ ∼ JδKd ∈ JΣK; and by i.h.
for Γ ⊢ t : A we conclude ∆ ⊢ t σ : A ∼ JtKd ∈ JAK: these are the
premises for ∆ ⊢ (δ, t)σ : Σ.A ∼ J(δ, t)Kd ∈ JΣ.AK.

• (fst-subs). Let Γ.A ⊢ p : Γ . By inversion on ∆ ⊢ σ : Γ.A ∼ d ∈ JΓ.AK we
know δ = (δ ′, t), d = (e, e ′), and ∆ ⊢ δ ′ : Γ ∼ e ∈ JΓK. By Lem. ,
using (sub-fst) on ∆ ⊢ p (δ ′, t) = δ ′ : Γ , we conclude ∆ ⊢ p (δ ′, t) : Γ ∼

JpK(e, e ′) ∈ JΣK.

Remark . It is immediate to see that Rn (Var (n− 1)) = q and for all m > n
Rm (Var (n− 1)) = q pm−n. Let n = |Γ |, then we can use Lem. to conclude
Γ.A ⊢ q : A ∼ ↑A (Varn) ∈ JAK.

Definition (Canonical environment). By induction on Γ we define an envir-
onment ρΓ ∈ JΓK.

. ρ� = ⊤.

. ρΓ.A = (ρΓ , ↑A (Varn)), where n = |Γ |.

Remark . Clearly, by induction on Γ and using Rem. , we have Γ ⊢ idΓ : Γ ∼

ρΓ ∈ JΓK.

 . Normalisation By Evaluation

Our normalisation function is the composition of evaluation with the ca-
nonical environment, eta-expansion on the model, and reification.

Definition (Normalisation function).

nbeAΓ (t) = R|Γ | (↓A (JtKρΓ)) (.)

After the long trip we finally arrive at the main results of this section. First
we show the proof of correctness of the normalisation function and then we
explain how to decide if two well-typed terms are judgmentally equal.

Corollary . If Γ ⊢ t : A, then Γ ⊢ t = nbeAΓ (t) : A.

Proof. We use Thm. and Lem. with the identity substitution on the context
Γ to get Γ ⊢ t : A ∼ JtKρΓ ∈ JAK and by Lem. . we conclude Γ ⊢ t =
R|Γ | (↓A (JtKρΓ)) : A.

Corollary . If Γ ⊢ t : A and Γ ⊢ t ′ : A we can decide if Γ ⊢ t = t ′ : A is
derivable.

Proof. Let t̄ = nbeAΓ (t) and t̄ ′ = nbeAΓ (t
′). By Cor. we have

Γ ⊢ t = t̄ : A and (D)
Γ ⊢ t ′ = t̄ ′ : A (D)

since t̄ and t̄ ′ are normal forms we can decide Γ ⊢ t̄ = t̄ ′ : A by checking
syntactically that they are the same term. If Γ ⊢ t = t ′ : A, then by Thm.
t̄ ≡ t̄ ′. On the other hand, syntactical equivalence of t̄ and t̄ ′ implies that they
are provably equal by using transitivity (and symmetry) on derivations (D)
and (D).

. A Haskell Implementation of NbE

It is relative immediate to program the NbE function in Haskell.

Syntax.

data Type = Iota
| Fun Type Type

data Term = Term :@ Term -- application
| Lam Term -- abstraction
| Q -- variable
| Sub Term Subst -- substitution

deriving (Eq)

data Subst = E -- empty substitution
| Is -- identity substitution
| Ext Subst Term -- extension
| P -- weakening
| Comp Subst Subst -- composition

deriving (Eq)

type Ctx = [Type]

.. A Haskell Implementation of NbE

Semantic domain.

data D = T -- terminal object (empty context)
| Ld (D -> D) -- functions
| PairD D D -- context comprehension
| Vd Int -- variables
| AppD D D -- neutrals

pi1,pi2 :: D -> D
pi1 (PairD d d’) = d
pi2 (PairD d d’) = d’

ap :: D -> D -> D
ap (Ld f) d = f d

Eta expansion in the model.

up :: Type -> D -> D
up Iota k = k
up (Fun t t’) k = Ld (\d -> up t’ (AppD k (down t d)))

down :: Type -> D -> D
down Iota d = d
down (Fun t t’) d = Ld (\e -> down t’ (d ‘ap‘ (up t e)))

readback :: Int -> D -> Term
readback i (Ld f) = Lam $ readback (i+1) (f (Vd i))
readback i (Vd n) = mkvar (i-n-1)
readback i (AppD k d) = (readback i k) :@ (readback i d)

Semantic equations.

eval :: Term -> D -> D
eval (Lam t) d = Ld (\d’ -> eval t (PairD d d’))
eval (t :@ r) d = (eval t d) ‘ap‘ (eval r d)
eval Q d = pi2 d
eval (Sub t s) d = eval t (evalS s d)

evalS :: Subst -> D -> D
evalS E d = T
evalS Is d = d
evalS (Ext s t) d = PairD (evalS s d) (eval t d)
evalS P d = pi1 d
evalS (Comp s s’) d = (evalS s . evalS s’) d

Normalisation by evaluation.

nbe :: Ctx -> Type -> Term -> Term
nbe ctx ty t = readback n . down ty $ eval t env

where n = length ctx
env = mkenv n ctx T

Auxiliary functions.

mkenv :: Int -> Ctx -> D -> D
mkenv 0 [] d = d
mkenv n (t:ts) d = PairD d’ $ up t (Vd (n-1))

where d’ = mkenv (n-1) ts d

mkvar :: Int -> Term

 . Normalisation By Evaluation

mkvar n | n <= 0 = Q
| otherwise = Sub Q $ subs (n-1)

subs n | n <= 0 = P
subs n | otherwise = Comp P $ subs (n-1)

idsub :: Term -> Term -> Term
idsub t t’ = Sub t (Ext Is t’)

NbE for Martin-Löf Type Theory

3In this chapter we adapt the NbE algorithm of the previous chapter to Martin-
Löf type theory. To smooth the transition to dependent types we consider a
calculus with dependent products and a universe of small types. As we said in
Sec. . the dependent product FunAB generalises the functional spaces A→
B in that the type of an application can vary with the argument. Universes were
first considered by Martin-Löf [] for formalising category theory; basically a
universe has term constructors for some of the type constructors of the calculus.
The presentation of Martin-Löf type theory using GATs was first considered by
Dybjer [].

As was explained in Sec. ., the type-checking algorithm for dependent
types requires a decision procedure for equality. In this chapter we obtain such
an algorithm by means of NbE. The other main result of this chapter is that
Fun is injective in both arguments.

. The calculus λΠ

The presentation of λΠ using GAT has the same sort symbols than λ→, but
now types can depend on terms. This difference can be appreciated in the
introductory rules for sorts. Notice that Type(_) is not any more a fixed sort;
now we have a set of well-formed types for each well-formed context.

(ctx-sort)

Ctx is a sort

(subs-sort)

Γ, ∆ ∈ Ctx

Γ → ∆ is a sort
(type-sort)

Γ ∈ Ctx

Type(Γ) is a sort

(term-sort)

Γ ∈ Ctx A ∈ Type(Γ)

Term(Γ,A) is a sort

Introductory Rules

Contexts Several of the introductory rules for λΠ also reflect the dependency
of types on terms. For example, in (ext-ctx) we requires A to be a well-formed
type under Γ .

(empty-ctx)

� ⊢

(ext-ctx)

Γ ⊢ Γ ⊢ A
Γ.A ⊢

Substitutions The dependency of the sort Type(_) on contexts means that
substitutions should also act on types. For instance, in (ext-subs) we apply σ
to A in order to get a well-formed type under Γ ; this is also reflected in the

 . NbE for Martin-Löf Type Theory

categorical account of MLTT [], if σ is a morphism in the category of contexts,
then it acts both on types and on terms.

(id-subs)

Γ ⊢
Γ ⊢ idΓ : Γ

(emp-subs)

Γ ⊢
Γ ⊢ ⟨⟩ : �

(fst-subs)

Γ ⊢ A
Γ.A ⊢ p : Γ

(comp-subs)

Γ ⊢ δ : Θ Θ ⊢ σ : ∆
Γ ⊢ σ δ : ∆

(ext-subs)

Γ ⊢ σ : ∆ ∆ ⊢ A Γ ⊢ t : Aσ
Γ ⊢ (σ, t) : ∆.A

Types Note that (u-el) reflects terms with type U as types. The type FunAB is
the dependent function space: note that B is a type under Γ.A, so B (id, t) is a,
possible distinct, type under Γ for each Γ ⊢ t : A.

(u-i)

Γ ⊢
Γ ⊢ U

(u-el)

Γ ⊢ Γ ⊢ A : U

Γ ⊢ A
(fun-i)

Γ ⊢ A Γ.A ⊢ B
Γ ⊢ FunAB

(subs-type)

∆ ⊢ A Γ ⊢ σ : ∆
Γ ⊢ Aσ

Terms We see in the introductory rules for terms that the universe is closed
under formation of dependent products. Rule (fun-el) makes explicit that
FunAB is a dependent product space. Rule (conv) is another distinctive feature
of dependent type systems; it manifests that types can be computed. It is
because of this rule that we need a decision procedure for equality to define a
type-checking algorithm.

(fun-u-i)

Γ ⊢ A : U Γ.A ⊢ B : U
Γ ⊢ FunAB : U

(hyp)

Γ ⊢ A
Γ.A ⊢ q : A p

(fun-i)

Γ ⊢ A Γ.A ⊢ B Γ.A ⊢ t : B
Γ ⊢ λt : FunAB

(fun-el)

Γ ⊢ A Γ.A ⊢ B Γ ⊢ t : FunAB Γ ⊢ r : A
Γ ⊢ App t r : B (idΓ , r)

(subs-term)

∆ ⊢ A ∆ ⊢ t : A Γ ⊢ σ : ∆
Γ ⊢ t σ : Aσ

(conv)

Γ ⊢ t : A Γ ⊢ A = B

Γ ⊢ t : B

In GATs the conversion rule (conv) is an instance of a derived rule.

.. The calculus λΠ

Axioms

We omit the premises for axioms. The premises for substitutions are similar
to those for λ→. Omitting premises for the action of substitution on terms
permits us to read the equalities both as axioms for types and as axioms for
terms.

Substitutions
(σ δ)γ = σ (δ γ) σ id = σ

id σ = σ ⟨⟩σ = ⟨⟩
id� = ⟨⟩ p (σ, t) = σ

idΓ.A = (p, q) (σ, t) δ = (σ δ, t δ)

Terms and types

Uγ = U (FunAB)σ = Fun (Aσ) (B (σ p, q))

t (σ δ) = (t σ) δ t id = t

q (σ, t) = t (λt)σ = λ(t (σ p, q))

(App r s)σ = App (r σ) (s σ) App (λt) r = t (id, r)

Congruence The only new congruences are those involving Fun (we present
the one corresponding to Fun as a type constructor and skip the rule for its rôle
as term constructor) and substitutions on types. Remember that these rules
are obtained freely from the logical framework we are using.

(cong-fun)

Γ ⊢ A = A ′ Γ.A ⊢ B = B ′

Γ ⊢ FunAB = FunA ′ B ′

(cong-subs)

∆ ⊢ A = A ′ Γ ⊢ σ = σ ′ : ∆

Γ ⊢ Aσ = A ′ σ ′

Properties of λΠ

Recall that we write ∆ 6i Γ to indicate ∆ ⊢ pi : Γ , cf. Rem. . Note that we
can adapt Rem. , given a substitution δ such that Γ ⊢ δ : ∆.A one can prove
Γ ⊢ δ = (p δ, q δ) : ∆.A.

Remark . The following rule is derivable by (sym) and (trans). The same
reasoning is valid for types.

(sym-trans)

Γ ⊢ t = t ′ : A Γ ⊢ t ′′ = t ′ : A
Γ ⊢ t = t ′′ : A

The following inversion lemma is easily proved by induction on derivations;
we show only one case of the proof, because all the other are analogous.

Lemma (Inversion of typing judgements).

. If Γ ⊢ FunA ′ B ′ : A, then Γ ⊢ A = U, Γ ⊢ A ′ : U and Γ.A ′ ⊢ B ′ : U;

. If Γ ⊢ FunAB, then Γ ⊢ A and Γ.A ⊢ B.

 . NbE for Martin-Löf Type Theory

. If Γ ⊢ λt : A, then Γ ⊢ A = FunA ′ B ′ and Γ.A ′ ⊢ t : B ′;

. If Γ ⊢ App t r : A, then Γ ⊢ A = B ′ (id, r), Γ ⊢ t : FunA ′ B ′, and Γ ⊢ r : A ′.

Proof. Let us consider the last point. If Γ ⊢ App t r : A, it is clear that the last
rule used can only be either (fun-el) or (conv). In the first case, the premises
give Γ ⊢ t : FunA ′ B ′, Γ ⊢ r : A ′, and Γ ⊢ A = B ′ (idΓ , r) is obtained by (refl).

If the last rule used was (conv) from Γ ⊢ App t r : C and Γ ⊢ C = A,
we use the i.h. on the first premise to get Γ ⊢ t : FunA ′ B ′, Γ ⊢ r : A ′, and
Γ ⊢ C = B ′ (idΓ , r). By (sym-trans) we get Γ ⊢ A = B ′ (idΓ , r).

The next lemma is a property of the meta-theory of GATs; to prove it
directly we should add a new form of judgement for equality between contexts.

Lemma (Inversion of equality).

. If Γ ⊢ A = B, then Γ ⊢ A and Γ ⊢ B.

. If Γ ⊢ t = t ′ : A, then Γ ⊢ t : A and Γ ⊢ t ′ : A.

Remark . The main result proved in this chapter is injectivity of Fun: if
Γ ⊢ FunAB = FunA ′ B ′, then Γ ⊢ A = A ′ and Γ.A ⊢ B = B ′. This result cannot
be obtained by induction on derivations: if the last rule used was (trans) on
Γ ⊢ FunAB = C and Γ ⊢ C = FunA ′ B ′, then we cannot apply the inductive
hypothesis.

As we said before, in λΠ we have computation on types that can occur on
typing derivations. This is the reason why we need to decide equality to define
a type-checking algorithm. As we have seen for λ→, equality can be decided by
normalising terms and checking for syntactical equality. As we want to decide
equality for types, we extend the set of normal forms with types.

Definition (Normal forms).

Ne ∋ k ::= q | q pi+1 | App k v

Nf ∋ v, V,W ::= U | FunV W | λv | k .

. Semantics and Normalisation by Evaluation

Following the pattern of Chap. we first introduce an appropriate domain D
for interpreting terms and then build an applicative structure on top of the
domain. The lack of (η) allows us to use a set-theoretical model as in Sec. .;
since we do not η-expand terms, the families of functions ↓A and ↑A can be
dispensed.

Domain semantics

Definition . We define D as the least solution for the following domain
equation

D ≈ O⊕ D×D ⊕ Var⊥ ⊕ [D→ D] ⊕ D× [D→ D] ⊕ D×D ⊕ {U}⊥ .

.. Semantics and Normalisation by Evaluation

Some of the components are the analogous as those of Def. (.): Var is a
denumerable set of variables, neutrals values accounts for one copy of D×D;
environments will be modeled using the same sequences built from ⊤ and
elements in D×D. Elements of the lifted singleton {U}⊥ and of D× [D→ D]
will be used to represent types in the semantics.

Notation. We use for injections into D the same symbols for constructors in
the syntax, so an element distinct from ⊥ is written as:

⊤ (d, d ′) for d, d ′ ∈ D
Var i U for i ∈ Var
lam f Fun d f for d ∈ D, and f ∈ [D→ D]

Appdd ′ for d, d ′ ∈ D

The readback function of the previous chapter should be extended to cover
the new elements in the domain.

Definition (Readback function).

Rj U = U

Rj (Fun X F) = Fun (Rj X) (Rj+1 (F Var j))

Rj (Appdd
′) = App (Rj d) (Rj d

′)

Rj (lam f) = λ(Rj+1 f(Var j))

Rj (Var i) =

q if j 6 i+ 1
q pj−(i+1) if j > i+ 1

Our model will be based on the reflection of neutral terms in D, as in
Sec. .. Intuitively, the sets of semantical neutral values Ne and semantical
normal forms Nf have more elements than those of Sec. ., because we have
more normal forms.

Definition (Semantical neutral values and normal forms).

Ne =

i∈N

{d ∈ D | Ri d ∈ Ne} and Nf =

i∈N

{d ∈ D | Ri d ∈ Nf} .

The application operator for λΠ is the same as that of Sec. .:

d · e =

f e if d = lam f

Appd e if d ∈ Ne

⊥ otherwise .

The interpretation of expressions in this applicative structure is given by
a pair of functions J_Kt_ ∈ Terms → D → D and J_Ks_ ∈ Subs → D → D;
they are shown in Fig. .. In the following we omit the superscript from the
semantic brackets. Remember the over-loading rôle of p and q as projection
functions in D:

p d =

d ′ if d = (d ′, e)

⊥ otherwise .

 . NbE for Martin-Löf Type Theory

JUKtd = U

JFunABKtd = Fun (JAKtd) (e →→ JBKt(d, e))

JApp t rKtd = JtKtd · JrKtd

JλtKtd = lam (d ′ →→ JtKt(d, d ′))

Jt σKtd = JtKt(JσKsd)

JqKtd = q d

J⟨⟩Ksd = ⊤
JidKsd = d

J(σ, t)Ksd = (JσKsd, JtKtd)

JpKsd = p d

Jσ δKsd = JσKs(JδKsd)

Figure .: Semantics

Domain model

In λ→ we used the phrase “the denotation of a type A” to refer to the set of
values that could be taken by terms with type A. In λΠ the phrase may have
an additional meaning: it can also refer to the element of D assigned by JAKt.
Our model is based on a semantical universe T ⊆ D, which captures the latter
meaning: if A is a type, then JAKt ∈ T. For each element d ∈ T we have also a
subset [d] ⊆ D interpreting terms of the type denoted by d. In particular, U ∈ T
and elements of U = [U] interpret small types. These subsets are introduced
using the schema of inductive-recursive definition of [].

Definition (Universes for small and large types).

. Subset of small types, U:

• Ne ⊆ U,

• if X ∈ U and for all d ∈ [X], F d ∈ U then Fun X F ∈ U.

. Subset of types, T:

• U ⊆ T

• U ∈ T,

• if X ∈ T, and for all d ∈ [X], F d ∈ T, then Fun X F ∈ T.

. Family of subsets for types, [_] ∈ T→ P(D):

• [U] = U

• [Fun X F] = {d | d · e ∈ [F e], for all e ∈ [X]}

• for all d ∈ Ne, [d] = Ne

Remark . There is a well-founded order on T: the minimal elements are U,
and elements in Ne; X @ Fun X F, and for all d ∈ [X], F d @ Fun X F. This order
is used to justify most of the following proofs by induction on T.

The next lemma shows that every set denoting types is saturated [, Ch.
]. If we compare this lemma with Lem. we recognise a similar situation, we
embed elements from [X] into Nf and project neutral values from Nf into [X];
the only difference is that now the embedding-projection pairs are identity
functions, instead of ↓_ _ and ↑_ _.

.. Semantics and Normalisation by Evaluation

Lemma (Closure of semantic sub-sets).

. Ne ⊆ T and for all X ∈ T, Ne ⊆ [X].

. T ⊆ Nf and for all X ∈ T, [X] ⊆ Nf.

Proof. We first prove simultaneously X ∈ Nf and Ne ⊆ [X] ⊆ Nf, for all
X ∈ U. Since Ne ⊆ Nf and Ne ∈ U are obvious, we only show FunX ′ F ∈ Nf
if FunX ′ F ∈ U: By i.h. X ′ ∈ Nf and Var i ∈ [X ′], hence FVar i ∈ U, and
by i.h. FVar i ∈ Nf. In particular Ri X

′ ∈ Nf and Ri+1 (FVar i) ∈ Nf, hence
Ri (FunX

′ F) ∈ Nf.
Finally we consider X = FunX ′ F and show Ne ⊆ [FunX ′ F] ⊆ Nf. Given

d ∈ Ne and d ′ ∈ [X ′] we show d · d ′ ∈ [F d ′]: by i.h. d ′ ∈ Nf and d · d ′ =
App d d ′ which is a neutral value, hence by i.h. on Ne ⊆ F d ′ ∈ U we conclude
d ∈ [FunX ′ F]. The last step is to show [FunX ′ F] ⊆ Nf. Note that an element of
[FunX ′ F] can be either a neutral or a function lam f, otherwise we would have
⊥ ∈ [F d ′] for each d ′ ∈ [X ′]; but that is not the case because by i.h. [F d ′] ⊆ Nf
and ⊥ ̸∈ Nf. Let us suppose d = lam f: since Var i ∈ Ne, by i.h. Var i ∈ [X ′], so
f (Var i) ∈ [F d ′], hence f (Var i) ∈ Nf; in particular Ri+1 (f (Var i)) ∈ Nf, thus
Ri (lam f) ∈ Nf.

To prove the lemma, we proceed by induction on X ∈ T: the case of X ∈ Ne
is trivial; and the case of X = FunX ′ F is dealt as above, in the proof of the
lemma for X = U.

An immediate consequence of this lemma is that normalisation consists, as
in Sec. ., just of the composition of evaluation (with a proper environment)
and reification (with a proper index).

In the following definition we define simultaneously the notion of validity
of judgements and the interpretation of well-formed contexts.

Definition (Validity).

. Contexts:

• Validity: � � always, and Γ.A � if and only if Γ � A.

• Interpretation: J�K = {⊤}; and when Γ.A �, then JΓ.AK = {(d, d ′) |

d ∈ JΓK and d ′ ∈ [JAKd]}.

. Types: Γ � A if and only if Γ � and for all d ∈ JΓK, JAKd ∈ T.

. Terms: Γ � t : A if and only if Γ � A and for all d ∈ JΓK, JtKd ∈ [JAKd].

. Substitutions: Γ � σ : ∆ if and only if Γ �, ∆ �, and for all d ∈ JΓK,
JσKd ∈ J∆K.

We extend the definition of validity to equality judgements, for example
Γ � t = t ′ : A iff Γ � t : A, Γ � t ′ : A, and JtKd = Jt ′Kd, for all d ∈ JΓK.

The following theorem states that this construction over the applicative
structure models the calculus. We omit the proof of soundness which can be
done by a tedious, but straightforward, induction on derivations.

Theorem (Soundness). If Γ ⊢ J, then Γ � J.

 . NbE for Martin-Löf Type Theory

As before, soundness and Lem. are the crucial results for having com-
pleteness of the normalisation algorithm, defined as the composition of reifica-
tion and interpretation.

Corollary (Completeness of normalisation). Let Γ ⊢ and d ∈ JΓK.

. If Γ ⊢ A, then R|Γ | (JAKd) ∈ Nf.

. If Γ ⊢ A = A ′, then R|Γ | (JAKd) ≡ R|Γ | (JA ′Kd).

. If Γ ⊢ t : A, then R|Γ | (JtKd) ∈ Nf.

. If Γ ⊢ t = t ′ : A, then R|Γ | (JtKd) ≡ R|Γ | (Jt ′Kd).

Proof. By Thm. , JAKd ∈ T and JtKd ∈ [JAKd]; by Lem. , JtKd ∈ Nf.

. Correctness of NbE via logical relations

As in the previous chapter, correctness of normalisation is proved using logical
relations. For λΠ we have, as before, a family of logical relations indexed by
(semantical) types; we also have a new family of logical relations involving
well-formed types and elements of T. This new logical relation is used to prove
correctness of normalisation for types.

Definition (Logical relations). There are two families of logical relations;

. Let Γ ⊢, then Γ ⊢ _ ∼ _ ∈ T ⊆ {A | Γ ⊢ A}× T.

. Let Γ ⊢ A and X ∈ T, then Γ ⊢ _ : A ∼ _ ∈ X ⊆ {t | Γ ⊢ t : A}× [X].

• Neutral types: X ∈ Ne.

– Γ ⊢ A ∼ X ∈ T if and only if for all ∆ 6i Γ , ∆ ⊢ A pi = R|∆| X.

– Γ ⊢ t : A ∼ d ∈ X if and only if Γ ⊢ A ∼ X ∈ T, and for all ∆ 6i Γ ,
∆ ⊢ t pi = R|∆| d : A pi.

• Universe.

– Γ ⊢ A ∼ U ∈ T if and only if Γ ⊢ A = U.

– Γ ⊢ t : A ∼ d ∈ U if and only if Γ ⊢ A = U, Γ ⊢ t ∼ d ∈ T, and for all
∆ 6i Γ , ∆ ⊢ t pi = R|∆| d : U.

• Function spaces.

– Γ ⊢ A ∼ Fun X F ∈ T if and only if Γ ⊢ A = FunA ′ B, and Γ ⊢
A ′ ∼ X ∈ T, and ∆ ⊢ B (pi, s) ∼ F d ∈ T for all ∆ 6i Γ and all
∆ ⊢ s : A ′ pi ∼ d ∈ X.

– Γ ⊢ t : A ∼ d ∈ Fun X F if and only if Γ ⊢ A = FunA ′ B, Γ ⊢
A ′ ∼ X ∈ T, and for all ∆ 6i Γ and ∆ ⊢ s : A ′ pi ∼ d ′ ∈ X, ∆ ⊢
App (t pi) s : B (pi, s) ∼ d · d ′ ∈ F d ′;

∗ if d = lam f, then Γ ⊢ t = λ t ′ : A,
∗ if d ∈ Ne, then ∆ ⊢ (t pi) = R|∆| d : A pi.

.. Correctness of NbE via logical relations

Note that the definition of the logical relation for dependent products is a
bit contrived; in fact, logical relations of functional types are usually defined
using the logical relations of the lower types involved, as in Sec. .. For
this calculus, however, we need to impose additional conditions on terms —
basically, that functions in the semantics are related only with abstractions,
otherwise it is not clear how to prove Lem. .

The following lemma shows that judgemental equality preserves the logical
relation; since we have defined the logical relations using definitional equality,
this lemma is easily proved.

Lemma (Preservation by judgemental equality). Let Γ ⊢ A = A ′ and Γ ⊢
A ∼ X ∈ T.

. Γ ⊢ A ′ ∼ X ∈ T; and

. if Γ ⊢ t = t ′ : A and Γ ⊢ t : A ∼ d ∈ X, then Γ ⊢ t ′ : A ′ ∼ d ∈ X.

Proof. By induction on X ∈ T. Every case boils down to get the relevant part
of the hypothesis and using (sym-trans) and congruence for getting the key
equality judgement in the definition of the relation. We show only some cases.
For types, we consider X = Fun X ′ F: by hypothesis we know Γ ⊢ A = FunBC
and Γ ⊢ A = A ′, thus by (sym-trans) on types Γ ⊢ A ′ = FunBC. All the
other conditions are stated in terms of B and C, so Γ ⊢ A ′ ∼ Fun X ′ F ∈ T is
immediate.

For terms, we also consider X = Fun X ′ F: as before we can extract Γ ⊢
A ′ = FunBC by (sym-trans) from the hypothesis Γ ⊢ t : A ∼ d ∈ Fun X ′ F;
then we make case analysis on d ∈ [Fun X ′ F]. If d = lam f, by hypothesis Γ ⊢
t = λ t ′′ : A; then by (sym-trans) and conversion Γ ⊢ t ′ = λ t ′′ : A ′. The other
possibility for d ∈ [Fun X ′ F] is that d ∈ Ne: let ∆ 6i Γ , ∆ ⊢ s : B pi ∼ d ′ ∈ X ′;
then by (sym-trans) ∆ ⊢ t ′ pi = R|∆| d : A pi. By congruence ∆ ⊢ App (t pi) s =

App (t ′ pi) s : C (pi, s), so by i.h. on ∆ ⊢ App (t pi) s : C (pi, s) ∼ Appdd ′ ∈ F d ′,
we conclude ∆ ⊢ App (t ′ pi) s : C (pi, s) ∼ Appdd ′ ∈ F d ′.

Lemma (Monotonicity). Let ∆ 6i Γ then

. If Γ ⊢ A ∼ X ∈ T, then ∆ ⊢ A pi ∼ X ∈ T; and

. If Γ ⊢ t : A ∼ d ∈ X, then ∆ ⊢ t pi : A pi ∼ d ∈ X.

Proof. By induction on X ∈ T. We will show first the proof of the first point,
and then the proof of the second point.

Types. We consider only the case of neutrals and function spaces. For X ∈
Ne: Let Γ ⊢ A ∼ X ∈ T and ∆ 6i Γ . For Θ 6j ∆, we have Θ 6i+j Γ , by definition
of the log. rel. for types, Θ ⊢ A pi+j = R|Θ| X. Since Θ ⊢ A pi+j = (A pi) pj, we
have Θ ⊢ (A pi) pj = R|Θ| X; thus ∆ ⊢ A pi ∼ X ∈ T.

Let us consider now the case X = Fun X ′ F: let Γ ⊢ A ∼ Fun X ′ F ∈ T and
∆ 6i Γ . We first prove that A pi = FunB1 C1 for some B1 and C1: note that we
can get ∆ ⊢ A pi = Fun (B pi) (C (pi p, q)) from the hypothesis after applying
congruence under weakening. The second point, ∆ ⊢ B pi ∼ X ′ ∈ T, follows
from the induction hypothesis for Γ ⊢ B ∼ X ′ ∈ T. Finally, let Θ 6j ∆ and
Θ ⊢ s : B pi pj ∼ d ′ ∈ X ′, by Lem. Θ ⊢ s : B pi+j ∼ d ′ ∈ X ′; thus by def.
we have Θ ⊢ C (pi+j, s) ∼ F d ′ ∈ T; and using Lem. again we conclude
Θ ⊢ C (pi p, q) (pj, s) ∼ F d ′ ∈ T.

 . NbE for Martin-Löf Type Theory

Terms. We only consider the case for X = Fun X ′ F, because the other
cases are similar to the cases shown for types. Let Γ ⊢ t : A ∼ d ∈ Fun X ′ F
and ∆ 6i Γ . As before, from Γ ⊢ A = FunBC we get by congruence ∆ ⊢
A pi = Fun (B pi) (C (pi+1, q)), and by i.h. ∆ ⊢ B pi ∼ X ′ ∈ T. Let Θ 6j ∆ and
Θ ⊢ s : B pi pj ∼ d ′ ∈ X ′; by Lem. we have Θ ⊢ s : B pi+j ∼ d ′ ∈ X ′; thus
by def. Θ ⊢ App (t pi+j) s : C (pi+j, s) ∼ d · d ′ ∈ F d ′; and using Lem. again
we conclude Θ ⊢ App ((t pj) pj) s : C (pi p, q) (pj, s) ∼ d · d ′ ∈ F d ′. Finally we
do case analysis on d ∈ [Fun X ′ F]. If d = lam f, then Γ ⊢ t = λt ′ : A, hence by
congruence Θ ⊢ t = λ(t ′ (pi p, q)) : A. If d ∈ Ne, then we have (t pi) pj = t pi+j,
thus Θ ⊢ (t pi) pj = R|Θ| d : (A pi) pj, from def. of logical relations.

The next lemma (sometimes called “in-out” lemma) is almost what we need
to finish the proof of soundness; in fact, the only remaining step is to show
that each term is logically related to its denotation.

Lemma (Derivability of equality of reified elements). Let Γ ⊢ A ∼ X ∈ T,
and Γ ⊢ t : A ∼ d ∈ X, then

. Γ ⊢ A = R|Γ | X,

. Γ ⊢ t = R|Γ | d : A; and

. if k ∈ Ne and for all ∆ 6i Γ , ∆ ⊢ t pi = R|∆| k : A pi, then Γ ⊢ t : A ∼ k ∈ X.

Proof. By induction on X ∈ T. The base cases are obtained immediately from
the definition. So we show only the proofs for X = Fun X ′ F.

. From Γ ⊢ A ∼ Fun X ′ F ∈ T we know Γ ⊢ A = FunBC, Γ ⊢ B ∼ X ′ ∈
T, and Γ.B ⊢ C ∼ FVar |Γ | ∈ T; thus by i.h. we get Γ ⊢ B = R|Γ | X

′

and Γ.B ⊢ C = R|Γ.B| (FVar |Γ |). Hence by congruence, Γ ⊢ FunBC =
Fun (R|Γ | X) (R|Γ |+1 (FVar |Γ |)); and by def. of readback Γ ⊢ FunBC =
R|Γ | (Fun X F).

. We show only the case for X = Fun X ′ F and d = lam f (the case when
d ∈ Ne is immediate from the definition). Let Γ ⊢ t : A ∼ lam f ∈ Fun X ′ F.
By i.h. on the third point Γ.B ⊢ q : B p ∼ Var |Γ | ∈ X ′. From the def. of the
logical relations Γ.B ⊢ App ((λ t ′) p) q : C (p, q) ∼ fVar |Γ | ∈ F (Var |Γ |) and
by i.h.

Γ.B ⊢ App ((λ t ′) p) q = R|Γ |+1 (f (Var |Γ |)) : C (p, q) ;

by trans. and conversion Γ.B ⊢ t ′ = R|Γ |+1 fVar |Γ | : C. By def. of read-
back R|Γ |+1 (f (Var |Γ |)) = R|Γ | (lam f), hence by congruence Γ ⊢ λ t ′ =
R|Γ | (lam f) : FunBC.

. let k ∈ Ne and ∆ ⊢ t pi = R|∆| k : A pi, for all ∆ 6i Γ . The only point
to show is ∆ ⊢ App (t pi+j) s : C (pi+j, s) ∼ Appkd ∈ F d, for all ∆ 6j Γ
and ∆ ⊢ s : B pi+j ∼ d ∈ X ′. We will use the i.h. after showing Θ ⊢
(App (t pi) s) pj = R|Θ| (Appkd) : C (pi, s) pj, for all Θ 6j ∆.

Note that we have Θ ⊢ t pi+j = R|Θ| k : A pi+j and, by Lem. and i.h.
Θ ⊢ s pj = R|Θ| d : B p

i+j. Hence by congruence Θ ⊢ (App (t pi) s) pj =

App (R|Θ| k) (R|Θ| d) : C (pi, s) pj. We can apply the i.h. on Appkd ∈ Ne,
because by definition App (R|Θ| k) (R|Θ| d) = R|Θ| (Appkd).

.. Correctness of NbE via logical relations

To prove that each term is related to its denotation, we need the more
general result that logical relations are preserved under substitutions.

Definition (Logical relations for substitutions). Given two well-formed
contexts Γ ⊢ and ∆ ⊢, then Γ ⊢ _ : ∆ ∼ _ ∈ J∆K ⊆ {σ | Γ ⊢ σ : ∆} × J∆K. By
induction on ∆ we define:

• Γ ⊢ σ : � ∼ d ∈ J�K.

• Γ ⊢ (σ, t) : ∆.A ∼ (d, d ′) ∈ J∆.AK if and only if Γ ⊢ σ : ∆ ∼ d ∈ J∆K,
∆ ⊢ A ∼ JAKd ∈ T, and Γ ⊢ t : Aσ ∼ d ′ ∈ JAKd.

Lemma (Preservation by judgemental equality). If Γ ⊢ γ = δ : ∆, and
Γ ⊢ γ : ∆ ∼ d ∈ J∆K, then Γ ⊢ δ : ∆ ∼ d ∈ J∆K.

Lemma (Monotonicity). If Γ ⊢ δ : ∆ ∼ d ∈ J∆K, then for any Θ 6i Γ ,
Θ ⊢ δ pi : ∆ ∼ d ∈ J∆K.

Theorem (Fundamental theorem of logical relations).

. if ∆ ⊢ A and Γ ⊢ δ : ∆ ∼ d ∈ J∆K, then Γ ⊢ Aδ ∼ JAKd ∈ T;

. if ∆ ⊢ t : A and Γ ⊢ δ : ∆ ∼ d ∈ J∆K, then Γ ⊢ t δ : Aδ ∼ JtKd ∈ JAKd; and

. if Θ ⊢ γ : Γ and Γ ⊢ δ : ∆ ∼ d ∈ J∆K, then Θ ⊢ γ δ : ∆ ∼ JγKd ∈ J∆K.

Proof. By induction on the derivations. We note that for terms we show only
some cases when the last rule used was the introductory rule; the case when the
last rule used was the conversion rule, we can conclude by i.h., and Lem. .

. For types we show the case for ∆ ⊢ FunAB. It is clear that we can apply
the congruence for Fun to deduce Γ ⊢ (FunAB) δ = Fun (Aδ) (B (δ p, q)),
and by inversion and i.h. Γ ⊢ Aδ ∼ JAKd ∈ T. Let Θ 6i ∆ and
Θ ⊢ s : (Aδ) pi ∼ e ∈ JAKd, then Θ ⊢ (δ pi, s) : Γ.A ∼ (d, e) ∈ JΓ.AK,
hence by i.h. Θ ⊢ B (δ pi, s) ∼ JBK(d, e) ∈ T; thus by Lem. , Θ ⊢
(B (δ p, q)) (pi, s) ∼ JBK(d, e) ∈ T.

. For terms we only show the proof for rules (fun-i), (fun-el), (hyp), and
(subs-term).

a) Let ∆ ⊢ λt : FunAB. As before, Γ ⊢ Aδ ∼ JAKd ∈ T, and for
Θ 6i ∆ and Θ ⊢ s : (Aδ) pi ∼ e ∈ JAKd, by i.h. on ∆.A ⊢ t : B,
we have Θ ⊢ t (δ pi, s) : B (δ pi, s) ∼ JtK(d, e) ∈ JBK(d, e). Note that
JtK(d, e) = JλtKd · e and t (δ pi, s) = App λ(t (δ pi, q)) s, hence by
Lem. , we have Θ ⊢ App ((λt) δ pi) s : B (δ pi, s) ∼ JλtKd · e ∈
(JBKd) e.

b) Let ∆ ⊢ App t r : B (id, r). This case is easy. By inversion and
i.h. Γ ⊢ r δ : Aδ ∼ JrKd ∈ JAKd and Γ ⊢ t δ : (FunAB) δ ∼ JtKd ∈
JFunABKd. By def. of log. rel. ∆ ⊢ App (t δ) (r δ) : B (δ, r δ) ∼

(JtKd · JrKd) ∈ JBK(d, JrKd); and by Lem. , we conclude ∆ ⊢
(App t r) δ : (B (id, r)) δ ∼ JApp t rKd ∈ JB (id, r)Kd.

c) Let ∆.A ⊢ q : A p. From Rem. we know δ = (γ, t), and from def.
of log. rel. for substitutions d = (e, e ′), Γ ⊢ γ : ∆ ∼ e ∈ J∆K, and
Γ ⊢ t : Aδ ∼ e ′ ∈ JAKe. By Lem. , Γ ⊢ q δ : A p ∼ JqKd ∈ JA pKd.

 . NbE for Martin-Löf Type Theory

d) Let ∆ ⊢ t σ : Aσ, with ∆ ⊢ σ : Θ. By i.h. ∆ ⊢ σ δ : Θ ∼ JσKd ∈ JΘK and
∆ ⊢ t σ δ : Aσδ ∼ JtK(JσKd) ∈ JAK(JσKd).

. All the cases for substitutions are simple and similar to cases already
considered. We show the case of (ext-subs), just for illustration. Let
∆ ⊢ (γ, t) : Θ.A. By i.h. Γ ⊢ γ δ : Θ ∼ JγKd ∈ JΘK and Γ ⊢ t δ : (Aγ) δ ∼

JtKd ∈ JAγKd; so Γ ⊢ (γ δ, t δ) : Θ.A ∼ J(γ, t)Kd ∈ JΘ.AK and, by Rem. ,
we conclude Γ ⊢ (γ, t) δ : Θ.A ∼ J(γ, t)Kd ∈ JΘ.AK.

Now we can define a function mapping each context to an element of the
semantic domain; it is, clearly, logically related with the identity substitution.
Hence, to get soundness we can instantiate Thm. and then apply Lem. .

Definition (Canonical element of a context and Normalisation function). Let
Γ ⊢ and n = |Γ |.

nbeΓ (_) = R|Γ | (J_KρΓ) , where

ρΓ = ((. . . (⊤,Var 0), . . .),Var (n− 1))) .

Soundness of normalisation, and the uniqueness of normal forms, was
already shown by Martin-Löf in [], where he credits Peter Hancock for the
proof method.

Theorem (Soundness of NbE). Let Γ ⊢ A, and Γ ⊢ t : A; then Γ ⊢ A =
nbeΓ (A) and Γ ⊢ t = nbeΓ (t) : A.

Proof. By Thm. and Lem. .

From soundness and completeness of NbE we obtain a decision procedure
for judgemental equality for well-formed types and well-typed terms.

Corollary (Decision procedure for judgemental equality). Given Γ ⊢ A and
Γ ⊢ A ′ we can decide if Γ ⊢ A = A ′. Also, if Γ ⊢ t : A and Γ ⊢ t ′ : A we can
decide if Γ ⊢ t = t ′ : A.

Another consequence of soundness is the injectivity of the constructor Fun.
As we said in Rem. , this cannot be proved by induction on derivations.

Corollary (Injectivity of Fun _ _). If Γ ⊢ FunAB = FunA ′ B ′, then Γ ⊢ A =
A ′ and Γ.A ⊢ B = B ′.

Proof. Assume Γ ⊢ FunAB = FunA ′ B ′; then, by Lem. we know Γ ⊢ FunAB;
by Thm. , and Lem. ,

Γ ⊢ FunAB ∼ JFunABKρΓ ∈ T . (.)

From the definition of logical relations we deduce Γ ⊢ A ∼ JAKρΓ ∈ T and
Γ.A ⊢ B ∼ JBKρΓ.A ∈ T; by Lem. Γ ⊢ A = R|Γ | (JAKρΓ) and Γ.A ⊢ B =
R|Γ.A| (JBKρΓ.A). By Lem. on (.) and Γ ⊢ FunAB = FunA ′ B ′ we get
Γ ⊢ FunA ′ B ′ ∼ JFunABKρΓ ∈ T; and by the same reasoning as before Γ ⊢ A =
R|Γ | (JA ′KρΓ) Γ.A ⊢ B = R|Γ.A| (JB ′KρΓ.A). Finally we can apply (sym) and (trans)
to conclude Γ ⊢ A = A ′ and Γ.A ⊢ B = B ′.

.. Implementation of a type-checker for λΠ

. Implementation of a type-checker for λΠ

In this appendix we present an implementation of the algorithms for deciding
equality and type-checking. The decision procedure consists of checking the
syntactical equality of the normal forms got by applying the nbe function to
both terms. Even though the normalisation function is defined independently
of type-checking, it can be applied safely only on well-typed terms (or well-
formed types); so checking equality requires to type-check terms.

The syntax of the calculus
data Term = U

| Fun Term Term
| Subs Term Subst
| Abs Term
| App Term Term
| Var
deriving Eq

data Subst = Empty
| IdSub
| Weak
| ExtSub Subst Term
| Comp Subst Subst
deriving Eq

type Ctx = [Term]

var :: Int -> Term
var 0 = Var
var n = Subs Var (weak (n-1))

weak :: Int -> Subst
weak 0 = Weak
weak n = Comp (weak (n-1)) Weak

sub :: Term -> Subst
sub = ExtSub IdSub

The Semantic Domain and Reification
data D = Top

| Pair D D
| VarD Int
| AppD D D
| UD
| Lam (D -> D)
| FunD D (D -> D)

 . NbE for Martin-Löf Type Theory

readback :: Int -> D -> Term
readback j (VarD i) = var (j - (i+1))
readback j (AppD d e) = App (readback j d) (readback j e)
readback _ UD = U
readback j (Lam f) = Abs $ readback (j+1) (f (VarD j))
readback j (FunD d f) = Fun (readback j d) (readback (j+1) (f (VarD j)))

The applicative structure
app :: D -> D -> D
app (Lam f) e = f e
app d@(VarD _) e = AppD d e
app d@(AppD _ _) e = AppD d e
app _ _ = undefined

proj1,proj2 :: D -> D
proj1 (Pair d _) = d
proj1 _ = undefined
proj2 (Pair _ e) = e
proj2 _ = undefined

The interpretation
type Env = D

evalTm :: Term -> Env -> D
evalTm U d = UD
evalTm (Fun a b) d = FunD (evalTm a d) (\e -> evalTm b (Pair d e))
evalTm (Subs t s) d = evalTm t (evalSubst s d)
evalTm (Abs t) d = Lam (\e -> evalTm t (Pair d e))
evalTm (App t t’) d = evalTm t d ‘app‘ evalTm t’ d
evalTm Var d = proj2 d

evalSubst :: Subst -> Env -> D
evalSubst Empty d = Top
evalSubst IdSub d = d
evalSubst Weak d = proj1 d
evalSubst (ExtSub s t) d = Pair (evalSubst s d) (evalTm t d)
evalSubst (Comp s s’) d = evalSubst s (evalSubst s’ d)

Normalisation By Evaluation
env :: Ctx -> (Env, Int)
env [] = (Top,0)
env (_:ctx) = (Pair d (VarD n),n+1)

where (d , n) = env ctx

nbe :: Ctx -> Term -> Term
nbe ctx tm = readback n (evalTm tm d)

where (d,n) = env ctx

eqCheck :: Ctx -> Term -> Term -> Bool
eqCheck ctx a b = nbe ctx a == nbe ctx b

.. Implementation of a type-checker for λΠ

Bi-directional type-checking algorithm

The type-checking algorithm consists in three functions: tyCheck decides the
well-formedness of a type, in normal form, under a (well-formed) context;
the checking that a term, in normal form, has a given type under a context
is done by tmCheck; finally, infTy infers a type for a neutral term under a
given context. Note that infTy can fail, but when it succeeds the inferred
type is well-formed, so it is safe to use nbe to decide its equality with another
well-formed type.

tyCheck :: Ctx -> Term -> Bool
tyCheck _ U = True
tyCheck ctx (Fun a b) = tyCheck ctx a && tyCheck (a:ctx) b
tyCheck ctx k = neutral k && tmCheck ctx U k

tmCheck :: Ctx -> Term -> Term -> Bool
tmCheck ctx U (Fun a b) = tmCheck ctx U a && tmCheck (a:ctx) U b
tmCheck ctx (Fun a b) (Abs t) = tmCheck (a:ctx) b t
tmCheck ctx b k = neutral k &&

maybe False (eqCheck ctx b) (infTy ctx k)

infTy :: Ctx -> Term -> Maybe Term
infTy (a:ctx) Var = Just a
infTy (_:ctx) (Subs Var sigma) = tvar sigma >>= \a -> Just $ Subs a Weak

where tvar :: Subst -> Maybe Term
tvar Weak = infTy ctx Var
tvar(Comp sigma’ Weak) = infTy ctx (Subs Var sigma’)
tvar _ = Nothing

infTy ctx (App k t) = infTy ctx k >>= checkArg
where checkArg :: Term -> Maybe Term

checkArg (Fun a b) = if tmCheck ctx a t
then Just $ Subs b (sub t)
else Nothing

checkArg _ = Nothing
infTy _ _ = Nothing

neutral :: Term -> Bool
neutral Var = True
neutral (Subs Var _) = True
neutral (App _ _) = True
neutral _ = False

Martin-Löf Type Theory with Singleton
Types and Proof-Irrelevance

4In this chapter we extend the type-checking algorithm for Martin-Löf type
theory by considering, besides dependent products and a universe, singleton
types, proof-irrelevant propositions, sigma types, natural numbers, and enu-
meration types. The method of the previous chapter can be adapted in a
modular way to these extensions.

Singleton types were introduced by Aspinall [] in the context of spe-
cification languages. An important use of singletons is as definitions by ab-
breviations (see [,]); they were also used to model translucent sums in
the formalisation of SML []. It is interesting to consider singleton types
because beta-eta phase separation fails: one cannot do eta-expansion before
beta-normalisation of types because the shape of the types at which to eta-
expand is still unknown at this point; and one cannot postpone eta-expansion
after beta-normalisation, because eta-expansion at singleton type can trigger
new beta-reductions. Stone and Harper [] decide type checking in a logical
framework (LF) with singleton types and subtyping. Yet it is not clear whether
their method extends to computation on the type level. As far as we know, our
work is the first where singleton types are considered together with a universe.

De Bruijn proposed the concept of irrelevance of proofs [], for reducing the
burden in the formalisation of mathematics. As shown by Werner [], the use
of proof-irrelevance types together with sigma types is one way to get subset
types à la PVS [] in type-theories having the eta rule. This style of subset
types was also explored by Sozeau [, Sec. .]; for another presentation
of subset types in Martin-Löf type-theory see []. Berardi conjectured that
(impredicative) type-theory with proof-irrelevance is equivalent to constructive
mathematics [].

. The Calculus

In this section, we introduce the type theory. In order to show the modularity
of our approach, we present it as two calculi λSing and λIrr: the first one has de-
pendent function spaces, singleton types, and a universe closed under function
spaces and singletons. In the second calculus we leave out singleton types and
we add natural numbers, sigma types, and proof-irrelevant propositions. It is
not clear if singleton types can be combined with proof-irrelevant propositions
without turning the system inconsistent.

Calculus λSing with singleton types

We omit introductory rules for sorts because they are the same as those of
Chap. . We repeat introductory rules for contexts and substitutions although
they also remain unchanged.

 . Extended Martin-Löf Type Theory

In the following, whenever a rule has a hypothesis A ∈ Type(Γ), then Γ ∈
Ctx shall be a further, implicit hypothesis. Similarly, σ ∈ Γ → ∆ presupposes
Γ ∈ Ctx and ∆ ∈ Ctx, and t ∈ Term(Γ,A) presupposes A ∈ Type(Γ), which in
turn presupposes Γ ∈ Ctx.

Contexts and Substitutions The operators for contexts and substitutions are
the same as those of λΠ.

(empty-ctx)

� ∈ Ctx

(ext-ctx)

Γ ∈ Ctx A ∈ Type(Γ)

Γ.A ∈ Ctx

(empty-subs)

Γ ∈ Ctx

⟨⟩ ∈ Γ → �

(id-subs)

Γ ∈ Ctx

idΓ ∈ Γ → Γ

(fst-subs)

A ∈ Type(Γ)

p ∈ Γ.A→ Γ

(ext-subs)

σ ∈ Γ → ∆ t ∈ Term(Γ,Aσ)

(σ, t) ∈ Γ → ∆.A

(comp-subs)

δ ∈ Γ → Θ σ ∈ Θ→ ∆

σδ ∈ Γ → ∆

Types The only new type constructor is {t}A, for singletons: a subtype of A
containing t as single inhabitant.

(u-f)

Γ ∈ Ctx

U ∈ Type(Γ)

(u-el)

A ∈ Term(Γ,U)

A ∈ Type(Γ)

(fun-f)

A ∈ Type(Γ) B ∈ Type(Γ.A)

FunAB ∈ Type(Γ)

(sing-f)

A ∈ Type(Γ) t ∈ Term(Γ,A)

{t}A ∈ Type(Γ)

(subs-type)

A ∈ Type(∆) σ ∈ Γ → ∆

Aσ ∈ Type(Γ)

Terms Singleton types do not have a special constructor for their inhabitants;
on the other hand, we close the universe under singleton types.

(fun-u-i)

A ∈ Term(Γ,U) B ∈ Term(Γ.A,U)

FunAB ∈ Term(Γ,U)

(fun-i)

t ∈ Term(Γ.A, B)

λt ∈ Term(Γ,FunAB)

(fun-el)

B ∈ Type(Γ.A) t ∈ Term(Γ,FunAB) u ∈ Term(Γ,A)

App t u ∈ Term(Γ, B (idΓ , u))

(hyp)

A ∈ Type(Γ)

q ∈ Term(Γ.A,A p)

(subs-term)

σ ∈ Γ → ∆ t ∈ Term(∆,A)

t σ ∈ Term(Γ,Aσ)

.. The Calculus

(sing-u-i)

A ∈ Term(Γ,U) t ∈ Term(Γ,A)

{t}A ∈ Term(Γ,U)

(sing-i)

t ∈ Term(Γ,A)

t ∈ Term(Γ, {t}A)

(sing-el)

a ∈ Term(Γ,A) t ∈ Term(Γ, {a}A)

t ∈ Term(Γ,A)

Axioms for the Equational Theory In the following, we present the axioms of
the equational theory of λSing. Equality is considered as the congruence closure
of these axioms. Congruence rules, also called derived rules, are generated
mechanically for each symbol from its typing. For instance, rule (subs-type)
induces the derived rule

(subs-cong-ty)

A = B ∈ Type(Γ) γ = δ ∈ ∆→ Γ

Aγ = Bδ ∈ Type(∆) .

Another instance of a derived rule is conversion, it holds because of equality
between sorts, such as Term(Γ,A) = Term(Γ,A ′):

(conv)

t ∈ Term(Γ,A) A = A ′ ∈ Type(Γ)

t ∈ Term(Γ,A ′)

In the following, we present equality axioms without the premises concern-
ing typing, except in the cases where they cannot be inferred.

Substitutions The first two equations witness extensionality for the identity
substitution, the next three the composition laws for the category of substitu-
tions. Then there is a law for the first projection p, and the last two laws show
how to propagate a substitution δ into a tuple.

id� = ⟨⟩ idΓ.A = (p, q)

id σ = σ σ id = σ

(σ δ)γ = σ (δ γ) p (σ, t) = σ

⟨⟩ δ = ⟨⟩ (σ, t) δ = (σ δ, t δ)

Axioms for β and η, propagation and resolution of substitutions An explicit
substitution (idΓ , r) is created by contracting a β-redex (first law). It is then
propagated into the various term constructions until it can be resolved (last
two laws).

App (λt) r = t (idΓ , r) λ(App (t p) q) = t

Uσ = U ({t}A)σ = {t σ}Aσ

(FunAB)σ = Fun (Aσ) (B (σ p, q)) (λt)σ = λ(t (σ p, q))

(App r s)σ = App (r σ) (s σ) (t δ)σ = t (δ σ)

q (σ, t) = t t id = t

 . Extended Martin-Löf Type Theory

Singleton types All inhabitants of a singleton type are equal (sing-eq-i). We
mention the important derived rule (sing-eq-el) here explicitly.

(sing-eq-i)

t, t ′ ∈ Term(Γ, {a}A)

t = t ′ ∈ Term(Γ, {a}A)

(sing-eq-el)

t = t ′ ∈ Term(Γ, {a}A)

t = t ′ ∈ Term(Γ,A)

There is a choice how to express the last two rules; they could be replaced with

(sing-eq-i’)

t ∈ Term(Γ, {a}A)

t = a ∈ Term(Γ, {a}A)

(sing-eq-el’)

t ∈ Term(Γ, {a}A)

t = a ∈ Term(Γ,A)

The rule (sing-eq-el) is essential; in fact, since we have eta-expansion for
singletons, we would like to derive

Γ.{λt}FunAB ⊢ App q a = t (id, a) : B (id, a)

from Γ.{λt}FunAB ⊢ q = λt : {λt}FunAB, and Γ ⊢ a : A. Which would be im-
possible if (sing-eq-el) were not a rule.

Properties of λSing

An advantage of introducing the calculus as a GAT is that we can derive several
syntactical results from the meta-theory of GATs; for instance, some of the
following inversion results, which are needed in the proof of completeness of
the type-checking algorithm.

Remark (Weakening of judgements). Let ∆ 6i Γ , Γ ⊢ A = A ′, and Γ ⊢ t =
t ′ : A; then ∆ ⊢ A pi = A ′ pi, and ∆ ⊢ t pi = t ′ pi : A pi.

Remark (Syntactic validity).

. If Γ ⊢ t : A, then Γ ⊢ A.

. If Γ ⊢ t = t ′ : A, then both Γ ⊢ t : A, and Γ ⊢ t ′ : A.

. If Γ ⊢ A = A ′, then both Γ ⊢ A, and Γ ⊢ A ′.

Lemma (Inversion of types).

. If Γ ⊢ FunAB, then Γ ⊢ A, and Γ.A ⊢ B.

. If Γ ⊢ {a}A, then Γ ⊢ A, and Γ ⊢ a : A.

. If Γ ⊢ k, then Γ ⊢ k : U.

The following lemma can be proved directly by induction on derivations
by checking the possibles rules used in the last step.

Lemma (Inversion of typing).

. If Γ ⊢ FunA ′ B ′ : A, then Γ ⊢ A = U, Γ ⊢ A ′ : U, and also Γ.A ′ ⊢ B ′ : U;

. if Γ ⊢ {b}B : A, then Γ ⊢ A = U, Γ ⊢ B : U, and also Γ ⊢ b : B;

. if Γ ⊢ λt : A, then either

.. The Calculus

a) Γ ⊢ A = FunA ′ B with Γ.A ′ ⊢ t : B; or

b) Γ ⊢ A = {a}A ′ with Γ ⊢ λt = a : A ′.

. if Γ ⊢ App t r : A, then Γ ⊢ t : FunA ′ B ′, Γ ⊢ r : A ′, and Γ ⊢ A = B ′ (id, r ′).

Proof. () The last rule used is one of (fun-u-i), (conv), (sing-i), or (sing-e).
In the first case the premises of the rule are what is to be proved; in all other
cases we have a premise with the form Γ ⊢ FunA ′ B ′ : B, hence we can apply
the i.h. (-) Analogously.

Remark (Inversion of substitution). Any substitution ∆ ⊢ σ : Γ.A is equal to
some substitution ∆ ⊢ (σ ′, t) : Γ.A. It is enough to note idΓ.A = (p, q), hence we
have the equalities σ = id σ = (p, q)σ = (pσ, qσ).

The extension of the calculus with singleton types introduces a new shape
for normal forms to those of Def. .

Definition (Neutral terms, and normal forms).

Ne ∋ k ::= q | qpi+1 | App k v

Nf ∋ v, V,W ::= U | FunV W | {v}V | λv | k

Calculus λIrr, a type theory with proof-irrelevance

In this section we keep the basic rules of the previous calculus (those that do not
refer to singleton types), and introduce types for natural numbers, enumeration
sets, sigma types, and proof-irrelevant types. The main difference with other
presentations [,], on the syntactic level, is that the eliminator operator
(for each type) has as an argument the type of the result. The presence of the
resulting type in the eliminator is needed in order to define the normalisation
function; it is also necessary for the type-inference algorithm.

Some of the introductory rules of this section do not meet the requirements
of GATs rules; nevertheless, in order to keep the presentation uniform, we use
the same format of the previous section.

Sigma types Both U and Type are closed under (strong) sigma-type formation;
(a, b) introduces a dependent pair and fst t and snd t eliminate it.

(sum-u-i)

A ∈ Term(Γ,U) B ∈ Term(Γ.A,U)

ΣAB ∈ Term(Γ,U)

(sum-f)

A ∈ Type(Γ) B ∈ Type(Γ.A)

ΣAB ∈ Type(Γ)

(sum-in)

B ∈ Type(Γ.A) a ∈ Term(Γ,A) b ∈ Term(Γ, B (id, a))

(a, b) ∈ Term(Γ, ΣAB)

(sum-el)
t ∈ Term(Γ, ΣAB)

fst t ∈ Term(Γ,A)

(sum-el)
t ∈ Term(Γ, ΣAB)

snd t ∈ Term(Γ, B (id, fst t))

 . Extended Martin-Löf Type Theory

The β- and η-laws for pairs are given by the first three equations to follow.
The remaining equations propagate substitutions into the new term construct-
ors.

fst (a, b) = a snd (a, b) = b (fst t, snd t) = t

(fst t)σ = fst (t σ) (snd t)σ = snd (t σ) (a, b)σ = (aσ, bσ)

(ΣAB)σ = Σ (Aσ) (B (σ p, q))

Propagation laws can be obtained mechanically: to propagate σ into c t⃗, just
compose it with each ti that is not a binder (e.g., A in ΣAB), and compose its
lifted version (σ p, q) with each tj that is a binder (e.g., B in ΣAB). Binders are
those formed in an extended context (here, B ∈ Type(Γ.A)). In the following,
we will skip the propagation laws.

Natural numbers We add an inductive type Nat with constructors zero and
suc() and primitive recursion natrec.

(nat-u-i)

Γ ∈ Ctx

Nat ∈ Term(Γ,U)

(nat-z-i)

Γ ∈ Ctx

zero ∈ Term(Γ,Nat)

(nat-s-i)

t ∈ Term(Γ,Nat)

suc(t) ∈ Term(Γ,Nat)

(nat-el)

B ∈ Type(Γ.Nat)
t ∈ Term(Γ,Nat) z ∈ Term(Γ, B (id, zero)) s ∈ Term(Γ,Rec(B))

natrec(B, z, s, t) ∈ Term(Γ, B (id, t))

Here, we used Rec(B) as an abbreviation for FunNat (FunB (B (p, suc(q)) p))
which in conventional notation reads Πx :Nat. B → B[suc(x)/x]. Since B is a
big type, it can mention the universe U, thus, we can define small types by
recursion via natrec. This so called large elimination excludes normalization
proofs which use induction on type expressions [,]. We add the usual
computation laws for primitive recursion.

natrec(B, z, s, zero) = z

natrec(B, z, s, (suc(t))) = App (App s t) (natrec(B, z, s, t))

Enumeration sets The type Nn has the n canonical inhabitants cn0 , . . . , cnn−1,
which can be eliminated by the dependent case distinction casen B t0 · · · tn−1 t
with n branches.

(nn-u-i)

Γ ∈ Ctx

Nn ∈ Term(Γ,U)

(nn-i)

Γ ∈ Ctx i < n

cni ∈ Term(Γ,Nn)

(nn-e)

B ∈ Type(Γ.Nn) t ∈ Term(Γ,Nn)
t0 ∈ Term(Γ, B (id, cn0)) · · · tn−1 ∈ Term(Γ, B (id, cnn−1))

casen B t0 · · · tn−1 t ∈ Term(Γ, B (id, t))

We add the usual computational law for case distinction, and weak extension-
ality, which for booleans (N2) reads “if t then true else false = t” in sugared

.. The Calculus

syntax.

casen B t0 · · · tn−1 cni = ti

casen Nn cn0 · · · cnn−1 t = t

In the sequel we use t⃗ for denoting, in casen B t0 · · · tn−1 r, the n terms
t0 · · · tn−1. We will omit superscripts n in ci, and in case B t⃗ r.

For N0 and N1 we can formulate strong η-laws: all their inhabitants are
considered equal, since there is at most one. To realize this, we introduce a new
term ⋆ in N0 if it already has an inhabitant t; we consider ⋆ as normal form of t.
Note that this seemingly paradoxical canonical form ⋆ ∈ N0 does not threaten
consistency, since it cannot exist in the empty context Γ = �; otherwise there
would have already been a term t ∈ Term(�,N0).

(n0-tm)

t ∈ Term(Γ,N0)

⋆ ∈ Term(Γ,N0)

(n0-eq)

t, t ′ ∈ Term(Γ,N0)

t = t ′ ∈ Term(Γ,N0)

(n1-eq)

t, t ′ ∈ Term(Γ,N1)

t = t ′ ∈ Term(Γ,N1)

On the one hand, rule (n0-tm) destroys decidability of type checking: to
check whether ⋆ ∈ Term(Γ,N0) we would have to decide the consistency of
Γ which is certainly impossible in a theory with natural numbers. On the
other hand, it allows us to decide equality by computing canonical forms.
We solve this dilemma by forbidding ⋆ in the user syntax which is input for
the type-checker; ⋆ is only used internally in the NbE algorithm and in the
canonical forms it produces. Formally this is reflected by having two calculi:
one with the rule (n0-tm) and one without it. To distinguish the calculi, we
decorate the turnstile (⊢⋆) in judgements of the former and leave (⊢) for the
calculus without (n0-tm). We also use the different turnstiles for referring to
each calculus. In Sec. . we prove that (⊢⋆) is a conservative extension of (⊢).

Strong extensionality for booleans and larger enumeration sets is hard to
implement [,] and beyond the scope of this work.

Proof irrelevance Our treatment of proof-irrelevance is based on Awodey and
Bauer [] and Maillard []. The constructor [_] turns a type A into the
proposition [A] in the sense that only the fact matters whether A is inhabited,
not by what. An inhabited proposition is regarded as true, an uninhabited
as false. The proposition [A] still has all inhabitants of A, but now they are
considered equal. If A is not empty, we introduce a trivial proof ⋆ in [A] which
we regard as the normal form of any t ∈ Term(Γ, [A]).

(prf-f)

A ∈ Term(Γ,U)

[A] ∈ Term(Γ,U)

(prf-f)

A ∈ Type(Γ)

[A] ∈ Type(Γ)

(prf-i)

a ∈ Term(Γ,A)

[a] ∈ Term(Γ, [A])

(prf-tm)

a ∈ Term(Γ,A)

⋆ ∈ Term(Γ, [A])

(prf-eq)

A ∈ Type(Γ) t, t ′ ∈ Term(Γ, [A])

t = t ′ ∈ Term(Γ, [A])

 . Extended Martin-Löf Type Theory

Note that (prf-tm) is analogous to (n0-tm) and the same remarks apply; in
particular, (prf-tm) is also a rule in (⊢⋆) but not in (⊢).

We use Awodey and Bauer’s [] elimination rule for proofs.

Γ ⊢ t : [A] Γ ⊢ B Γ, x :A ⊢ b : B Γ, x :A,y :A ⊢ b = b[y/x] : B

Γ ⊢ b where [x]← t : B

The content x : A of a proof t : [A] can be used in b via the elimination
b where [x] = t if b does not actually depend on it, which is expressed via the
hypothesis that b should be equal to b[y/x] for an arbitrary y. This elimination
principle is stronger than “proofs can only be used inside of proofs” which is
witnessed by the rule:

Γ ⊢ t : [A] Γ ⊢ B Γ, x :A ⊢ b : [B]

Γ ⊢ b where [x]← t : [B]

Note that this weaker elimination rule in the style of a bind operation for
monads is an instance of the Awodey-Bauer rule, since the equation Γ, x :A,y :
A ⊢ b = b[y/x] : [B] holds trivially due to proof irrelevance.

The Awodey-Bauer where fulfills β-, η-, and associativity laws analogous to
the ones of a monad.

b where [x]← [a] = b[a/x]

b[[x]/y] where [x]← t = b[t/y]

a where [x]← (b where [y]← c) =

(a where [x]← b) where [y]← c if y ̸∈ FV(a)

After this more readable presentation in named syntax, we add the eliminator
and its equations to our framework in de Bruijn style:

(prf-el)

t ∈ Term(Γ, [A])
B ∈ Type(Γ) b ∈ Term(Γ.A, B p) b p = b (p p, q) ∈ Term(Γ.A.A p, B p p)

bwhereB t ∈ Term(Γ, B)

bwhereB [a] = b (id, a) (prf-β)

b (p, [q])whereB t = b (id, t) (prf-η)

awhereA (bwhereB c) = (a (p p, q)whereA p b)whereB c (prf-assoc)

After exposition of the formation, introduction, elimination, and equality
rules for the types of λIrr, we continue with basic properties of derivations.

Definition (Neutral terms and normal forms).

Ne ∋ k ::= . . . | fst k | snd k | natrec(V, v, v ′, k) |

casen V v0 · · · vn−1 k | vwhereV k | ⋆

Nf ∋ v, V ::= . . . | ΣV W | Nat | Nn | [V] | (v, v ′) | zero | suc(v) | cni | [v]

.. The Calculus

The next lemma can be strengthened by stating that the judgements in the
conclusion of each property corresponds to a sub-derivation of the derivation
in the premise. The importance of the stronger version is that, in proof by
induction on derivations, one can use induction hypotheses in the inverted
judgements.

Lemma (Inversion of types).

. If Γ ⊢ ΣAB, then Γ ⊢ A, and Γ.A ⊢ B.

. If Γ ⊢ [A], then Γ ⊢ A.

Lemma (Inversion of typing).

. If Γ ⊢ ΣA ′ B : A, then Γ ⊢ A = U, and Γ ⊢ A ′ : U, and Γ.A ′ ⊢ B : U.

. If Γ ⊢ Nat : A, then Γ ⊢ A = U.

. If Γ ⊢ Nn : A, then Γ ⊢ A = U.

. If Γ ⊢ (t, b) : A , then Γ ⊢ A = ΣA ′ B, and Γ ⊢ t : A ′, and Γ ⊢ b : B (id, t).

. If Γ ⊢ fst t : A , then Γ ⊢ A = A ′, and Γ ⊢ t : ΣA ′ B, for some A ′, and B.

. If Γ ⊢ snd t : B, then Γ ⊢ B = B ′ (id, fst t), and Γ ⊢ t : ΣAB ′, for some A,
and B ′.

. If Γ ⊢ zero : A, then Γ ⊢ A = Nat.

. If Γ ⊢ suc(t) : A, then Γ ⊢ t : Nat, and Γ ⊢ A = Nat.

. If Γ ⊢ natrec(B, z, s, t) : A , then Γ.Nat ⊢ B, Γ ⊢ z : B (id, zero), Γ ⊢
s : Rec(B), Γ ⊢ t : Nat, and Γ ⊢ A = B (id, t).

. if Γ ⊢ cni : A, then Γ ⊢ A = Nn;

. If Γ ⊢ case B t⃗ t ′ : A, then Γ.Nn ⊢ B, Γ ⊢ ti : B (id, ci), Γ ⊢ t ′ : Nn, and
Γ ⊢ A = B (id, t).

. If Γ ⊢ [t] : A, then Γ ⊢ A = [A ′] and Γ ⊢ t ′ : A ′.

. If Γ ⊢ bwhereB t : A, then Γ ⊢ A = B, Γ ⊢ t : [A ′] for someA ′, Γ.A ′ ⊢ b : B p,
and Γ.A ′.A ′ p ⊢ b p = b (pp, q) : B p.

Conservativity of ⋆

In this section we prove that (⊢⋆) is a conservative extension of (⊢); i.e., any
derivation in (⊢⋆) has a counterpart derivation in (⊢) and the components of
the conclusions of those derivations are judgmentally equal in (⊢⋆).

Definition . A term is called pure if it does not contain any occurrence of ⋆.
Let ν be a syntactical entity, if µ is obtained from ν by replacing all occurrences
of ⋆ by pure terms, then µ is called a lifting of ν.

We will distinguish those liftings that are judgmentally equal to the lifted
entity, these liftings are called good liftings.

Definition (Good lifting).

 . Extended Martin-Löf Type Theory

. A context Γ ′ ⊢ is a good lifting of Γ ⊢⋆ if Γ ′ is a lifting of Γ , such that
⊢⋆ Γ = Γ ′.

. A substitution Γ ′ ⊢ σ ′ : ∆ ′ is a good lifting of Γ ⊢⋆ σ : ∆ if Γ ′ ⊢ and ∆ ′ ⊢
are good liftings of Γ ⊢⋆ and ∆ ⊢⋆, resp., and σ ′ is a lifting of σ, such that
Γ ⊢⋆ σ = σ ′ : ∆.

. A type Γ ⊢ A ′ is a good lifting of Γ ⊢⋆ A if Γ ′ ⊢ is a good lifting of Γ ⊢⋆

and A ′ is a lifting of A, such that Γ ⊢⋆ A = A ′.

. A term Γ ⊢ t ′ : A ′ is a good lifting of Γ ⊢⋆ t : A if Γ ′ ⊢ A ′ is a good lifting
of Γ ⊢⋆ A and t ′ is a lifting of t, such that Γ ⊢⋆ t = t ′ : A.

Now we can prove that there is a good lifting for each syntactic entity; for
proving this, we need the stronger condition that any pair of good liftings for
some entity are judgmentally equal.

Theorem .

. Let Γ ⊢⋆; then there is a good lifting Γ ′ ⊢ of Γ ⊢⋆; moreover if Γ ′′ ⊢ is also
a good lifting of Γ ⊢⋆ then ⊢ Γ ′ = Γ ′′.

. Let Γ ⊢⋆ σ : ∆; then there is a good lifting Γ ′ ⊢ σ ′ : ∆ ′ of Γ ⊢⋆ σ : ∆;
moreover if Γ ′′ ⊢ σ ′′ : ∆ ′′ is also a good lifting of Γ ⊢⋆ σ : ∆ then ⊢ Γ ′ =
Γ ′′,⊢ ∆ ′ = ∆ ′′, and Γ ′ ⊢ σ ′ = σ ′′ : ∆ ′.

. Let Γ ⊢⋆ A; then there is a good lifting Γ ′ ⊢ A ′ of Γ ⊢⋆ A ; moreover if
Γ ′′ ⊢ A ′′ is also a good lifting of Γ ⊢⋆ A then ⊢ Γ ′ = Γ ′′ and Γ ′ ⊢ A ′ = A ′′.

. Let Γ ⊢⋆ t : A; then there is a good lifting Γ ′ ⊢ t ′ : A ′ of Γ ⊢⋆ t : A
; moreover if Γ ′′ ⊢ t ′′ : A ′′ is also a good lifting of Γ ⊢⋆ t : A then
⊢ Γ ′ = Γ ′′, Γ ′ ⊢ A ′ = A ′′, and Γ ′ ⊢ t ′ = t ′′ : A ′.

Proof. By induction on derivations, in each rule we use i.h., and build up the
corresponding entity to the good lifting for each part of the judgement; then,
given any other good lifting of the whole judgement, we do inversion on the
definition of good lifting, and get the equalities for each part; we finish using
congruence for showing that both good lifting are judgmental equal.

We show the case for (prf-tm). First we prove the existence of a good lifting.

Γ ⊢⋆ ⋆ : [A] hypothesis (*)

Γ ⊢⋆ t : A by inversion on (*) (†)

Γ ′ ⊢ t ′ : A ′ by ind. hyp. is a good lifting of (†)

Γ ′ ⊢ [t ′] : [A ′] by (prf-i), is a good lifting of(*)

Now we prove the second half of the theorem.

Γ ′′ ⊢ s : B hypothesis, be other good lifting of (†) (**)

Γ ′′ ⊢ B by inversion, good lifting of Γ ⊢⋆ [A]

Γ ′ ⊢ B ′′ = [A ′] by ind. hyp.

Γ ′ ⊢ [t ′] = s : [A ′] by (prf-eq) and (conv).

Corollary . The calculus (⊢⋆) is a conservative extension of (⊢).

.. Semantics

Combining singleton types and proof-irrelevant propositions For illustrating the
difficulties one can find when extending λIrr with singleton types, consider a
slightly different calculus where we drop the type annotation of the eliminator
for proof-irrelevance terms; i.e. we would have bwhere t instead of bwhereB t.
In the resulting system one can derive:

⊢ c20 : {c
2
0}N2

⊢ ⋆ : [{c20}N2
]

⊢ x where [x]← ⋆ : {c20}N2

⊢ x where [x]← ⋆ = c20 : {c
2
0}N2

⊢ x where [x]← ⋆ = c20 :N2

⊢ c21 : {c
2
1}N2

⊢ ⋆ : [{c21}N2
]

⊢ x where [x]← ⋆ : {c21}N2

⊢ x where [x]← ⋆ = c21 : {c
2
1}N2

⊢ x where [x]← ⋆ = c21 :N2

⊢ c20 = c21 :N2

This derivation shows that mixing the rule (sing-eq-el) with erasure of proof-
terms leads to inconsistencies. It is yet unclear how to combine singleton types
and erasure of proof-terms; we leave this topic for a future work. On the other
hand, there are no problems in extending (⊢) with singletons types; in fact,
we can construct (see Rem.) a model where Jc20K ̸= Jc21K, which assures
̸⊢ c20 = c21 :N2.

. Semantics

In this section we define a class of models for the calculus λSing. Since it features
(η) for function spaces and singletons, we need to use a PER model and to
η-expand in the model as in Sec. .. As is to be expected, the model also shares
some structure with that of Sec. .: there are PERs for large types and for the
universe of small types, and a family of PERs indexed over semantical types.
In the last part of this section we extend the model and the normalisation
function for λIrr.

PER semantics

In this subsection we introduce the abstract notion of PER models for our
theory. We have already introduced PERs in Def. and also settled some
naming and notation conventions. The only new concept related with PERs
that we use is that of a family of PERs indexed by a PER: if R ∈ PER(A) and
F : dom(R)→ PER(A), we say that F is a family of PERs indexed by R iff for all
a = a ′ ∈ R, F a = F a ′. If F is a family indexed by R, we write F : R→ PER(A).

The following definitions are standard (e.g. [,]) in definitions of PER
models for dependent types. The first one is even standard for non-dependent
types (cf. []) and “F-bounded polymorphism” ([]); its definition clearly
shows that equality is interpreted extensionally for dependent function spaces.
The second one is the PER corresponding to the interpretation of singleton
types; it has as its domain all the elements related to the distinguished element
of the singleton, and it relates everything in its domain.

Definition . Let A be an applicative structure, X ∈ PER(A), and F ∈ X →
PER(A).

 . Extended Martin-Löf Type Theory

.

X F = {(f, f ′) | f · a = f ′ · a ′ ∈ F a, for all a = a ′ ∈ X};

. {{a}}X = {(b, b ′) | a = b ∈ X and a = b ′ ∈ X}.

Besides interpreting function spaces and singletons we need PERs for the
denotation of the universe of small types, and for the set of large types; jointly
with these PERs we need functions assigning a PER for each element in the
domain of these universe PERs. Note that this forces the applicative structure
to have some distinguished elements.

Definition (Universe). Given an applicative structure A with distinguished
elements Fun and Sing, a universe (U, [_]) is a PER U over A and a family
[_] : U → Per(A) with the condition that U is closed under function and
singleton types. This means:

. Whenever X = X ′ ∈ U and for all a = a ′ ∈ [X], F a = F ′ a ′ ∈ U, then
FunXF = FunX ′ F ′ ∈ U, with [FunXF] =

[X] (a →→ [F a]).

. Whenever X = X ′ ∈ U and a = a ′ ∈ [X], then Sing a X = Sing a ′ X ′ ∈ U
and [Sing a X] = {{a}}[X].

An applicative structure paired with one universe for small types and one
universe for large types is the minimal structure needed for having a model of
our theory.

Definition (PER model). Let A be an applicative structure with distinguished
elements U,Fun, and Sing; a PER model is a tuple (A,U,T, [_]) satisfying:

. U ⊂ T ∈ PER(A), such that (T, [_]) and (U, [_]�U) are both universes, and

. U ∈ dom(T), with [U] = U.

In the following definition we introduce an abstract concept for environ-
ments: since variables are represented as projection functions from lists (think
of q as taking the head of a list, and p as taking the tail), it is enough having
sequences together with projections.

Definition (Sequences). Given a set A, a set A∗ has sequences over A if there
are distinguished operations ⊤ : A∗, Pair : A∗ × A → A∗, fst : A∗ → A∗, and
snd : A∗ → A such that

fst (Pairab) = a snd (Pairab) = b .

Now we need to extend the notion of PERs over A to PERs over A∗ for
interpreting substitutions.

Definition . Let A be an applicative structure and let A∗ have sequences over
A; moreover let X ∈ PER(A∗) and F ∈ X→ PER(A).

. = {(⊤,⊤)};

.

X F = {(a, a ′) | fst a = fst a ′ ∈ X and snd a = snd a ′ ∈ F (fst a)};

Until here we have introduced semantic concepts. Now we are going to
axiomatise the notion of evaluation, connecting the syntactic realm with the
semantic one.

.. Semantics

Definition (Environment model). Let (A,U,T, [_]) be a PER model and let
A∗ have sequences over A. We call M = (A,U,T, [_],A∗, J K, J Ks) an environment
model if the evaluation functions J_K_ : Terms×A∗ → A and J_Ks_ : Terms×A∗ →
A∗ satisfy:

JUKa = U

JFunABKa = Fun (JAKa) F
where F b = JBK(Pair a b)

J{t}AKa = Sing (JtKa) (JAKa)
Jt σKa = JtK(JσKsa)

JλtKa = f , where f · b = JtK(Pair a b)
JApp t uKa = (JtKa) · (JuKa)

JqKa = snd a

JidKsa = a

J⟨⟩Ksa = ⊤
Jσ δKsa = JσKs(JδKsa)

J(σ, t)Ksa = Pair (JσKsa) (JtKa)
JpKsa = fst a

Since no ambiguities arise, we shall henceforth write JσK instead of JσKs.

Once we have an environment model M we can define the denotation for
contexts. The second clause in the next definition is not well-defined a priori;
its totality is a corollary of Thm. — contrast this approach with the one in
the previous chapter, where we defined simultaneously the notion of validity
with the semantics of contexts.

Definition . Given an environment model M, we define recursively the
semantic of contexts J_K : Ctx→ PER(A∗):

. J�K = ,

. JΓ.AK =

JΓK(a →→ [JAKa]) .

We use PERs for validating equality judgements and the domain of each
PER for validating typing judgements.

Definition (Validity). Let M be an environment model. We define inductively
the predicate of satisfability of judgements by the model, denoted with Γ �M J:

. � � iff true

. Γ.A � iff Γ � A

. Γ � A iff Γ � A = A

. Γ � A = A ′ iff Γ � and for all d = d ′ ∈ JΓK, JAKd = JA ′Kd ′ ∈ T

. Γ � t : A iff Γ � t = t : A

. Γ � t = t ′ : A iff Γ � A and for all d = d ′ ∈ JΓK, JtKd = Jt ′Kd ′ ∈ [JAKd]

. Γ � σ : ∆ iff Γ � σ = σ : ∆

. Γ � σ = σ ′ : ∆ iff Γ �, ∆ �, and for all d = d ′ ∈ JΓK, JσKd = Jσ ′Kd ′ ∈ J∆K.

Theorem (Soundness). Let M be a model. If Γ ⊢ J, then Γ �M J.

Proof. By easy induction on Γ ⊢ J.

 . Extended Martin-Löf Type Theory

A concrete PER model

In this subsection we define a concrete PER model over a Scott domain which
extends that of Def. .

Definition . In this section the domain used comes from the following domain
equation:

D ≈ O⊕Var⊥⊕ [D→ D]⊕(D×D)⊕(D×D)⊕O⊕(D× [D→ D])⊕(D×D) .

When comparing with the domain of the previous chapter, the only new
possible shape for an element of D which is not ⊥ is Sing d d ′ for d, d ′ ∈ D; so,
we have the following forms for elements that are not ⊥:

⊤ (d, d ′) for d, d ′ ∈ D
Var i U for i ∈ Var
lam f Fun d f for d ∈ D, and f ∈ [D→ D]

Appdd ′ Sing d d ′ for d, d ′ ∈ D.

In order to define an environment model over D, we endow it with an
applicative structure. Note also that D has pairing, letting us to take the
set of sequences over D simply as D∗ = D with Pairab = (a, b). We define
application _ · _ : [D×D→ D] and the projections p, q : [D→ D] by

d · e =

f e if d = lam f

⊥ otherwise

p d =

d1 if d = (d1, d2)

⊥ otherwise
q d =

d2 if d = (d1, d2)

⊥ otherwise

The definition of the readback function is defined just as before; the only
new case with respect to Def. is Sing d d ′. Note that we identify elements in
Var with natural numbers; this is justified because Var is denumerable.

Definition (Readback function).

Rj U = U

Rj (Fun X F) = Fun (Rj X) (Rj+1 (F(Var j)))

Rj (Sing d X) = {Rj d}Rj X

Rj (Appdd
′) = App (Rj d) (Rj d

′)

Rj (lam f) = λ(Rj+1 (f(Var j)))

Rj (Var i) =

q if j 6 i+ 1
q pj−(i+1) if j > i+ 1

As in Sec. . our PER model is based on the notions of semantical normal
forms and neutral values.

Definition (Semantical neutrals and normal forms).

• d = e ∈ Ne if, for all i ∈ N, Ri d and Ri e are both defined, Ri d ≡ Ri e,
and Ri d ∈ Ne.

.. Semantics

• d = e ∈ Nf if, for all i ∈ N, Ri d and Ri e are both defined, Ri d ≡ Ri e,
and Ri d ∈ Nf.

Lemma (Closure properties of Ne and Nf).

. U = U ∈ Nf.

. Let X = X ′ ∈ Ne. If F · k = F ′ · k ′ ∈ Nf for all k = k ′ ∈ Ne, then
Fun X F = Fun X ′ F ′ ∈ Nf.

. If d = d ′ ∈ Nf and X = X ′ ∈ Nf, then Sing d X = Sing d ′ X ′ ∈ Nf.

. If f · k = f ′ · k ′ ∈ Nf for all k = k ′ ∈ Ne, then f = f ′ ∈ Nf.

. Var i = Var i ∈ Ne for all i ∈ N.

. If k = k ′ ∈ Ne and d = d ′ ∈ Nf, then Appkd = Appk ′ d ′ ∈ Ne.

We define U,T ∈ PER(D) and [_] : domT→ PER(D) using Dybjer’s schema
of inductive-recursive definition []. We show then that [_] is a family of PERs
over D.

Definition (PER model).

. Inductive definition of U ∈ PER(D).

a) Ne ⊆ U,

b) if X = X ′ ∈ U and d = d ′ ∈ [X], then Sing d X = Sing d ′ X ′ ∈ U,

c) if X = X ′ ∈ U and for all d = d ′ ∈ [X], F d = F ′ d ′ ∈ U then
Fun X F = Fun X ′ F ′ ∈ U.

. Inductive definition of T ∈ PER(D).

a) U ⊆ T,

b) U = U ∈ T,

c) if X = X ′ ∈ T, and d = d ′ ∈ [X] then Sing d X = Sing d ′ X ′ ∈ T,

d) if X = X ′ ∈ T, and for all d = d ′ ∈ [X], F d = F ′ d ′ ∈ T, then
Fun X F = Fun X ′ F ′ ∈ T.

. Recursive definition of [_] ∈ dom(T)→ PER(D).

a) [U] = U,

b) [Sing d X] = {{d}}[X],

c) [Fun X F] =

[X] (d →→ [F d]),

d) [d] = Ne, in all other cases.

Remark . The generation order @ on T is well-founded. The minimal ele-
ments are U, and elements in Ne; X @ Fun X F, and for all d ∈ [X], F d @ Fun X F;
and, finally, X @ Sing d X.

Lemma . The function [_] : dom(T)→ PER(D) is a family of PER(D) over T,
i.e., [_] : T→ PER(D).

 . Extended Martin-Löf Type Theory

Proof. By induction on X = X ′ ∈ T. We do not show the base cases, for they
are trivial.

. Let Sing d X = Sing d ′ X ′ ∈ T.

[X] = [X ′] by ind. hyp.

d = d ′ ∈ [X] by ind. hyp.

e = d ∈ [X] and e ′ = d ∈ [X] hypothesis

e = d ′ ∈ [X] and e ′ = d ′ ∈ [X] by transitivity

{{d}}X = {{d ′}}X ′ by definition.

. Let Fun X F = Fun X ′ F ′ ∈ T.

[X] = [X ′] by ind. hyp.

for all d ∈ dom([X]), F d = F ′ d ∈ T by definition (*)

for all d = d ′ ∈ [X], f · d = f ′ · d ′ ∈ [F d] hypothesis

f · d = f ′ · d ′ ∈ [F ′ d] by ind. hypothesis in (*).

The previous lemma leads us to the definition of a PER model overD. Note
also that D has all the distinguished elements needed to call it a syntactical
applicative structure.

Corollary . The tuple (D,U,T, [_]) is a PER model.

Normalisation and η-Expansion in the Model

In the following, we adapt the NbE algorithm outlined in Chap. for STT to
the dependent type theory λSing. Since readback has already be defined, we
only require reflection, reification and evaluation functions.

Definition (Reflection and reification). The partial functions ↑_ _, ↓_ _ : [D→
[D→ D]] and ⇓ : [D→ D] are given as follows:

↑Fun X F k = lam (d →→ ↑Fd (Appk ↓X d))↓Fun X F d = lam (e →→ ↓F ↑X e (d · ↑X e))
↑Sing d X k = d↑U k = k↑X k = k, in all other cases.

↓Sing d X e = ↓X d↓U d = ⇓d↓X e = e, in all other cases.

⇓ (Fun X F) = Fun (⇓X) (d →→ ⇓ (F ↑X d))⇓ (Sing d X) = Sing (↓X d) (⇓X)⇓U = U⇓X = X, in all other cases.

.. Semantics

In the following lemma we show that reflection ↑ corresponds to Berger
and Schwichtenberg’s “make self evaluating” and both reification functions ↓
and ⇓ correspond to“inverse of the evaluation function” []. Note that they
are indexed by types values instead of syntactic types, since we are dealing
with dependent instead of simple types.

Lemma (Characterisation of ↑, ↓, and ⇓). Let X = X ′ ∈ T, then

. if k = k ′ ∈ Ne then ↑X k = ↑X ′ k ′ ∈ [X];

. if d = d ′ ∈ [X], then ↓X d = ↓X ′ d ′ ∈ Nf;

. and also ⇓X = ⇓X ′ ∈ Nf.

Proof. By induction on X = X ′ ∈ T.

. Case Sing d X = Sing d ′ X ′ ∈ T.

a) The partial function ↑_ _ maps neutrals to related elements in the
corresponding PER.

k = k ∈ Ne hypothesis

d = d ′ ∈ [X] and X = X ′ ∈ T by inversion↑Sing d X k = d and ↑Sing d ′ X ′ k ′ = d ′ by def.

d = d ′ ∈ {{d}}X by def. of this PER.

b) The partial function ↓_ _ maps related elements to related normal
forms.

d1 = d2 ∈ {{d}}X hypothesis

d1 = d2 = d = d ′ ∈ [X] and X = X ′ ∈ T by inversion↓X d = ↓X ′ d ′ ∈ Nf by ind. hyp.↓Sing d X d1 = ↓Sing d ′ X ′ d2 ∈ Nf by def.

c) The function ⇓ _ maps related elements in T to normal forms.

⇓Sing d X = Sing (↓X d) (⇓X) by def.⇓Sing d ′ X ′ = Sing (↓X ′ d ′) (⇓X ′) by def.↓X d = ↓X ′ d ′ ∈ Nf by ind. hyp.⇓X = ⇓X ′ ∈ Nf by ind. hyp.

Sing (↓X d) (⇓X) = Sing (↓X d) (⇓X) ∈ Nf by Lem. .

. Case Fun X F = Fun X ′ F ′ ∈ T.

 . Extended Martin-Löf Type Theory

a) The partial function ↑_ _ maps neutrals to related elements in the
corresponding PER.

k = k ′ ∈ Ne hypothesis

d = d ′ ∈ [X] hypothesis (*)

X = X ′ ∈ T by inversion (†)

F d = F ′ d ′ ∈ T by inversion (**)↓X d = ↓X ′ d ′ ∈ Nf by ind. hyp. on (*) and (†)

Appk (↓X d) = Appk ′ (↓X ′ d ′) ∈ Ne by Lem. (‡)↑Fd (Appk (↓X d)) =↑F ′ d ′ (Appk ′ (↓X ′ d ′)) ∈ [F d] by ind. hyp. on (**) and (‡)↑Fun X F k = ↑Fun X ′ F ′ k ′ ∈ [Fun X F] by def.

b) The partial function ↓_ _ maps related elements to related normal
forms.

X = X ′ ∈ T by inversion (*)

f = f ′ ∈ [Fun X F] hypothesis

k = k ′ ∈ Ne hypothesis↑X k = ↑X ′ k ′ ∈ [X] by ind. hyp. on (*) (†)

d := ↑X k abbreviation

d ′ := ↑X ′ k ′ abbreviation

F d = F ′ d ′ ∈ T by inversion and (†) (**)

f · d = f ′ · d ′ ∈ [F d] definition of [Fun X F] (‡)↓F d (f · d) = ↓F ′ d ′ (f ′ · d ′) ∈ Nf by ind. hyp. on (‡)

(↓Fun X F f) · k =

(↓Fun X ′ F ′ f ′) · k ′ ∈ Nf by def.↓Fun X F f = ↓Fun X ′ F ′ f ′ ∈ Nf by Lem.

c) The function ⇓ _ maps related elements in T to normal forms.

X = X ′ ∈ T by inversion (*)⇓X = ⇓X ′ ∈ Nf by ind. hyp. on (*) (**)

k = k ′ ∈ Ne hypothesis.↑X k = ↑X ′ k ′ ∈ [X] by ind. hyp. on (*) (†)

d := ↑X k abbr.

d ′ := ↑X ′ k ′ abbr.

F d = F ′ d ′ ∈ T by inversion and (†) (‡)⇓ (F d) = ⇓ (F ′ d ′) ∈ Nf by ind. hyp. on (‡)⇓ (Fun X F) = ⇓ (Fun X ′ F ′) ∈ Nf by Lem.

.. Semantics

Let us recapitulate what we have achieved: we have defined a PER model
over the domain D; then we defined a family of functions ↓X indexed over
denotation of types with the property that when applied to elements in the
corresponding PER we get back elements which will be reified as normal forms.
In fact, we have the stronger result that whenever we apply ↓X to two related
elements d = d ′ ∈ [X] we get elements to be reified as the same term.

Now we define evaluation which clearly satisfies the environment model
conditions in Def. ; hence, we have a model and, using Thm. , we conclude
completeness for our normalisation algorithm.

Definition (Semantics). Evaluation of substitutions and terms into D is
defined inductively by the following equations.

JUKd = U

JFunABKa = Fun (JAKd) F
where F e = JBK((d, e))

J{t}AKd = Sing (JtKd) (JAKd)
Jt σKd = JtK(JσKd)
JλtKd = lam (d ′ →→ JtK(d, d ′))

JApp t uKd = (JtKd) · (JuKd)
JqKd = snd d

JidKd = d

J⟨⟩Kd = ⊤
Jσ δKd = JσK(JδKd)

J(σ, t)Kd = (JσKd, JtKd)
JpKd = fst d

Theorem (Completeness of NbE). Let Γ ⊢ t = t ′ : A and let also d ∈ JΓK, then↓JAKd (JtKd) = ↓JAKd (Jt ′Kd) ∈ Nf.

Proof. By Thm. and Lem. .

Calculus λIrr with proof irrelevance

We extend all the definitions concerning the construction of the model.

Definition (Extension of domain D).

D = . . .⊕D× [D→ D]⊕D⊕D
⊕O⊕O⊕D⊕ [D→ D]×D× [D→ [D→ D]]×D
⊕D⊕O⊕ N⊕ N× N⊕ N× [D→ D]×Dω ×D .

In the last summandDω is the set of finite tuples overD. We use the following
notations for the injections into D:

Sum(d, F) Fst d, Snd d for d ∈ D, F ∈ [D→ D]

zero Nat ⋆ sucd Prf d for d ∈ D

Nn cni for i, n ∈ N

Natrec(F, d, g, d ′) for d, d ′ ∈ D, F ∈ [D→ D], g ∈ [D→ [D→ D]]

Casen(F, d⃗, d ′) for d, d ′ ∈ D, F ∈ [D→ D], d⃗ ∈ Dω, n ∈ N .

 . Extended Martin-Löf Type Theory

In this extension, the injections Fst, Snd, Natrec, and Case construct neutral
elements k. Soundness for the calculus (⊢⋆) requires the canonical element
for proof-irrelevant types (⋆) to be in every PER; thus we need to redefine
application _ · _ to have ⋆ ∈ [Fun X F]:

⋆ · d = ⋆ .

We also redefine the projections p∗ and q∗ to account for neutrals and because
they are used in the definition of

XF, which will be used as the denotation

of sigma types.

p∗ d =

d1 if d = (d1, d2)

⋆ if d = ⋆

Proj1(d) otherwise

q∗ d =

d2 if d = (d1, d2)

⋆ if d = ⋆

Proj2(d) otherwise

Definition (Readback function).

Rj Nat = Nat

Rj zero = zero

Rj (sucd) = suc((Rj d))

Rj (Prf d) = [(Rj d)]

Rj (Nn) = Nn

Rj (d, d
′) = (Rj d,Rj d

′)

Rj (Proj1(d)) = fst (Rj d)

Rj (Proj2(d)) = snd (Rj d)

Rj ⋆ = ⋆

Rj (c
n
i) = cni

Rj (Sum(X, F)) = Σ (Rj X) (Rj+1 (F Var j))

Rj (Natrec(F, d, f, e)) = natrec((Rj+1 (F Var j)), (Rj d), (Rj f), (Rj e))

Rj (Case
n(F, ⟨d0, . . . , dn−1⟩, e)) = casen (Rj+1 (F Var j)) (Rj d0) · · ·

(Rj dn−1) (Rj e)

We define inductively new PERs for interpreting naturals and finite types.
Note that C0 and C1 are irrelevant, in this way we can model η-expansion for
N0 and N1; |X| is also irrelevant, even when X distinguishes its elements.

Definition (More semantic types).

. N is the smallest PER over D, such that

a) Ne ⊆ N

b) zero = zero ∈ N

c) sucd = sucd ′ ∈ N, if d = d ′ ∈ N

. If X ∈ PER(D) then |X| := {(d, d ′) | d, d ′ ∈ domX ∪ {⋆}} ∈ PER(D).

. C0 = |∅| = {(⋆, ⋆)},

. C1 = |{c10}| = {(d, d ′) | d, d ′ ∈ {⋆, c10}},

. Cn = {(cni , c
n
i) | i < n} ∪ Ne, for n > 2.

We add new clauses in the definitions of the partial equivalences for uni-
verse and types, these clauses do not affect the well-foundedness of the order
@ defined in Rem. , but now we have that Nn and Nat are also minimal
elements for that order.

.. Semantics

Definition (Extension of U and T).

. Inductive definition of U ∈ PER(D).

a) If X = X ′ ∈ U, and for all d = d ′ ∈ [X], F d = F ′ d ′ ∈ U, then
Sum(X, F) = Sum(X ′, F ′) ∈ U.

b) Nat = Nat ∈ U,

c) Nn = Nn ∈ U,

d) if X = X ′ ∈ U, then Prf X = Prf X ′ ∈ U.

. Inductive definition of T ∈ PER(D).

a) If X = X ′ ∈ T, and for all d = d ′ ∈ [X], F d = F ′ d ′ ∈ T, then
Sum(X, F) = Sum(X ′, F ′) ∈ T.

b) if X = X ′ ∈ T, then Prf X = Prf X ′ ∈ T.

. Recursive definition of [_] ∈ dom(T)→ PER(D).

a) [Sum(X, F)] =

[X] (d →→ [F d]),

b) [Nn] = Cn

c) [Nat] = N,

d) if X ∈ domT, then [Prf X] = {(⋆, ⋆)}.

Note that in the PER model, all propositions Prf X are inhabited. In fact, all
types are inhabited, for there is a reflection from variables into any type, be it
empty or not. So, the PER model is unsuited for refuting propositions. How-
ever, the logical relation we define in the next section will only be inhabited
for non-empty types.

Remark . It can be proved by induction on X ∈ T that ⋆ ∈ [X].

Definition (Reflection and reification, cf.).

↑Sum(X,F) k = (↑X Fstk, ↑F (↑X Fstk) Sndk)↓Sum(X,F) d = (↓X p∗ d, ↓F (p∗ d) q
∗ d)

↑Nat k = k↑N0
k = ⋆↑N1
k = c10↑Nn
k = k for n > 2↑Prf X k = ⋆

↓Nat d = d↓N0
d = ⋆↓N1
d = c10↓Nn
d = d↓Prf X d = ⋆

⇓Sum(X, F) = Sum((⇓X), (d →→ ⇓ (F ↑X d))) ⇓Nat = Nat⇓Nn = Nn ⇓Prf X = Prf (⇓X)
To give semantics to eliminators for data types we define partial functions

natrec : [D→ D]×D×D×D→ D, and case : [D→ D]×D×D×D→ D.

Definition (Eliminations on D).

 . Extended Martin-Löf Type Theory

. Elimination operator for naturals.

natrec(F, d, f, ⋆) = ⋆

natrec(F, d, f, zero) = d

natrec(F, d, f, suc e) = (f · e) · natrec(F, d, f, e)
natrec(F, d, f, k) = ↑F k (Natrec(d

′ →→ ⇓ F d ′,↓F zero d,

lamd ′ →→ (lam e ′ →→ ↓F (sucd ′) f · d ′ · e ′),
k))

. Elimination operator for finite types.

casen(F, ⟨d0, . . . , dn−1⟩, ⋆) = ⋆

casen(F, ⟨d0, . . . , dn−1⟩, cni) = di
casen(F, ⟨cn0 , . . . , cnn−1⟩, d) = d
casen(F, ⟨d0, . . . , dn−1⟩, k) =↑F k (Casen(e →→ ⇓ F e,

⟨↓F cn
0
d0, . . . , ↓F cn

n−1
dn−1⟩, k))

Remark . If for all d = d ′ ∈ N, F d = F ′d ′ ∈ T, and z = z ′ ∈ [F zero], and
for all d = d ′ ∈ N and e = e ′ ∈ [F d], s · d · e = s ′ · d ′ · e ′ ∈ [F(sucd)], and
d = d ′ ∈ N then natrec(F, z, s, d) = natrec(F, z, s, d ′) ∈ [F d].

With these new definitions we can now give the semantic equations for the
new constructs.

Definition (Extension of interpretation).

JΣABKd = Sum((JAKd), (d ′ →→ JBK(d, d ′)))

JNatKd = Nat

Jfst tKd = p∗ JtKd
J(t, t ′)Kd = (JtKd, Jt ′Kd)
Jsuc(t)Kd = suc JtKd

J[a]Kd = ⋆

JbwhereB tKd = JbK(d, ⋆)

JNnKd = Nn

J[A]Kd = Prf JAKd
Jsnd tKd = q∗ JtKd
JzeroKd = zero

J⋆Kd = ⋆

Jcni Kd = cni

Jnatrec(B, z, s, t)Kd = natrec(e →→ JBK(d, e), JzKd, JsKd, JtKd)
Jcasen B t0 · · · tn−1 tKd = casen(e →→ JBK(d, e), ⟨Jt0Kd, . . . , Jtn−1Kd⟩, JtKd)

Lemma (Laws of proof elimination). β, η, and associativity for where are
modeled by the extended applicative structure.

Proof. The proofs of soundness for (prf-β) and (prf-η) have the same structure,
so we show only the first one.

.. Semantics

• (prf-β) bwhereB [a] = b (id, a)

JbwhereB [a]Kd

= JbK(d, ⋆) def. of semantics for bwhereB [a]

= JbK(d, JaKd) ind. hypothesis on Γ.A.A p ⊢ b p = b (p p, q) : B p p

= JbK(J(id, a)Kd) def. of semantics for substitutions

= Jb (id, a)Kd

• (prf-assoc) awhereA (bwhereB c) = (a (p p, q)whereA p b)whereB c

JawhereA (bwhereB c)Kd = JaK(d, ⋆)

= JaK(d, JbK(d, ⋆))

= Ja (p p, q)K((d, ⋆), JbK(d, ⋆))

= Ja (p p, q)whereA p b)K(d, ⋆)

= J(a (p p, q)whereA p b)whereB cKd

Theorem . All of lemmata , , and theorems , and are valid for the
extended calculus.

Note that we have defined a proof-irrelevant semantics for (⊢⋆) that collapses
all elements of [A] to ⋆, which leads to a more efficient implementation of the
normalisation function. However, this semantics is not sound if λIrr is extended
with singleton types interpreted analogously to C1, i.e., [Sing d X] = |{{d}}X|,
because it does not model (sing-eq-el). (We have d = ⋆ ∈ [Sing d X] for all
d ∈ [X], but not necessarily d = ⋆ ∈ [X].) On the other hand, λIrr without ⋆ can
be extended to singleton types as explained in the following remark.

Remark (Extending λIrr by singleton types). Singleton types can be added
straightforwardly if we employ a proof-relevant semantics: the domain D is not
changed; in particular we have ⋆ ∈ D, and it is readback as before, Rj ⋆ = ⋆;
hence ⋆ ∈ dom(Nf).

Enumerated types are modelled in a uniform way: [Nn] = {(cni , c
n
i) | i <

n} ∪ Ne; proof-irrelevance types [A] are interpreted as the irrelevant PER with
the same domain as the PER for A: [Prf X] = {(d, d ′) | d, d ′ ∈ dom([X])}.
Reflection and reification for Prf X are defined respectively as

↑Prf X d = ↑X d and ↓Prf X d = ⋆ .

With these definitions it is clear that the corresponding result for Lem. is
still valid.

Since dom[Prf X] = dom[X], introduction and elimination of proofs can be
interpreted as follows

J[a]Kd = JaKd and JbwhereB tKd = JbK(d, JtKd) ;

 . Extended Martin-Löf Type Theory

this model is sound with respect to the calculus (⊢) extended with singleton
types; hence Thm. is valid.

Remark . As was previously said we cannot use this PER model for proving
that there is no closed term in N0. Instead, one can build up a PER model, in
the sense of ., of closed values, where [N0] = ∅. By soundness (Thm.) it
follows that there is no possible derivation of ⊢ t : N0.

. Correctness of NbE

As in previous chapters we use logical relations to prove correctness of NbE.
The section is similar to Sec. .: as a corollary of the fundamental theorem
(Thm.) we show that a term is related to its denotation with respect to
some canonical environment; previously we prove, in Lem. , that if a term
is logically related with some semantic element, then its reification will be
judgmentally equal to the term. Composing these facts we obtain correctness.
As a consequence of having correctness and completeness for NbE, one gets
decidability for judgmentally equality: normalise both terms and check they
are syntactically the same.

Logical relations

Definition (Logical relations). We define simultaneously two families of
binary relations:

. If Γ ⊢ then (Γ ⊢ _ ∼ _ ∈ T) ⊆ {A | Γ ⊢ A}× T shall be a Γ -indexed family
of relations between well-formed syntactic types A and type values X.

. If Γ ⊢ A ∼ X ∈ T then (Γ ⊢ _ : A ∼ _ ∈ [X]) ⊆ {t | Γ ⊢ t : A} × [X] shall
be a (Γ,A, X)-indexed family of relations between terms t of type A and
values d in PER [X].

These relations are defined simultaneously by induction on X ∈ T.

. Neutral types: X ∈ Ne.

a) Γ ⊢ A ∼ X ∈ T iff for all ∆ 6i Γ , ∆ ⊢ A pi = R|∆| ⇓X.

b) Γ ⊢ t : A ∼ d ∈ [X] iff Γ ⊢ A ∼ X ∈ T, and for all ∆ 6i Γ , ∆ ⊢ t pi =
R|∆| ↓X d : A pi.

. Universe.

a) Γ ⊢ A ∼ U ∈ T iff Γ ⊢ A = U.

b) Γ ⊢ t : A ∼ X ∈ [U] iff Γ ⊢ A = U, and Γ ⊢ t ∼ X ∈ T.

. Singletons.

a) Γ ⊢ A ∼ Sing d X ∈ T iff Γ ⊢ A = {a}A ′ and Γ ⊢ a : A ′ ∼ d ∈ [X].

b) Γ ⊢ t : A ∼ d ′ ∈ [Sing d X] iff Γ ⊢ A = {a}A ′ and Γ ⊢ t : A ′ ∼ d ∈ [X],
and Γ ⊢ A ′ ∼ X ∈ T.

. Function spaces.

.. Correctness of NbE

a) Γ ⊢ A ∼ Fun X F ∈ T iff Γ ⊢ A = FunA ′ B, and Γ ⊢ A ′ ∼ X ∈ T, and
∆ ⊢ B (pi, s) ∼ F d ∈ T for all ∆ 6i Γ and ∆ ⊢ s : A ′ pi ∼ d ∈ [X].

b) Γ ⊢ t : A ∼ f ∈ [Fun X F] iff Γ ⊢ A = FunA ′ B, Γ ⊢ A ′ ∼ X, and
∆ ⊢ App (t pi) s : B (pi, s) ∼ f · d ∈ [F d] for all ∆ 6i Γ and ∆ ⊢
s : A ′ pi ∼ d ∈ [X].

Calculus λIrr with proof irrelevance We present next the definition of logical
relations for λIrr; then we prove the technical results about logical relations for
both calculi.

Definition .

. Sigma types.

a) Γ ⊢ A ∼ Sum(X, F) iff Γ ⊢ A = ΣA ′ B ′ and Γ ⊢ A ′ ∼ X and for all
∆ 6i Γ and ∆ ⊢ s : A ′ pi ∼ d ∈ [X], ∆ ⊢ B ′ (pi, s) ∼ F d.

b) Γ ⊢ t : A ∼ d ∈ [Sum(X, F)] iff Γ ⊢ A = ΣA ′ B ′ and Γ ⊢ fst t : A ′ ∼

p∗ d ∈ [X] and Γ ⊢ snd t : B ′ (idΓ , fst t) ∼ q∗ d ∈ [F (p∗ d)].

. Natural numbers.

a) Γ ⊢ A ∼ Nat iff Γ ⊢ A = Nat.

b) Γ ⊢ t : A ∼ d ∈ [Nat] iff Γ ⊢ A ∼ Nat and for all ∆ 6i Γ , ∆ ⊢ t pi =
R|∆| d : Nat.

. Finite types.

a) Γ ⊢ A ∼ Nn iff Γ ⊢ A = Nn.

b) Γ ⊢ t : A ∼ d ∈ [Nn] iff Γ ⊢ A ∼ Nn and for all ∆ 6i Γ , ∆ ⊢ t pi =
R|∆| d : Nn.

. Proof-irrelevance types.

a) Γ ⊢ A ∼ Prf X ∈ T iff Γ ⊢ A = [A ′] and Γ ⊢ A ′ ∼ X ∈ T.

b) Γ ⊢ t : A ∼ d ∈ [Prf X] iff Γ ⊢ A ∼ Prf X.

Technical results

The following technical lemmata show that the logical relations are preserved
by judgmental equality, weakening of the judgement, and the equalities on the
corresponding PERs. These lemmata are proved simultaneously for types and
terms.

Lemma (Closure under conversion). Let Γ ⊢ A ∼ X ∈ T and Γ ⊢ A = A ′.
Then,

. Γ ⊢ A ′ ∼ X ∈ T, and

. if Γ ⊢ t : A ∼ d ∈ [X] and Γ ⊢ t = t ′ : A then Γ ⊢ t ′ : A ′ ∼ d ∈ [X].

Proof. By induction on X ∈ T.

. Types; in all cases we use symmetry and transitivity to show the condi-
tions. We only show the case for Fun X F.

 . Extended Martin-Löf Type Theory

a) X = Fun X ′ F:

Γ ⊢ A = FunBC by definition (*)

Γ ⊢ B ∼ X ′ by definition

∆ ⊢ C (pi, s) ∼ F d ∈ T for all ∆ 6i Γ by definition

and ∆ ⊢ s : B pi ∼ d ∈ [X ′]

Γ ⊢ A ′ = FunBC by sym. and trans. on (*)

b) Nn ∈ T.

Γ ⊢ t : A ∼ d ∈ [N1] hypothesis (*)

Γ ⊢ t = t ′ : A hypothesis (†)

∆ ⊢ t pi = Ri d : A pi by inversion on (*) (**)

∆ ⊢ t pi = t ′ pi : A pi by congruence on (†) (‡)

∆ ⊢ t ′ pi = Ri d : A pi by sym. and trans. on (**) and (‡)

. Terms. As in the case for types, we use symmetry and transitivity. We
show only the case for singletons and functions.

a) X = Sing d X ′:

Γ ⊢ A = {b}B by hypothesis (*)

Γ ⊢ B ∼ X ′ ∈ T by hypothesis

Γ ⊢ t : B ∼ d ∈ [X ′] by hypothesis (†)

Γ ⊢ A ′ = {b}B by sym. and trans. on (*)

Γ ⊢ t ′ : B ∼ d ∈ [X ′] By i.h. on (†)

b) X = Fun X ′ F:

Γ ⊢ A = FunBC by hypothesis (*)

Γ ⊢ B ∼ X ′ by hypothesis

∆ ⊢ App t pi s : C (pi, s) ∼ f · d ∈ [F d] by hypothesis

for all ∆ 6i Γ, ∆ ⊢ s : B pi ∼ d ∈ [X ′]

Γ ⊢ A ′ = FunBC by sym. and trans. on (*)
(†)

∆ ⊢ App t pi s = App t ′ pi s : C (pi, s) by congruence on (†) (‡)

∆ ⊢ App t ′ pi s : C (pi, s) ∼ f · d ∈ [F d] by i.h. on (‡)

Lemma (Monotonicity). Let ∆ 6i Γ , then

. if Γ ⊢ A ∼ X ∈ T, then ∆ ⊢ A pi ∼ X ∈ T; and

. if Γ ⊢ t : A ∼ d ∈ [X], then ∆ ⊢ t pi : A pi ∼ d ∈ [X].

.. Correctness of NbE

Proof. By induction on X ∈ T. This property is trivial for the base cases; for
singletons is obtained by applying the i.h. We show two cases.

. Let X = Fun X ′ F.

Γ ⊢ A = FunBC by hypothesis (*)

Γ ⊢ B ∼ X ′ (†)

Θ ⊢ C (pi, s) ∼ F d ∈ T by hypothesis

for all Θ 6i Γ,Θ ⊢ s : B pi ∼ d ∈ [X ′]

∆ ⊢ A pi = Fun (B pi) (C (pi p, q)) by congruence on (*)

∆ ⊢ B pi ∼ X by i.h. on (†)

Θ ′ ⊢ s : (B pi) pj ∼ d ∈ [X],with Θ ′ 6j ∆ hypothesis

Θ ′ ⊢ s : B pi+j ∼ d ∈ [X] by rem. and (‡)

Θ ′ ⊢ C (pi+j q, s) ∼ F d by hyp. using (‡)

Θ ′ ⊢ C (pi p, q) (pj, s) ∼ F d By congruence and

. Prf X ∈ T. As mentioned earlier if Γ ⊢ A ∼ Prf X ∈ T then Γ ⊢ _ : A ∼ _ ∈
[Prf X] is non-empty if and only if Γ ⊢ _ : A is not empty.

Γ ⊢ t : A ∼ d ∈ [Prf X] hypothesis (*)

Γ ⊢ t : A by inversion on (*) (†)

Γ ⊢ A ∼ Prf X ∈ T by inversion on (*) (**)

∆ ⊢ t pi : A pi by weakening on (†)

∆ ⊢ A pi ∼ Prf X ∈ T by monotonicity for types on (**)

∆ ⊢ t pi : A pi ∼ d ∈ [Prf X] by definition of log. rel.

We do not show proofs for the second part, since the most involved case is
dealt analogously to the case for FunX ′ F.

Lemma (Closure under PERs). Let Γ ⊢ A ∼ X ∈ T, then

. if X = X ′ ∈ T, then Γ ⊢ A ∼ X ′ ∈ T; and

. if Γ ⊢ t : A ∼ d ∈ [X] and d = d ′ ∈ [X], then Γ ⊢ t : A ∼ d ′ ∈ [X].

Proof. By induction on X = X ′ ∈ T. Note that the first part for the base cases is
trivial; the second point is also trivial for X ∈ Ne. Thus we do not show those
parts of the proof.

. Types.

a) Sing d X = Sing d ′ X ′.

Γ ⊢ A = {b}B by hypothesis (*)

Γ ⊢ B ∼ X ∈ T by hypothesis

Γ ⊢ t : B ∼ d ∈ [X] by hypothesis (†)

Γ ⊢ t : B ∼ d ′ ∈ [X ′] By i.h. on (*) and (†)

 . Extended Martin-Löf Type Theory

b) Fun X F = Fun X ′ F ′.

Γ ⊢ A = FunBC by hypothesis

Γ ⊢ B ∼ X ′ by hypothesis (*)

Θ ⊢ C (pi, s) ∼ F d ∈ T by hypothesis (†)

for all Θ 6i Γ,Θ ⊢ s : B pi ∼ d ∈ [X ′]

Γ ⊢ B ∼ X ′ ∈ T By i.h. on (*)

Θ ⊢ B (pi, s) ∼ F ′ d ∈ T by i.h. on (†)

. Terms.

a) e = e ′ ∈ [Sing d X].

Γ ⊢ A = {b}B by hypothesis

Γ ⊢ B ∼ X ∈ T by hypothesis (*)

Γ ⊢ t : B ∼ d ∈ [X] by hypothesis (†)

e ′ = d ∈ [X] by def. of e = e ′ ∈ [Sing d X] (**)

Γ ⊢ t : B ∼ e ′ ∈ [X] by i.h. on (*), (†), and (**),

b) f = f ′ ∈ [Fun X F].

Γ ⊢ A = FunBC

Γ ⊢ B ∼ X (*)

∆ ⊢ App t pi s : C (pi, s) ∼ f · d ∈ [F d] (†)

for all ∆ 6i Γ and ∆ ⊢ s : B pi ∼ d ∈ [X] . (**)

By i.h. on (*) and (**) and monotonicity

∆ ⊢ s : A ′ pi ∼ d ′ ∈ [X ′] .

By i.h. on (†)

∆ ⊢ App (t pi) s : B (pi, s) ∼ f ′ · d ′ ∈ [F d ′] .

c) d = d ′ ∈ [Sum(X, F)].

d = d ′ ∈ [Sum(X, F)] hypothesis (*)

Γ ⊢ t : A ∼ d ∈ [Sum(X, F)] hypothesis (**)

Γ ⊢ A = ΣA ′ B by inversion on (**)

Γ ⊢ ΣA ′ B ∼ Sum(X, F) ∈ T by inversion on (**)

Γ ⊢ fst t : A ′ ∼ p∗ d ∈ [X] by inversion on (*) (†)

Γ.A ′ ⊢ snd t : B (id, fst t) ∼

q∗ d ∈ [F p∗ d] by inversion on (**) (‡)

p∗ d = p∗ d ′ ∈ [X] by definition of (*) (††)

q∗ d = q∗ d ′ ∈ [F p∗ d] by definition of (*) (‡‡)

Γ ⊢ fst t : A ′ ∼ p∗ d ′ ∈ [X] by ind. hyp. on (†) and (††)

Γ.A ′ ⊢ snd t : B (id, fst t) ∼

q∗ d ′ ∈ [F p∗ d ′] by ind. hyp. on (‡) and (‡‡).

.. Correctness of NbE

The following lemma plays a key rôle in the proof of soundness. It proves
that if a term is related to some element in (some PER), then it is convertible to
the reification of the corresponding element in the PER of normal forms.

Lemma . Let Γ ⊢ A ∼ X ∈ T. Then,

. Γ ⊢ A = R|Γ | ⇓X,

. if Γ ⊢ t : A ∼ d ∈ [X] then Γ ⊢ t = R|Γ | ↓X d : A; and

. if k ∈ Ne and for all ∆ 6i Γ , ∆ ⊢ t pi = R|∆| k : A pi, then Γ ⊢ t : A ∼↑X k ∈ [X].

Proof. By induction on X ∈ T. By induction on X ∈ T. For a better organisation
of the proof we show the proofs for each point separately.

. Γ ⊢ A = R|Γ | ⇓X. We skip the part for the minimal elements in T.

a) Sing d X:

Γ ⊢ A ′ = R|Γ | ⇓X by ind. hyp.

Γ ⊢ t = R|Γ | ↓X d : A ′ by ind. hyp.

Γ ⊢ {a}A ′ = {R|Γ | ↓X d}R|Γ| ⇓X by congruence and transitivity

b) Fun X F:

Γ ⊢ A ′ = R|Γ | ⇓X by ind. hyp.

∆ ⊢ B (pi, s) = R|∆| (⇓ F d) (*)

for any ∆ 6i Γ, ∆ ⊢ s : A ′ pi ∼ d ∈ [X]

Γ.A ′ ⊢ q : A ′ p ∼ ↑X (Var |Γ |) by ind. hyp. (†)

Γ.A ′ ⊢ B (p, q) =

R|Γ.A ′| (⇓ (F (↑X (Var |Γ |))) instantiating (*) on (†)

Γ.A ′ ⊢ B = R|Γ.A ′| (⇓ F (↑X (Var |Γ |))) by Lem. .

. Γ ⊢ t = R|Γ | ↓X d : A. We skip the part for the minimal elements in T.

a) d ′ ∈ [Sing d X]:

Γ ⊢ A = {b}B (*)

Γ ⊢ B ∼ X ∈ T
Γ ⊢ t : B ∼ d ∈ [X] (†)

Γ ⊢ t = R|Γ | ↓X d : B by ind. hyp. in (†)

Γ ⊢ t = R|Γ | ↓X d : {t}B by conversion and (sing-eq-i)

Γ ⊢ t = R|Γ | ↓X d : A by conversion

 . Extended Martin-Löf Type Theory

b) f ∈ [Fun X F]:

Γ.A ′ ⊢ q : A ′ p ∼ ↑X Var |Γ | ∈ [X] by ind. hyp. on the third part

d := ↑X Var |Γ | abbreviation

Γ.A ′ ⊢ App (t p) q : B (p, q) ∼

f · d ∈ [F d] by def. of the logical relation

Γ.A ′ ⊢ App (t p) q

R|Γ.A| ↓F d f · d : B (p, q) by ind. hyp.

Γ.A ′ ⊢ App (t p) q =

R|Γ.A| ↓F d f · d : B by (conv)

Γ ⊢ λ(App (t p) q) =

λ(R|Γ.A| ↓F d f · d) : FunA ′ B by congruence

Γ ⊢ t = λ(App (t p) q) : FunA ′ B by (eta)

Γ ⊢ t = R|Γ | ↓Fun X F f : FunA
′ B by trans.

.

a) Sing d X:

Γ ⊢ A = {a}B by hypothesis

Γ ⊢ B ∼ X ∈ T by hypothesis

Γ ⊢ t : B ∼ d ∈ [X] by hypothesis

Γ ⊢ B ∼ X ∈ T by monotonicity

∆ ⊢ t pi : B pi ∼ d ∈ [X] by monotonicity

∆ ⊢ A pi = {a pi}B pi by congruence

b) Fun X F:

∆ ⊢ s : A ′ pi ∼ d ′ ∈ [X] hypothesis (*)

∆ ⊢ s = R|∆| ↓X d ′ : A ′ pi by ind. hyp. on (*)

∆ ⊢ App (t pi) s =

App ((R|Γ | d) p
i) (R|∆| (↓X d ′)) : B (pi, s) by congruence

R|∆| Appd↓X d ′ =

App ((R|Γ | d) p
i) (R|∆| (↓X d ′)) by definition

∆ ⊢ App (t pi) s : B (pi, s) ∼↑F d ′ Appd ↓X d ′ ∈ [F d ′] by ind. hyp.

In order to finish the proof of soundness we have to prove that each well-
typed term (and each well-formed type) is logically related to its denotation;
with that aim we extend the definition of logical relations to substitutions and
prove the fundamental theorem of logical relations.

Definition (Logical relation for substitutions).

.. Correctness of NbE

. Γ ⊢ σ : � ∼ d ∈ always holds.

. Γ ⊢ (σ, t) : ∆.A ∼ (d, d ′) ∈

X (d →→ [F d]) iff Γ ⊢ σ : ∆ ∼ d ∈ X,
Γ ⊢ Aσ ∼ F d ∈ T, and Γ ⊢ t : Aσ ∼ d ′ ∈ [F d].

By the way this relation is defined, the counterparts of , , and are
easily proved by induction on the co-domain of the substitutions.

Remark . If Γ ⊢ γ = δ : ∆, and Γ ⊢ γ : ∆ ∼ d ∈ X, then Γ ⊢ δ : ∆ ∼ d ∈ X.

Remark . If Γ ⊢ δ : ∆ ∼ d ∈ X, then for any Θ 6i Γ , Θ ⊢ δ pi : ∆ ∼ d ∈ X.

Remark . If Γ ⊢ γ : ∆ ∼ d ∈ X, and d = d ′ ∈ X, then Γ ⊢ γ : ∆ ∼ d ′ ∈ X.

Theorem (Fundamental theorem of logical relations). Let ∆ ⊢ δ : Γ ∼ d ∈ JΓK.

. If Γ ⊢ A, then ∆ ⊢ Aδ ∼ JAKd ∈ T;

. if Γ ⊢ t : A, then ∆ ⊢ t δ : Aδ ∼ JtKd ∈ [JAKd]; and

. if Γ ⊢ γ : Θ then ∆ ⊢ γ δ : Θ ∼ JγKd ∈ JΘK.

Proof. We note that for terms we show only the cases when the last rule used
was the introductory rule, or the rule for introducing elements in singletons;
for the case of the conversion rule, we can conclude by i.h., and lemma .

. Types. We show only the case for (fun-f).

∆ ⊢ s : A ′ pi ∼ e ∈ [X] hypothesis (*)

Θ ⊢ δ pi : Γ ∼ d ∈ JΓK By Lem. (†)

Θ ⊢ (δ pi, s) : Γ.A ∼ (d, e) ∈ JΓ.AK From (*) and (†)

Θ ⊢ B (δ pi, s) ∼ JBK(d, e) ∈ T by ind. hyp. on Γ.A ⊢ B
and using and

. Terms. We show the case for application (fun-el) and for (nn-e). The case
for abstraction (fun-i) is analogous to (fun-f).

a) (fun-el)

Γ ⊢ App t r : B (id, r) hypothesis

∆ ⊢ r δ : Aδ ∼ JrKd ∈ [JAKd] by ind. hyp. (*)

∆ ⊢ t δ : FunABδ ∼ JtKd ∈ [JFunABKd] by ind. hyp. (†)

∆ ⊢ App (t δ) (r δ) : B (id, r δ) ∼ by def. of log. rel.

JtKd · JrKd ∈ [JBK(d, JrKd)] for (†) with (*)

∆ ⊢ (App t r) δ : B (id, r δ) ∼

JApp t rKd ∈ [JBK(d, JrKd)] by Lem. and Lem.

 . Extended Martin-Löf Type Theory

b) (nn-e)

Γ ⊢ caseB t0 · · · tn−1 t : B (id, t) hypothesis

∆ ⊢ t δ : Nn ∼ JtKd ∈ [Nn] by inversion and i.h.

∆ ⊢ t δ = R|∆| JtKd : Nn by Lem.
∆ ⊢ ti δ : B (δ, ci) ∼

JtiKd ∈ [JBK(d, JtKd)] by inversion and i.h.

If R|∆| JtKd ≡ ci:

∆ ⊢ (case B t0 · · · tn−1 ci) δ = ti δ : B (id, t) by subst.

∆ ⊢ (case B t0 · · · tn−1 ci) δ : B (id, t) ∼

JcaseB t0 · · · tn−1 t Kd ∈ [JB (id, t)Kd] by Lem. and

If R|∆| JtKd ∈ Ne:

∆.Nn ⊢ B (δ p, q) = R|∆|+1 ⇓ JBK(d,Var |∆|)
∆ ⊢ ti δ = R|∆| JtiKd : B (δ, ci) by Lem.
t ′i := R|∆| JtiKd abbreviation

t ′ := R|∆| ↓JBK(d,ci) JtKd abbreviation

B ′ := R|∆|+1 JBK(d,Var |∆|) abbreviation

e := case B ′ t ′0 · · · t ′n−1 t
′ abbreviation

∆ ⊢ (case B t0 · · · tn−1 t) δ =

e : B (δ, t) congruence

∆ ⊢ (case B t0 · · · tn−1 t) δ : B (δ, t) ∼↑JBK(d,JtKd) e ∈ JBK(d, JtKd) by Lem. and
∆ ⊢ (case B t0 · · · tn−1 ci) δ : B (id, t) ∼

JcaseB t0 · · · tn−1 t Kd ∈ [JB (id, t)Kd] by Lem. and

. Substitutions. Only the proof for (ext-subs) is shown.

Γ ⊢ Θ.A : (γ, t) hypothesis

∆ ⊢ γ δ : Θ ∼ JγKd ∈ JΘK by ind. hyp. (*)

∆ ⊢ t δ : (Aγ) δ ∼ JtKd ∈ [JAγKd] (†)

(JγKd, JtKd) ∈

JΘK (e →→ [JAγKe]) from (*) and (†)

∆ ⊢ (γ, t) δ : Θ.A ∼ J(γ, t)Kd ∈ JΘ.AK by Lem. and Lem.

We define for each context Γ an element ρΓ of D. This environment will be
used to define the normalisation function.

Definition (Canonical environment). We define ρΓ by induction on Γ as
follows:

ρ� = ⊤
ρΓ.A = (d ′, ↑JAKd ′ Varn) where n = |Γ |, and d ′ = ρΓ .

.. Correctness of NbE

By an immediate induction on contexts we can check the following.

Lemma . If Γ ⊢ then Γ ⊢ idΓ : Γ ∼ ρΓ ∈ JΓK.

Proof. By induction on Γ ⊢; we show only the inductive case. Let Γ.A ⊢.

d := ρΓ definition

Γ ⊢ id : Γ ∼ d ∈ JΓK by inversion and i.h. (*)

Γ.A ⊢ id p : Γ ∼ d ∈ JΓK from (*) by Rem. (†)

Γ.A ⊢ p : Γ ∼ d ∈ JΓK from (†) by Rem. (**)

Γ.A ⊢ A p ∼ JAKd ∈ T by inversion and Thm.
Γ.A ⊢ q : A p ∼↑ JAKdVarn ∈ [JAKd] by Thm.
Γ.A ⊢ (p, q) : Γ.A ∼

(d, ↑ JAKdVarn) ∈

JΓK (e →→ [JAKe]) by Def. (‡)

Γ.A ⊢ id : Γ.A ∼ ρΓ.A ∈ JΓ.AK from (‡) by Rem.

Main results

Now we can define concretely the normalisation function as the composi-
tion of reification with normalisation after evaluation under the canonical
environment. The following corollaries just instantiate previous lemmata and
theorems concluding correctness of NbE.

Definition (Normalisation algorithm). Let Γ ⊢ A, and Γ ⊢ t : A.

nbeΓ (A) = R|Γ | ⇓ JAKρΓ
nbeAΓ (t) = R|Γ | ↓JAKρΓ

JtKρΓ

Notice that if we instantiate Thm. with ρΓ , then a well-typed term t
under Γ will be logically related to its denotation. Finally, using the key lemma
 we conclude correctness for NbE.

Corollary . Let Γ ⊢ A, and Γ ⊢ t : A, then by fundamental theorem of logical
relations (and Lem.),

. Γ ⊢ A ∼ JAKρΓ ∈ T; and

. Γ ⊢ t : A ∼ JtKρΓ ∈ [JAKρΓ],

Corollary (Soundness of NbE). By way of Lem. , it follows immediately

. Γ ⊢ A = nbe(A), and

. Γ ⊢ t = nbe(t) : A.

We have now a decision procedure for judgmental equality; for deciding Γ ⊢
t = t ′ : A, put both terms in normal formal and check if they are syntactically
equal.

Corollary . If Γ ⊢ A, and Γ ⊢ A ′, then we can decide Γ ⊢ A = A ′. Also if
Γ ⊢ t : A, and Γ ⊢ t ′ : A, we can decide Γ ⊢ t = t ′ : A.

 . Extended Martin-Löf Type Theory

As a byproduct we can conclude that type constructors are injective; this
result is exploited in the next section where we introduce the type-checking
algorithm.

Remark . By expanding definitions, we easily check

. nbeΓ (FunAB) = Fun (nbeΓ (A)) (nbeΓ.A(B)), and

. nbeΓ ({a}A) = {nbeAΓ (a)}nbeΓ (A).

Corollary (Injectivity of Fun _ _ and of {_}_). If Γ ⊢ FunAB = FunA ′ B ′, then
Γ ⊢ A = A ′, and Γ.A ⊢ B = B ′. Also Γ ⊢ {t}A = {t ′}A ′ , then Γ ⊢ A = A ′, and
Γ ⊢ t = t ′ : A.

Main results for λIrr The normalisation function is an homomorphism also for
constructors of λIrr. Moreover, the type-constructor for dependent sums is also
injective.

Remark .

. nbeΓ (ΣAB) = ΣnbeΓ (A)nbeΓ.A(B);

. nbeΣAB
Γ ((t, b)) = (nbeAΓ (t),nbeB (id,t)

Γ (b));

. nbe(suc(t)) = suc(nbe(t)).

. nbe([A]) = [nbe(A)].

Corollary . If Γ ⊢ ΣAB = ΣA ′ B ′, then Γ ⊢ A = A ′, and Γ.A ⊢ B = B ′.

. Type-checking algorithm

In this section, we define a couple of judgements that represent a bidirectional
type checking algorithm for terms in normal form; its implementation in
Haskell can be found in the appendix. The algorithm is similar to previous
ones [,], in that it proceeds by analysing the possible types for each normal
form, and succeeds only if the type’s shape matches the one required by the
introduction rule of the term. The only difference is introduced by the presence
of singleton types; now we should take into account that a normal form can
also have a singleton as its type.

This situation can be dealt in two possible ways; either one checks that
the deepest tag of the normalised type (see Def.) has the form of the type
of the introductory rule; or one adds a rule for checking any term against
singleton types. The first approach requires to have more rules (this is due to
the combination of singletons and a universe). We take the second approach,
which requires to compute the eta-long normal form of the type before type-
checking. We also note that the proof of completeness is more involved, because
now the algorithm is not only driven by the term being checked, but also by
the type.

Our algorithm depends on having a good normalisation function; note that
this function does not need to be based on normalisation by evaluation. Also
note that the second point asks for having correctness and completeness of the
normalisation function.

.. Type-checking algorithm

Definition (Good normalisation function).

. nbe({a}A) = {nbe(a)}nbe(A), and nbe(FunAB) = Funnbe(A)nbe(B) ;

. nbeΓ (A) = nbeΓ (B) if and only if Γ ⊢ A = B, and nbeAΓ (t) = nbeAΓ (t
′),

if and only if Γ ⊢ t = t ′ : A.

From these properties we can prove the injectivity of Fun which is crucial
for completeness of type checking λ-abstractions.

Type-checking λSing

In this section, let V,V ′,W, v, v ′, w ∈ Nf, and k ∈ Ne. For obtaining the deepest
tag of a singleton type, we define an operation on types, which is essentially
the same as the one defined by Aspinall [].
Definition (Singleton’s tag).

V =

W if V ≡ {w}W

V otherwise.

The predicates for type-checking are defined mutually inductively, together
with the function for inferring types.

Definition (Type-checking and type-inference). We define three mutually
inductive algorithmic judgements

Γ ↓ V in context Γ , normal type V checks

Γ ⊢ v⇐ V in context Γ , normal term v checks against type V

Γ ⊢ k⇒ V in context Γ , the type of neutral term k is inferred as V.

All three judgements presuppose and maintain the invariant the input Γ is a
well-formed context. The procedures Γ ↓ V and Γ ⊢ v⇐ V expect their inputs
V and v in β-normal form. Inference Γ ⊢ k⇒ V expects a neutral term k and
returns its principal type V in long normal form.
Well-formedness checking of types Γ ↓ V .

Γ ↓ U Γ ↓ V Γ.V ↓W
Γ ↓ FunV W Γ ↓ V Γ ⊢ v⇐ nbe(V)

Γ ↓ {v}V Γ ⊢ k⇐ U

Γ ↓ k
Type checking terms Γ ⊢ v⇐ V .

Γ ⊢ V ⇐ U Γ.V ⊢W ⇐ U

Γ ⊢ FunV W ⇐ U

Γ.V ⊢ v⇐W

Γ ⊢ λv⇐ FunV W

Γ ⊢ V ⇐ U Γ ⊢ v⇐ nbe(V)
Γ ⊢ {v}V ⇐ U

Γ ⊢ v⇐ V ′ Γ ⊢ v ′ = v : V ′

Γ ⊢ v⇐ {v ′}V ′

Γ ⊢ k⇒ V ′ Γ ⊢ V ′ = V

Γ ⊢ k⇐ V
V ̸≡ {w}W

 . Extended Martin-Löf Type Theory

Type inference Γ ⊢ k⇒ V .

Γ.Ai. . . . A0 ⊢ vi ⇒ nbe(Ai p
i+1)

Γ ⊢ k⇒ V Γ ⊢ V = FunV ′W Γ ⊢ v⇐ V ′

Γ ⊢ App k v⇒ nbe(W (id, v))

Type checking dependent function types with a bidirectional algorithm is
well-understood [,]; let us illustrate briefly how it works for singleton
types, by considering the type checking problem Γ ⊢ q ⇐ {zero}Nat, where
Γ = {zero}Nat. Here is a skeletal derivation of this judgement, which is at the
same time an execution trace of the type checker:

Γ ⊢ q⇒ {zero}Nat Γ ⊢ {zero}Nat = Nat

Γ ⊢ q⇐ Nat Γ ⊢ q = zero : Nat

Γ ⊢ q⇐ {zero}Nat

Since the type to check against is a singleton, the algorithm proceeds by
checking {zero}Nat ⊢ q⇐ Nat and {zero}Nat ⊢ q = zero : Nat. Now the type of the
neutral q is inferred and its tag compared to the given type Nat; as the tag is
also Nat, the check succeeds. The remaining equation {zero}Nat ⊢ q = zero : Nat
is derivable by (sing-eq-el). Of course, the equations are checked by the nbe(_)
function; for example, by using our own function for normalisation we have
nbeNat{zero}Nat

(q) = zero = nbeNat{zero}Nat(zero).

Theorem (Correctness of type-checking).

. If Γ ↓ V , then Γ ⊢ V .

. If Γ ⊢ v⇐ V , then Γ ⊢ v : V .

. If Γ ⊢ k⇒ V , then Γ ⊢ k : V .

Proof. By simultaneous induction on Γ ↓ V , Γ ⊢ v⇐ V , and Γ ⊢ V ⇒ k.

. Types:

• the case for FunV W is also obtained directly from the derivations
we get using the i.h. on Γ ↓ V , and Γ.V ↓ W; and use them for
deriving Γ ⊢ FunV W

• for {v}V , we can apply the same reasoning as before: by i.h. on
Γ ↓ V , and Γ ⊢ v ⇐ nbe(V) we know that there are, respectively,
derivations with conclusions Γ ⊢ V , and Γ ⊢ v : V ; from which we
can conclude Γ ⊢ {v}V

• here we’ll consider the three cases when V is a neutral term, because
the reasoning is the same. By i.h. on Γ ⊢ V ⇐ U, we have a derivation
with conclusion Γ ⊢ V : U; hence we use (u-el).

. Terms:

.. Type-checking algorithm

• let V = U, and v = FunV ′W. By i.h. Γ ⊢ V ′ : U, and Γ.V ′ ⊢ W : U,
and using both derivations we can derive Γ ⊢ FunV W : U.

• consider V = U, and v = {v ′}V ′ . by i.h. on Γ ⊢ V ′ ⇐ U, and
Γ ⊢ v ′ ⇐ nbe(V), we have Γ ⊢ V : U, and Γ ⊢ v ′ : nbe(V), and using
conversion we derive Γ ⊢ v ′ : V ; and these are the premises we need
to show Γ ⊢ {v ′}V : U.

• V = FunV ′W, and v = λv ′: we have Γ.V ′ ⊢ v ′ ⇐ W. From this we
can conclude by i.h. Γ.V ′ ⊢ v ′ : W; and this is the key premise for
concluding Γ ⊢ λv ′ : FunV ′W.

• V = {w}W : by hypothesis we know Γ ⊢ w : W, and Γ ⊢ v⇐W, and
Γ ⊢ w = v : W; by the i.h. on the second one we get Γ ⊢ v : W; then
we can conclude using (sing-i).

• v = k ∈ Ne, and V ̸≡ {w}W : let Γ ⊢ k⇒ V ′, then we distinguish the
cases when V ′ is a singleton, and when V ′ is not a singleton. In the
latter case, the derivation is obtained directly from the correctness
of type-inference. In the first case we use the rule (sing-el), with the
derivation obtained by i.h. and then we conclude with conversion.

. Inference:

• for q pi, if i = 0, then we use (hyp), and conversion; if i > 0,
then we have a derivation with conclusion Γ ⊢ q : Ai p, and clearly
Γ ⊢ pi : Γ.AiA0, hence by (subs-term), we have Γ.AiA0 ⊢
q pi : Ai p

i+1, we conclude by correctness of nbe(_) and by conver-
sion.

• by i.h. we have derivations with conclusions Γ ⊢ k : V ′, with V ′ =
FunV W, hence we have a derivation Γ ⊢ k : FunV W (using (sing-el)
if necessary) and Γ ⊢ v : V , hence by the rule (fun-el), we have
Γ ⊢ App k v : W (id, v). We conclude by conversion and correctness
of nbe(_).

In order to prove completeness we define a lexicographic order on pairs of
terms and types, in this way we can make induction over the term, and the
type.

Definition . Let v, v ′ ∈ Nf, and A,A ′ ∈ Type(Γ), then (v,A) ≺ (v ′, A ′) is the
lexicographic order on Nf × Type(Γ). The corresponding orders are v ≺ v ′ iff v
is an immediate sub-term of v ′; and A ≺Γ A ′, iff nbe(A ′) ≡ {w}nbe(A).

Theorem (Completeness of type-checking).

. If Γ ⊢ V , then Γ ↓ V .

. If Γ ⊢ v : A, then Γ ⊢ v⇐ nbe(A).

. If Γ ⊢ k : A, and Γ ⊢ k⇒ V ′, then Γ ⊢ nbe(A) = V ′.

Proof. We prove simultaneously all the points. The first point is by induction
on the structure of the type. In the last two points we use well-founded
induction on the order ≺.

 . Extended Martin-Löf Type Theory

. Types:

• Γ ⊢ FunV ′W; by inversion we know Γ ⊢ V ′, and Γ.V ′ ⊢W; hence by
i.h. we have respectively Γ ↓ V ′, and Γ.V ′ ↓W.

• V = {v}V ′ : by inversion we have Γ ⊢ V ′, and Γ ⊢ v : nbe(V ′), hence
by i.h. we have both Γ ↓ V ′, and Γ ⊢ v⇐ V ′.

• Γ ⊢ k, we have to show Γ ↓ k. By lemma , we know Γ ⊢ k : U;
hence by i.h. we have Γ ⊢ k⇒ A, and Γ ⊢ A = U, hence Γ ⊢ k⇐ U.

. Terms: We omit the trivial cases, e.g. (U, A); we have re-arranged the
order of the cases for the sake of clarity.

• v = FunV ′W:

a) either Γ ⊢ A = U, Γ ⊢ V ′ : U, and Γ.V ′ ⊢ W : U; hence, by i.h.
we know both Γ ⊢ V ′ ⇐ U, and Γ.V ′ ⊢ W ⇐ U; hence we can
conclude Γ ⊢ FunV W ⇐ U.

b) Or Γ ⊢ A = {a}A ′ , Γ ⊢ v : A ′, and Γ ⊢ v = a : A ′, hence by
i.h. we know Γ ⊢ v ⇐ nbe(B), by conversion we also have
and transitivity of the equality Γ ⊢ nbe(a) = v : nbe(B), hence
Γ ⊢ v⇐ {nbe(a)}nbe(B).

• v = {v ′}V :

a) Γ ⊢ V : U, and Γ ⊢ v ′ : V . From those derivations we have by i.h.
Γ ⊢ V ⇐ U, and Γ ⊢ v ′ ⇐ nbe(V), respectively; from which we
conclude Γ ⊢ {v ′}V ⇐ U

b) Γ ⊢ A = {a}A ′ , with Γ ⊢ v : A ′, and Γ ⊢ v = a : A ′, hence by i.h.
we know Γ ⊢ v ⇐ nbe(B). We can also derive Γ ⊢ nbe(a) =
v : nbe(B), hence Γ ⊢ v⇐ {nbe(a)}nbe(B).

• v = λv ′

a) Γ ⊢ V = FunA ′ B, and Γ.A ′ ⊢ v ′ : B; from this we can conclude
Γ.nbe(A ′) ⊢ v ′ : B by ind. hyp. we get Γ.nbe(A ′) ⊢ v ′ ⇐ nbe(B);
therefore Γ ⊢ λv ′ ⇐ Funnbe(A ′)nbe(B ′).

b) Or Γ ⊢ A = {a}A ′ , Γ ⊢ v : A ′, and Γ ⊢ v = a : A ′, hence by
i.h. we know Γ ⊢ v ⇐ nbe(B), by conversion we also have
and transitivity of the equality Γ ⊢ nbe(a) = v : nbe(B), hence
Γ ⊢ v⇐ {nbe(a)}nbe(B).

• v ∈ Ne: then we do case analysis on nbe(A).

a) If nbe(A) = {w}W , then by soundness of nbe(_), and conversion
we have Γ ⊢ k : {w}W ; and by inversion of singletons we have
Γ ⊢ k : W, and also Γ ⊢ k = w : W(∗). Clearly (k,W) ≺ (k,A),
hence we can apply the inductive hypothesis and conclude
Γ ⊢ k⇐W; from that and (∗), we conclude Γ ⊢ k⇐ {w}W , i.e.,
Γ ⊢ k⇐ nbe(A).

b) If V ̸≡ {w}W , then V ≡ V . We use the last clause for concluding
Γ ⊢ k⇐ nbe(A); but we need to show that if Γ ⊢ k⇒ V ′, then
Γ ⊢ V = V ′; we show this in the next point.

. Inference: let Γ ⊢ k : A, Γ ⊢ k⇒ V ′, and V = nbe(A). Show Γ ⊢ V = V ′.

.. Type-checking algorithm

• let us consider first the case when V = {w}W ; by inversion we have
derivations Γ ⊢ k : W, and Γ ⊢ k = w : W. Hence by i.h. we know
that Γ ⊢ V ′ =W, and W = {w}W .

• Now we consider the case when V is not a singleton, and k = q pi;
this case is trivial because by inversion we know that Γ ⊢ V =
nbe((Γ !i) pi+1).

• the last case to consider is k = App k ′ v and V not a singleton. By
inversion we know Γ ⊢ App k v : B (id, v), and Γ ⊢ k : FunAB, hence
Γ ⊢ k : Funnbe(A)nbe(B), and Γ ⊢ v : A, hence Γ ⊢ v : nbe(A). By
i.h. we know that if Γ ⊢ k ⇒ V ′, then V ′ = Funnbe(A)nbe(B),
and also Γ ⊢ v ⇐ nbe(A). Hence we can conclude Γ ⊢ App k v ⇒
nbe(nbe(B) (id, v)). And Γ ⊢ nbe(nbe(B) (id, v)) = nbe(B (id, v))
(by correctness of the nbe(_) algorithm).

Calculus λIrr with proof irrelevance

We give additional rules for type-checking and type-inference algorithms for
the constructs added in Sec. .. Remember that we distinguished two calculi:
the calculus (⊢⋆) has rules (n0-tm) and (prf-tm); while (⊢) lacks those rules.

Definition (Type-checking and type-inference). Σ-types.

Γ ↓ V Γ.V ↓W
Γ ↓ ΣV W Γ ⊢ V ⇐ U Γ.V ⊢W ⇐ U

Γ ⊢ ΣV W ⇐ U

Γ ⊢ v⇐ V Γ ⊢ v ′ ⇐ nbe(W (idΓ , v))

Γ ⊢ (v, v ′)⇐ ΣV W

Γ ⊢ k⇒ ΣV W

Γ ⊢ fst k⇒ V

Γ ⊢ k⇒ ΣV W

Γ ⊢ snd k⇒ nbe(W (idΓ , fst k))

Natural numbers.

Γ ↓ Nat Γ ⊢ Nat⇐ U Γ ⊢ zero⇐ Nat

Γ ⊢ v⇐ Nat

Γ ⊢ suc(v)⇐ Nat

Γ.Nat ↓ V Γ ⊢ k⇒ Nat Γ ⊢ v⇐ nbe(V (idΓ , zero))
Γ ⊢ v ′ ⇐ FunNat (FunV nbe(V (p p, suc((q p)))))

Γ ⊢ natrec(V, v, v ′, k)⇒ nbe(V (id, k))

Finite types.

Γ ↓ Nn Γ ⊢ Nn ⇐ U

i < n

Γ ⊢ cni ⇐ Nn

Γ.Nn ↓ V Γ ⊢ k⇒ Nn Γ ⊢ vi ⇐ nbe(V (idΓ , c
n
i))

Γ ⊢ casen V v0 · · · vn−1 k⇒ nbe(V (id, k))

 . Extended Martin-Löf Type Theory

Proof types.

Γ ↓ V
Γ ↓ [V] Γ ⊢ V ⇐ U

Γ ⊢ [V]⇐ U

Γ ⊢ v⇐ V

Γ ⊢ [v]⇐ [V]

Γ ↓W
Γ ⊢ k⇒ [V] Γ.V ⊢ v⇐ nbe(W p) Γ.V.Vp ⊢ vp = v(pp, q) : Wpp

Γ ⊢ vwhereW k⇒W

We do not show the proof for correctness, because nothing is to be gained
from it; suffice it to say that we can prove correctness with respect to (⊢⋆).

Theorem . The type-checking algorithm is sound with respect to the calculus
⊢⋆.

Proof. By simultaneous induction on the derivability of the type-checking
judgements.

It is clear that the given rules are not complete for checking (⊢⋆), because
there is no rule for checking Γ ⊢ ⋆⇐ A. Note that it is not possible to have a
sound and complete type-checking algorithm with respect to (⊢⋆), for it would
imply the decidability of type-inhabitation. Since type checking happens
always before normalisation, we can still use a good normalisation function
with respect to the calculus (⊢⋆) for normalising types or deciding equality.
Indeed, if the term to type-check does not contain ⋆, the need of checking
Γ ⊢ ⋆⇐ V will never arise; this is clearly seen by verifying that only sub-terms
are type-checked in the premises.

Theorem . The type-checking algorithm is complete with respect to the
calculus (⊢).

Proof. By simultaneous induction on the normal form of types and terms,
using inversion on the typing judgement and correctness of nbe(_).

Corollary . The type-checking algorithm is correct (by Thm. and Cor.)
and complete with respect to the calculus (⊢).

. Normalisation by evaluation

type Type = Term
data Term = U -- universe

| Fun Type Type -- dependent function space
| Singl Term Type -- singleton type ($\{a\}_A$)
| App Term Term -- application
| Lam Term -- abstraction
| Q -- variable
| Sub Term Subst -- substitution
| Sigma Type Type -- dependent pair type
| Fst Term -- first projection
| Snd Term -- second projection
| Pair Term Term -- dependent pair
| Nat -- naturals
| Zero -- 0
| Suc Term -- +1
| Natrec Type Term Term Term -- elimination for Nat
| Prf Type -- proof irrelevance types

.. Normalisation by evaluation

| Box Term -- a term in Prf
| Star -- canonical element in Prf
| Where Type Term Term -- |Box| elimination
| Enum Int -- |Enum n| has n elements
| Const Int Int -- |Const n i|, the |i|th element
| Case Int Type [Term] Term -- elimination for |Enum n|

deriving (Eq,Show)

data Subst = E -- empty substitution
| Is -- identity substitution
| Ext Subst Term -- extension
| P -- weakening
| Comp Subst Subst -- composition

deriving (Eq,Show)

type DT = D -- semantic types
data D = T -- terminal object

| Ld (D -> D) -- function
| FunD DT (D -> DT) -- dependent function type
| UD -- universe
| SingD D DT -- singleton type
| Vd Int -- free variable
| AppD D D -- neutral application
| SumD DT (D -> DT) -- dependent sum
| PairD D D -- context comprehension
| FstD D -- first projection
| SndD D -- second projection
| NatD -- natural number type
| ZeroD -- 0
| SucD D -- +1
| NatrecD (D -> DT) D D D -- recursion on neutrals
| PrfD DT -- proof type
| StarD -- don’t care
| EnumD Int -- enumeration type
| ConstD Int Int -- constants in |EnumD|
| CaseD Int (D -> DT) [D] D -- elimination on neutrals

type Ctx = [Type]

pi1, pi2 :: D -> D
pi1 (PairD d d’) = d
pi1 StarD = StarD
pi1 k = FstD k
pi2 (PairD d d’) = d’
pi2 StarD = StarD
pi2 k = SndD k

ap :: D -> D -> D
ap (Ld f) d = f d
ap StarD _ = StarD

neutralD :: D -> Bool
neutralD (Vd _) = True
neutralD (AppD _ _) = True
neutralD (FstD _) = True
neutralD (SndD _) = True
neutralD (NatrecD _ _ _ _) = True
neutralD (CaseD _ _ _ _) = True
neutralD StarD = True
neutralD _ = False

 . Extended Martin-Löf Type Theory

natrec :: (D -> DT) -> D -> D -> D -> D
natrec b z s StarD = StarD
natrec b z s ZeroD = z
natrec b z s (SucD e) = (s ‘ap‘ e) ‘ap‘ (natrec b z s e)
natrec b z s d | neutralD d = up (b d)

(NatrecD (\e -> downT (b e))
(down (b ZeroD) z)
downSuc
d)

where downSuc = down (FunD NatD
(\n -> FunD (b n)
(\e -> b (SucD n))))

s

downs :: Int -> (D -> DT) -> [D] -> Int -> [D]
downs _ _ [] _ = []
downs n f (d:ds) i = down (f (ConstD n i)) d : downs n f ds (i+1)

constD :: Int -> Int -> D -> Bool
constD n i (ConstD m j) = m == n && i == j
constD _ _ _ = False

caseD :: Int -> (D -> DT) -> [D] -> D -> D
caseD n b ds StarD = StarD
caseD n b ds (ConstD m i) | n == m && i < n = ds!!i
caseD n b ds d | neutralD d &&

and [constD n i (ds!!i) | i <- [0..n-1]] = up (b d) d
caseD n b ds d | neutralD d = up (b d)

(CaseD n (\e -> downT (b e))
(downs n b ds 0)
d)

up :: DT -> D -> D
up (SingD a x) k = a
up (FunD a f) k = Ld (\d -> up (f d) (AppD k (down a d)))
up (SumD a f) k = PairD (up a (FstD k))

(up (f (up a (FstD k))) (SndD k))
up (PrfD a) k = StarD
up (EnumD 0) k = StarD
up (EnumD 1) k = ConstD 1 0
up d k = k

down :: DT -> D -> D
down UD d = downT d
down (SingD a x) d = down x a
down (FunD a f) d = Ld (\e -> down (f (up a e)) (d ‘ap‘ (up a e)))
down (SumD a b) d = PairD (down a (pi1 a)) (down (b (pi1 d)) (pi2 d))
down (PrfD a) d = StarD
down (EnumD 1) d = ConstD 1 0
down d e = e

downT :: DT -> DT
downT (SingD a x) = SingD (down x a) (downT x)
downT (FunD a f) = FunD (downT a) (\d -> downT (f (up a d)))
downT (SumD a b) = SumD (downT a) (\d -> downT (b (up a d)))
downT (PrfD a) = PrfD (downT a)
downT d = d

readback :: Int -> D -> Term
readback i UD = U
readback i (FunD a f) = Fun (readback i a)

(readback (i+1) (f (Vd i)))
readback i (SingD a x) = Singl (readback i a) (readback i x)

.. Normalisation by evaluation

readback i (Ld f) = Lam (readback (i+1) (f (Vd i)))
readback i (Vd n) = mkvar (i-n-1)
readback i (AppD k d) = App (readback i k) (readback i d)
readback i (FstD d) = Fst (readback i d)
readback i (SndD d) = Snd (readback i d)
readback i (PairD d e) = Pair (readback i d) (readback i e)
readback i (SumD a b) = Sigma (readback i a)

(readback (i+1) (b (Vd i)))
readback i NatD = Nat
readback i ZeroD = Zero
readback i (SucD e) = Suc (readback i e)
readback i (NatrecD b z s e) = Natrec (Fun Nat (readback (i+1) (b (Vd i))))

(readback i z)
(readback i s)
(readback i e)

readback i (PrfD d) = Prf (readback i d)
readback i StarD = Star
readback i (EnumD n) = Enum n
readback i (ConstD n j) = Const n j
readback i (CaseD n b ds d) = Case n (readback (i+1) (b (Vd i)))

(map (readback i) ds)
(readback i d)

-- Evaluation

type Env = D

eval :: Term -> Env -> D
eval U d = UD
eval (Fun t f) d = FunD (eval t d) (\d’ -> eval f (PairD d d’))
eval (Singl t a) d = SingD (eval t d) (eval a d)
eval (Lam t) d = Ld (\d’ -> eval t (PairD d d’))
eval (App t r) d = (eval t d) ‘ap‘ (eval r d)
eval Q d = pi2 d
eval (Sub t s) d = eval t (evalS s d)

eval (Sigma t r) d = SumD (eval t d) (\e -> eval r (PairD d e))
eval (Fst t) d = pi1 (eval t d)
eval (Snd t) d = pi2 (eval t d)
eval (Pair t r) d = PairD (eval t d) (eval r d)

eval Nat d = NatD
eval Zero d = ZeroD
eval (Suc t) d = SucD (eval t d)
eval (Natrec b z s t) d = natrec (\e -> eval b (PairD d e))

(eval z d)
(eval s d)
(eval t d)

eval (Prf t) d = PrfD (eval t d)
eval (Box t) d = StarD
eval Star d = StarD
eval (Where t b p) d = eval b (PairD d StarD)
eval (Enum n) d = EnumD n
eval (Const n i) d = ConstD n i
eval (Case n b ts t) d = caseD n (\e -> eval b (PairD d e))

(map ((flip eval) d) ts)
(eval t d)

evalS :: Subst -> Env -> Env
evalS E d = T

 . Extended Martin-Löf Type Theory

evalS Is d = d
evalS (Ext s t) d = PairD (evalS s d) (eval t d)
evalS P d = pi1 d
evalS (Comp s s’) d = (evalS s . evalS s’) d

nbe :: Type -> Term -> Term
nbe ty t = readback 0 (down (eval ty T) (eval t T))

nbeTy :: Type -> Type
nbeTy ty = readback 0 (downT (eval ty T))

nbeOpen :: Ctx -> Type -> Term -> Term
nbeOpen ctx ty t = readback n (down (eval ty env) (eval t env))

where n = length ctx
env = mkenv n ctx

nbeOpenTy :: Ctx -> Type -> Type
nbeOpenTy ctx ty = readback n (downT (eval ty env))

where n = length ctx
env = mkenv n ctx

mkenv :: Int -> Ctx -> Env
mkenv 0 [] = T
mkenv n (t:ts) = PairD d’ (up td (Vd (n-1)))

where d’ = mkenv (n-1) ts
td = eval t d’

mkvar :: Int -> Term
mkvar n | n == 0 = Q

| otherwise = Sub Q (subs (n-1))

subs n | n == 0 = P
subs n | otherwise = Comp P (subs (n-1))

. Type-checking algorithm

Type checking algorithm for normal forms, and type inference algorithm for
neutral terms.

Checking well-formedness of types

chkType :: Ctx -> Type -> Bool
chkType ts U = True
chkType ts (Fun t r) = chkType ts t && chkType (t:ts) r
chkType ts (Singl a t) = chkType ts t && chkTerm ts t a
chkType ts (Sigma t r) = chkType ts t && chkType (t:ts) r
chkType ts Nat = True
chkType ts (Prf t) = chkType ts t
chkType ts (Enum n) = True
chkType ts Q = chkNeTerm ts U Q
chkType ts w@(Sub Q s) = chkNeTerm ts U w
chkType ts w@(App k v) = chkNeTerm ts U w
chkType ts w@(Fst k) = chkNeTerm ts U w
chkType ts w@(Snd k) = chkNeTerm ts U w
chkType ts w@(Natrec t’ v v’ k) = chkNeTerm ts U w

.. Type-checking algorithm

chkType _ _ = False

Checking the types of terms

sgSub :: Term -> Term -> Term
sgSub t t’ = Sub t (Ext Is t’)

chkTerm :: Ctx -> Type -> Term -> Bool
chkTerm ts U (Fun t t’) = chkTerm ts U t &&

chkTerm (t:ts) U t’
chkTerm ts U (Singl e t) = chkTerm ts U t &&

chkTerm ts t e
chkTerm ts U (Sigma t t’) = chkTerm ts U t &&

chkTerm (t:ts) U t’
chkTerm ts U Nat = True
chkTerm ts (Fun t t’) (Lam e) = chkTerm (t:ts) t’ e
chkTerm ts (Singl e t) e’ = chkTerm ts (nbeOpenTy ts t) e’ &&

(nbeOpen ts e t) == (nbeOpen ts e’ t)
chkTerm ts (Sigma t r) (Pair e e’) = chkTerm ts t e &&

chkTerm ts (nbeOpenTy ts (sgSub r e)) e’
chkTerm ts Nat Zero = True
chkTerm ts Nat (Suc t) = chkTerm ts Nat t
chkTerm ts (Prf t) (Box e) = chkTerm ts t e
chkTerm ts (Enum n) (Const m i) = m == n && i < n
chkTerm ts t e | neutral e = chkNeTerm ts t e
chkTerm _ _ _ = False

neutral :: Term -> Bool
neutral Q = True
neutral (Sub Q s) = True
neutral (App k v) = True
neutral (Fst k) = True
neutral (Snd k) = True
neutral (Natrec t’ v v’ k) = True
neutral (Case n b ts t) = True
neutral (Where t b p) = True
neutral _ = False

erase :: Type -> Type
erase (Singl e t) = erase t
erase t = t

maybeEr :: Maybe Type -> Maybe Type
maybeEr = maybe Nothing (Just . erase)

chkNeTerm :: Ctx -> Type -> Term -> Bool
chkNeTerm ts t e = case maybeEr (infType ts e) of

Just t’ -> t == t’
Nothing -> False

Inferring the types of neutral terms

nbeType :: Ctx -> Type -> Maybe Type
nbeType ctx t = Just (nbeOpenTy ctx t)

 . Extended Martin-Löf Type Theory

infType :: Ctx -> Term -> Maybe Type
infType (t:ts) Q = nbeType (t:ts) (Sub t P)
infType ts (Sub Q s) = case infType (infCtx ts s) Q of

Just t -> nbeType ts (Sub t s)
_ -> Nothing

infType ts (App e e’) = case maybeEr (infType ts e) of
Just (Fun t t’) ->

if chkTerm ts t e’
then nbeType ts (sgSub t’ e’)
else Nothing

_ -> Nothing

infType ts (Fst e) = case maybeEr (infType ts e) of
Just (Sigma t t’) -> Just t
_ -> Nothing

infType ts (Snd e) = case maybeEr (infType ts e) of
Just (Sigma t t’) -> nbeType ts (sgSub t’ (Fst e))
_ -> Nothing

infType ts (Natrec t v w k) = case maybeEr (infType ts k) of
Just Nat -> if

chkType (Nat:ts) t &&
chkTerm ts (nbeOpenTy ts (sgSub t Zero)) v &&
chkTerm (Nat:ts)

(Fun (sgSub t Q)
(sgSub t (Suc (Sub Q P)))) w

then nbeType ts (sgSub t k)
else Nothing

_ -> Nothing
infType ts (Where t b k) = case maybeEr (infType ts k) of

Just (Prf t’) -> if chkType ts t &&
chkTerm (t’:ts) t b &&
nbeOpen ts’ w

(Sub b (Ext (subs 1) Q)) ==
nbeOpen ts’ w (Sub b P)
then Just t
else Nothing

where ts’ = Sub t’ P:t’:ts
w = Sub t (subs 1)

_ -> Nothing
infType ts (Case n b cs k) = case maybeEr (infType ts k) of

Just (Enum m) -> if m == n &&
chkType (Enum n:ts) b &&
chkList ts n b 0 cs

then nbeType ts (sgSub b k)
else Nothing

_ -> Nothing

infType _ _ = Nothing

chkList :: Ctx -> Int -> Type -> Int -> [Term] -> Bool
chkList ts _ _ _ [] = True
chkList ts n b i (e:es) = chkTerm ts (nbeOpenTy ts (sgSub b (Const n i))) e &&

chkList ts n b (i+1) es

infCtx :: Ctx -> Subst -> Ctx
infCtx (t:ts) P = ts
infCtx (t:ts) (Comp P s) = infCtx ts s

Pure Type Systems

5In this chapter we show the equivalence between two presentations of PTSs
that differ in their notion of equality in typing. One presentation is more akin
to MLTT where equality is defined by rules of the typing system; the more
common approach is to take equality as the convertibility relation defined
among raw terms. The former is known as judgemental equality and is con-
venient for theoretical considerations [,]; the latter is known as external
equality and is often used in implementations. Given an implementation of
a type-system based on the untyped notion of equality, it is desirable to have
theoretical results ensuring the correctnes of the system.. If both systems are
equivalent — every deduction in one of them can be mimicked on the other —
then one can transfer theoretical results in the version with typed equality to
the system with untyped conversion.

In this chapter, we establish such an equivalence for a certain class of PTSs,
by exploiting some of the results of NbE we have obtained in the previous
chapters. The main contribution of this chapter is in the proof method; this
result has been already settled for every PTS by Siles[] for every PTS, cf.
Sec. .. We have formalised in Agda several syntactical properties of both
presentations of PTSs. The Agda files can be found in http://cs.famaf.unc.
edu.ar/~mpagano/thesis/pts; the file names are relative to that URL.

. Formal systems

As we already explained PTSs capture a whole class of type-systems by para-
meterising the syntax and the typing rules over signatures.

Definition (PTS Signature). A signature S = (S,A,R) is given by a set S, a
binary relation A over S, and a ternary relation R over S.

Elements in S are called sorts and roughly correspond to universes. The relation
A ⊆ S2 is called the set of axioms and can be thought as defining a hierarchy
of universes. The ternary relation R ⊆ S3, which is called the set of rules,
prescribes which function spaces can be formed in the system.

As far as we know, our presentation of PTSs is new, although the variations
that we add were already considered separately. The three aspects in which
we depart from usual PTSs are: explicit substitutions, de Bruijn indices, and
abstractions without domain annotations. PTSs with explicit substitutions
were considered by Bloo []; Muñoz [] studied one particular PTSs with ex-
plicit substitutions and de Bruijn indices. Barthe and Sørensen [] introduced
domain-free PTSs and studied their meta-theory.

The set of terms and substitutions is shared between both presentations of
PTSs.

http://cs.famaf.unc.edu.ar/~mpagano/thesis/pts
http://cs.famaf.unc.edu.ar/~mpagano/thesis/pts

 . Pure Type Systems

Definition (Raw terms). Let S = (S,A,R) be a signature. The syntax of
pre-terms and pre-substitutions are defined by:

Terms ∋ t, t ′ ::= q | t σ | s | Fun t t ′ | App t t ′ | λt

Substs ∋ σ, σ ′ ::= p | ⟨⟩ | ⟨σ, t⟩ | σσ ′ | id .

In the next sections we introduce the formal systems corresponding to both
presentations of PTSs: λσ has an untyped notion of equality; and λσ= features
typed equality.

PTSs with untyped equality (λσ)

The first family of type systems has an untyped notion of equality. It corres-
ponds to the equivalence and congruence closure of the reductions→β and→x . This equivalence relation on terms induces an equivalence relation on
contexts.

Beta-reduction
App (λt) t ′ →β t ⟨id, t ′⟩

Substitutions
(σ δ)γ→x σ (δ γ)

σ id→x σ

idσ→x σ

⟨⟩σ→x ⟨⟩
p ⟨σ, t⟩→x σ

⟨σ, t⟩ δ→x ⟨σ δ, t δ⟩

Congruence
(FunAB)σ→x Fun (Aσ) (B ⟨σ p, q⟩)

t (σ δ)→x (t σ) δ

t id→x t

q ⟨σ, t⟩→x t

(λt)σ→x λ(t ⟨σ p, q⟩)
(App t t ′)σ→x App (t σ) (t ′ σ)

s σ→x s

The typing rules of λσ, in Figs. . and ., are basically the same as
those in [] without metavariables. In particular, we also have two rules
for substitutions: (sub-tm) and (sub-sort). The latter rule is needed because
otherwise we cannot resolve substitutions in the type when it is a top-sort. This
problem is already discussed by Bloo []; his substitution rule uses explicit
substitution on the subject, but implicit substitution in the type.

There is no rule like (conv-subs) neither in Bloo[] nor in Muñoz[]. In
chapters and of this thesis the rule was not formulated explicitly, because it
is a derived rule of the corresponding GATs. Without (conv-subs) it is not clear
how to prove context conversion: if Γ ⊢ t : A and Γ →β Γ ′, then Γ ′ ⊢ t : A. For
proving that result we need to prove the same property for substitutions; but
that is not possible because in the typing rule for the identity substitution the
target and source context should be syntactically equal.

Properties of λσ The inversion lemma of typing judgements, called generation
lemma in the PTSs literature, can be proved by induction on derivations. A
type is any sort or a term which can be typed with a sort.

Lemma (Inversion of typing).

. If Γ ⊢ s : C, then there exists (s, s ′) ∈ A and C ≡βx s
′.

. If Γ ⊢ q : C, then there exists s ∈ S, and Γ ′ ⊢ A : s, Γ = Γ.A, and C ≡βx A p.

.. Formal systems

(empty-ctx)

� ⊢

(ext-ctx)

Γ ⊢ Γ ⊢ A : s

Γ,A ⊢
(fun-f)

Γ ⊢ A : s Γ,A ⊢ B : s ′

Γ ⊢ FunAB : s ′′
(s, s ′, s ′′) ∈ R

(axiom)

Γ ⊢ c : s
(c, s) ∈ A

(fun-i)

Γ ⊢ FunAB : s ′′ Γ,A ⊢ t : B
Γ ⊢ λt : FunAB

(fun-el)

Γ ⊢ t : FunAB Γ ⊢ r : A
Γ ⊢ App t r : B ⟨id, r⟩

(sub-tm)

∆ ⊢ A : s ∆ ⊢ t : A Γ ⊢ σ : ∆
Γ ⊢ t σ : Aσ

(sub-sort)

∆ ⊢ A : s Γ ⊢ σ : ∆
Γ ⊢ Aσ : s

(conv)

Γ ⊢ t : A Γ ⊢ B : s A ≡βx B

Γ ⊢ t : B

(hyp)

Γ ⊢ A : s

Γ,A ⊢ q : A p

Figure .: Rules for contexts and terms λσ

(id-subs)

Γ ⊢ id : Γ

(empty-subs)

Γ ⊢ ⟨⟩ : �

(fst-subs)

Γ ⊢ Γ ⊢ A : s

Γ,A ⊢ p : Γ

(ext-subs)

Γ ⊢ σ : ∆ ∆ ⊢ A : s Γ ⊢ t : Aσ
Γ ⊢ ⟨σ, t⟩ : ∆,A

(comp-subs)

Γ ⊢ δ : Θ Θ ⊢ σ : ∆
Γ ⊢ σ δ : ∆

(conv-subs)

Γ ⊢ σ : ∆ ∆ ′ ≡βx ∆

Γ ⊢ σ : ∆

Figure .: Rules for substitutions of λσ

 . Pure Type Systems

. If Γ ⊢ FunAB : C, then there exist (s0, s1, s2) ∈ R, and Γ ⊢ A : s0, Γ.A ⊢
B : s1, and C ≡βx s2.

. If Γ ⊢ λt : C, then there exist A,B ∈ Terms, (s0, s1, s2) ∈ R, Γ ⊢ A : s0,
Γ.A ⊢ B : s1, Γ.A ⊢ t : B, and C ≡βx FunAB.

. If Γ ⊢ App t r : C, then there exist A,B ∈ Terms, Γ ⊢ t : FunAB, Γ ⊢ r : A,
and C ≡βx B ⟨id, r⟩.

Proof. See PtsInv.agda.

Lemma (Type validity). If Γ ⊢ t : A, then either A ∈ S or there exists s ∈ S
and Γ ⊢ A : s.

Proof. See InvType in PtsInv.agda.

The formal proof of the substitution lemma is easier by extending subti-
tutions to act on contexts; we refer to the Agda formalisation for those defin-
itions and the proofs of several properties. Note that ⟨id, r⟩ is well-typed
under Γ.A; given that substitution we can define ⟨id, r⟩ which can be typed as
Γ.∆ ⟨id, r⟩ ⊢ ⟨id, r⟩ : Γ.A.∆.

Lemma (Substitution lemma). Let Γ.A.∆ ⊢ and Γ ⊢ r : A. Let Γ ′ = Γ.∆ ⟨id, r⟩.

. If Γ.A.∆ ⊢ t : s, then Γ ′ ⊢ t⟨id, r⟩ : s.

. If Γ.A.∆ ⊢ B : s and Γ.A.∆ ⊢ t : B, then Γ ′ ⊢ t⟨id, r⟩ : B⟨id, r⟩.

. If Γ.A.∆ ⊢ σ : Σ, then Γ ′ ⊢ σ⟨id, r⟩ : Σ.

Proof. See PtsCtxCnv.agda.

Lemma (Context Conversion). Let Γ ≡βx Γ
′.

. Γ ′ ≡βx Γ .

. If Γ ⊢ t : A, then Γ ′ ⊢ t : A.

. If Γ ⊢ σ : ∆, then Γ ′ ⊢ σ : ∆.

Proof.

. See CtxEqSym in PtsCtxCnv.agda.

. See ctxTerm in PtsCtxCnv.agda.

. See ctxSub in PtsCtxCnv.agda.

.. Formal systems

(empty-ctx)

� ⊢e

(ext-ctx)

Γ ⊢e Γ ⊢eA : s

Γ,A⊢e
(fun-f)

Γ ⊢eA : s Γ,A⊢e B : s ′ (s, s ′, s ′′) ∈ R
Γ ⊢e FunAB : s ′′

(axiom)

(c, s) ∈ A
Γ ⊢e c : s

(fun-i)

Γ ⊢e FunAB : s ′′ Γ,A⊢e t : B
Γ ⊢e λt : FunAB

(fun-el)

Γ ⊢e t : FunAB Γ ⊢e r : A
Γ ⊢e App t r : B ⟨id, r⟩

(hyp)

Γ ⊢eA : s

Γ,A⊢e q : A p

(conv)

Γ ⊢e t : A Γ ⊢eA = B : s

Γ ⊢e t : B

(subs-tm)

∆⊢eA : s Γ ⊢e σ : ∆ ∆⊢e t : A
Γ ⊢e t σ : Aσ

(subs-sort)

Γ ⊢e σ : ∆ ∆⊢eA : s

Γ ⊢eAσ : s

Figure .: Typing rules for contexts and terms of λσ=

PTSs with typed equality (λσ=)

In λσ= equality is axiomatised as in Martin-Löf type theory, i.e. by a system of
axioms typeable under some context. To distinguish judgements of λσ from
those of λσ=, we have a distinct turnstile (⊢e) for the latter. The typing rules are
presented in Figs. . and .; axioms are shown in Figs. ., ., and ..

For λσ= we need to introduce an additional form of judgements, that of
conversion between contexts. It is enough to have reflexivity for the empty
context (we skip that rule) and the following one for extended contexts:

(ext-eq-ctx)

⊢e Γ = Γ ′ Γ ⊢eA : s Γ ′ ⊢e B : s Γ ⊢eA = B : s

⊢e Γ.A = Γ ′.B

The notion of normal forms (and neutrals) is only important for λσ=, be-
cause it is used in the model construction of Sec. .:

Ne ∋ k ::= q | q pi+1 | App k v

Nf ∋ v, V,W ::= s | FunV W | λv | k .

Properties of λσ= We have proved all the analogous results of λσ for λσ=. For
proving inversion of typing, we introduce some predicates.

Definition .

Γ ⊢e t ≈ t ′ This predicate says that t and t ′ can be proved equal with typed
equality, but by changing the types in transitivity. It is axiomatised by
the following clauses:

 . Pure Type Systems

(id-subs)

Γ ⊢e id : Γ

(fst-subs)

Γ ⊢e Γ ⊢eA : s

Γ,A⊢e p : Γ

(empty-subs)

Γ ⊢e⟨⟩ : �

(ext-subs)

Γ ⊢e σ : ∆ ∆⊢eA : s Γ ⊢e t : Aσ
Γ ⊢e⟨σ, t⟩ : ∆,A

(comp-subs)

Γ ⊢e δ : Θ Θ⊢e σ : ∆
Γ ⊢e σ δ : ∆

(conv-subs)

Γ ⊢ σ : ∆ ⊢e ∆ ′ = ∆

Γ ⊢ σ : ∆

Figure .: Typing rules for substitutions of λσ=

(FunAB)σ = Fun (Aσ) (B ⟨σ p, q⟩)
c σ = c

t (σ δ) = (t σ) δ

t id = t

q ⟨σ, t⟩ = t
(λt)σ = λ(t ⟨σ p, q⟩)

(App t t ′)σ = App (t σ) (t ′ σ)

App (λt) r = t ⟨id, r⟩

(σ δ)γ = σ (δ γ)

σ id = σ

idσ = σ

⟨⟩σ = ⟨⟩
p ⟨σ, t⟩ = σ
⟨σ, t⟩ δ = ⟨σ δ, t δ⟩

Figure .: Axioms for terms and substitutions

. Γ ⊢e t ≈ t.
. If Γ ⊢e t = t ′ : A, then Γ ⊢e t ≈ t ′.
. If Γ ⊢e t ≈ t ′ and Γ ⊢e t ′ = t ′′ : A, then Γ ⊢e t ≈ t ′′.

Γ ⊢e a ∼ b This predicate indicates that either a and b are the same sort or
Γ ⊢e a ≈ b.

Lemma (Inversion of typing).

. If Γ ⊢e s : C, then there exists (s, s ′) ∈ A and Γ ⊢e C ∼ s ′.

. If Γ ⊢e q : C, then there exists s ∈ S, Γ ′ ⊢e andA ∈ Terms, such that Γ ′ ⊢eA : s,
Γ = Γ.A, and Γ ⊢e C ≈ A p.

. If Γ ⊢e FunAB : C, then there exist (s0, s1, s2) ∈ R, Γ ⊢eA : s0, Γ.A⊢e B : s1,
and Γ ⊢e C ∼ s2.

. If Γ ⊢e λt : C, then there exist A,B ∈ Terms, (s0, s1, s2) ∈ R, Γ ⊢eA : s0,
Γ.A⊢e B : s1, Γ.A⊢e t : B, and Γ ⊢e C ≈ FunAB.

. If Γ ⊢e App t r : C, then there exist A,B ∈ Terms, Γ ⊢e t : FunAB, Γ ⊢e r : A,
and Γ ⊢e C ≈ B ⟨id, r⟩,

.. Formal systems

(pts-refl)

Γ ⊢e t : A
Γ ⊢e t = t : A

(pts-sym)

Γ ⊢e t = t ′ : A
Γ ⊢e t ′ = t : A

(pts-trans)

Γ ⊢e t = t ′ : A Γ ⊢e t ′ = t ′′ : A
Γ ⊢e t = t ′′ : A

(prod-eq)

Γ ⊢eA = B : s Γ,A⊢e C = D : s ′ (s, s ′, s ′′) ∈ R
Γ ⊢e FunAC = FunBD : s ′′

(lam-eq)

Γ,A⊢e t = t ′ : B Γ ⊢eA : s Γ,A⊢e B : s ′ (s, s ′, s ′′) ∈ R
Γ ⊢e λt = λt ′ : FunAB

(app-eq)

Γ ⊢e t0 = t ′0 : FunAB Γ ⊢e t1 = t ′1 : A

Γ ⊢e App t0 t1 = App t ′0 t
′
1 : B ⟨id, t1⟩

(subs-eq)

∆⊢eA : s ∆⊢e t = t ′ : A Γ ⊢e σ = σ ′ : ∆

Γ ⊢e t σ = t ′σ ′ : Aσ

(subs-eq-s)

Γ ⊢e t = t ′ : s Γ ⊢e σ = σ ′ : ∆

Γ ⊢e t σ = t ′σ ′ : s

(conv-eq)

Γ ⊢e t = t ′ : A Γ ⊢eA = B : s

Γ ⊢e t = t ′ : B

Figure .: Equality is a congruence for term

(s-refl)

Γ ⊢e σ : ∆
Γ ⊢e σ = σ : ∆

(s-sym)

Γ ⊢e σ = σ ′ : ∆

Γ ⊢e σ ′ = σ : ∆

(s-trans)

Γ ⊢e σ = σ ′ : ∆ Γ ⊢e σ ′ = σ ′′ : ∆

Γ ⊢e σ = σ ′′ : ∆

(comp-eq)

Γ ⊢e δ = δ ′ : Θ Θ⊢e σ = σ ′ : ∆

Γ ⊢e σ δ = σ ′δ ′ : ∆

(ext-eq)

∆⊢eA : s Γ ⊢e σ = σ ′ : ∆ Γ ⊢e t = t ′ : Aσ
Γ ⊢e⟨σ, t⟩ = ⟨σ ′, t ′⟩ : ∆,A

Figure .: Equality is a congruence for substitutions

 . Pure Type Systems

Proof. See EPtsGen.agda.

Using the same strategy as for λσ we proved substitution lemma for λσ=.
We do not repeat all the definitions needed for this proof.

Lemma (Substitution lemma). Let Γ.A.∆⊢e and Γ ⊢e t : A; let Γ ′ = Γ.∆ ⟨id, r⟩.

. If Γ.A.∆⊢e t : s, then Γ ′ ⊢e t⟨id, r⟩ : s.

. If Γ.A.∆⊢e B : s and Γ.A.∆⊢e t : B, then Γ ′ ⊢e t⟨id, r⟩ : B⟨id, r⟩.

. If Γ.A.∆⊢e σ : Σ, then Γ ′ ⊢e σ⟨id, r⟩ : Σ.

. If Γ.A.∆⊢e t = t ′ : s, then Γ ′ ⊢e t⟨id, r⟩ = t ′ ⟨id, r⟩ : s.

. If Γ.A.∆⊢e B : s and Γ.A.∆⊢e t = t ′ : B, then Γ ′ ⊢e t⟨id, r⟩ = t ′ ⟨id, r⟩ : B⟨id, r⟩.

. If Γ.A.∆⊢e σ = σ ′ : Σ, then Γ ′ ⊢e σ⟨id, r⟩ = σ ′ ⟨id, r⟩ : Σ.

Proof. See EPtsSubs.agda.

The only meta-theorem for λσ= that we have not yet formalised in Agda is
context conversion; we present the proof.

Lemma (Context conversion). Let Γ.A.∆⊢e J and Γ ⊢eA = B : s, then ⊢e Γ.A.∆ =
Γ.B.∆ and Γ.B.∆⊢e J.

Proof. We prove the two points simultaneously; the first, by induction on the
length of ∆; and the second, by induction on derivations. We show some cases.

. (ext-ctx): The premises are Γ.A.∆⊢e and Γ.A.∆⊢e C : s; the conclusion is
Γ.A.∆.C⊢e. By i.h. on the first premise we have Γ.B.∆⊢e and ⊢e Γ.A.∆ = Γ.B.∆.
By i.h. on the second premise, Γ.B.∆⊢e C : s. From those three facts, we
conclude Γ.A.∆.C⊢e, by (ext-ctx); and ⊢e Γ.A.∆.C = Γ.B.∆.C, by (ext-eq-ctx),
for applying this rule we deduce, by (refl), Γ.A.∆⊢e C = C : s.

. (id-subs): the premise is Γ.A.∆⊢e; by i.h. we know Γ.B.∆⊢e and ⊢e Γ.A.∆ =
Γ.B.∆. From the first, we derive Γ.B.∆⊢e id : Γ.B.∆, and by (conv-subs) we
conclude Γ.B.∆⊢e id : Γ.A.∆.

Postulating context conversion, we have formally proved type validity and
equality validity. The predicate Γ ⊢eA means that either A ∈ S or there exists
s ∈ S and Γ ⊢eA : s.

Lemma (Type validity). If Γ ⊢e t : A, then Γ ⊢eA.

Proof. See InvTy in EPtsValidity.agda.

Lemma (Equality validity). If Γ ⊢e t = t ′ : A, then Γ ⊢eA, Γ ⊢e t : A and and
Γ ⊢e t ′ : A.

Proof. See InvEqTy in EPtsValidity.agda.

.. Equivalence between λσ and λσ=

. Equivalence between λσ and λσ=

Now that we have formally introduced the two families of PTSs, we can pre-
cisely state the equivalence.

Theorem (Equivalence between λσ and λσ= []).

. Γ ⊢e t : A iff Γ ⊢ t : A.

. Γ ⊢e t = t ′ : A iff Γ ⊢ t : A, Γ ⊢ t ′ : A, and t ≡βx t
′.

This theorem was conjectured by Geuvers [] for PTSs with (η). Adams []
proved the equivalence for functional PTSs. Later, Herbelin and Siles []
extended and formalised Adams’ result to semi-full systems; Siles finally
settled in his PhD thesis [] the equivalence for every PTS. Already in
Geuvers’ thesis it is recognised that the direction from λσ to λσ= is easy; in
fact Adams proved that direction for every PTS. The key result to prove the
other implication depends on subject reduction for λσ=: if Γ ⊢e t : A and t ≡βx t

′,
then Γ ⊢e t ′ : A. In sections . and . we use the machinery of NbE to prove a
slightly weaker, but strong enough, version of that lemma for a class of PTSs.
In contrast with our semantical approach, Adams and Siles results are based
on a typed parallel reduction for PTSs with typed equality.

From λσ= to λσ The proof that any derivation in λσ= has a corresponding
derivation in λσ is relatively straightforward and can be proved for every PTS.
The formal statement of the theorem is the following. We have formally proved
it in Agda.

Theorem .

. If Γ ⊢e, then Γ ⊢.

. If ⊢e Γ = Γ ′, then Γ ≡βx Γ
′.

. If Γ ⊢e t : A, then Γ ⊢ t : A.

. If Γ ⊢e σ : ∆, then Γ ⊢ σ : ∆.

. If Γ ⊢e t = t ′ : A, then Γ ⊢ t : A, Γ ⊢ t ′ : A, and t ≡βx t
′.

. If Γ ⊢e σ = σ ′ : ∆, then Γ ⊢ σ : ∆, Γ ⊢ σ ′ : ∆, and σ ≡βx σ
′.

Proof. See EPtsToPts.agda.

. Semantics for λσ=

The model of λσ= are parameterised by the signature of the PTS. Given a
signature S = (S,A,R), let DS be the least solution for

D ≈ O⊕D×D⊕ [D→ D]⊕D× [D→ D]⊕ Var⊥ ⊕D×D⊕ S⊥ .

Besides the convention for naming elements of DS inherited from previous
chapters, we also write s ∈ D for s ∈ S. In the following we omit the subscript
S from DS.

 . Pure Type Systems

Definition (Readback function).

Rj s = s

Rj (Fun X F) = Fun (Rj X) (Rj+1 (F Var j))

Rj (Appdd
′) = App (Rj d) (Rj d

′)

Rj (lam f) = λ(Rj+1 f(Var j))

Rj (Var i) =

q if j 6 i+ 1
q pj−(i+1) if j > i+ 1

As in previous chapters, we identify in D the set of semantical neutral values
and semantical normal forms by taking the inverse image of R:

Ne =

i∈N

{d ∈ D | Ri d ∈ Ne} and Nf =

i∈N

{d ∈ D | Ri d ∈ Nf} .

Denoting types and sorts

Since our presentation of PTSs does not include (η), we can base our interpret-
ation of sorts and types as we interpreted universes and types in Chap. : one
has a universe of types and a function [_] mapping elements of that universe to
subsets of the domain. The universe of types and the function [_] were intro-
duced following the schema of inductive-recursive definitions. A key result
for the normalisation algorithm was that types itself and the interpretation of
each type were saturated, cf. Lem. and Lem. .

Let us analyse informally which elements of D should be in the subset
denoting types. By rule (axiom) we know that sorts are among the possible
types; so, S should be included in the universe types. Note also that terms typed
with a sort can also be types; which suggests to add any element of [s] to types,
for each s ∈ S. The definition of [s] ⊆ D depends both on axioms and rules of
the system: axioms tell us that if (s ′, s) ∈ A, then s ′ ∈ [s]. The set R of rules
indicates when one element of the form Fund f should be a member of [s]. As
we add Fund f to types as soon as it is in some [s], we have to define [Fund f].

Our use, in previous chapters, of the schema of inductive-recursive defini-
tions for types and [_] was justified by the existence of a well-founded order
on universes. There are PTSs for which such an order cannot exists; these are
impredicative PTSs. In particular, if we consider the type-system type-in-type
given by the signature λ⋆ = ({⋆}, {(⋆, ⋆)}, {(⋆, ⋆, ⋆)}) we would have the following
clause:

Fund f ∈ [⋆], if d ∈ [⋆] and f e ∈ [⋆] for all e ∈ [d] .

This is a typical issue of impredicative definitions: to decide if some element
belongs to [⋆] we should test a condition over all the elements in that very same
set. For concreteness one can consider Fun ⋆ f ∈ [⋆], for some f ∈ [D→ D].

We can safely use the inductive-recursive schema by restricting our atten-
tion to predicative PTSs as captured by the following definition.

Definition (Predicative PTSs). A specification S = (S,A,R) is called predicat-
ive if there is a well-founded order over the sorts, 4⊆ S2, such that:

• if (s1, s2) ∈ A, then s1 ≺ s2;

.. Semantics for λσ=

• if (s1, s2, s3) ∈ R, then s1 4 s3 and s2 4 s3.

The next definition introduces subsets of D for modelling predicative PTSs.
In order to understand it, one should think that first one defines [s] inductively
for every minimal element s ∈ S (minimal with respect to the underlying order
making the signature predicative).

Definition . Let S = (S,A,R) be a predicative signature. We define simultan-
eously T ⊆ D and [d] ⊆ D, for every d ∈ T.

Ne ⊆ T S ⊆ T

(s, s ′) ∈ A
s ∈ [s ′]

s ∈ T
[s] ⊆ T

(s, s ′, s ′′) ∈ R d ∈ [s] f e ∈ [s ′], for all e ∈ [d]

Fund f ∈ [s ′′]

d ∈ T
Ne ⊆ [d]

g e ∈ [f e], for all e ∈ [d]

lamg ∈ [Fund f]

The well-founded order over S gives us a way to reason about elements of T.
In fact, it induces a well-founded order ⊑ over [s], for every s ∈ S, and over T:

• minimal elements with respect of ⊑ are elements in Ne and minimal
elements with respect to 4,

• s ⊑ s ′ if s 4 s ′, and

• for (s, s ′, s ′′) ∈ R, then d ⊑ Fund f for each d ∈ [s] and f e ⊑ Fund f, for
all e ∈ [d].

The first result we prove using well-founded induction over T is that every
subset denoting types, that is [d] for every element d ∈ T, is saturated: let
X ⊆ D, X is called saturated if Ne ⊂ X ⊂ Nf.

Lemma . For all d ∈ T, [d] is saturated.

Proof. By well-founded induction over ⊑.

. Let d be a minimal element, then [d] = Ne.

. If d is not minimal, then either d = s or d = Fund ′ f.

a) for d = s: since S ⊆ Nf, we only consider Fund ′ f ∈ [s] arising from
some rule (s0, s1, s) ∈ R. By i.h. on s0, d ′ ∈ Nf; and by i.h. on d ′,
Ne ⊆ [d ′]; therefore f (Var i) ∈ [s1] for every Var i. By i.h. on s1,
f (Var i) ∈ Nf. Therefore Fund ′ f ∈ Nf.

b) for d = Fund ′ f: if e ∈ [Fund ′ f], then either e ∈ Ne or e = lamg.
We consider only this last case: by i.h. on d ′ we know Ne ⊆ [d ′];
therefore, for every Var i, g (Var i) ∈ [f (Var i)]. By i.h. on f (Var i)
we know g (Var i) ∈ Nf.

 . Pure Type Systems

Corollary . T is saturated: if d ∈ T, then there is some e ∈ T, such that
d ∈ [e].

Interpretation and Soundness The missing pieces of the model are the inter-
pretation of terms and the satisfaction of judgements by the model. As in
previous chapters, we introduce two functions J_Ks_ and J_Kt_.

J_Kt_ : Terms ×D→ D

JsKtd = s

JqKtd = snd d

JApp t uKtd = JtKtd · JuKtd

JλtKtd = lam (d ′ →→ JtKt(d, d ′))

Jt γKtd = JtKt(JγKsd)

JFunABKtd = Fun (JAKtd) (e →→ JBK(d, e))

J_Ks_ : Substs ×D→ D

J⟨⟩Ksd = ⊤
JidKsd = d

J(γ, t)Ksd = (JγKsd, JtKtd)

JpKsd = fst d

Jγ δKsd = JγKs(JδKsd)

Projections fst and snd are defined as in Chap. ; the evaluation operator _ · _
is, as in Chap. , defined for semantical neutrals because we do not consider
(η):

d · e =

f e if d = lam f

Appd e if d ∈ Ne

⊥ otherwise .

Remark . Notice that if d ∈ [Fun X F] and e ∈ [X], then d · e ∈ [F e].

Since the interpretation is given for pre-terms and pre-substitutions, we
can prove that the interpretation model the untyped equality.

Lemma . If t ≡βx t
′ and d ∈ D, then JtKd = Jt ′Kd.

Proof. By induction on t ≡βx t ′; note that it is enough to prove that the
interpretation models the reduction relations. We show some cases.

. (beta):

JApp (λt) t ′Kd = JλtKd · Jt ′Kd = lam (e →→ JtK(d, e)) · Jt ′Kd
= JtK(d, Jt ′Kd) = JtK(J⟨id, t ′⟩Kd) = Jt ⟨id, t ′⟩Kd

. (fun-subs):

J(FunAB)σKd = JFunABK(JσKd)
= Fun (JAK(JσKd)) (e →→ JBK(JσKd, e))
= Fun (JAK(JσKd)) (e →→ JBK(JσK(JpK(d, e)), e))
= Fun (JAK(JσKd)) (e →→ JBK(Jσ pK(d, e), JqK(d, e)))
= Fun (JAK(JσKd)) (e →→ JBK(J⟨σ p, q⟩K(d, e)))

The semantics of judgements uses the set T and the mapping [_] : T→ P(D).
If Γ ⊢ t : A, we want JAKtd ∈ T and, be that the case, JtKtd ∈ [JAKtd]. In the
following definition we state formally the validity of judgements in the model
and introduce, at the same time, the semantics of well-formed contexts.

.. Semantics for λσ=

Definition (Validity).

. a) � �;

b) ⊤ ∈ J�K.

. a) Γ,A � iff Γ � A : s;

b) If d ∈ JΓK and d ′ ∈ [JAKd], then (d, d ′) ∈ JΓ,AK.

. � Γ = Γ ′ iff d ∈ JΓK iff d ∈ JΓK ′.

. Γ � t : A iff

a) A is a top-sort, say s: Γ � and JtKd ∈ [s], for all d ∈ JΓK.

b) Γ ⊢ A : s: Γ � A : s and JtKd ∈ [JAKd], for all d ∈ JΓK.

. Γ � δ : ∆ iff Γ �, ∆ � and JδKd ∈ J∆K, for all d ∈ JΓK.

. Γ � t = t ′ : A iff Γ � t : A and JtKd = Jt ′Kd, for all d ∈ JΓK.

. Γ � δ = δ ′ : ∆ iff Γ � δ : ∆ and JδKd = Jδ ′Kd, for all d ∈ JΓK.

Theorem (Soundness of the model). If Γ ⊢e J, then Γ � J.

Proof. By induction on Γ ⊢e J; note that the last two items are proved by the
inductive hypothesis and using Lem. .

. (empty-ctx): trivial.

. (ext-ctx) Γ.A⊢e: by i.h. on Γ ⊢eA : s.

. (axiom) Γ ⊢e s ′ : s: by i.h. Γ � and by definition of the model s ∈ [s ′].

. (fun-f) Γ ⊢e FunAB : s2: by i.h. Γ �, Γ � A : s0; also by i.h. Γ.A � B : s1.
From the last two conditions we see that Fun JAKd e →→ JBK(d, e) ∈ [s2]
for any d ∈ JΓK.

. (fun-i) Γ ⊢e λt : FunAB: by i.h. Γ �, Γ � A : s0, Γ.A � B : s1, and Γ.A � t : B.
The last condition implies JtK(d, e) ∈ [JBK(d, e)] for any d ∈ JΓK and
e ∈ [JAKd]; therefore JλtKd ∈ [JFunABKd] for any d ∈ JΓK.

. (fun-el) Γ ⊢e App t r : B (id, r): by i.h. Γ � t : FunAB and Γ � r : A; therefore
for any d ∈ JΓK, JrKd ∈ [JAKd]. By Rem. , JtKd · JrKd ∈ [JBK(d, JrKd)].

. (sub-tm) Γ ⊢e t σ : Aσ: by i.h. Γ � σ : ∆. For d ∈ JΓK, then JσKd ∈ J∆K;
therefore by i.h. on ∆⊢e t : A, we have JtK(JσKd) ∈ [JAK(JσKd)].

. (sub-sort) Γ ⊢eAσ : s: as in the previous item.

. (hyp) Γ.A⊢e q : A p: (d, e) ∈ JΓ.AK if d ∈ JΓK and e ∈ [JAKd]; that is enough
to conclude, because JA pK(d, e) = JAKd and JqK(d, e) = e.

. (conv) Γ ⊢e t : B: by i.h. JtKd ∈ [JAKd] for any d ∈ JΓK; by i.h. JAKd = JBKd,
therefore JtKd ∈ [JBKd].

. (ext-subs) Γ ⊢e(σ, t) : ∆.A: for d ∈ JΓK, by i.h. JσKd ∈ JΓK and JtKd ∈
[JAσKd].

 . Pure Type Systems

. (comp-subs) Γ ⊢e σ δ : ∆: using the same reasoning as for (sub-tm).

. (fst-subs) Γ.A⊢e p : Γ : using the same reasoning as for (hyp).

By soundness we know that each typed term is interpreted as an element
of the denotation of the type; moreover we know that judgmentally equal
elements have the same denotation. As a corollary we know that they have the
same normal form.

Corollary (Completeness of normalisation). If Γ ⊢ t = t ′ : A and d ∈ JΓK,
then Rj (JtKd) ≡ Rj (Jt ′Kd), for any j ∈ N.

. Correctness of Nbe

In this section we prove that Fun is injective; i.e., if Γ ⊢e FunAB = FunA ′B ′ : C,
then Γ ⊢eA = A ′ : s ′ and Γ,A⊢e B = B ′ : s ′′. As in previous chapters we use
logical relations to show that each typeable term is judgmentally equal to its
normal form as computed by our proposed nbe function. Remember that for
predicative PTSs we have a well-founded order on T; this order is used to
define the logical relations and to prove all their results.

The logical relations are slightly different than those for Martin-Löf type
theory: for PTSs there is only one kind of logical relations relating terms
typable with A under context Γ with elements of [X] with X ∈ T:

Γ ⊢e _ : A ∼ _ ∈ [X] ⊆ {t | Γ ⊢ t : A}× [X] .

Definition (Logical Relations). Let X ∈ T and Γ ⊢eA : s.

. X ∈ Ne: Γ ⊢e t : A ∼ d ′ ∈ [X] iff for all weakening ∆ 6i Γ :

a) ∆⊢eA pi = R|∆| X : s

b) ∆⊢e t pi = R|∆| d
′ : A pi

. X = s ∈ S: Γ ⊢e t : A ∼ d ∈ [X] iff

a) if d ∈ Ne ∪ S: ∆⊢e t pi = R|∆| d : s

b) if d = Fun X ′ F: there exists (s0, s1, s) ∈ R and

i. Γ ⊢e t = FunA ′ B : s

ii. Γ ⊢eA ′ : s0 ∼ X ′ ∈ [s0], and
iii. ∆⊢e B ⟨pi, r⟩ : s1 ∼ F e ∈ [s1], for all ∆⊢e r : A ′ pi ∼ e ∈ [X ′].

. X = FunX ′ F: Γ ⊢e t : A ∼ d ∈ [Fun X ′ F] if and only if

a) there exists (s0, s1, s) ∈ R and Γ ⊢eA = FunA ′ B : s, Γ ⊢eA ′ : s0 ∼ X ′ ∈
[s0],

b) for all ∆ 6i Γ and ∆⊢e r : A ′ pi ∼ d ′ ∈ [X], ∆⊢e App (t pi) r : B (pi, r) ∼
d · d ′ ∈ [F d ′];

c) i. if d = lam f, then Γ ⊢ t = λ t ′ : A,
ii. if d ∈ Ne, then ∆ ⊢ (t pi) = R|∆| d : A pi.

.. Correctness of Nbe

The following lemma is proved analogously as we did in previous chapters:
we use (sym) and (trans) on the main conditions of the definition of the logical
relation. We skip its proofs.

Lemma (Preservation of the logical relation by judgemental equality). If
Γ ⊢e t : A ∼ d ∈ [X] and Γ ⊢e t = t ′ : A, then Γ ⊢e t ′ : A ∼ d ∈ [X]. Moreover, if
Γ ⊢e t : A ∼ d ∈ [X] and Γ ⊢eA = B : s, then Γ ⊢e t : B ∼ d ∈ [X].

Lemma (Monotonicity of logical relations). If Γ ⊢e t : A ∼ d ∈ [X] and ∆ 6i Γ ,
then ∆⊢e t pi : A pi ∼ d ∈ [X].

Lemma (Derivability of equality of reified elements). Let Γ ⊢e t : A ∼ d ∈ [X]
and ∆ 6i Γ , then ∆⊢e t pi = R|∆| d : R|∆| X. Conversely, if Γ ⊢eA : s ∼ X ∈ [s],
k ∈ Ne and ∆⊢e t pi = R|∆| k : A pi, for all ∆ 6i Γ , then Γ ⊢e t : A ∼ k ∈ [X].

Proof. (By induction on X ∈ T.)

. X ∈ Ne: both parts are obtained from the hypothesis, because those are
the condition to be logically related.

. X = s ∈ S: by induction on d ∈ [s]: The first part for d ∈ Ne and d ∈ S
are obtained directly by definition. Moreover the second part is trivial,
because the hypothesis is the main condition in the definition of the
logical relation.

We show only the first part for d = FunX ′ F: by i.h. on Γ ⊢eA : s0 ∼ X ′ ∈
[s0] we have ∆⊢eA pi = R|∆| X

′ : s0. By i.h. on ∆⊢e B (pi, r) : s1 ∼ F e ∈ [s1].
On the other hand we have ∆ ′ ⊢e q pj = R|∆| (Var |Γ |) : A pj, for all ∆ ′ 6j

Γ.A, so by i.h. on the second part, we know Γ.A⊢e q : A p ∼ Var |Γ | ∈ [X ′].
From which we conclude Γ.A⊢e B (p, q) = R|∆| (F (Var |Γ |)) : s1. Using
(prod-eq) we conclude the equality.

. X = FunX ′ F: For the first part, we only show the case when d = lam f.

a) If d = lam f: by definition of the logical relation Γ ⊢e t = λt ′ : A. As
was shown in the previous point we have Γ.A ′ ⊢e q : A ′ p ∼ Var |Γ | ∈
[X ′]; by definition of the logical relation and Lem. we know
Γ.A ′ ⊢e App ((λt ′) p) q : B (p, q) ∼ lam f · (Var |Γ |) ∈ [F (Var |Γ |)]. By
Lem. and by definition of application Γ.A ′ ⊢e t ′ : B ∼ f (Var |Γ |) ∈
[F (Var |Γ |)]; by i.h. Γ.A ′ ⊢e t ′ = R|Γ |+1 (f (Var |Γ |)) : B. By (cong-abs)
Γ ⊢e λt ′ = λ(R|Γ |+1 (f (Var |Γ |))) : FunA

′ B; and by definition of read-
back Γ ⊢e λt ′ = R|Γ | (lam f) : FunA

′ B.

b) For the second point we only need to prove ∆⊢e App t r : B (pi, r) ∼
k · d ′ ∈ [F d ′], for any ∆ 6i Γ and ∆⊢e r : A ′ pi ∼ d ′ ∈ [X ′]. By
Lem. , d ′ ∈ Nf, therefore k · d ′ = Appkd ′ ∈ Ne. We prove that by
i.h. on the second part. By i.h. we know ∆ ′ ⊢e r pj = R|∆ ′| d

′ : A ′ pi+j,
for any ∆ ′ 6j ∆ and also, from the main hypothesis and (conv-eq),
∆ ′ ⊢e t pi+j = R|∆ ′| k : Fun (A

′ pi+j) (B (p(i+j)+1, q)), therefore we can
use (app-cong) to conclude

∆ ′ ⊢e App (t pi+j) (r pj) = App (R|∆ ′| k) (R|∆ ′| d
′) : B (pi+j, r pj) .

We now introduce logical relations between substitutions and environments
modelling contexts. As in previous chapters, these relations are defined by
recursion on the codomain of substitutions.

 . Pure Type Systems

Definition (Logical relation for substitutions). If Γ ⊢e and ∆⊢e, we define a
logical relation Γ ⊢e _ : ∆ ∼ _ ∈ J∆K ⊆ {σ | Γ ⊢e σ : ∆}× {d | d ∈ J∆K}.

. Γ ⊢e σ : � ∼ d ∈ J�K.

. Γ ⊢e σ : ∆.A ∼ (d, d ′) ∈ J∆.AK iff Γ ⊢e pσ : ∆ ∼ d ∈ J∆K and Γ ⊢e qσ : A (pσ) ∼
d ′ ∈ [JAKd].

By induction on the codomain of substitutions we can prove easily preserva-
tion of the relations by judgemental equality of substitutions and weakening.

Lemma . Let Γ ⊢e σ : ∆ ∼ d ∈ J∆K.

. If Γ ⊢e σ = σ ′ : ∆, then Γ ⊢e σ ′ : ∆ ∼ d ∈ J∆K.

. If Θ 6i Γ , then Θ⊢e σ pi : ∆ ∼ d ∈ J∆K.

Proof. (By induction on ∆⊢e.)

. The first point is trivial for �. For ∆.A we can apply the i.h. on Γ ⊢e pσ =
pσ ′ : ∆ and Γ ⊢e pσ : ∆ ∼ d ∈ J∆K; the other part is obtained by using
Lem. on Γ ⊢e qσ = qσ ′ : A (p δ) and Γ ⊢e q δ : A (p δ) ∼ d ′ ∈ [JAKd].

. The second part is also trivial for �. The second part for ∆.A is obtained
by using the i.h. and Lem. .

At this point we can define an environment logically related with the
identity substitution.

Definition (Canonical environment). By induction on Γ ⊢e we define an
environment ρΓ which models Γ and is logically related with the identity
substitution id.

. For � by (empty-ctx): ρ� = ⊤.

. For Γ.A by (ext-ctx): let n = |Γ |; then by i.h. ρΓ ∈ JΓK and Γ ⊢e id : Γ ∼

ρΓ ∈ JΓK; by both parts of Lem. Γ.A⊢e p id : Γ ∼ ρΓ ∈ JΓK. On the other
hand ∆⊢e q pi = R|∆| (Var n) : A pi, for all ∆ 6i Γ.A; so, by Lem. , we
have Γ.A⊢e q : A p ∼ Var n ∈ [JAKρΓ] and by Lem. Γ.A⊢e q id : A (p id) ∼
Var n ∈ [JAKρΓ]. So, we conclude Γ.A⊢e id : Γ.A ∼ (ρΓ ,Var n) ∈ JΓ.AK.

Note that the formal statement of the fundamental theorem should have
changed the order of the quantification between logically related substitutions
and derivations.

Theorem (Fundamental theorem of logical relations).

. If s ∈ S, s is a top-sort, Γ ⊢e t : s, and ∆⊢e δ : Γ ∼ d ∈ JΓK, then ∆⊢e t δ : s ∼
JtKd ∈ [s].

. If Γ ⊢e t : A and ∆⊢e δ : Γ ∼ d ∈ JΓK, then ∆⊢e t δ : Aδ ∼ JtKd ∈ [JAKd],
providing A is not a top-sort.

. If Γ ⊢e γ : Θ and ∆⊢e δ : Γ ∼ d ∈ JΓK, then ∆⊢e γ δ : Θ ∼ JγKd ∈ JΘK.

Proof. (By induction on typing derivations.)

.. Correctness of Nbe

. The first two points are shown by the following cases.

a) Γ ⊢e s ′ : s by (axiom): we have JsKd = s, since (s, s ′) ∈ A we also have
s ∈ [s ′], and the reification of s its s itself. On the other hand we can
use (sub-sort) to conclude ∆ ′ ⊢e(s δ) pi = s : s ′, for any ∆ ′ 6i ∆.

b) Γ ⊢e FunAB : s3 by (fun-f): first we need to prove that there exists
A ′, B ′ ∈ Terms such that ∆⊢e FunABδ = FunA ′ B ′ : s3; we get this
by (fun-sub): A ′ = Aδ and B ′ = B (δ p, q). The second point to
prove is ∆⊢eAδ : s1 ∼ JAKd ∈ [s1], is obtained by i.h. on Γ ⊢eA : s1.
Finally, let ∆ ′ ⊢e r : (Aδ) pi ∼ e ∈ [JAKd]; then, by definition of logical
relations for substitutions, ∆ ′ ⊢e(δ pi, r) : Γ.A ∼ (d, e) ∈ JΓ.AK. By
i.h. on Γ.A⊢e B : s2, we have ∆ ′ ⊢e B (δ pi, r) : s2 ∼ JBK(d, e) ∈ [s2]; by
Lem. we conclude ∆ ′ ⊢e B (δ p, q) (pi, r) : s2 ∼ JBK(d, e) ∈ [s2].

c) Γ ⊢e λt : FunAB by (fun-i): The point (c)i is easily obtained by
using (abs-sub). The main point is proved in a similar way as
we proved the second condition in the previous rule. First, we
note App λ(t (δ p, q)) pi r = t (δ pi, r) by applying successively the
following rules (app-cong), (comp-subs), (beta), (ass-subs), (dist-subs),
(fst-subs), (snd-subs). Now let ∆ ′ 6i ∆ and ∆ ′ ⊢e r : (Aδ) pi ∼ e ∈
[JAKd]; so by i.h. on Γ.A⊢e t : B we know ∆ ′ ⊢e t (δ pi, r) : B (pi, r) ∼

JtK(d, e) ∈ [(JBKd) e], where JλtKd · e = JtK(d, e).

d) Γ.A⊢e q : A q by (hyp): by inversion on the hypothesis, ∆⊢e δ : Γ ∼ d ∈
JΓK, we know δ = (δ ′, t) and d = (d ′, e); since q (δ ′, t) = t and
JqK(d ′, e) = e; the only point to prove ∆⊢e t : Aδ ′ ∼ e ∈ [JAKd ′]
comes again from the hypothesis.

e) Γ ⊢e t σ : Aσ by (subs-tm): this is easily seen to hold by i.h. on both
premises.

f) Γ ⊢eAσ : s by (subs-s): as in the previous point by i.h.

g) Γ ⊢e t : B by (conv): we use the i.h. and Lem. .

. For substitutions:

a) Γ ⊢e⟨⟩ : � by (empty-subs): since J⟨⟩Kd = ⊤ and ⊤ ∈ J�K, then by defini-
tion of logical relations ∆⊢e⟨⟩ δ : � ∼ ⊤ ∈ J�K.

b) Γ ⊢e id : Γ by (id-subs): by using Lem. on the main hypothesis and
Γ ⊢e id δ = δ : ∆.

c) Γ ⊢e(σ, t) : Θ.A by (ext-subs): we apply the i.h. on both premises,
Γ ⊢e σ : Θ and Γ ⊢e t : Aσ, to get, respectively, ∆⊢e σ δ : Θ ∼ JσKd ∈
JΘK and ∆⊢e t δ : (Aσ) δ ∼ JtKd ∈ [JAσKd]. By using Lem. and
Lem. on them we conclude ∆⊢e p (σ δ, t σ) : Θ ∼ JσKd ∈ JΘK and
∆⊢e q (σ δ, t σ) : A (σ δ) ∼ JtKd ∈ [JAσKd].

d) Γ ⊢e σγ : Θ by (comp-subs): by applying the i.h. twice: first on Γ ⊢e γ : Σ
with the main hypothesis to get ∆⊢e δ γ : Σ ∼ JγKd ∈ JΣK; and
then with that substitution we can apply the i.h. on Σ⊢e σ : Θ to
get ∆⊢e σ (γ δ) : Θ ∼ JσK(JγKd) ∈ JΘK.

e) Γ.A⊢e p : Γ by (fst-subs): by definition on logical relations d = (e, e ′)
and ∆⊢e p δ : Γ ∼ d ∈ JΓK.

 . Pure Type Systems

Given a derivation Γ ⊢e t : A, we can instantiate the fundamental theorem of
logical relations with the identity substitution and the canonical environment
defined in Def. ; so we obtain Γ ⊢e t id : A id ∼ JtKρΓ ∈ [JAKρΓ]. By Lem. , we
conclude Γ ⊢e t id = R|Γ | (JtKρΓ) : A id; by using (sym), (trans), and (cong-eq) we
conclude Γ ⊢e t = R|Γ | (JtKρΓ) : A. As in previous chapters, this result leads us to
the normalisation function.

Definition (Normalisation function).

nbeΓ (t) = R|Γ | (JtKρΓ)

Theorem (Correctness of NbE). If Γ ⊢e t : A, then Γ ⊢e t : A ∼ JtKρΓ ∈ [JAKρΓ]
and Γ ⊢e t = nbeΓ (t) : A.

Proof. By Thm. , Γ ⊢e t id : A id ∼ JtKρΓ ∈ [JAKρΓ] and by Lem. , Γ ⊢e t : A ∼

JtKρΓ ∈ [JAKρΓ]

We deduce injectivity of Fun by inverting the equality judgement and using
the fundamental theorem of logical relations and the preservation of the logical
relations by judgemental equality.

Theorem (Injectivity of Fun). If Γ ⊢e FunAB = FunA ′ B ′ : C, then Γ ⊢eA =
A ′ : s and Γ.A⊢e B = B ′ : s ′.

Proof. If Γ ⊢e FunAB = FunA ′ B ′ : s, by inversion of equality and Thm.
Γ ⊢e FunAB : s ∼ JFunABKρΓ ∈ [JsKρΓ]. By inversion of the logical relation we
know Γ ⊢eA : s0 ∼ JAKρΓ ∈ [Js0KρΓ] and Γ.A⊢e B : s1 ∼ JBKρΓ.A ∈ [Js1KρΓ.A]. By
Lem. we also know Γ ⊢e FunA ′ B ′ : s ∼ JFunABKρΓ ∈ [s], and by inversion
we also know Γ ⊢eA ′ : s0 ∼ JAKρΓ ∈ [s0] and Γ.A⊢e B : s1 ∼ JBKρΓ.A ∈ [s1]. By
Lem. on the corresponding related elements we conclude, by rules (sym)
and (trans), Γ ⊢eA = A ′ : s0 and Γ.A⊢e B = B ′ : s1.

. From λσ to λσ=

In this last section we prove subject reduction for λσ= using correctness of
NbE; thus we can complete the equivalence proof between λσ and λσ=.

Lemma .

. If Γ ⊢e t : A and t ≡βx t
′, then Γ ⊢e t : A ∼ Jt ′KρΓ ∈ [JAKρΓ].

. If Γ ⊢e σ : ∆ and σ ≡βx σ
′, then Γ ⊢e σ : ∆ ∼ Jσ ′KρΓ ∈ J∆K.

Proof. By Thm. on the first hypothesis Γ ⊢e t : A ∼ JtKρΓ ∈ [JAKρΓ] and by
Lem. , JtKρΓ = Jt ′KρΓ , therefore Γ ⊢e t : A ∼ Jt ′KρΓ ∈ [JAKρΓ].

Adams obtained, as a result of his proof method for the equivalence of
PTSs, subject reduction for PTSs with typed equality: If Γ ⊢e t : A and t ≡βx t

′,
then Γ ⊢e t = t ′ : A. We can prove a weaker version of subject reduction which
is enough to complete the equivalence proof. Note that we equate t with the
normal form of t ′, instead of t ′ itself.

Corollary (Subject reduction for λσ=). If Γ ⊢e t : A and t ≡βx t
′, then Γ ⊢e t =

nbeΓ (t ′) : A.

.. From λσ to λσ=

Finally we can prove the second part of Thm. ; the formal proof of the
next theorem assumes as a postulate the last corollary. Since that corollary
depends on the results of the previous two sections, the next theorem only
applies to predicative PTSs.

Theorem .

. If Γ ⊢, then Γ ⊢e.

. If Γ ⊢ t : A, then Γ ⊢e t : A.

. If Γ ⊢ σ : ∆, then Γ ⊢e σ : ∆.

Proof. See PtsToEpts.agda. We explain the case for (conv): the premises are
Γ ⊢ t : A, Γ ⊢ B : s and A ≡βx B. By i.h. on the first premise, we know Γ ⊢e t : A,
and by i.h. on the second premise, Γ ⊢e B : s. By type validity on Γ ⊢e t : A, there
is a sort s ′, such that Γ ⊢eA : s ′. By Thm. Γ ⊢eA = nbe(A) : s ′; therefore
by (conv), Γ ⊢e t : nbe(A). From Γ ⊢e B : s and A ≡βx B, by Cor. we know
Γ ⊢e B = nbeΓ (A) : s. Now we can apply (conv) again to get Γ ⊢e t : B.

Corollary . If Γ ⊢ t : A, Γ ⊢ t ′ : A, and t ≡βx t
′, then Γ ⊢e t = t ′ : A.

Proof. By Thm. we have Γ ⊢e t : A and Γ ⊢e t ′ : A. By Cor. , we know Γ ⊢e t =
nbeΓ (t ′) : A; and, by Thm. Γ ⊢e t ′ = nbeΓ (t ′) : A. We conclude by (sym) and
(trans).

Conclusion

6In this last chapter I would like first to show how NbE can be used to add
axioms like commutativity for some operators. In the second section I mention
some further considerations that have not been addressed in the thesis and
possible future work.

. Commutativity in Martin-Löf type theory

Introduction

In Chap. we have used NbE to define a type-checker for MLTT extended with
singleton types and also proof-irrelevant types. In this section, we adapt the
NbE algorithm for a type axiomatising an abelian monoid. It is interesting to
consider this type because, as we explained in the introduction ., one cannot
normalise terms by orienting the equality axioms.

From a practical point of view adding commutativity can alleviate the bur-
den in the formalisation of proofs. We can illustrate this point by considering
the following basic lemma of abelian monoids.

Lemma . LetM = ⟨M,+, 0⟩ be an (additive) abelian monoid. Let a, b, x ∈M
be such that a+ x = 0 and b+ x = 0, then a = b.

Proof. a = a+ 0 = a+ (b+ x) = a+ (x+ b) = (a+ x) + b = 0+ b = b

To state and prove that lemma in type theory we first need to postulate
a type representing (intensional) equality with one constructor for reflexiv-
ity and also transitivity. We then postulate the type for the monoid and the
addition operation, the null element, and the properties of an abelian mon-
oid (associativity, commutativity, and congruence of addition with respect
to intensional equality). Then we can write the same equational reasoning
as in the informal proof. In contrast, if we have the monoid and its axioms
internalised in the system, we only need to postulate intensional equality (with
transitivity) and congruence of addition. But instead of the whole proof we
can just write: a = a + (b + x) = b . All the other steps are dealt by the
normalisation algorithm.

In the next sections we consider the extension of the core of the type theory
of Sec. ., that is a universe of small types and dependent products. We skip
the rules for the type-checking algorithm for the new type as they introduce no
difficulty; the contribution of this section is the decision procedure for equality.

Syntax

We add a type for an abelian monoid with no other constant than the null
element.

 . Conclusion

(mon-type)

Γ ⊢
Γ ⊢ M

(mon-u-i)

Γ ⊢
Γ ⊢ M : U

(mon-ztm)

Γ ⊢
Γ ⊢ 0 : M

(mon-plus)

Γ ⊢ t : M Γ ⊢ t ′ : M
Γ ⊢ t+ t ′ : M

Axioms The axioms on the left column are those corresponding to the resolu-
tion of substitution; in the right column we list the equational theory for the
abelian monoid.

Mγ = M t+ 0 = t

0 γ = 0 s+ t = t+ s

(t+ t ′)γ = (t γ) + (t ′ γ) (r+ s) + t = r+ (s+ t)

Remark (Inversion).

. if Γ ⊢ 0 : A, then Γ ⊢ A = M; and

. if Γ ⊢ s+ t : A, then Γ ⊢ A = M, Γ ⊢ s : M, and Γ ⊢ t : M.

Remember that our decision procedure for equality consisted on normal-
ising terms and comparing syntactically equivalence of normal forms. It is
clear that we need to extend the set of normal forms of Chap. to include
the new constructors concerning the monoid. To deal with associativity, sums
are right-leaning; this accounts for the addition of a new non-terminal to the
grammar.

Definition (Normal forms).

Lhs ∋ l ::= q | q pi+1 | App l v

Ne ∋ k ::= l | l+ k

Nf ∋ v, V,W ::= k | U | M | 0 | λv | FunV W

Note that two normal forms generated by this grammar can be syntactically
different, although judgementally equal. For example, q p+q and q+q p, say in
the context Γ =M.M. Instead of complicating the definition of normal forms,
we will compare for syntactical equivalence terms which are in canonical form.
This canonical forms will be based on an order between constructors.

Definition (Order between normal forms). We define a total order on the
terminals of the grammar: q < q p1 < . . . < q pi < q pi+1 < . . . < App < + <
U < M < 0 < λ < Fun .

The order on normal forms is the induced lexicographic order using the
order on terminals. It is clear that a sum in normal form has the following
shape: l0 + (l1 + (. . . + ln) . . .). Such a sum is said to be in canonical form if
lighter terms are to the left: i 6 j, implies li 6 lj. In general, for v ∈ Nf, v is in
canonical form if every sum occurring in v is in canonical form.

The following functions rearrange operands in a sum, by flattening them
and ordering them by the order between terms.

Definition . Let k⃗ be a tuple of neutral terms. Let _ ◃ _ be the consing
operation for tuples: l ◃ ⟨k0, . . . , kn−1⟩ = ⟨l, k0, . . . , kn−1⟩.

.. Commutativity in Martin-Löf type theory

Merging of tuples

⟨⟩ ∗ k⃗ = k⃗

k⃗ ∗ ⟨⟩ = k⃗

⟨l1, . . . , ln⟩ ∗ ⟨l ′1, . . . , l ′m⟩ =

l1 ◃ (⟨l2, . . . , ln⟩ ∗ ⟨l ′1, l ′2, . . . , l ′m⟩) if l1 6 l ′1
l ′1 ◃ (⟨l1, l2, . . . , ln⟩ ∗ ⟨l ′2, . . . , l ′m⟩) otherwise

Flattening of neutrals

flat k =

⟨l⟩ if k ≡ l
⟨l⟩ ∗ flat k ′ if k ≡ l+ k ′

Un-flattening

unflat l⃗ =

l0 if l⃗ = ⟨l0⟩
l0 + unflat ⟨l1, . . . , ln⟩ if l⃗ = ⟨l0, l1, . . . , ln⟩

To turn a normal form in canonical normal form v, we simply canonicalise
all the sums occurring in v.

Definition (Canonical transformation).

can(q) = q

can(q pi) = q pi

can(App l v) = App can(l) can(v)

can(l+ k) = unflat (⟨can(l)⟩ ∗ flat (can(k)))

can(U) = U

can(M) = M

can(λv) = λ can(v)

can(FunV W) = Fun can(V) can(W)

Remark . Let Γ ⊢ v : A. Since the only change we do with can(_) is rearran-
ging terms in sums, it is clear that Γ ⊢ v = can(v) : A (and the same for types).
From this we conclude that if Γ ⊢ v : A, Γ ⊢ v ′ : A, and can(v) ≡ can(v ′), then
Γ ⊢ v = v ′ : A.

NbE: correctness and completeness

We extend the semantic domain to interpret the new terms: D = . . .⊕ {M}⊥ ⊕
{0}⊥ ⊕ D∗

⊥; an element d ∈ D∗ is a finite tuple written ⟨d0, . . . , dn−1⟩ ∈ D.
Accordingly we add new clauses for the readback function:

Ri M = M Ri 0 = 0

Ri ⟨d0, . . . , dn⟩ =

Ri d0 if n = 0

Ri d0 + Ri ⟨d1, . . . , dn⟩ otherwise

Note that we keep the readback function simple and the generated sums
are right-leaning (if the tuple is flat). We need to adapt the definition of the
PERs for semantical neutral values and normal forms, to take into account the
symmetry of addition.

 . Conclusion

Definition (PER for neutrals, and normal forms).

• d = d ′ ∈ Ne iff Ri d and Ri d
′ are defined, and can(Ri d) ≡Ne can(Ri d

′),
for all i ∈ N;

• d = d ′ ∈ Nf iff Ri d and Ri d
′ are defined, and can(Ri d) ≡Nf can(Ri d

′),
for all i ∈ N.

We add a new PER over D to interpret the type M; accordingly we also add
a new clause to the universes U.

Definition (Adapting the PER model).

PER for the monoid

Ne ⊆ M and 0 = 0 ∈ M .

New clause for U
M = M ∈ U and [M] = M .

η-expansion and normalisation

↑M k = k ↓M d = d ⇓M = M .

Remark . It is easy to see that M is saturated; therefore Lem. is valid in
the extended model.

To interpret the addition operation, we build tuples but removing occur-
rences of 0. Note that if the two arguments are flat tuples, the result is also a
flat tuple.

Definition .

0u d = d du 0 = d

⟨d0, . . . , dn−1⟩u ⟨d ′
0, . . . , d

′
m−1⟩ = ⟨d0, . . . , dn−1, d

′
0, . . . , d

′
m−1⟩

⟨d0, . . . , dn−1⟩u d ′ = ⟨d0, . . . , dn−1, d
′⟩

du ⟨d ′
0, . . . , d

′
m−1⟩ = ⟨d, d ′

0, . . . , d
′
m−1⟩

du d ′ = ⟨d, d ′⟩

Definition (Semantic equations).

JMKd = M J0Kd = 0 Jt+ t ′Kd = JtKdu Jt ′Kd

The following lemma is the key to prove soundness.

Lemma . The operator _u _ is associative and commutative with respect to
the PER M. Let c = c ′, d = d ′, e = e ′ ∈ M,

. 0u d = d ′ ∈ M and du 0 = d ′ ∈ M.

. du e = e ′ u d ′ ∈ M,

. cu (du e) = (c ′ u d ′)u e ′ ∈ M, and

Proof.

.. Commutativity in Martin-Löf type theory

. By definition.

. The only interesting case is when both d = d ′ ∈ Ne and e = e ′ ∈ Ne;
note also that it is enough to consider flat tuples: d = ⟨d0, . . . , dn⟩,
d ′ = ⟨d ′

0, . . . , d
′
n⟩, e = ⟨e0, . . . , em⟩, and e ′ = ⟨e ′0, . . . , e ′m⟩. In that

case for any i ∈ N and every element k of any of the tuples, Ri k
is defined and is a neutral element. Therefore can(Ri d0 + (Ri d1 +
(. . . (Ri em−1 + Ri em) . . .))) has the same summands than can(Ri e

′
0 +

(Ri e
′
1 + (. . . (Ri d

′
n−1 + Ri d

′
n) . . .))) and in the same order.

. By an argument analogous to that of the previous point.

Remark . The model is sound, cf. Thm. . This is easy after proving Lem. .
By Rem. , if Γ ⊢ t = t ′ : M, then can((Ri (JtKd))) ≡ can((Ri (Jt ′Kd))), for any
d ∈ JΓK and i ∈ N.

Logical relations The definition of logical relation for the monoid is analogous
to the definition of logical relations for data types in Def..
Definition (Logical relation for monoid).

. Γ ⊢ A ∼ M, if and only if Γ ⊢ A = M.

. Γ ⊢ t : A ∼ d ∈ [M], if and only if Γ ⊢ A ∼ M, and for all ∆ 6i Γ ,
∆ ⊢ t pi = R|∆| d : A pi.

All the technical lemmata corresponding to logical relations are easily
proved for the new clauses. We recall only the most important results. The
first one is that if a syntactical term is related with an element on some PER,
then the term is judgementally equal to the reification of the semantical value.
Note that for the monoid this lemma is trivial to prove.

Lemma (Derivability of equality of reified elements). Let Γ ⊢ A ∼ X ∈ T,
and Γ ⊢ t : A ∼ d ∈ [X], then Γ ⊢ t = R|Γ | (↓A d) : A.

The following lemma is useful to prove the fundamental theorem.

Lemma . If Γ ⊢ t : A ∼ d ∈ M and Γ ⊢ t ′ : A ∼ d ′ ∈ M, then Γ ⊢ t + t ′ : A ∼

du d ′ ∈ M.

Proof. By induction on d, d ′ ∈ M. If d = 0, then we have Γ ⊢ t + t ′ = t ′ : A
and du d ′ = d ′; therefore by Lem. Γ ⊢ t+ t ′ : A ∼ du d ′ ∈ M. The case for
d ′ = 0 is analogous. If d, d ′ ∈ Ne, then by Lem. ∆ ⊢ t pi = R|∆| d : A pi and
∆ ⊢ t ′ pi = R|∆| d

′ : A pi; therefore, by first using (conv) to type both equalities
with M, then using congruence of addition, and finally (conv) again to type the
additions with the original typeA pi, we get ∆ ⊢ (t+t ′) pi = R|∆| (dud ′) : A pi.
That is the condition for Γ ⊢ t+ t ′ : A ∼ du d ′ ∈ M.

Remember that the fundamental theorem of logical relations states that
every term is logically related with its denotation. We recast it here only for
the monoid.

Theorem . Let Γ ⊢ δ : ∆ ∼ d ∈ J∆K, then if ∆ ⊢ t : M, then Γ ⊢ t δ : M δ ∼ JtKd ∈
M.

 . Conclusion

Proof. This theorem is proved by induction on derivations; we show the case
for ∆ ⊢ t+ t ′ : M, when the last rule used was (plus-tm). Let Γ ⊢ δ : ∆ ∼ d ∈ J∆K.
By i.h. we know Γ ⊢ t δ : M δ ∼ JtKd ∈ M and Γ ⊢ t ′ δ : M δ ∼ Jt ′Kd ∈ M. By
Lem. , Γ ⊢ t δ+ t ′ δ : M δ ∼ JtKdu Jt ′Kd ∈ M. By definition of the semantics
of addition and by Lem. we have Γ ⊢ (t+ t ′) δ : M δ ∼ Jt+ t ′Kd ∈ M.

Note that as a corollary of Lem. and Thm. with the canonical envir-
onment introduced in Def. , we have correctness of normalisation.

Corollary . If Γ ⊢ t : A, then Γ ⊢ t = R|Γ | (↓JAKρΓ
(JtKρΓ)) : A.

We change the definition of the normalisation function in order to get
canonical normal forms; the definition of the canonical environment remains
as in Def. .

Definition . Let Γ ⊢ A and Γ ⊢ t : A.

nbeΓ (A) = can(R|Γ | (⇓ JAKρΓ))

nbeAΓ (t) = can(R|Γ | (↓JAKρΓ
JtKρΓ))

The normalised term can still be proved equal to its canonical normal form
by virtue of Rem. .

Corollary (Correctness of NbE). If Γ ⊢ t : A, then Γ ⊢ t = nbeAΓ (t) : A.

. Further work

Correctness of Haskell implementation of NbE The correctness of the implement-
ation of the type-checking algorithm for Martin-Löf type theory presented in
Chap. depends on having a proof showing that the Haskell implementation
of NbE corresponds to the mathematical function for which we proved com-
pleteness and soundness. For that reason an implementation of a type-checker
using the method suggested in Chap. would be more trustworthy if one has
a proof of the computational correctness of the Haskell program. I know of
two papers that can be used to guide such a proof: Filinski and Rhode []
proved a similar result for untyped NbE and its implementation in an ML-like
language; Dybjer and Kuperberg [] also proved the correctness of a Haskell
implementation of NbE for untyped combinatory logic.

PTS with explicit substitutions It would be interesting to compare our present-
ation of PTS with explicit substitutions to PTS with those of Bloo and Muñoz.
Moreover, it is needed to study more deeply the meta-theory of λσ and its
relationship with traditional PTS, that is with named variables and implicit
substitutions.

We expect that one can use analogous semantical methods as those that
we used to prove injectivity of Fun to get an equivalence result for λσ and λσ=

with (η) rule.

More abstract definition of NbE There is some smell of repetition among the
chapters of this thesis; this call for a deeper study to see if it is possible to
define NbE more abstractly and prove the main properties (completeness and
soundness) without repeating over and over the same proofs each time a rule

.. Further work

is added (or dropped). For example, Thierry Coquand suggested to consider
NbE λΠ without rule (cong-abs); instead of redoing all the work from scratch, it
would be more interesting to have an abstract definition and extract the proof
for that system by using the appropiate parameters in the general framework.
One possibility for getting such an abstract result is to understand NbE in a
categorical setting.

Using NbE to ease the use of dependent types In Sec. . we discussed how
we can use NbE to decide equality for an abelian monoid and presented an
example of how it can simplify the burden for formalising a (fairly trivial)
proof. It will be interesting to have a proof-checker, even a prototype, with
several extensions like commutativity. Ideally one should formalise some
mathematical proof in such a system and in some other proof-assistant in order
to compare the de Bruijn factor [] between both formalisations.

Bibliography

[] Martin Abadi, Luca Cardelli, Pierre-Louis Curien and Jean Jacques
Lévy. ‘Explicit substitutions’. In: POPL ’: Proceedings of the th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
San Francisco, California, United States: ACM, , pp. –. isbn:
---. doi: 10.1145/96709.96712 (cit. on pp. ,).

[] Andreas Abel, Klaus Aehlig and Peter Dybjer. ‘Normalization by Evalu-
ation for Martin-Löf Type Theory with One Universe’. In: Proceedings
of the rd Conference on the Mathematical Foundations of Programming
Semantics (MFPS XXIII), New Orleans, LA, USA, - April . Ed.
by Marcelo Fiore. Elsevier, , pp. – (cit. on pp. ,).

[] Andreas Abel, Thierry Coquand and Peter Dybjer. ‘Normalization by
Evaluation for Martin-Löf Type Theory with Typed Equality Judge-
ments’. In: Proc. of the nd IEEE Symp. on Logic in Computer Science
(LICS). IEEE Computer Soc. Press, , pp. –. doi: 10.1109/
LICS.2007.33 (cit. on pp. ,).

[] Andreas Abel, Thierry Coquand and Peter Dybjer. ‘On the Algebraic
Foundation of Proof Assistants for Intuitionistic Type Theory’. In: Proc.
of the th Int. Symp. on Functional and Logic Programming, FLOPS .
Ed. by Jacques Garrigue and Manuel V. Hermenegildo. Vol. . Lect.
Notes in Comput. Sci. Springer, , pp. –. isbn: ----
. doi: 10.1007/978-3-540-78969-7_2 (cit. on pp. ,).

[] Andreas Abel, Thierry Coquand and Peter Dybjer. ‘Verifying a Semantic
βη-Conversion Test for Martin-Löf Type Theory’. In: Proc. of the th
Int. Conf. on Mathematics of Program Construction, MPC . Ed. by
Philippe Audebaud and Christine Paulin-Mohring. Vol. . Lect.
Notes in Comput. Sci. Springer, , pp. –. isbn: ---
-. doi: 10.1007/978-3-540-70594-9_4 (cit. on pp. ,).

[] Andreas Abel, Thierry Coquand and Miguel Pagano. ‘A Modular Type-
Checking Algorithm for Type Theory with Singleton Types and Proof
Irrelevance’. In: TLCA. Ed. by Pierre-Louis Curien. Vol. . Lecture
Notes in Computer Science. Springer, , pp. –. isbn: ---
-. doi: 10.1007/978-3-642-02273-9_3 (cit. on p.).

[] Andreas Abel, Thierry Coquand and Miguel Pagano. ‘A Modular Type-
Checking Algorithm for Type Theory with Singleton Types and Proof
Irrelevance’. In: Logical Methods in Computer Science .: (May),
pp. –. doi: 10.2168/LMCS-7(2:4)2011 (cit. on p.).

[] Samson Abramsky and Achim Jung. ‘Domain Theory’. In: Handbook
of Logic in Computer Science. Oxford University Press, , pp. –
(cit. on p.).

http://dx.doi.org/10.1145/96709.96712
http://dx.doi.org/10.1109/LICS.2007.33
http://dx.doi.org/10.1109/LICS.2007.33
http://dx.doi.org/10.1007/978-3-540-78969-7_2
http://dx.doi.org/10.1007/978-3-540-70594-9_4
http://dx.doi.org/10.1007/978-3-642-02273-9_3
http://dx.doi.org/10.2168/LMCS-7(2:4)2011

 BIBLIOGRAPHY

[] Robin Adams. ‘Pure type systems with judgemental equality’. In: Jour-
nal of Functional Programming . (), pp. –. doi: 10.1017/
S0956796805005770 (cit. on pp. ,).

[] Klaus Aehlig, Florian Haftmann and Tobias Nipkow. ‘A Compiled
Implementation of Normalization by Evaluation’. In: TPHOLs. Ed. by
Otmane Aït Mohamed, César Muñoz and Sofiène Tahar. Vol. .
Lecture Notes in Computer Science. Springer, , pp. –. isbn:
----. doi: 10.1007/978-3-540-71067-7_8 (cit. on p.).

[] Klaus Aehlig and Felix Joachimski. ‘Operational aspects of untyped
Normalisation by Evaluation’. In: Mathematical Structures in Computer
Science . (), pp. –. doi: 10.1017/S096012950400427X (cit.
on pp. ,).

[] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann and Philip J. Scott.
‘Normalization by Evaluation for Typed Lambda Calculus with Cop-
roducts’. In: Proc. of the th IEEE Symp. on Logic in Computer Science
(LICS). IEEE Computer Soc. Press, , pp. – (cit. on
pp. ,).

[] Thorsten Altenkirch, Martin Hofmann and Thomas Streicher. ‘Cat-
egorical Reconstruction of a Reduction Free Normalization Proof’. In:
Category Theory and Computer Science. Ed. by David H. Pitt, David
E. Rydeheard and Peter Johnstone. Vol. . Lecture Notes in Com-
puter Science. Springer, , pp. –. isbn: --- (cit.
on p.).

[] David Aspinall. ‘Subtyping with Singleton Types’. In: Computer Science
Logic, th Int. Wksh., CSL ’. Ed. by Leszek Pacholski and Jerzy Tiuryn.
Vol. . Lect. Notes in Comput. Sci. Springer, , pp. –. isbn:
---. doi: 10.1007/BFb0022243 (cit. on pp. , , ,).

[] Steven Awodey and Andrej Bauer. ‘Propositions as [Types]’. In: J. Log.
Comput. . (), pp. –. doi: 10.1093/logcom/14.4.447
(cit. on pp. ,).

[] Vincent Balat, Roberto Di Cosmo and Marcelo P. Fiore. ‘Extensional
normalisation and type-directed partial evaluation for typed lambda
calculus with sums’. In: Proc. of the st ACM Symp. on Principles of
Programming Languages, POPL . Ed. by Neil D. Jones and Xavier
Leroy. ACM Press, , pp. –. isbn: ---X. doi: 10.1145/
964001.964007 (cit. on p.).

[] Henk Barendregt. ‘Lambda calculi with types’. In: Handbook of Logic in
Computer Science. Ed. by Samson Abramsky, D. M. Gabbay and T. S. E.
Maibaum. Oxford University Press, , pp. – (cit. on p.).

[] Bruno Barras. Coq en Coq. Research Report RR-. Projet COQ. IN-
RIA, . url: http://hal.inria.fr/inria- 00073667/PDF/RR-
3026.pdf (cit. on p.).

[] Bruno Barras. ‘Auto-validation d’un système de preuves avec familles
inductives’. Thèse de Doctorat. Université Paris , Nov. (cit. on
p.).

http://dx.doi.org/10.1017/S0956796805005770
http://dx.doi.org/10.1017/S0956796805005770
http://dx.doi.org/10.1007/978-3-540-71067-7_8
http://dx.doi.org/10.1017/S096012950400427X
http://dx.doi.org/10.1007/BFb0022243
http://dx.doi.org/10.1093/logcom/14.4.447
http://dx.doi.org/10.1145/964001.964007
http://dx.doi.org/10.1145/964001.964007
http://hal.inria.fr/inria-00073667/PDF/RR-3026.pdf
http://hal.inria.fr/inria-00073667/PDF/RR-3026.pdf

BIBLIOGRAPHY

[] Gilles Barthe and Morten Heine Sørensen. ‘Domain-free pure type
systems’. In: J. Funct. Program. . (), pp. –. url: http:
//journals.cambridge.org/action/displayAbstract?aid=59753 (cit.
on p.).

[] Michael Beeson. ‘Formalizing constructive mathematics: Why and
how?’ In: Constructive Mathematics. Ed. by Fred Richman. Vol. .
Lecture Notes in Mathematics. Springer Berlin / Heidelberg, ,
pp. –. doi: 10.1007/BFb0090733 (cit. on p.).

[] Michael J. Beeson. ‘Problematic principles in constructive mathematics’.
In: Logic Colloquium ’. Vol. . Studies in Logic and the Foundations
of Mathematics. Amsterdam: North-Holland, , pp. –. doi:
10.1016/S0049-237X(09)70502-6 (cit. on p.).

[] Stefano Berardi. ‘Type Dependence and Constructive Mathematics’.
PhD thesis. Carnegie Mellon University and Torino University, .
url: http://www.di.unito.it/~stefano/Berardi- PhDThesis.rtf
(cit. on p.).

[] Stefano Berardi. ‘About the sets-as-propositions embedding of HOL in
CC’. Feb. (cit. on p.).

[] Ulrich Berger, Matthias Eberl and Helmut Schwichtenberg. ‘Normal-
isation by Evaluation’. In: Prospects for Hardware Foundations. Ed. by
Bernhard Möller and J. V. Tucker. Vol. . Lecture Notes in Com-
puter Science. Springer, , pp. –. isbn: ---. doi:
10.1007/3-540-49254-2_4 (cit. on p.).

[] Ulrich Berger and Helmut Schwichtenberg. ‘An Inverse of the Eval-
uation Functional for Typed lambda-calculus’. In: Proceedings, Sixth
Annual IEEE Symposium on Logic in Computer Science, - July, ,
Amsterdam, The Netherlands. IEEE Computer Society, , pp. –
. doi: 10.1109/LICS.1991.151645 (cit. on pp. , , ,).

[] Roel Bloo. ‘Pure type systems with explicit substitution’. In: Mathemat-
ical. Structures in Comp. Sci. . (), pp. –. issn: -. doi:
10.1017/S096012950000325X (cit. on pp. ,).

[] Ana Bove and Peter Dybjer. ‘Dependent Types at Work’. In: LerNet ALFA
Summer School. Ed. by Ana Bove, Luís Soares Barbosa, Alberto Pardo
and Jorge Sousa Pinto. Vol. . Lecture Notes in Computer Science.
Springer, , pp. –. isbn: ----. doi: 10.1007/978-
3-642-03153-3_2 (cit. on p.).

[] Kim Bruce and John C. Mitchell. ‘PER models of subtyping, recursive
types and higher-order polymorphism’. In: POPL ’: Proceedings of
the th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. Albuquerque, New Mexico, United States: ACM, ,
pp. –. isbn: ---. doi: 10.1145/143165.143230 (cit. on
p.).

[] Nicolaas Govert de Bruijn. AUTOMATH, a language for mathematics.
T.H. Department of Mathematics, Eindhoven University of Technology,
Nov. (cit. on p.).

http://journals.cambridge.org/action/displayAbstract?aid=59753
http://journals.cambridge.org/action/displayAbstract?aid=59753
http://dx.doi.org/10.1007/BFb0090733
http://dx.doi.org/10.1016/S0049-237X(09)70502-6
http://www.di.unito.it/~stefano/Berardi-PhDThesis.rtf
http://dx.doi.org/10.1007/3-540-49254-2_4
http://dx.doi.org/10.1109/LICS.1991.151645
http://dx.doi.org/10.1017/S096012950000325X
http://dx.doi.org/10.1007/978-3-642-03153-3_2
http://dx.doi.org/10.1007/978-3-642-03153-3_2
http://dx.doi.org/10.1145/143165.143230

 BIBLIOGRAPHY

[] Nicolaas Govert de Bruijn. ‘Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application
to the Church-Rosser theorem’. In: Indagationes Mathematicae (Proceed-
ings) . (), pp. –. issn: -. doi: 10.1016/1385-
7258(72)90034-0 (cit. on p.).

[] Nicolaas Govert de Bruijn. Some extensions of Automath : the AUT- fam-
ily. Tech. rep. OAI Repository of the Technische Universiteit Eindhoven
(TU/e) (Netherlands), . url: http://library.tue.nl/csp/dare/
LinkToRepository.csp?recordnumber=597613 (cit. on p.).

[] Felice Cardone and J. Roger Hindley. ‘Lambda-Calculus and Combin-
ators in the th Century’. In: Logic from Russell to Church. Ed. by
Dov M. Gabbay and John Woods. Vol. . Handbook of the History
of Logic. North-Holland, , pp. –. doi: 10.1016/S1874-
5857(09)70018-4 (cit. on p.).

[] John Cartmell. ‘Generalised algebraic theories and contextual categor-
ies’. In: Annals of Pure and Applied Logic (), pp. –. doi: 10.
1016/0168-0072(86)90053-9 (cit. on p.).

[] Alonzo Church. ‘A set of postulates for the foundation of logic’. In: The
Annals of Mathematics . (Apr.), pp. –. doi: 10.2307/
2371045 (cit. on pp. ,).

[] Alonzo Church. ‘A Formulation of the Simple Theory of Types’. In: J.
Symb. Logic . (June), pp. – (cit. on pp. ,).

[] Thierry Coquand. ‘An Algorithm for Type-Checking Dependent Types’.
In: Proc. of the rd Int. Conf. on Mathematics of Program Construction,
MPC ’. Vol. . Sci. Comput. Program. –. Elsevier, May ,
pp. – (cit. on pp. , ,).

[] Thierry Coquand. ‘Type Theory’. In: The Stanford Encyclopedia of Philo-
sophy. Ed. by Edward N. Zalta. Spring . (cit. on p.).

[] Thierry Coquand and Peter Dybjer. ‘Intuitionistic model constructions
and normalization proofs’. In: Mathematical. Structures in Comp. Sci. .
(), pp. –. issn: -. doi: 10.1017/S0960129596002150
(cit. on p.).

[] Thierry Coquand, Peter Dybjer, Erik Palmgren and Anton Setzer. Type-
theoretic Foundations of Constructive Mathematics. Tech. rep. Types Sum-
mer School, (cit. on p.).

[] Thierry Coquand and Gerard Huet. ‘The calculus of constructions’. In:
Inf. Comput. .- (), pp. –. issn: -. doi: 10.1016/
0890-5401(88)90005-3 (cit. on p.).

[] Thierry Coquand, Randy Pollack and Makoto Takeyama. ‘A Logical
Framework with Dependently Typed Records’. In: Fundamenta Inform-
aticae .- (), pp. – (cit. on pp. , ,).

[] Judicaël Courant. ‘Strong Normalization with Singleton Types’. In:
Intersection Types and Related Systems (ITRS). Vol. . Electr. Notes
in Theor. Comp. Sci. . Elsevier, (cit. on p.).

http://dx.doi.org/10.1016/1385-7258(72)90034-0
http://dx.doi.org/10.1016/1385-7258(72)90034-0
http://library.tue.nl/csp/dare/LinkToRepository.csp?recordnumber=597613
http://library.tue.nl/csp/dare/LinkToRepository.csp?recordnumber=597613
http://dx.doi.org/10.1016/S1874-5857(09)70018-4
http://dx.doi.org/10.1016/S1874-5857(09)70018-4
http://dx.doi.org/10.1016/0168-0072(86)90053-9
http://dx.doi.org/10.1016/0168-0072(86)90053-9
http://dx.doi.org/10.2307/2371045
http://dx.doi.org/10.2307/2371045
http://dx.doi.org/10.1017/S0960129596002150
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(88)90005-3

BIBLIOGRAPHY

[] Guy Cousineau, Pierre-Louis Curien and Michel Mauny. ‘The categor-
ical abstract machine’. In: Science of Computer Programming . (),
pp. –. issn: -. doi: 10.1016/0167-6423(87)90020-7
(cit. on p.).

[] Guy Cousineau, Pierre-Louis Curien and Bernard Robinet, eds. Combin-
ators and Functional Programming Languages, Thirteenth Spring School of
the LITP, Val d’Ajol, France, May -, , Proceedings. Vol. . Lec-
ture Notes in Computer Science. Springer, . isbn: ---
(cit. on p.).

[] Karl Crary. ‘A Syntactic Account of Singleton Types via Hereditary Sub-
stitution’. In: th Int. Wksh. on Logical Frameworks and Meta-languages:
Theory and Practice (LFMTP). Ed. by James Cheney and Amy Felty.
ACM Press, , pp. –. isbn: ----. doi: 10.1145/
1577824.1577829 (cit. on p.).

[] Pierre-Louis Curien. Categorical combinators, sequential algorithms, and
functional programming. Progress in theoretical computer science. Birk-
häuser, . isbn: (cit. on p.).

[] H. B. Curry. ‘Functionality in Combinatory Logic’. In: Proceedings of
the National Academy of Sciences, U.S.A. (), pp. – (cit. on
p.).

[] Haskell B. Curry. ‘Modified basic functionality in combinatory logic’. In:
Dialectica . (), pp. –. issn: -. doi: 10.1111/j.1746-
8361.1969.tb01183.x (cit. on p.).

[] Haskell B. Curry and Robert Feys. Combinatory logic. North-Holland
publishing Company, (cit. on p.).

[] Peter Dybjer. ‘Internal Type Theory’. In: TYPES ’: Selected papers from
the International Workshop on Types for Proofs and Programs. London,
UK: Springer-Verlag, , pp. –. isbn: --- (cit. on
pp. ,).

[] Peter Dybjer. ‘A General Formulation of Simultaneous Inductive-Recur-
sive Definitions in Type Theory’. In: J. Symb. Logic . (), pp. –
 (cit. on pp. ,).

[] Peter Dybjer and Denis Kuperberg. ‘Formal neighbourhoods, combin-
atory Böhm trees, and untyped normalization by evaluation’. In: Ann.
Pure Appl. Logic . (), pp. –. doi: 10.1016/j.apal.2011.
06.021 (cit. on p.).

[] Andrzej Filinski. ‘Normalization by Evaluation for the Computational
Lambda-Calculus’. In: TLCA. , pp. –. doi: 10.1007/3-540-
45413-6_15 (cit. on pp. ,).

[] Andrzej Filinski and Henning Korsholm Rohde. ‘A Denotational Ac-
count of Untyped Normalization by Evaluation’. In: FoSSaCS. Ed. by
Igor Walukiewicz. Vol. . Lecture Notes in Computer Science. Sprin-
ger, , pp. –. isbn: ---. doi: 10.1007/978-3-540-
24727-2_13 (cit. on pp. ,).

http://dx.doi.org/10.1016/0167-6423(87)90020-7
http://dx.doi.org/10.1145/1577824.1577829
http://dx.doi.org/10.1145/1577824.1577829
http://dx.doi.org/10.1111/j.1746-8361.1969.tb01183.x
http://dx.doi.org/10.1111/j.1746-8361.1969.tb01183.x
http://dx.doi.org/10.1016/j.apal.2011.06.021
http://dx.doi.org/10.1016/j.apal.2011.06.021
http://dx.doi.org/10.1007/3-540-45413-6_15
http://dx.doi.org/10.1007/3-540-45413-6_15
http://dx.doi.org/10.1007/978-3-540-24727-2_13
http://dx.doi.org/10.1007/978-3-540-24727-2_13

 BIBLIOGRAPHY

[] Marcelo Fiore. ‘Semantic analysis of normalisation by evaluation for
typed lambda calculus’. In: PPDP ’: Proceedings of the th ACM SIG-
PLAN international conference on Principles and practice of declarative
programming. Pittsburgh, PA, USA: ACM, , pp. –. isbn: -
--. doi: 10.1145/571157.571161 (cit. on p.).

[] Daniel Fridlender and Miguel Pagano. PTS with Typed Equality and
Explicit Substitutions. Presentation at Types for Proofs and Programs
. Sept. (cit. on p.).

[] François Garillot and Benjamin Werner. ‘Simple Types in Type Theory:
Deep and Shallow Encodings’. In: Theorem Proving in Higher Order
Logics, TPHOLs . Ed. by Klaus Schneider and Jens Brandt. Vol. .
Lect. Notes in Comput. Sci. Springer, , pp. –. isbn: --
--. doi: 10.1007/978-3-540-74591-4_27 (cit. on p.).

[] Herman Geuvers. ‘Logics and Type Systems’. PhD thesis. Katholieke
Universiteit Nijmegen, Sept. (cit. on pp. ,).

[] Herman Geuvers. ‘Proof assistants: History, ideas and future’. English.
In: Sadhana (), pp. –. issn: -. doi: 10.1007/
s12046-009-0001-5 (cit. on p.).

[] Jean-Yves Girard. ‘Une extension de l’interpretation de Godel a l’ana-
lyse, et son application a l’elimination des coupures dans l’analyse et
la theorie des types’. In: Second Scandinavian Logic Symposium. Ed. by
Jens Erik Fenstad. Studies in Logic and the Foundations of Mathematics
. North-Holland, , pp. – (cit. on p.).

[] Benjamin Grégoire and Xavier Leroy. ‘A compiled implementation
of strong reduction’. In: Proc. of the th ACM SIGPLAN Int. Conf. on
Functional Programming (ICFP ’). Vol. . SIGPLAN Notices . ACM
Press, Sept. , pp. –. isbn: ---. doi: 10.1145/
581478.581501 (cit. on p.).

[] Robert Harper, Furio Honsell and Gordon Plotkin. ‘A framework for
defining logics’. In: Journal ofACM Press . (), pp. –. issn:
-. doi: 10.1145/138027.138060 (cit. on p.).

[] Robert Harper and Frank Pfenning. ‘On equivalence and canonical
forms in the LF type theory’. In: ACM Trans. Comput. Logic . (),
pp. –. issn: -. doi: 10.1145/1042038.1042041 (cit. on
p.).

[] John Harrison. ‘HOL Light: An Overview’. In: TPHOLs. Ed. by Stefan
Berghofer, Tobias Nipkow, Christian Urban and Makarius Wenzel.
Vol. . Lecture Notes in Computer Science. Springer, , pp. –
. isbn: ----. doi: 10.1007/978- 3- 642- 03359- 9_4
(cit. on p.).

[] Leon Henkin. ‘Completeness in the Theory of Types’. In: The Journal
of Symbolic Logic (), pp. –. issn: . url: http :
//www.jstor.org/stable/2266967 (cit. on p.).

[] Arend Heyting. Intuitionism, an Introduction. rd ed. Amsterdam: North-
Holland, . isbn: --- (cit. on p.).

http://dx.doi.org/10.1145/571157.571161
http://dx.doi.org/10.1007/978-3-540-74591-4_27
http://dx.doi.org/10.1007/s12046-009-0001-5
http://dx.doi.org/10.1007/s12046-009-0001-5
http://dx.doi.org/10.1145/581478.581501
http://dx.doi.org/10.1145/581478.581501
http://dx.doi.org/10.1145/138027.138060
http://dx.doi.org/10.1145/1042038.1042041
http://dx.doi.org/10.1007/978-3-642-03359-9_4
http://www.jstor.org/stable/2266967
http://www.jstor.org/stable/2266967

BIBLIOGRAPHY

[] Roger J. Hindley. ‘The Principal Type-Scheme of an Object in Com-
binatory Logic’. In: Transactions of the American Mathematical Society
 (), pp. –. issn: . url: http://www.jstor.org/
stable/1995158 (cit. on p.).

[] William Howard. ‘The formulae-as-types notion of construction’. In: To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism.
Ed. by Haskell Curry, Jonathan Seldin and Roger Hindley. Academic
Press, , pp. –. isbn: (cit. on pp. ,).

[] Gérard P. Huet. ‘Cartesian closed Categories and Lambda- calculus’. In:
Combinators and Functional Programming Languages. , pp. –.
doi: 10.1007/3-540-17184-3_43 (cit. on p.).

[] Fairouz Kamareddine, Twan Laan and Rob Nederpelt. A Modern Per-
spective on Type Theory From its Origins Until Today. Vol. . Applied
Logic Series. Kluwer Academic Publishers, May . isbn:
(cit. on p.).

[] Delia Kesner. ‘A Theory of Explicit Substitutions with Safe and Full
Composition’. In: Logical Methods in Computer Science . (). doi:
10.2168/LMCS-5(3:1)2009 (cit. on p.).

[] Stephen C. Kleene and John Barkley Rosser. ‘The Inconsistency of
Certain Formal Logics’. In: The Annals of Mathematics . (July),
pp. – (cit. on p.).

[] J. Lambek and P. J. Scott. Introduction to higher order categorical logic.
New York, NY, USA: Cambridge University Press, . isbn: --
- (cit. on pp. ,).

[] Daniel K. Lee, Karl Crary and Robert Harper. ‘Towards a Mechanized
Metatheory of Standard ML’. In: Proc. of the th ACM Symp. on Prin-
ciples of Programming Languages, POPL . Ed. by Martin Hofmann
and Matthias Felleisen. ACM Press, , pp. –. isbn: --
-. doi: 10.1145/1190216.1190245 (cit. on p.).

[] Andreas Löh, Conor McBride and Wouter Swierstra. ‘A Tutorial Imple-
mentation of a Dependently Typed Lambda Calculus’. In: Fundamenta
Informaticae . (), pp. –. doi: 10.3233/FI-2010-304
(cit. on p.).

[] Zhaohui Luo. ‘An Extended Calculus of Constructions’. PhD thesis.
Department of Computer Science, University of Edinburgh, June .
url: http://www.cs.rhul.ac.uk/~zhaohui/THESIS90.ps (cit. on p.).

[] Zhaohui Luo. Computation and reasoning: a type theory for computer
science. International series of monographs on computer science. Clar-
endon Press, . isbn: (cit. on pp. ,).

[] Odalric-Ambrym Maillard. Proof-irrelevance, strong-normalisation in
Type-Theory and PER. Tech. rep. Chalmers Institute of Technology,
(cit. on p.).

[] Per Martin-Löf. ‘An Intuitonistic Theory of Types: Predicative Part’.
English. In: ed. by H. E. Rose and J. C. Shepherdson. North-Holland
Pub. Co., , pp. –. isbn: (cit. on pp. ,).

http://www.jstor.org/stable/1995158
http://www.jstor.org/stable/1995158
http://dx.doi.org/10.1007/3-540-17184-3_43
http://dx.doi.org/10.2168/LMCS-5(3:1)2009
http://dx.doi.org/10.1145/1190216.1190245
http://dx.doi.org/10.3233/FI-2010-304
http://www.cs.rhul.ac.uk/~zhaohui/THESIS90.ps

 BIBLIOGRAPHY

[] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, (cit. on
pp. ,).

[] Per Martin-Löf. ‘On the Meanings of the Logical Constants and the
Justification of the Logical Laws’. In: Nordic Journal of Philosophical
Logic . (), pp. – (cit. on p.).

[] Per Martin-Löf. ‘An intuitionistic theory of types’. In: Oxford logic
guides. reprinted version of an unpublished report from . Claren-
don Press, . isbn: (cit. on pp. , ,).

[] The Agda Team. The Agda Wiki. url: http://wiki.portal.chalmers.
se/agda/ (cit. on p.).

[] The Coq development team. The Coq proof assistant reference manual.
Version .. . url: http://coq.inria.fr (cit. on p.).

[] Robin Milner. ‘A theory of type polymorphism in programming’. In:
Journal of Computer and System Sciences . (), pp. –. doi:
10.1016/0022-0000(78)90014-4 (cit. on p.).

[] Alexandre Miquel and Benjamin Werner. ‘The Not So Simple Proof-
Irrelevant Model of CC’. In: TYPES. Ed. by Herman Geuvers and Freek
Wiedijk. Vol. . Lecture Notes in Computer Science. Springer, ,
pp. –. isbn: ---X (cit. on p.).

[] John C. Mitchell. ‘A type-inference approach to reduction properties
and semantics of polymorphic expressions (summary)’. In: LFP ’: Pro-
ceedings of the ACM conference on LISP and functional programming.
Cambridge, Massachusetts, United States: ACM, , pp. –.
isbn: ---. doi: 10.1145/319838.319872 (cit. on p.).

[] John C. Mitchell. ‘Type Systems for Programming Languages’. In: Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Semat-
ics (B). , pp. – (cit. on p.).

[] John C. Mitchell. Foundations of programming languages. Cambridge,
MA, USA: MIT Press, . isbn: --- (cit. on p.).

[] John C. Mitchell and Eugenio Moggi. ‘Kripke-style models for typed
lambda calculus’. In: Annals of Pure and Applied Logic .- (),
pp. –. issn: -. doi: 10.1016/0168-0072(91)90067-V
(cit. on p.).

[] César Muñoz. Dependent types and explicit substitutions. Tech. rep. Insti-
tute for Computer Applications in Science and Engineering (ICASE),
 (cit. on pp. ,).

[] Tobias Nipkow, Lawrence C. Paulson and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic. Vol. . LNCS. Springer,
 (cit. on p.).

[] Bengt Nordström, Kent Petersson and Jan M. Smith. Programming in
Martin Löf’s Type Theory: An Introduction. Clarendon Press, Oxford,
 (cit. on p.).

[] Nicolas Oury and Wouter Swierstra. ‘The power of Pi’. In: ICFP. Ed. by
James Hook and Peter Thiemann. ACM, , pp. –. isbn: --
-- (cit. on p.).

http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/
http://coq.inria.fr
http://dx.doi.org/10.1016/0022-0000(78)90014-4
http://dx.doi.org/10.1145/319838.319872
http://dx.doi.org/10.1016/0168-0072(91)90067-V

BIBLIOGRAPHY

[] Frank Pfenning. ‘On a Logical Foundation for Explicit Substitutions’.
In: TLCA. Ed. by Simona Ronchi Della Rocca. Vol. . Lecture Notes
in Computer Science. Slides available at http://www.cs.cmu.edu/~fp/
talks/rdp07-talk.pdf. Springer, , p. . isbn: ----.
doi: 10.1007/978-3-540-73228-0_1 (cit. on p.).

[] Randy Pollack. ‘The Theory of LEGO’. PhD thesis. Department of Com-
puter Science, University of Edinburgh, . url: http://homepages.
inf.ed.ac.uk/rpollack/export/thesis.ps.gz (cit. on p.).

[] John C. Reynolds. ‘Towards a Theory of Type Structure’. In: Lecture
Notes in Computer Science. Vol. . New York: Springer-Verlag, ,
pp. – (cit. on p.).

[] John C. Reynolds. ‘What do types mean?: from intrinsic to extrinsic
semantics’. In: New York, NY, USA: Springer-Verlag New York, Inc.,
, pp. –. isbn: --- (cit. on p.).

[] Giovanni Sambin and Jan M. Smith. Twenty-five years of constructive
type theory: proceedings of a congress held in Venice, October . Oxford
logic guides. Clarendon Press, . isbn: .

[] Giovanni Sambin and Silvio Valentini. ‘Building up a toolbox for
Martin-Löf’s type theory: subset theory’. In: Oxford logic guides. Clar-
endon Press, , pp. –. isbn: (cit. on p.).

[] Dana Scott. Continuous Lattices. Tech. rep. Oxford University,
(cit. on p.).

[] Natarajan Shankar and Sam Owre. ‘Principles and Pragmatics of Sub-
typing in PVS’. In: WADT ’: Selected papers from the th International
Workshop on Recent Trends in Algebraic Development Techniques. Lon-
don, UK: Springer-Verlag, , pp. –. isbn: --- (cit. on
p.).

[] Vincent Siles. ‘Investigation on the typing of equality in type systems’.
PhD thesis. École Polytechnique, Nov. . url: http://www.cse.
chalmers.se/~siles/papers/thesis.pdf (cit. on pp. , , ,).

[] Vincent Siles and Hugo Herbelin. ‘Equality Is Typable in Semi-full Pure
Type Systems’. In: LICS. IEEE Computer Soc. Press, , pp. –.
isbn: ----. doi: 10.1109/LICS.2010.19 (cit. on pp. ,
).

[] Michael B. Smyth and Gordon D. Plotkin. ‘The Category-Theoretic Solu-
tion of Recursive Domain Equations’. In: SIAM Journal on Computing
. (), pp. –. doi: 10.1137/0211062 (cit. on p.).

[] Matthieu Sozeau. ‘Subset Coercions in Coq’. In: Types for Proofs and
Programs, Int. Wksh., TYPES . Ed. by Thorsten Altenkirch and
Conor McBride. Vol. . Lect. Notes in Comput. Sci. Springer, ,
pp. –. isbn: ----. doi: 10.1007/978-3-540-74464-
1_16 (cit. on p.).

[] Christopher A. Stone and Robert Harper. ‘Extensional equivalence and
singleton types’. In: ACM Trans. Comput. Logic . (), pp. –.
issn: -. doi: 10.1145/1183278.1183281 (cit. on p.).

http://www.cs.cmu.edu/~fp/talks/rdp07-talk.pdf
http://www.cs.cmu.edu/~fp/talks/rdp07-talk.pdf
http://dx.doi.org/10.1007/978-3-540-73228-0_1
http://homepages.inf.ed.ac.uk/rpollack/export/thesis.ps.gz
http://homepages.inf.ed.ac.uk/rpollack/export/thesis.ps.gz
http://www.cse.chalmers.se/~siles/papers/thesis.pdf
http://www.cse.chalmers.se/~siles/papers/thesis.pdf
http://dx.doi.org/10.1109/LICS.2010.19
http://dx.doi.org/10.1137/0211062
http://dx.doi.org/10.1007/978-3-540-74464-1_16
http://dx.doi.org/10.1007/978-3-540-74464-1_16
http://dx.doi.org/10.1145/1183278.1183281

 BIBLIOGRAPHY

[] Christopher A. Stone and Robert Harper. ‘Extensional Equivalence and
Singleton Types’. In: ACM Trans. Comput. Logic . (), pp. –.
issn: -. doi: 10.1145/1166109.1166112 (cit. on p.).

[] Thomas Streicher. ‘Correctness and Completeness of a Categorical
Semantics of the Calculus of Constructions’. PhD thesis. Universität
Passau, Passau, West Germany, June (cit. on p.).

[] Morten Heine Sørensen and Paweł Urzyczyin. Lectures on the Curry-
Howard Isomorphism. Vol. . Studies in Logic and the Foundations of
Mathematics. Elsevier, (cit. on p.).

[] Alvaro Tasistro. Formulation of Martin-Löf’s theory of types with explicit
substitutions. Published in []. (cit. on p.).

[] Alvaro Tasistro. ‘Substitution, Record Types and Subtyping in Type
Theory, with Applications to the Theory of Programming’. PhD thesis.
Göteborg University and Chalmers Institute of Technology, (cit.
on p.).

[] Jan Terlouw. Een nadere bewijstheoretische analyse van GSTTs. Tech. rep.
University of Nijmegen, (cit. on p.).

[] Anne S. Troelstra. History of Constructivism in the Twentieth Century.
ITLI Prepublication Series ML--. University of Amsterdam,
(cit. on p.).

[] Benjamin Werner. ‘On the strength of proof-irrelevant type theories’.
In: Logical Methods in Computer Science () (cit. on p.).

[] Freek Wiedijk. ‘The De Bruijn Factor’. In: TPHOLs : Supplemental
Proceedings. Ed. by M. Aargaard, J. Harrison and T. Schubert. OGI
Technical Report CSE -. Oregon Graduate Institute, Portland,
USA. July , pp. –. url: http://www.cs.ru.nl/~freek/
factor/factor.pdf (cit. on p.).

[] Freek Wiedijk, ed. The Seventeen Provers of the World, Foreword by Dana
S. Scott. Vol. . Lecture Notes in Computer Science. Springer, .
isbn: --- (cit. on p.).

[] Freek Wiedijk. ‘Formal Proof – Getting Started’. In: Notices of the Amer-
ican Mathematical Society (), pp. – (cit. on p.).

http://dx.doi.org/10.1145/1166109.1166112
http://www.cs.ru.nl/~freek/factor/factor.pdf
http://www.cs.ru.nl/~freek/factor/factor.pdf

This thesis was typeset in pdfLATEX.

The design is based on the memoir class, with some personal modifications.

The body text is set on the typeface “Johannes Kepler”, designed by Christophe
Caignaert.

Mathematical content is set on “Euler”, by Hermann Zapf, and “Computer
Modern”, by Donald Knuth, as provided by the euler-vm package.

Programs are listed on “Inconsolata” by Raph Levien.

Rules and derivations are typeset using Paul Taylor’s prooftree and Didier
Rémy’s mathpartir.

	Introduction
	Type Theories
	Using dependent types
	Type-Checking: Deciding the Typing Relation
	Related work
	Our contributions

	Normalisation By Evaluation
	Syntax of lambda-stt
	Normalisation by Evaluation for lambda-stt
	Normalisation by Evaluation for lambda-stt
	Correctness of NbE
	A Haskell Implementation of NbE

	NbE for Martin-Löf Type Theory
	The calculus lambda-pi
	Semantics and Normalisation by Evaluation
	Correctness of NbE via logical relations
	Implementation of a type-checker for lambda-pi

	Extended Martin-Löf Type Theory
	The Calculus
	Semantics
	Correctness of NbE
	Type-checking algorithm
	Normalisation by evaluation
	Type-checking algorithm

	Pure Type Systems
	Formal systems
	Equivalence between lambda-sigma and lambda-sigma-eq
	Semantics for lambda-sigma-eq
	Correctness of Nbe
	From lambda-sigma to lambda-sigma-eq

	Conclusion
	Commutativity in Martin-Löf type theory
	Further work

	Bibliography

