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Abstract

A comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed
attracting centers is given, first classically and then quantum mechanically in semiclassical
approximation. The system was originally studied in the context of celestial mechanics
but, starting with Pauli’s dissertation, became a model for one-electron molecules such as
H+

2 (symmetric case of equal centers) or HHe2+ (asymmetric case of different centers).
The present paper deals with arbitrary relative strength of the two centers and considers
separately the planar and the three-dimensional problems. All versions represent non-
trivial examples of integrable dynamics and are studied here from the unifying point of view
of the energy momentum mapping from phase space to the space of integration constants.
The interesting objects are the critical values of this mapping, i. e., its bifurcation diagram,
and their pre-images which organize the foliation of phase space into Liouville-Arnold
tori. The classical analysis culminates in the explicit derivation of the action variable
representation of iso-energetic surfaces. The attempt to identify a system of global actions,
smoothly dependent on the integration constants wherever these are non-critical, leads to
the detection of monodromy of a special kind which is here described for the first time.
The classical monodromy has its counterpart in the quantum version of the two-center
problem where it prevents the assignments of unique quantum numbers even though the
system is separable.
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1 Introduction

The two-center problem was first considered by Euler in 1760 and is without question one
of the most famous integrable problems of classical mechanics. It describes the motion of a
test particle in the field of two space fixed Newtonian centers of attraction. Jacobi showed
that the equations of motion can be integrated in terms of elliptic functions; explicit
solutions are given in his “Vorlesungen über Dynamik” [33].

The system has played an important role as a model both in the macroscopic and in
the microscopic world. In celestial mechanics it represents the motion of a test particle
which is attracted by two space fixed stars. Charlier used this admittedly unrealistic
situation as a starting point for a discussion of the restricted three-body problem [13]. In
molecular physics the two centers are atomic nuclei and the test particle is an electron;
this is the simplest model of a diatomic molecule. The assumption that the nuclei are
fixed (their distance being an important parameter in quantum mechanics) is known, in
this context, as Born-Oppenheimer approximation. Pauli, then a student of Sommerfeld,
applied the model to the hydrogen molecular ion H+

2 in his doctoral thesis [43]. This work
was completed in 1922, well before Schrödinger’s formulation of wave mechanics in 1926,
hence it was conceived in the spirit of old quantum mechanics, i. e., action quantization.
At that time it was not well understood why action quantization worked for some systems
while it failed for others, even though Einstein [26] had effectively pointed out as early as
1917 that a system must be integrable for this quantization to work.

From this point of view, Pauli had made a good choice because the problem of two
fixed centers is separable and therefore Liouville integrable. The brilliance of Pauli’s work
is only slightly diminished by his wrong prediction that the hydrogen molecular ion can at
best exist in a metastable state. The reasons for this failure are three-fold: (i) the concept
of Liouville-Arnold tori foliating the phase space of a compact integrable system was not
clear at the time; (ii) Pauli’s classification of the motion from symmetry principles led him
to quantizing the wrong tori (he excluded electronic motion which approaches the nuclei
too closely); (iii) he could not know of the correction to naive action quantization in terms
of Maslov indices as introduced by Keller [36] a long time after G. Wentzel, H. A. Kramers
and L. Brillouin had shown that action quantization is an approximation to Schrödinger’s
quantum mechanics [52, 37, 10]. A modern treatment incorporating these aspects was
presented by M. P. Strand and W. P. Reinhardt [46] and gave excellent semi-classical
results for bond length and bond energy, see also [42, 22, 23].

The contribution of the present work is the global picture of how phase space is foliated
by invariant tori, the derivation of bifurcation diagrams, an analysis of the energy surfaces
in action space, and a pursuit of the question if and how global action variables can be
constructed. Classically, the action quantization rests on the Liouville-Arnold theorem
which guarantees that most orbits in a Liouville integrable system with n degrees of
freedom are confined to n-dimensional tori. Such regular tori foliate the bulk of the 2n-
dimensional phase space and its (2n− 1)-dimensional energy surfaces. To understand the
global structure of this foliation we need to identify its topological changes, or bifurcations,
which involve special tori of lower dimension. The technical tool for achieving this is an
analysis of the energy momentum map, in particular, the determination of its critical
values.

Our system has three commuting integrals: energy, an angular momentum, and a third
“momentum like” integral. The critical values are those values of energy and conserved
momenta for which the three conserved quantities are not functionally independent. As
a consequence, the Liouville-Arnold theorem does not apply at these values. The first,
longer, part of this paper deals with the identification of this set of critical values – a
stratified subset of R3. This will incorporate the large body of knowledge about the
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problem that has accumulated in the course of time. Few special results in this part are
original, but the coherent presentation from the point of view of the energy momentum
map is new; it organizes all classical results in a comprehensive way.

The possible types of motion in the planar two-center problem were already identified
by Charlier [13], and more systematically in later work by Deprit [21]. These results belong
to the invariant subsystem, with zero angular momentum, of the full problem with three
degrees of freedom. We shall analyze in detail how the bifurcations of the planar system
are related to the full bifurcation scheme. This will be done for equal and unequal centers
of attraction (referred to as symmetric and asymmetric cases). Recent results by Howard
and Wilkerson [32] about saddle-center bifurcations of relative equilibria will be used in
this connection. Given the separability of the system in terms of elliptic coordinates, the
determination of critical values of the energy momentum map boils down to the analysis
of the discriminant surface of a polynomial, i. e., the set of energy and momentum values
for which the polynomial has multiple roots.

For each type of motion the actions are identified in terms of elliptic integrals (except
for the angular momentum which is an action by itself). Since the Hamiltonian may
be expressed as a function of action variables only, it is meaningful to determine the
hypersurfaces of constant energy (referred to as energy surfaces for short) in the space of
these variables. Such energy surfaces in the space of actions are important from two points
of view. Geometrically, they are a convenient representation of tori; the normal vectors
to these surfaces give the frequencies of the orbits on the corresponding tori, hence they
are relevant for stability considerations based on the Kolmogorov-Arnold-Moser theorem.
From the point of view of quantum mechanics, discretization of the action space in units
of ~ is the key to semi-classical spectra of energy and momenta.

It appears natural to use the separating variables for the definition and calculation
of actions. The actions so determined are therefore called natural actions. On the other
hand it is well known that any particular choice of actions corresponds to a certain basis
of the homology group of fundamental paths on the invariant tori. The natural actions
single out the paths defined by the separating coordinate system, but this system has
singularities. As a consequence, the natural actions as functions of energy and momenta
may not be smooth at points where there is no bifurcation. This interesting phenomenon
is related to a non-trivial monodromy of the two-center problem, an obstruction to the
existence of global, smooth, and single valued action variables. The possibility in principle
of such topological obstructions was first noted by Duistermaat [24]. Since then this has
become an active field of investigations, see [18, 55, 15, 19, 20, 45] and the references
therein. The two-center problem exhibits monodromy of a particularly interesting kind in
the asymmetric case. This is here described for the first time. We calculate the monodromy
matrices from an attempt to construct smooth actions from the natural ones. A similar
approach for different systems has already been used in [16, 49, 48].

In the last part of this paper we discuss the quantum version of the two-center problem.
More than 10 years after Pauli’s semi-classical treatment, the Schrödinger equation was
applied to the problem by Jaffé [34] and by Baber & Hasse [6]. However, even though
their approach is in principle exact, the quantization conditions are obtained from Sturm-
Liouville problems in a perturbation analysis near the low-lying Kepler-like states. For this
reason the authors could not see the non-trivial global geometry of the quantum spectrum.

There exist three commuting observables corresponding to the classical constants of
motion. Quantum states are defined to be simultaneous eigenstates of all three observ-
ables and, accordingly, may be labelled by triples of the corresponding eigenvalues. The
Einstein-Brillouin-Keller-Maslov quantization of actions gives a surprisingly good account
of the exact (numerical) spectra. Noticeable differences arise only in the neighborhood of
critical values where the classical bifurcations are reflected in changes of the local lattice
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structure of the spectra. Monodromy describes spectral lattices with a non-trivial global
topology. This phenomenon is referred to as quantum monodromy and was introduced by
Cushman and Duistermaat in [31], see also [40, 41, 45, 49]. A short report on the quantum
monodromy of the two-center problem has already been given in the letter [50].

The following six sections of this paper are organized as follows. The two-center
problem together with its separating coordinates and constants of motion, in two and three
dimensions, is introduced in Sec. 2. The planar motion is analyzed in Sec. 3; four types of
motion are identified, together with their bifurcation scheme. Particular attention is given
to the nature of critical periodic orbits and their stability properties because these are
the key structural elements of the phase space organization. Motion in three dimensions,
with arbitrary values of the angular motion, is considered in Sec. 4. Even though there
are only two topological types of motion, the bifurcation scheme is more involved than
in the planar case (which must of course be recovered in the limit of vanishing angular
momentum). Since it is practically impossible to give illustrations of the bifurcation set in
the 3D-space of energy and momenta, we present various projections and cross sections.
Bifurcations in the topology of energy surfaces are discussed in terms of relative equilibria,
but there are other bifurcations of the foliation due to changes of critical tori.

Actions are addressed in Sec. 5. We give expressions in terms of elliptic integrals, first
for the planar case, then for arbitrary angular momentum. All possible types of energy
surfaces in the space of natural actions are discussed. Bifurcations are clearly identified as
boundaries of the surfaces or lines with logarithmic divergencies, but in addition there are
edges where no critical behavior takes place. This phenomenon is related to monodromy,
the subject of Sec. 6. There we attempt to construct actions which are smooth across the
edges, and find that this is only piecewise possible; monodromy forbids a global smoothing.
The interesting and new feature of the two-center problem is that with non-zero angular
momentum, there exist two critical objects in the energy momentum space which give
rise to monodromy: one a line as usual, the other a line which fans out like a leaf. The
consequences of this classical behavior for the quantum mechanical spectra are discussed
in Sec. 7. We conclude with a brief summary in Sec. 8.

2 Separation and constants of the motion

Given a space fixed Cartesian coordinate system, we assume two fixed centers to be located
at f1,2 = (0, 0,∓a) on the z-axis. The equations of motion for a particle of mass m at
r = (x, y, z) derive from the Hamiltonian

H =
p2

2m
− µ1

r1
− µ2

r2
, (1)

where r1 and r2 are the lengths of the vectors r1,2 = r−f1,2. The centers are assumed to
be attractive, µ1,2 > 0. In the gravitational case the parameters are µi = GmMi with G
the gravitational constant, M1 and M2 the masses of the two fixed stars. In the molecular
case µi/e = Zie are the charges of the two nuclei.

We introduce dimensionless variables by measuring distances in units of a, momenta in
units of

√
m(µ1 + µ2)/a, energy in (µ1 + µ2)/a and time in

√
ma3/(µ1 + µ2). The scaled

Hamiltonian then reads

H̃ =
p̃2

2
− µ

r̃1
− 1− µ

r̃2
(2)

where tildes denote scaled variables and µ ≡ µ1/(µ1 + µ2) ∈ (0, 1) is a reduced strength
of attraction. Since only scaled variables will be used, we omit the tildes in the following.
Without restriction we may assume µ ≤ 1/2, i. e., the stronger center is at the top f2.
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Figure 1: Coordinate lines η = const and ξ = const in the (x, z)-plane.

The configuration space is Q3 = R3 \ {f1, f2} where f1,2 = (0, 0,∓1) are the two
centers. We shall also consider planar motion in the (x, z)-plane. The configuration space
is then Q2 = R2 \ {f1,f2} with f1,2 = (0,∓1). The punctuation at f1,2 is not essential
because collisions, as in Kepler’s case, can be regularized [47, 11, 51].

Hamilton’s equations of motion can be separated in several steps. First, the rota-
tional symmetry with respect to the z-axis suggests to introduce cylindrical coordinates,
(x, y, z) 7→ (ρ, ϕ, z) ∈ R+ × S1 × R. The Jacobian ∂(x, y, z)/∂(ρ, ϕ, z) of this transforma-
tion has determinant ρ, hence the new coordinates are singular along the z-axis. But the
angular momentum pϕ is a constant of the motion, pϕ = l, and the separated ϕ-equation
reads ϕ̇ = l/ρ2. For l 6= 0 the centrifugal repulsion dominates the potential for small ρ
preventing trajectories from reaching the z-axis. The coordinate singularity is accessible
only in the case of planar motion, l = 0, which will be considered in Sec. 3.

The second step of the separation procedure, in the (ρ, z)-plane, is achieved by the
introduction of elliptical coordinates: (ρ, z) 7→ (ξ, η) ∈ [1,∞)× [−1, 1] with

ρ =
√

(ξ2 − 1)(1− η2) , z = ξη , (3)

and the inverse

2ξ =
√

ρ2 + (z + 1)2 +
√

ρ2 + (z − 1)2 , 2η =
√

ρ2 + (z + 1)2 −
√

ρ2 + (z − 1)2 . (4)

In the (ρ, z)-plane lines ξ = const are half-ellipses with foci at f1,2, lines η = const are
confocal half-hyperbolas. For ξ = 1 the coordinate η parameterizes the z-axis interval
between the two centers, and for η = 1 (η = −1) the coordinate ξ parameterizes the
positive (negative) z-axis for |z| > 1. The Jacobian of this transformation has determinant
(ξ2 − η2)/ρ. For Q3 this implies that the Jacobian J3 of the combined transformation
(x, y, z) 7→ (ϕ, η, ξ) has determinant ξ2−η2 = r1r2 which vanishes only at the foci (ξ, η) =
(1,−1) (r1 = 0), and (ξ, η) = (1, 1) (r2 = 0).

In order to cover the (x, z)-plane of the configuration space Q2 it requires half-ellipses
ξ = const and half-hyperbolas η = const with ϕ = 0 and ϕ = π, see Fig. 1. Alternatively,
we set ξ = coshλ, η = sin ν and obtain the transformation (x, z) 7→ (λ, ν),

x = sinhλ cos ν , z = coshλ sin ν ; (5)

it is regular except at the foci (λ, ν) = (0,∓π
2 ), as its Jacobian J2 has again determinant

ξ2 − η2 = cosh2 λ − sin2 ν [39]. A single covering of Q2 by the (λ, ν)-coordinate strip
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R× [−π
2 , π

2 ] would have discontinuities along the z-axis, for z2 > 1 (a change in sign of λ).
To avoid this, we take the cylinder

(λ, ν) ∈ R× S1[−π, π] (6)

as a modified configuration space Q̄2. It is a two-sheeted cover with branch points at the
foci (0,±π

2 ). The two sheets are related by point reflection at the two foci,

λ 7→ −λ , ν 7→ π − ν (7)

which leaves the Cartesian coordinates in (5) unchanged. We shall see that planar collisions
can be regularized with these coordinates.

Consider now the canonical momenta. In the case of Q3, with cylindrical coordinates
(ρ, ϕ, z), we may use the momenta (pρ, pϕ, pz) and write down the corresponding Hamilto-
nian. By the separation of ϕ and the constancy of pϕ = l, the analysis can be restricted,
for given l, to the reduced phase space T?Ql

2(ρ, z, pρ, pz) with Hamiltonian 1

H =
1
2
(p2

ρ + p2
z) + Veff , Veff =

l2

2ρ2
− µ√

ρ2 + (z + 1)2
− 1− µ√

ρ2 + (z − 1)2
. (8)

For l 6= 0 it is equivalent to start with coordinates (ϕ, η, ξ), introduce the canonical mo-
menta (px, py, pz) = (pϕ, pη, pξ)J−1

3 , and work in the reduced phase space T?Ql
2(ξ, η, pξ, pη).

The Hamiltonian then reads

H =
1

ξ2 − η2

(
Hξ + Hη

)
(9)

with

Hξ =
1
2
(ξ2 − 1)p2

ξ +
1
2

l2

ξ2 − 1
− ξ ,

Hη =
1
2
(1− η2)p2

η +
1
2

l2

1− η2
− (1− 2µ)η .

(10)

Multiplying Eq. (9) by ξ2−η2 and separating terms which depend only on (ξ, pξ) or (η, pη),
yields a third constant of motion besides H and pϕ: the separation constant

G = ξ2H −Hξ = η2H + Hη =
Hη ξ2 + Hξ η2

ξ2 − η2
. (11)

A physical interpretation of the phase space function G derives from G = H + Ω where Ω
is given by

Ω =
1
2
(L2 − p2

x − p2
y) + (z + 1)

µ

r1
− (z − 1)

1− µ

r2
. (12)

Here L = r×p is the scaled angular momentum vector (about the origin). Going back to
unscaled variables, it can be shown that in the limiting case a → 0 of the Kepler problem,
Ω becomes the squared angular momentum, while for a →∞ (two Kepler problems) it is
related to the Runge-Lenz vector [17].

With H, pϕ and G we have three independent invariant functions on phase space.
Since they appear as separation constants they must be in involution. This establishes the
integrability of the problem of two fixed centers. In the following we denote the numerical
values of H, pϕ and G, for a given point in phase space, by h, l and g, respectively.

1The Hamiltonian functions for the various systems of phase space coordinates will all be denoted by H.
It will be clear from the context which function the symbol H refers to.
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In the case of Q̄2 the canonical momenta are obtained from

(px, pz) = (pλ, pν)J−1
2 (13)

which leads to the Hamiltonian

H =
Hλ + Hν

cosh2 λ− sin2 ν
(14)

with

Hλ =
p2

λ

2
− coshλ ,

Hν =
p2

ν

2
− (1− 2µ) sin ν .

(15)

The separation procedure gives the expression

G = H cosh2 λ−Hλ = H sin2 ν + Hν =
Hν cosh2 λ + Hλ sin2 ν

cosh2 λ− sin2 ν
(16)

for the second conserved quantity besides H.
Extending the involution (7) to the phase space T?Q̄2, we get

I : (λ, ν, pλ, pν) 7→ (−λ, π − ν,−pλ,−pν). (17)

T?Q2 is obtained from T?Q̄2 by factorization with respect to I.

3 Bifurcation diagrams for planar motion l = 0

The Liouville-Arnold theorem [2] holds for compact invariant sets. Although we concen-
trate on bound motion with h < 0 only, the Liouville-Arnold theorem cannot be applied
to the collision orbits in the phase space T?Q2 because they lead to infinite momenta.
However, if we consider the motion in T?Q̄2 and introduce an appropriate scaling of time,
dt 7→ dτ with

dt = r1r2dτ = (cosh2 λ− sin2 ν)dτ, (18)

together with the corresponding Hamiltonian H̄ = (H−h)dt/dτ , then the level sets H̄ = 0,
or H = h, are compact for each h < 0 [47, 11]. An interesting feature of this transformation
is that in the symmetric case µ = 1/2, it turns the double cover of the planar two-center
problem into the superposition of an anharmonic oscillator Hλ − h cosh2 λ = −g and a
pendulum Hν + h sin2 ν = g, cf. Eqs. (22) and use 2 sin2 ν = 1− 2 cos 2ν [22].

The level sets H = h in T?Q̄2 are foliated by two-dimensional invariant manifolds Th,g

obtained by fixing H = h and G = g. They are pre-images of the energy momentum
mapping [1],

M2 : T?Q̄2 → R2 , (q, p) 7→ (H, G)(q, p) = (h, g) . (19)

Here q = (λ, ν) are configuration space variables, and p = (pλ, pν) the conjugate momenta.
The invariant sets Th,g = M−1

2 (h, g) are two-dimensional tori when (h, g) is a regular value
of M2. When (h, g) is a critical value of the energy momentum map M2 the topology of
Th,g can be more complicated.2 The set of critical values of the energy momentum map
is called the bifurcation diagram Σ0,

Σ0 := {(h, g) ∈ (−∞, 0)× R | ∃ (q, p) ∈ T?Q̄2 : M2(q, p) = (h, g) ∧ rk DM2(q, p) < 2} .
(20)

2Depending on their dynamics we will call the sets of critical points (the critical invariant sets) equilibria
or periodic orbits. If the pre-image of the critical value (h, g) contains non-critical points, the critical
invariant set is unstable, otherwise stable. For brevity, and if no confusion can arise, we shall use the term
“periodic orbit” instead of “critical periodic orbit”.
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The superscript indicates that here l = 0. Σ0 consists of curves which separate regions
of regularity, or phases, in the (h, g)-half-plane of negative h. Within a given phase, the
corresponding invariant tori in phase space, i. e., the pre-images of the mapping M2, can
be smoothly deformed into each other.

3.1 Types of planar motion

Even though the coordinates (ξ, η) = (coshλ, sin ν) are singular along the z-axis, they are
convenient for part of the analysis. Two half strips [1,∞)× [−1, 1] are needed to cover Q2

(one for each of the two signs of x), and four to cover Q̄2. The corresponding momenta
(pξ, pη) at given (h, g) are functions of ξ and η, respectively,

p2
ξ =

2hξ2 + 2ξ − 2g

ξ2 − 1
,

p2
η =

−2hη2 + 2(1− 2µ)η + 2g

1− η2
.

(21)

Phase portraits of the invariant tori, see Fig. 6, will be given in terms of the variables
(λ, ν, pλ, pν), with (λ, ν) from the cylinder (6), and momenta

p2
λ = 2h cosh2 λ + 2 coshλ− 2g ,

p2
ν = −2h sin2 ν + 2(1− 2µ) sin ν + 2g .

(22)

Classically allowed motion requires the squared momenta to be positive. We discuss
this in terms of the zeros of the polynomials

P 0
µ(s) = 2(s2 − 1)(hs2 − (1− 2µ)s− g) (23)

with s = ξ or s = η and the understanding that formally µ = 1 if s = ξ. P 0
µ(s) is related

to the momenta via (ξ2 − 1)pξ = ±
√

P 0
1 (ξ) and (1 − η2)pη = ±

√
P 0

µ(η). The roots of

P 0
1 (ξ) and P 0

µ(η) are

ξ1,2 = ±1 , ξ3,4 = ±
√

g

h
+

1
4h2

− 1
2h

, (24)

η1,2 = ±1 , η3,4 = ±
√

g

h
+

(1− 2µ)2

4h2
+

1− 2µ

2h
, (25)

respectively. In both variables, the polynomials have two fixed roots ±1 and two moveable
roots, ξ3,4 or η3,4, which depend on the constants of motion. Double roots appear when
the discriminant

discr
(
P 0

µ(s), s
)

= 256(h + 1− 2µ− g)2(h− 1 + 2µ− g)2((1− 2µ)2 + 4hg) (26)

vanishes. For each µ 6= 1/2 this gives three curves in the lower half (g, h)-plane. They are

L1
µ := {g = h− 1 + 2µ} , L2

µ := {g = h + 1− 2µ} , L3
µ := {4gh = −(1− 2µ)2} . (27)

For µ = 1/2 the lines L1
µ = L2

µ = {g = h} coincide, and L3
µ = {g = 0} . Fig. 2a shows these

curves for µ = 1/3. Line L3
µ has a tangency with L2

µ if µ < 1/2, and with L1
µ if µ > 1/2.

The point of tangency is (g, h) = (|12 − µ|,−|12 − µ|). It will be convenient to introduce
the notation Lk+

µ and Lk−
µ for the parts of Lk

µ above and below this point, respectively.
Together these lines divide the lower half (g, h)-plane into five regions with characteristic
arrangements of roots; we label them by Latin numbers I through V. The polynomial
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Figure 2: (a) Lines of vanishing discriminant of P 0
µ(s) in the lower half (g, h)-plane for µ = 1/3; (b)

representative polynomials P 0
µ(s) for regions I to IV.

P 0
1/3(η) is sketched for the cases I-IV in Fig. 2b. In region I the polynomial is negative

for all physical values of η ∈ [−1, 1], hence no motion is possible. Upon entering region II
across L1

µ, η3 moves below 1, and oscillatory motion in the η-range [η3, 1] becomes possible;
this means motion in the neighborhood of the stronger center f2. The next transition is
either to III or to IV, depending on h. At L2+

µ the zero η3 decreases below −1 which opens
the way for rotational motion in the variable η: motion around both centers. At L2−

µ , on
the other hand, η4 increases above −1 so that two disjoint intervals [η3, 1] and [−1, η4] of
oscillatory η-motion exist, one about each center. The transition to region V involves a
collision of η3 and η4; the only real roots in region V are ±1. This is the same situation as
in region III. In fact, the distinction between III and V involves roots in the non-physical
range. Consequently, it does not correspond to a physical transition.

The bifurcation scheme associated with P 0
1 (ξ) is similar. The differences are that

now L1
1 lies to the right of L2

1, and that the physical ξ-range is [1,∞). As a result, the
non-physical regions are now IV and V.

To get the complete bifurcation diagram Σ0 of bounded motion, we must superimpose
the critical lines of η- and ξ-motion, and the enclosed regions must be physically mean-
ingful. This leads to Fig. 3a for µ = 1/3 and to Fig. 3b for the symmetric case µ = 1/2.
For the part of L1

1 which lies below the intersection with L3
µ we introduce the notation

L1=
1 , and we anticipate the identification given in Table I of line segments with icons rep-

resenting the corresponding critical orbits. The left boundary of the physically meaningful

(g, h)-region is defined by L1
µ = q

r
, the right boundary by L1=

1 = q
r

and q
r
, L1−

1 = q
r
, and

L3+
1 = q

r
6and q

r
6. The region so defined is partitioned into four phases by the inner critical

lines L2
µ = q

r
, L3−

µ = q
r

and L1+
1 = q

r
. In the symmetric case µ = 1/2 there are only three

phases due to the identity of L1
µ and L2

µ. As indicated in the figures, they are denoted
by ts, tl, tp and, in the asymmetric case, ts’. This notation goes back to Charlier [13]
and Pauli [43]. Representative trajectories in configuration space, and the corresponding
caustics, are shown in Fig. 4.

The tori of phase ts’ are “satellite” motion around the stronger center at f2. The
order of zeros is η4 < −1 < η3 < 1 (η-region II) and −1 < ξ4 < 1 < ξ3 (ξ-region II). The
caustic is formed by arcs of the ellipse ξ = ξ3 and the hyperbola η = η3. In the symmetric
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Figure 3: Bifurcation diagrams Σ0 for the planar two-center problem; (a) asymmetric case with µ = 1/3,
(b) symmetric case µ = 1/2.

two-center problem this phase does not exist because then η3 = −η4.
Phase ts has two disjoint pre-images in phase space, representing “satellite” motion

around either center. The ξ-zeros are ordered as in phase ts’, but the η-zeros are as in
region IV: −1 < η4 < η3 < 1. Motion around the center at f1 is the same type as in
ts’; its caustic is formed by arcs of the ellipse ξ = ξ3 and the hyperbola η = η4. In the
symmetric case the two caustics are mirror images of each other.

Phase tl has been called “lemniscate” motion. Trajectories fill the interior of the ellipse
ξ = ξ3 as there is no restriction to η in the range [−1, 1]. The arrangement of η-zeros is
that of regions III or V. The ξ-zeros are still in the order of region II. The pre-image of
phase tl in phase space has only one connected component.

Phase tp is referred to as “planetary” motion; the trajectories are confined to the
region between the two ellipses ξ = ξ4 and ξ = ξ3. The difference to phase tl is the
arrangement of ξ-zeros: 1 < ξ4 < ξ3. There is no restriction in η. Corresponding to the
two senses of rotation there are two disjoint pre-images of phase tp in phase space.

3.2 Foliations of energy surfaces

Let us now discuss the topological structure and bifurcation schemes of energy surfaces

Ē0
h := {(q, p) ∈ T?Q̄2 |H(q, p) = h} and E0

h := Ē0
h/I ⊂ T?Q2, (28)

where I is the involution defined in (17). The “physical” energy surfaces E0
h contain lines

of singularities which correspond to collisions. These lines are given by (λ, ν) = (0,±π
2 )

and (pλ, pν) as functions of (h, g):

p2
λ

2
= h− g + 1,

p2
ν

2
= −h + g ± (1− 2µ). (29)

Without the identification by I, the manifolds Ē0
h ⊂ T?Q̄2 are smooth for almost every h.

The exceptional or critical energies h correspond to the energies of equilibrium points,
where Ē0

h ⊂ T?Q̄2 changes its topology. The topology of Ē0
h may be inferred from the

nature of the accessible region in configuration space Q̄2 [9]. The nature of this region
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Figure 4: The four types of orbits, and their caustics, for planar motion with µ = 1/3. The constants of
motion are (h, g) = (−0.35,−0.20) for ts’, (−0.44, 0.05) for ts, (−0.31, 0.40) for tl and (−0.27, 0.80) for tp.

changes at the energy of the saddle point of the potential in the Hamiltonian (2) which
lies on the z-axis at

z = −1− 2
√

µ(1− µ)
1− 2µ

. (30)

The corresponding energy is

hc 1 = −
√

µ(1− µ)− 1
2

. (31)

For h below hc1, the accessible region in Q̄2 consists of two disks. For h above hc1 it
consists of an annulus. Accordingly, the energy surface is the disjoint union of two 3-
spheres S3 as long as motion is confined to the neighborhoods of the two centers, whereas
it has the topology of S1 × S2 for energies above the saddle point energy.

We are interested in how the energy surfaces Ē0
h are foliated by the invariant sets Th,g

which are tori for almost every possible g. The intersections h = const of bifurcation lines
in Fig. 3a suggest that there is only one foliation of Ē0

h for h < hc 1 and three different
foliations for h > hc 1. The critical energy values where the foliation changes are

hc 2 = −1
2

, hc 3 = µ− 1
2

. (32)

In the symmetric case, we have hc 1 = −1, hc 2 = −1/2, hc 3 = 0.
To represent the foliations in E0

h, we use Fomenko graphs [28] as shown in Figures 5a, b,
for representative energy values h1 < hc1 < h2 < hc2 < h3 < hc3 < h4 < 0. The horizontal
coordinate of the graphs increases with g, the vertical direction has only symbolic meaning.
The graphs consist of several branches which may or may not be connected at vertices.
Each branch represents a family of 2-tori that can be smoothly deformed into each other.
Except for endpoints and vertices, every point of the graph represents exactly one regular
physical torus. (Note that after lifting the identification with I, the graphs ought to be
doubled to the right of g = −(1 − 2µ)2/4h for hc1 < h < hc3, and to the right of g =
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Figure 5: Fomenko graphs for energy surfaces E0
h in the asymmetric (a) and symmetric (b) planar two-

center problem. Each inner point of a branch represents a regular physical torus. The periodic orbits
associated with endpoints and vertices are illustrated by sketches of their projections to configuration
space. In the corresponding Fomenko graphs for Ē0

h, the part to the right of the leftmost unstable periodic
orbit is doubled.

h+1−2µ for h > hc3.) The endpoints are stable periodic orbits, the vertices correspond to
unstable periodic orbits plus the attached separatrices. Note that the endpoints correspond
to Lyapunov stable periodic orbits when the constant G has a local maximum or minimum
there, which is generically the case. We see that for given h and g there are at most two
regular tori. For low energies like h1, the graphs are just two disconnected branches; above
hc 1 they are connected and possess one or two vertices (one or three in the corresponding
graphs for Ē0

h).
Comparison of Figures 3 and 5 reveals the non-trivial relationship between phases in

(h, g)-space and families of tori in phase space. For example, the family of satellite orbits
about the strong center f2 represents the upper branch of the Fomenko graph for h = h1.
It is unaffected by the transition from ts’ to ts, i. e., the family exists in both phases.
However, in phase tl there is a one-to-one correspondence of points (h, g) and tori in E0

h.

3.3 Phase Portraits

Fig. 5 contains little sketches of the periodic orbits in configuration space (the z-axis
pointing upward). To obtain this and more information about possible types of motion
at given energy, consider the phase portraits of Fig. 6. They show the relations λ vs. pλ

and ν vs. pν as given by Eq. (22), for the energy values h1, . . . , h4, and, for each h, with
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Figure 6: Phase portraits of the asymmetric planar two-center problem. The energy values are h1 =
−1.47, h2 = −0.74, h3 = −0.33 and h4 = −0.08. The coordinate ranges are ν ∈ [−π, π], pν ∈ [−3, 3],
λ ∈ [−3.5, 3.5], pλ ∈ [−3, 3].

different values of g. These phase portraits hold for T?Q̄2 because ν extends along the
circle S1 = [−π, π]. In T?Q2 the (ν, pν)-cylinder is reduced to the strip [−π

2 , π
2 ] × R, and

points at its boundaries with opposite signs of pν are identified according to (17). This
connects the two rotational branches of ν-motion (for h > hc1) into one oscillation. The
period of this oscillation is the same as that of the two former rotations. The periods of
the former oscillatory orbits, on the other hand, are reduced by one half. We shall discuss
orbits in T?Q̄2 or T?Q2, whatever is more convenient in the context.

The (λ, pλ)-plane and the (ν, pν)-cylinder are foliated by topological circles S1
h,g(λ, pλ)

and S1
h,g(ν, pν), respectively. Together, the product of two such circles forms a torus T2

h,g ⊂
Ē0

h. With increasing g, the circles S1
h,g(λ, pλ) shrink, while the circles S1

h,g(ν, pν) grow. At
the smallest possible g, for the two families of tori in phases ts’ and ts, the ν-motion is

frozen at +π
2 or −π

2 , corresponding to collision orbits along the z-axis, q
r

above f2, or

q
r

below f1, respectively. At the highest possible g, the λ-motion is frozen: at λ = 0

for h < hc2, and at coshλ = −1/2h for h > hc2; combining this with the corresponding
circles S1

h,g(ν, pν), we see that for h < hc1 the motion consists of collision orbits q
r

and q
r

between the two centers; in the range hc1 < h < hc2 these two orbits have joined across
the potential barrier to form the double collision orbit q

r
, and for h > hc2 the orbits with

maximum g at given h are the two ellipses q
r
6and q

r
6 with λ = const, differing in the sense

of rotation.
The bifurcation at hc1 is a bifurcation of the energy surface Ē0

h. Comparison of the two
portraits for h1 and h2 in Fig. 6 shows that the bifurcation takes place in the (ν, pν)-circles.
Their merging gives rise to a transition (at maximum g) from the two disconnected orbits
q
r
and q

r
to a stable orbit of type q

r
plus an unstable isolated orbit q

r
with a fixed negative

value of ν: oscillation along a piece of the corresponding hyperbola.
The bifurcations at hc2 and hc3 are not associated with topological changes of the

energy surface. Instead, they are bifurcations of periodic orbits. At h = hc2 the elliptic
center (0, 0) in the (λ, pλ)-plane undergoes a pitchfork bifurcation: the oscillation q

r
be-

comes unstable and ejects two stable rotations q
r
6and q

r
6. At h = hc3 there is a bifurcation
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Figure 7: Top: Pitchfork bifurcation at hc2: the oscillatory center-to-center orbit gives birth to two
planetary orbits, with different sense of rotation, on the same ellipse. Bottom: Inverse period doubling
bifurcation at hc3 of the collision orbit below f1. Solid (dashed) lines mark stable (unstable) periodic
orbits.

at (−π
2 , 0) in the (ν, pν)-plane. It has different interpretations in T?Q2 and T?Q̄2. In the

physical phase space T?Q2 it is an inverse period doubling: the oscillation q
r

below f1

loses its stability after merging with the unstable oscillation q
r

of twice its period. In the

smooth space T?Q̄2 we have an inverse pitchfork bifurcation where all orbits have the
same period. (In the symmetric case this transition does not occur because then hc3 = 0.)
The two scenarios are sketched for T?Q2 in Fig. 7.

Except for type tp, every torus Th,g has points (λ, ν) = (0,±π/2) corresponding to
collision with the centers. The corresponding (pλ, pν) are given by Equations (22). These
points exhibit no particular criticality in the phase space T?Q̄2. In T?Q2, on the other
hand, they correspond to infinities of the momenta.

The phase portraits for the symmetric case µ = 1/2 differ from those in Fig. 6 in that
the (ν, pν) pictures are symmetric with respect to the axis ν = 0.

Table I collects the information obtained so far on periodic orbits. The first column
identifies the orbits by their icons. The second specifies the fixed coordinate ν or λ;
correspondingly, pν or pλ are zero. The third column gives the associated line in the
bifurcation diagram. The last four columns show in which of the four energy ranges the
orbit exists and whether it is stable (s) or unstable (u). The arrows indicate bifurcations
already described. Notice there is a one-to-one correspondence of icons and lines, but the
same icon may represent stable or unstable periodic orbits. This is distinguished by the
sign in the upper index: q

r
is stable along L2−

µ , unstable along L2+
µ ; similarly, q

r
is stable

along L1−
1 and unstable along L1+

1 . A detailed stability analysis is given next.

3.4 Stability of Periodic Orbits

Regularizing the motion in T?Q̄2 by using the time τ defined in (18), we obtain the
following equations of motion (′ means differentiation with respect to τ):

λ′ = pλ p′λ = (1 + 2h coshλ) sinhλ

ν ′ = pν p′ν = (1− 2µ− 2h sin ν) cos ν
(33)

To discuss the stability of the eight isolated periodic orbits listed in Table I, we analyze
the variational equations for (δq(τ), δp(τ))t = S(τ)(δq(0), δp(0))t in their neighborhood:

S′ = JD2H S, (34)
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Table I: Critical periodic orbits: icons, definition, and stability properties.

orbit fix coordinate (h, g)-line (−∞, hc1) (hc1, hc2) (hc2, hc3) (hc3, 0)

q
r

ν = π
2 L1

µ s s s s

q
r

ν = −π
2 L2

µ s s s → u

q
r

sin ν = 1−2µ
2h L3−

µ – u u
↗

–

q
r

or q
r

λ = 0 L1=
1 s

↗
↘

– – –

q
r

λ = 0 L1
1 – s → u u

q
r
6or q

r
6 coshλ = − 1

2h L3+
1 – –

↘
s s

where J is the symplectic matrix and D2H the Hessian of the Hamiltonian with respect
to (q, p). Integrating over a period T =

∮
dτ of the physical motion (as opposed to

the regularized motion), with S(0) = 1, we obtain the monodromy matrix S(T ). Two
of its eigenvalues are 1, corresponding to perturbations along the periodic orbits and
perpendicular to the energy shell in T?Q2. The other two eigenvalues σ1,2 are related by
σ1σ2 = 1. Using Greene’s residue [30]

R :=
4− trS

4
(35)

they can be expressed as

σ1,2 = 1− 2R± 2
√

R(R− 1) = cos 2πW ± i sin 2πW , (36)

where the latter equation is meaningful in the case 0 < R < 1 of elliptic periodic orbits,
where it gives the rotation number W .

Fig. 8 presents the results of numerical integration of Eq. (34), where due care has
been taken of the differences of periods in T?Q̄2 and T?Q2.

In principle the residue R may be calculated in terms of elliptic integrals. We shall
come back to this in Sec. 5, but let us indicate for the example of orbits q

r
and q

r
how this

is done. For orbits of elliptic stability the rotation number is the ratio of periods of the
ν- and the λ-motion, W = Tν/Tλ. The period Tλ = 2π/ωλ is obtained by linearizing the
first equation in (33) about λ = 0: λ′′ = (1 + 2h)λ =: −ω2

λ λ. Determination of Tν may
proceed from (14) with λ = 0, Hλ = −1, and pν = ν ′. Substituting sin ν = η, we get the
complete elliptic integral of the first kind

Tν =
∮

dτ =
∮

dη√
P 0

µ(η)
, (37)

where the polynomial P 0
µ(η) is given in (23). The orbit q

r
lives in the η-range −1 < η < η4,

and q
r
in η3 < η < 1. But the complete integrals (37) are the same for both orbits because
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Figure 8: Greene’s residue R of the isolated periodic orbits of the planar asymmetric two-center problem.

the two corresponding closed paths on the elliptic curve w2 = P 0
µ(η) are homologous.

Hence, both orbits have the same rotation number W . With h approaching hc1 from
below, Tν diverges logarithmically whereas Tλ has only a mild h-dependence, hence W
diverges to ∞. Using 2R = 1 − cos 2πW we see that the residue performs infinitely
many oscillations as h → hc1. This is a typical behavior in the neighborhood of unstable
equilibria. Only the beginning of these oscillations is visible in Fig. 8. Their “mirror
image” on the side h > hc1 appears in the residue R(h) of the orbit q

r
which is stable for

h < hc2, then turns unstable in a pitchfork bifurcation and gives birth to the two stable

orbits q
r
6and q

r
6.

The orbit q
r
is stable for any negative energy h; as h increases from −∞ to 0, R increases

monotonously from 0. The residue of the orbit q
r
is everywhere larger and reaches the value

1 at h = hc3; this corresponds to W = 1/2 and period doubling. The orbit with twice the
period of q

r
, at hc3, is q

r
. It is hyperbolic in the entire range hc1 < h < hc3 of its existence,

as R is everywhere negative, approaching 0 as h grows towards hc3.

4 Bifurcation diagrams for motion with general l

The aim of this section is to present the bifurcation diagram Σ of the energy-momentum
mapping

M3 : T?Q3 → Σ := M3(R6) ⊂ R3 , (q, p) 7→ (H, G, pϕ)(q, p) = (h, g, l) , (38)

for bound motion, h < 0. Here Σ denotes the image of the energy momentum map; the
bifurcation diagram Σ is the subset of all those values (h, g, l) in the image which possess
pre-images where r := rk DM3 is smaller than 3 for some point in the pre-image. The
complement of Σ in Σ is the set of regular values (h, g, l) where r = 3 for every point in the
pre-image. Σ has a natural stratification into components of 2, 1, and 0 dimensions. The
regular part3 of the critical set Σ is the two-dimensional set of values (h, g, l) which have
pre-images where the minimal rank is r = 2. The singular part of Σ is the one-dimensional

3The regular part of the critical set Σ is not to be mistaken with the set of regular values Σ \ Σ,
which have full rank. Likewise, the adjective “singular” is used in different connotations; it may refer to
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set of (h, g, l) which have pre-images where the minimal rank is r = 1. Finally the super-
singular part of Σ is the discrete set of values with pre-images where the minimal rank is
r = 0.

In general the topology of the singular fibers Th,g,l = M−1
3 (h, g, l) of critical values

(h, g, l) can be quite complicated. In the simplest case the dimension of the set of critical
values equals the rank and the dimension of the corresponding invariant set of critical
points in the pre-image. Under certain additional assumptions this set of critical points is
a torus. In many examples of systems with three degrees of freedom, the regular points in
Σ \Σ have 3-tori in their pre-image, the regular parts of Σ have 2-tori in their pre-image,
the singular parts of Σ have 1-tori (or periodic orbits) in their pre-image, and, finally,
equilibrium points are in the pre-image of super-singular points of Σ. Note that the pre-
image of a critical value often contains non-critical points, hence it can be larger than
the invariant torus composed of critical points just mentioned. Typically these additional
points in the pre-image belong to the stable and/or unstable manifolds (“separatrices”)
of the critical invariant torus. The dimension of the invariant manifolds increases when
the dimension of the critical set decreases. If a connected component of the fiber Th,g,l

contains critical and non-critical points (which in our case always belong to separatrices)
we will say that the critical torus contained in it is unstable, otherwise stable.

Based on the following analysis we can be more precise. In the two-center problem
pre-images of regular parts of Σ are either stable 2-tori or unstable 2-tori with their stable
and unstable manifolds. All these 2-tori are relative periodic orbits (RPOs), i. e., they are
2-tori obtained from periodic orbits of the reduced system by lifting them to the full phase
space. We use the designation “RPO” for both: the periodic orbit in the reduced system,
and for the corresponding 2-torus in the full system. Pre-images of the singular part of
Σ are either relative equilibria, other periodic orbits, or bifurcating RPOs (plus possible
separatrices). Again, we use the term “relative equilibrium” for both: the equilibrium in
the reduced system, and for the corresponding periodic orbit in the full systems. Periodic
orbits of the full system that are not relative equilibria do exist and play a very important
role. They are confined to the set of fixed points under rotations, hence they are periodic
orbits both in the full and in the reduced system. Their projections to configuration space
are orbits along the z-axis. The super-singular part of Σ corresponds to equilibrium points
or bifurcating relative equilibria or bifurcating periodic orbits (plus possible separatrices).

4.1 The structure of Σ and Σ for µ < 1/2

To give a first impression of what Σ looks like, the projection πgΣ of its singular and
super-singular parts to the (h, l)-half-plane of negative h is shown – for the asymmetric
case with µ = 1/3 in Fig. 9a, and for the symmetric case with µ = 1/2 in Fig. 9b. The
calculations leading to these pictures will be outlined in the following subsections, based on
an analysis of the effective potential Veff and of the zeros of polynomials P l

µ(s). A mental
picture of the set Σ in R3(h, g, l) may be obtained by imagining the curves of Fig. 9 as
lifted to (h, g, l)-space by π−1

g , and connected by regular Σ sheets. Note, however, that not
all singular lines are intersections of (closures of) regular components. We shall see that
the bifurcation diagram contains isolated lines: two in the asymmetric, and one in the
symmetric case. A comprehensive view of Σ will be given later, in terms of cross sections
l = const, see Figures 10, 11, 14, and cross sections h = const, see Figures 13, 15. We
again consider µ = 1/3 as a typical asymmetric case.

Σ possesses five super-singular values (h, g, l):

the collision singularity or to a codimension 2 subset of Σ, but this should not be a cause of confusion.
In order not to clutter the exposition when we talk about “intersection of regular parts” of Σ we mean
“intersection of the closure of the regular parts”; otherwise they would be disjoint.
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Figure 9: Projection πgΣ of the bifurcation diagram Σ to the (h, l)-plane; (a) asymmetric case with
µ = 1/3 and (b) symmetric case with µ = 1/2.

S = (hc1, hc1 + 1, 0) corresponding to the equilibrium point on the axis between the cen-
ters. Since this lies on the symmetry axis, S is an equilibrium in the reduced and in
the full system.

P = (hc2, hc2 + 1, 0) the pitchfork bifurcation of the planar system, see top of Fig. 7; in
the full system this is a Hamiltonian Hopf bifurcation;

D = (hc3,−hc3, 0) the point of inverse period doubling in the planar system, Fig. 7 bottom;
again, this a (subcritical) Hamiltonian Hopf bifurcation in the full system;

C± = (hc, gc,±lc) = (−0.5542, 0.1928,±0.4920) the points corresponding to the saddle-
center bifurcation of the effective potential, i. e., bifurcations of relative equilibria.

A comment is in order on how the pitchfork/period doubling bifurcations are related to
the Hamiltonian Hopf bifurcation. In the reduced system both bifurcations are symmetry
breaking transitions. This means that the central orbit in the bifurcation consists of fixed
points with respect to rotation, while the new orbits do not. Letting the rotation act on
these orbits in order to obtain the picture in the full system, the symmetric orbit stays a
periodic orbit, while the non-symmetric orbit turns into a 2-torus (in fact, into an RPO).

Before the super-singular set will be analyzed to greater depth, in the next subsec-
tion, consider the various curves in πgΣ. The outer boundary is formed by projections of
the curves R+

2 , R−
2 of maximum l2 at given energy, or minimum energy at given angular

momentum. These curves, as we shall see, represent stable relative equilibria, i. e., stable
equilibria of the reduced Hamiltonian (8), in this case corresponding to the absolute min-
imum of the effective potential. The only motion in relative equilibria is rotation in ϕ,
with positive orientation for l > 0, negative for l < 0.

The inner curves in πgΣ are projections of four different kinds of curves:

1. The curves R±
1 extending from the cusps C± to h → −∞, are again stable relative

equilibria, corresponding to the higher minima of Veff.

2. The curves R+
s and R−

s between the cusps and the point S are unstable relative
equilibria, corresponding to saddle points of Veff.
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3. The curves C+ and C− joining the cusps to the point D correspond to saddle-center
bifurcations of RPOs.

4. The line l = 0, h < 0, contains the projections of the three bifurcation lines L1
µ, L2

µ,
and L1

1 in Fig. 3a. The lines L3−
µ and L3+

1 are not contained in the singular part of
Σ in the full system .

These curves divide πgΣ into six regions, three for each sign of l. Each inner point (h, l) of
these regions is lifted by π−1

g to two, three or four points within regular sheets of Σ. The
number is 2 in the outer regions; the two Σ-sheets intersect along the singular curve R±

2 .
The region betweenR±

1 andR±
s is covered by 3 Σ-sheets of critical tori, and the quadrangle

with corners C±, S and D is covered by 4 sheets. The new Σ-sheets branch off the high-g
sheet along R±

1 and R±
s ; they vanish in their intersection along the curves C±.

To see how the plane l = 0 fits into this picture we recall from Fig. 3a and Eq. (27)
that points (h, 0) on the negative h-axis are lifted by π−1

g to three singular curves of Σ,
and depending on h up to two additional lines that are part of regular sheets of Σ. It may
be helpful to consult Fig. 13 in connection with the following assertions.

L1
µ is the singular line of minimal g at given h, associated with the family of motion q

r
that

with growing energy first appears near the center f2. Two regular sheets coming
from R±

2 intersect there.

L2
µ is the singular line of lowest g for the family of motion q

r
that emerges near f1. Two

regular sheets coming fromR±
1 meet along L2−

µ . The piece L2+
µ is an isolated singular

line joining the point D to (0, 1− 2µ, 0).

L1
1 is the singular line of maximal g at given h, provided h < hc2. Below hc1, two regular

sheets coming from R±
2 meet in the q

r
part of L1=

1 , and two other sheets, coming

from R±
1 , meet in the q

r
part of L1=

1 . Between hc1 and hc2, two regular sheets coming

from R±
s meet in the line L1−

1 which represents the family of stable orbits q
r
. The

piece L1+
1 is a second isolated singular line joining the point P to (0, 1, 0).

L3+
1 is the regular curve of maximal g for energies h > hc2. Even though this is a line

of critical points for the two degree of freedom system l = 0 (M2 has corank 1) it
does not lead to a singular line of the bifurcation diagram for the full system (M3

has also corank 1). Instead the two regular sheets coming from R±
2 join smoothly.

Nevertheless it turns out to be special as a line representing stable resonant 2-tori.

L3−
µ is the regular curve of highest g for the second family of tori. Like L3+

1 this is not a
singular part of Σ. Two regular sheets coming from C± join smoothly. The special
feature here is that L3−

µ is a line of unstable resonant 2-tori.

The singular curves L1
µ, L2−

µ , L1−
1 , are at the intersection of the (closure of) regular sheets;

L3+
1 and L3−

µ are just parts of regular sheets; finally L2+
µ and L1+

1 are isolated singular
lines. They give rise to the monodromy which is the subject of Sec. 6. The reason for the
different behavior of L1,2 and L3 under reduction is that the corresponding sets of critical
points are sets of fixed points under rotation in the first case, while in the latter case they
are not and hence form RPOs.

The closure of the regular sheets of Σ divides the three-dimensional set Σ = M3(T?Q3)
into just two regular connected (but not simply connected, see Sec. 6) parts with topolog-
ically different types of motion. This is explained next.
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Figure 10: (a) Level lines of the effective potential Veff(ρ, z) for µ = 1/3 and l = 0.3. (b) Bifurcation
diagram Σ0.3
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Figure 11: (a) Level lines of the effective potential Veff(ρ, z) for µ = 1/3 and l = 0.6. (b) Bifurcation
diagram Σ0.6

g,h.
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4.2 Relative equilibria and types of motion

A key for understanding the general motion with non-zero angular momentum l is the
analysis of the effective potential Veff in (8), see [32]. Our analysis combines this approach
for l 6= 0 with the analysis of the case l = 0 into one coherent picture. The centrifugal term
l2/2ρ2 dominates the potential near the z-axis, even at the two centers. As a consequence,
Veff develops two minima of finite depth, the deeper one, with level hl

m2, near the strong
center f2, the higher, with level hl

m1, near f1. An example, with l = 0.3, is shown in
Fig. 10a. The saddle point has moved away from the point (30) on the z-axis; we denote its
energy level by hl

c1 (for l → 0 it approaches hc1). When l2 increases, the higher minimum
and the saddle merge in a saddle-centre bifurcation, but the stronger minimum survives
for all values of l2. The example of l = 0.6 is shown in the left part of Fig. 11. The
transition from two minima to one takes place at l2 = l2c = 0.2421 and h = hc = −0.5542,
cf. the cusp in Fig. 9. Howard and Wilkerson [32] have shown how to determine these
values and, more generally, the curves of relative equilibria, from a critical point analysis
of Veff. The implications of non-zero angular momentum for (reduced) energy surfaces and
possible types of motion are far-reaching.

First, the energy surfaces in the reduced phase space T?Ql
2,

E l
h := {(q, p) ∈ T?Ql

2 |H(q,p) = h} , (39)

are compact. They may be constructed as usual [9] from the accessible regions in Ql
2. As

these are always topological disks, the topology of E l
h is one S3 in the range hl

m2 < h < hl
m1,

where the motion is confined to the neighborhood of the absolute minimum, two S3 in the
range hl

m1 < h < hl
c1, where motion near either minimum is possible, and again one S3 in

the range hl
c1 < h < 0 where the two neighborhoods have merged.

Second, in contrast to the case l = 0, there exist only two topologically different types
of motion, or regular tori. This is best seen from the analogue of Equations (21) for l 6= 0,
which follows by solving Equations (10) and (11) for pξ, pη:

p2
ξ =

(ξ2 − 1)(2hξ2 + 2ξ − 2g)− l2

(ξ2 − 1)2
,

p2
η =

(1− η2)(−2hη2 + 2(1− 2µ)η + 2g)− l2

(1− η2)2
.

(40)

The analysis of their zeros involves the polynomials

P l
µ(s) = 2(s2 − 1)(hs2 − (1− 2µ)s− g)− l2 = P 0

µ(s)− l2 (41)

which are not as easily factorizable as P 0
µ(s). But clearly, P l

1(ξ) is negative in finite ξ-
neighborhoods of ±1, and P l

µ(η) is negative in finite η-neighborhoods of ±1. This implies
that for any given l 6= 0, irrespective of the values of h and g, certain regions of Ql

2 are
inaccessible to the motion. It would be nice if the roots ηi and ξi could be numbered in such
a way that as l → 0, they approach their values in the planar case l = 0, and at the same
time their ordering does not change in continuous deformations of tori. But this is not
possible due to collisions of roots in the unphysical ranges (−∞,−1) and (1,∞) for η and
(−∞, 1) for ξ. Therefore we arbitrarily choose the schemes 1 > η1 > η2 > η3 > η4 (where
the latter two inequalities are only meaningful for real η3,4) and ξ1 > ξ2 > 1 > ξ3 > ξ4.
The inaccessible regions are then the interior of the ellipsoid ξ = ξ2 > 1; the interior of the
hyperboloid η = η1 < 1 with the z-axis above f2, and the interior of another hyperboloid
η = const containing the z-axis below f1. The level lines of Veff near the z-axis, in the left
parts of Figures 10 and 11, reflect this centrifugal repulsion. A little contemplation shows
that the only physically possible types of motion are



Two-Center Problem 22

a)

0 1 2 3

-3

-2

-1

0

1

2

3

z

-3

-2

-1

0

1

2

3

z

0 1 2 3

TPTP

TP TS

ρ ρ

PSfrag replacements
L1

µ

L2+
µ

L2−
µ

L3+
µ

L3−
µ

C+

C−

S
D
P
R+

2

R−
2

R+

1

R−
1

R+
s

R−
s

R+

R−

C+

C−
L1

1/3

L2−
1/3

L2+

1/3

L3−
1/3

(L3−
1/3)
L1−

1

L1+

1

L1=
1

L3+

1

(L3+

1 )
L1

1/2

L3
1/2

(L3
1/2)
R+

2

R−
2

R+

1

R−
1

R+
s

R−
s

C+

C−
R+

R−

b)

T TS P

PSfrag replacements
L1

µ

L2+
µ

L2−
µ

L3+
µ

L3−
µ

C+

C−

S
D
P
R+

2

R−
2

R+

1

R−
1

R+
s

R−
s

R+

R−

C+

C−
L1

1/3

L2−
1/3

L2+

1/3

L3−
1/3

(L3−
1/3)
L1−

1

L1+

1

L1=
1

L3+

1

(L3+

1 )
L1

1/2

L3
1/2

(L3
1/2)
R+

2

R−
2

R+

1

R−
1

R+
s

R−
s

C+

C−
R+

R−

Figure 12: (a) The two types of caustics in the (ρ, z)-plane for motion with l 6= 0. The caustics are
for the same values of g and h as the caustics of the planar system in Fig. 4 but now for a small angular
momentum l = 0.2. The small angular momentum turns all three planar caustics ts’, tl and tp into caustics
of type TP while the planar caustic ts leads to TS; (b) caustics TS ((h, g, l) = (−0.525, 0.050, 0.200)) and
TP ((h, g, l) = (−0.525, 0.200, 0.200)) in R3(x, y, z).

TP: 1 < ξ2 ≤ ξ ≤ ξ1 and −1 < η2 ≤ η ≤ η1 < 1;

TS: 1 < ξ2 ≤ ξ ≤ ξ1 and −1 < η4 ≤ η ≤ η3 or η2 ≤ η ≤ η1 < 1.

In order to show how these types of motion are related to the four phases of planar motion
Fig. 12 shows TP and TS for the same h and g as in Fig. 4 but now with a small angular
momentum, |l| > 0. The small angular momentum turns the caustics of each of the phases
ts’, tl and tp into caustics of type TP; the planar phase ts turns into motion of type TS.
In phase space, TS consists of two 3-parameter families of 3-tori, TP of only one. We shall
see in the next subsection, cf. Fig. 13, that the upper family in TS connects continuously
to the TP family, whereas the family of motion in the neighborhood of the light center f1

is a disjoint component in phase space (attached to the other family across a separatrix).
We introduce the symbols TH for the bigger family, and TL for the smaller.

However, Veff does not tell the whole story. The caustics do not follow its level lines.
They also depend on the separation constant g. Let us therefore proceed to a detailed
bifurcation analysis using the energy momentum map.

4.3 Cross sections of bifurcation diagrams

In principle, like in the case of vanishing l, the bifurcations could be studied in terms of
the discriminant of the polynomials P l

1(ξ) and P l
µ(η). However, the expressions turn out

to be too complicated to solve them for, say, g as a function of h and l. Therefore we use a
trick to obtain cross sections Σl

g,h (l = const) or Σh
g,l (h = const) of Σ. (The cross section

g = const would also be possible but will not be considered.) In these cross sections Σ
is a system of lines which may be parameterized by the double zeros dξ of P l

1(ξ) or dη
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of P l
µ(η). Hence we compare P l

µ(s) with the ansatz

P l
µ(s) = (s− d)2(as2 + bs + c) , (42)

and equating the coefficients of different powers of s, we find

a = 2h , b = 4hd− 2(1− 2µ) , c = 2hd2 − d2 + 1
d

(1− 2µ) . (43)

With h and d as parameters, we get for Σh
g,l

g(h, d) = h(2d2 − 1)− 3d2 − 1
2d

(1− 2µ) , (44)

l2(h, d) =
(
−2h +

1− 2µ

d

)
(d2 − 1)2 . (45)

Solving the last equation for h, we obtain

2h(l, d) = − l2

(d2 − 1)2
+

1− 2µ

d
, (46)

which together with (44) allows us to determine the cross section Σl
g,h.

These expressions are to be evaluated with d = dξ for µ = 1 and d = dη for any
µ < 1/2. Care must be taken with the choice of parameter ranges for dξ and dη. We are
only interested in dξ > 1 and −1 < dη < 1, but there are further restrictions. Consider,
for example, the branch in Σl

g,h where dη = η1 = η2. With dη too close to 1, (46) gives a
value for h below the minimum hl

m2; with dη too close to 0, the energy h becomes positive.
With the appropriate control of dη, we obtain the branches of minimal g (at given h) in
Figures 10b and 11b. For the analogous branch in Σh

g,l, we start with dη = 1, l = 0 and
g = h− 1 + 2µ (which we know from Fig. 3); upon decreasing dη we must check whether
for the corresponding set (h, g, l) there exists a ξ-range > 1 where P l

1(ξ) > 0. The branch
ends when it meets the branch dξ = ξ1 = ξ2. In this way we obtain the left boundaries
(for positive and negative l) in the diagrams Σh

g,l of Fig. 13. Similar considerations lead
to the other curves in Figures 10b, 11b, and 13.

To analyze the cusps in some of these figures, i. e., the intersections of the curves C±
with the planes l = const in Fig. 10b and h = const in Fig. 13, we use the following
properties of Equations (44)-(46):

∂g

∂d

∣∣∣
l
= d2 ∂h

∂d

∣∣∣
l
=

d2

1− d2

∂g

∂d

∣∣∣
h

and
∂l2

∂d

∣∣∣
h

= 2(1− d2)
∂g

∂d

∣∣∣
h
. (47)

They show that the cusps ∂l2/∂d|h = 0 = ∂g/∂d|h in Fig. 13 and ∂h/∂d|l = 0 = ∂g/∂d|l
in Fig. 10b are given by the zeros of ∂g/∂d|h. Taking the derivative in Eq. (44) and
evaluating for h, then l and g, we obtain the relations

h = (1− 2µ)
3d2 + 1

8d3
, l2 = (1− 2µ)

(d2 − 1)3

4d3
, g = (1− 2µ)

−6d4 + 3d2 − 1
8d3

. (48)

The first two were used to draw the pieces C± in Fig. 9.
Let us discuss the cross sections of Σ together with the projection πgΣ. First observe

in Fig. 9 that there are just two qualitatively different sections Σl
g,h (for l > 0), and five

different types of sections Σh
g,l. The two Σl

g,h correspond to whether or not there exists a
second minimum of Veff besides the absolute minimum. The two parts of Fig. 10 belong
to the same value l = 0.3 and are typical for l2 < l2c . The bifurcation diagram Σl

g,h

consists of four curves and four singular points. The curves are intersections with four
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Figure 13: Bifurcation diagrams Σh
g,l for µ = 1/3. Corners and intersection points correspond to the

singular part of Σ. The points in parantheses represent resonant RPOs. The energies are h1 = −1.100,
h2 = −0.761, h3 = −0.525, h4 = −0.333 and h5 = −0.083. They are separated by hc1, hc, hc2, hc3, in this
order.

regular sheets of Σ, the points are intersections with singular lines: R+

2 at the bottom tip
as well as R+

1 and R+
s further up on the right boundary, are relative equilibria. The cusp

where the two inner curves meet is the intersection with line C+. The triangle R+

1 , R+
s ,

C+ defines the region TS where two tori coexist; its complement in the section with Σ is
TP. The bottom tip R+

2 is a stable relative equilibrium. From it emerge the two non-
linear normal modes, which are stable periodic orbits of the l-reduced system, or stable
critical 2-dimensional tori of the full system. These 2-tori are obtained by rotating a
periodic orbit of the reduced system, hence they are RPOs. The caustics of the RPOs are
rotationally symmetric (pieces of) coordinate-surfaces. The boundary at left in Fig. 10b
is given by 0 < η1 = η2 < 1, i. e., the stable RPO projects onto the hyperboloid in the
range ξ2 ≤ ξ ≤ ξ1. Remember that in addition to motion along the hyperbola η = η1 = η2

there is ϕ-motion in the full system: this is what makes the periodic orbit into an RPO.
The right boundary is defined by 1 < ξ1 = ξ2, and the corresponding stable RPO projects
onto one or two pieces of the ellipsoid ξ = ξ1 = ξ2: one piece η2 ≤ η ≤ η1 in the energy
range h < hl

m1 below R+

1 ; two pieces η4 ≤ η ≤ η3 and η2 ≤ η ≤ η1 in the energy range
hl

m1 < h < hl
c1 between R+

1 and R+
s ; again only one piece η2 ≤ η ≤ η1 above R+

s where
η3 and η4 have moved into the complex plane. The piece between R+

1 and C+ is defined
by −1 < η4 = η3, and the caustic of the stable RPO is on the corresponding hyperboloid.
The two families of stable RPOs emerging from R+

1 are again non-linear normal modes of
that relative equilibrium. The branch between R+

s and C+ is defined by the coincidence
of roots η3 = η2 and corresponds to an unstable RPO. The stable and unstable families of
RPOs annihilate in a saddle-center bifurcation at C+. This diagram can be interpreted as
a bifurcation diagram of the l-reduced system with two degrees of freedom. It is simple
enough for the reader to draw the three different Fomenko diagrams (they are similar at
low and high energies).

The two parts of Fig. 11 belong to the value l = 0.6 and are typical for l2 > l2c . Since
the saddle and the upper minimum of Veff have disappeared, TP is the only type of motion
left, starting, at minimal g, as a stable RPO with caustic on a hyperboloid, and ending,
at maximal g, as a stable RPO with caustic on an ellipsoid.

Consider now the five diagrams Σh
g,l in Fig. 13, which represent all possible motions for
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fixed energy. Their left boundaries correspond to the left boundaries in Σl
g,h, for the same

set of (h, g, l)-values: they are stable RPOs with caustics on hyperboloids η = η1 = η2.
Likewise, the right boundaries correspond to the curves of maximal g in Σl

g,h, i. e., to
stable RPOs with caustics on ellipsoids ξ = ξ1 = ξ2. The two boundaries meet in the
relative equilibria of maximal l2, i. e., in the intersections with the singular lines R±

2 . The
other two relative equilibria, if they exist at the given h, are seen as intersections of the
right boundary with inner lines of the diagram: at low energies (energy h1 in Fig. 13)
only R±

2 and R±
1 appear. Then R±

s emerge, at h = hc1, from the right apex P where L1=
1

turns into L1−
1 ; R+

s and R−
s are connected by a new internal line of regular values of Σ

corresponding to unstable RPOs. In the range hc1 < h < hc (energy h2 in Fig. 13) all
three relative equilibria are present at the same energy (with both signs of ϕ-rotation).
The saddle-center bifurcation of Veff at h = hc sees R±

1 and R±
s merging in two cusps

C± on the boundary. The cusps then move inside along the curves C± (from h3 to h4

in Fig. 13), shrink with growing energy and disappear on the line l = 0 at h = hc3, leaving
behind as an isolated point the intersection with the line L2+

µ (energy h5 in Fig. 13).
When l 6= 0 every regular value in Σ is a RPO, and every singular value is either a

relative equilibrium or a bifurcation of RPOs (at C±). The reason for this simple relation
between the reduced and the full system is that the reduction of the rotation is regular
when the angular momentum l 6= 0. If, however, l = 0 this reduction is singular, and
neither do all equilibrium points of the reduced system correspond to periodic orbits of
the full system, nor do all periodic orbits of the reduced system correspond to 2-tori of
the full system. The explanation is simple: whenever the invariant object in the reduced
system is fixed under the symmetry operation (i. e., rotation around the z-axis, lifted to
phase space) it does not increase its dimension upon passage to the full system. Hence
equilibrium points/periodic orbits of the reduced system that are on the z axis are also
equilibrium points/periodic orbits in the full system. This applies to the lines L1,2

? . As a
result these points have corank 1 with respect to M2 but corank 2 with respect to M3.
The orbits corresponding to L3

? are not on the symmetry axis, so a rotation turns them
into 2-tori of the full system. Their corank therefore stays the same, which explains why
they appear as part of regular sheets in Σ.

For points on the line l = 0, where the centrifugal contribution in Veff disappears, we
recover the sections h = const of the bifurcation diagram Σ0 in Fig. 3a. The point with

minimal g corresponds to the stable orbit q
r

of the planar system. It is the intersection

with line L1
µ and exists for all energies. The point with maximal g (intersections with lines

L1−
1 and L3+

1 ) has different interpretations at different values of h. It corresponds to the
two stable orbits q

r
and q

r
as long as h < hc1 (energy h1 in Fig. 13); for hc1 < h < hc2 it

represents the one stable orbit q
r

(h2 and h3 in Fig. 13). So far all points with minimal

or maximal g correspond to stable periodic orbits confined to the z-axis and involving
collisions with one or both centers. For h > hc2, however, see the pictures for energies
h4 and h5 in Fig. 13, the tangent at the intersection with the line L3+

1 of the planar
system is continuous; at the same time the intersection with L1+

1 has been ejected to the
interior of Σh

g,l, as an isolated point which now corresponds to an unstable orbit q
r
. The

boundary point with maximal g is now a RPO and therefore marked by (L3+
1 ). It has the

additional special structure that the 2-torus is resonant, i. e., it is foliated by periodic orbits
of elliptical shape and elliptic-parabolic stability, with different orientation ϕ = const of
their planes. This bifurcation scheme which for the planar system reduces to the pitchfork
bifurcation at the top of Fig. 7, corresponds to a Hamiltonian Hopf bifurcation in the full
system.
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The lines in the interior of Σh
g,l are of two types. Starting from the singular orbits q

r

at (g, l) = (h + 1 − 2µ, 0) and increasing l2, we have RPOs confined to the hyperboloids
η = η3 = η4 > −1. For energies h < hc, this line meets the outer boundary, ξ = ξ1 = ξ2,
in R±

1 . The phase TS extends to the right of these lines. The other line, connecting the
relative equilibria R+

s and R−
s , is characterized by η3 = η2 which means that the RPOs

confined to the neighborhoods of the two centers merge; this is typical for an unstable
critical orbit associated with a separatrix. At l = 0 this family of RPOs is the unstable
orbit q

r
rotated about the z-axis. This point is marked by (L3

µm) in Fig. 13. Again,

the 2-torus is resonant, foliated by hyperbolic-parabolic orbits of hyperbolic shape q
r
with

different orientations ϕ = const. At h = hc the two internal lines join in a cusp on the
outer boundary, and for hc < h < hc3 form a kite completely inside Σh

g,l. For every (h, g, l)
from inside the kite, there exist two invariant tori; this is motion of type TS. Outside the
kite there is exactly one torus for each point (h, g, l); this is motion of type TP. The left
apex of the kite (and its continuation to lower energies) is the stable periodic orbit q

r
. This

orbit becomes unstable and is the only trace of the kite at h ≥ hc3, when it shrinks to the
point (g, l) = (h + 1 − 2µ, 0), the intersection of line L2+

µ ⊂ Σ with the plane h = const.
This bifurcation is the inverse period doubling bifurcation of the planar system, see Fig. 7
bottom, and is a subcritical Hamiltonian Hopf bifurcation of the general system.

In conclusion, Fig. 13 gives the following picture of the bifurcation scheme in the three-
dimensional (h, g, l)-space of constants of motion. At low energies h < hc1, the pre-image
of TS in phase space consists of two disconnected components. This shows that the interior
bifurcation lines R+

1 -L2−
µ -R−

1 are not critical for the family TH of tori; they only mark the
birth of the family TL somewhere else in phase space. By continuity we conclude that the
lines C+-L2−

µ -C− are also not critical for TH . The lines C+-L3−
µ -C−, on the other hand, are

critical for both families; their pre-images consist of separatrices where the families are
singularly connected. This shows that the image M3(TH) in (h, g, l)-space of the family
TH , under the momentum mapping, contains two singular objects in its interior: one is
the line L1+

1 , attached to the boundary in the point P ; the other is the union of line L2+
µ

and the two-dimensional set of all images C+-L3−
µ -C− of the separatrices. D is the point

where the latter singular object changes from being a line to being two-dimensional. C±

are the points where the singular object first meets the boundary as h is decreased; it is
attached to the boundary along the lines R±

s , and disappears in the point S. By contrast,
the image M3(TL) of the family TL, i. e., area TS, contains no singularity in its interior.

4.4 The symmetric system µ = 1/2

The symmetric case µ = 1/2 is simpler but deserves special attention. The projection of
its bifurcation diagram Σ to the (h, l)-plane is shown in Fig. 9b. The curves of relative
equilibria are now organized in a different manner. As shown in detail by Howard and
Wilkerson [32], Veff(ρ, z) has a single minimum at (ρ, 0) with ρ >

√
2 for sufficiently large l2.

With decreasing l2, this critical point undergoes a pitchfork bifurcation at (Veff, l2) =
(hc, l

2
c ) = (−2, 4)

√
3/9 = (−0.3849, 0.7698). It turns into a saddle point at (ρ, 0) with

ρ <
√

2 and ejects two symmetric minima which approach the centers f1 and f2 as
l2 → 0. Because of the system’s symmetry the curves R+

2 and R+

1 (R−
2 and R−

1 ) are now
identical and will be called R+ (R−). For l2 < l2c , R+ and R− each represent two stable
relative equilibria, as limiting cases of the two disjoint caustics of type TS. For l2 > l2c ,
they correspond to limiting cases of the single type TS. The curves R±

s related to the
unstable relative equilibria meet in (h, l) = (−1, 0). For energies below h = hc1 = −1
there is no motion of type TP.

The super-singular points are S = (−1, 0, 0), P = (−1
2 , 1

2 , 0), D = (0, 0, 0), cf. Fig. 3
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Figure 14: Bifurcation diagrams Σl
g,h for the symmetric system µ = 1/2; l = 0.3 (a) and l = 0.9 (b).

and Eq. (32), and the points C± = (hc, gc,±lc) = (−0.3849, 0.3849,±0.8774) related to
the saddle-center bifurcation of Veff, see [32]. To derive the curves C± in Fig. 9b as well as
the cross sections Σl

g,h in Fig. 14 and Σh
g,l in Fig. 15, we study again the double zeros of

the polynomials P l
µ(s). Nothing changes for P l

1(ξ), but P l
1/2(η) has new features because

it is even in η. Assuming dη to be a double root we have from (41) and (42)

P l
1/2(η) = 2hη4 − 2(h + g)η2 + 2g − l2 = 2h(η2 − d2

η)
2 . (49)

Comparing coefficients we find, instead of (44) and (45), the following parameterization
for the left boundary of Σh

g,l:

g(h, dη) = h(2d2
η − 1) and l2(h, dη) = −2h(d2

η − 1)2 . (50)

Eliminating dη we obtain
g = h +

√
−2hl2 . (51)

This relation may also be used to get the left part of the curves in Σl
g,h. But notice that

it only applies as long as d2
η > 0, or g < l2/2, or g < −h. When g reaches the value l2/2

at h = −l2/2, the fourfold root dη = 0 takes over, and the RPOs are characterized by

l2 = 2g , (52)

irrespective of h. In fact, the singular curves C± are given by the two conditions

l2 = 2g = −2h . (53)

They start at C± = (hc, gc,±lc) = (hc,−hc,±
√−2hc) with hc = −2

√
3/9 = −0.3849 and

end in D = (0, 0, 0). For g > −h in the rightmost picture of Fig. 15, and for h > −l2/2
in both pictures of Fig. 14, the relation (52) characterizes stable RPOs with η = 0, i. e.,
motion in the plane z = 0. For g < −h in Fig. 15, and for h < −l2/2 in Fig. 14a, the
same relation characterizes unstable RPOs with η = 0. The distinction is reflected in the
second derivative of P l

1/2(η) at η = 0 which is −4(h + g). If it is negative, η = 0 is the
only possible value of the RPO; if it is positive, the RPO has a separatrix with a finite
range of possible η-values.
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Figure 15: Bifurcation diagrams Σh
g,l for the symmetric case µ = 1/2. Corners and intersection points

correspond to the singular part of Σ. (L3+
1 ) marks a resonant RPO. The energies are h1 = −1.50,

h2 = −0.75, h3 = −0.45 and h4 = −0.25.

Comparing the bifurcation diagrams of Fig. 15 with those in Fig. 13, we observe three
major differences. First, motion of type TP occurs only to the right of the curve l2 = 2g.
Second, the kite structure which contains motion of type TS is always attached to the left
boundary. Third, and as a consequence of the last point, there exists at most one isolated
singular point, namely, the intersection (g, l) = (h + 1, 0) with L1+

1 , for h > −0.5.
In contrast to the asymmetric case, there are now three families of 3-tori in phase

space: two disjoint pre-images of the phase TS, free of internal singularities, and one
pre-image of phase TP which contains the singular line L1+

1 . Their only connection is by
separatrices.

5 Actions

Action variables can be obtained from integrating the Liouville differential pdq along
independent cycles γi on the tori in phase space. For a separable system it is natural
to choose a basis of cycles whose projections onto configuration space coincide with the
coordinate lines of the separating coordinates, in our case

γϕ : dη = dξ = 0 , γη : dϕ = dξ = 0 , γξ : dϕ = dη = 0 . (54)

The corresponding natural actions are

Iϕ :=
1
2π

∮

γϕ

pϕ dϕ = l , Iη :=
1
2π

∮

γη

pη dη , Iξ :=
1
2π

∮

γξ

pξ dξ , (55)

where pη and pξ are given by Eqs. (21) or (40). Any other choice of actions is related to
these by a unimodular transformation. The (Iϕ, Iη, Iξ) are referred to as “natural” not only
because of the separating coordinates: Iϕ = l has an immediate physical interpretation,
and the vanishing of Iη or Iξ indicates stable critical motion. Furthermore, the natural
actions respect the discrete symmetry of time reversal combined with inversion of the
angular momentum. Different sets of actions do not have these properties as will be
explained in the following. When l = 0 the cycles γη and γξ are not independent due to
the coordinate singularity; this is important for the calculation of monodromy, see Sec. 6.

As usual in most non-trivial cases, it is not possible to explicitly express the Hamilto-
nian in terms of action variables. But if the actions are known as functions of the constants
(h, g, l), the vector of frequencies (ωϕ, ωη, ωξ) of the motion on the Liouville-Arnold tori
can be obtained from the identity

(1, 0, 0) = (ωϕ, ωη, ωξ)
∂(Iϕ, Iη, Iξ)

∂(h, g, l)
(56)
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where the first row of the Jacobian is simply (0, 0, 1) since Iϕ = l.
Let us first discuss the nature of the action integrals. The computation of Iη and Iξ

leads to the integrals

Is = σs
1
π

∫ s+

s−

√
P l

µ(z)
dz

z2 − 1
, s = η, ξ, (57)

where ση = −1 and σξ = 1 are just signs introduced for convenience, and the integration
boundaries s− and s+ are pairs of successive real roots of the respective polynomial P l

µ,
in the interval [−1, 1] for η and in [1,∞) for ξ. It is useful to consider the integrals in the
complex plane. Then, the proper definition of the square root of P l

µ in the integrand gives
rise to the introduction of the elliptic curves

Γs := {(ws, z) ∈ C2 |w2
s = P l

µ(z)} . (58)

On these curves the actions Iη and Iξ are complete elliptic integrals

Is = σs
1
2π

∮

cs

ws

z2 − 1
dz (59)

where the cs are closed real cycles on the Riemann surfaces Γs, i. e., cycles on which
both z and ws are real. These cycles are closely related to the cycles γη and γξ on the
Liouville-Arnold tori in phase space, as will become clear in the following.

Note that the action Iϕ = l appears as the residue of the differentials in Eq. (59) at
z = ±1,

Res
z=±1

ws

z2 − 1
dz = ±1

2

√
−l2 . (60)

Accordingly, the action integrals Iη and Iξ are of the third kind if l 6= 0. Another pole with
non-zero residue lies at infinity. Substituting z = 1/t and investigating the new integrand
at t = 0 we find

Res
z=∞

ws

z2 − 1
dz =

2µ− 1√
2h

, (61)

again with the understanding that formally µ = 1 for s = ξ. We conclude that the action
Iξ is always of the third kind, while Iη is of the third kind except when l = 0 and µ = 1/2,
i. e., in the planar symmetric case where Iη is of the second kind.

5.1 The case of planar motion

In the planar case the actions Iη and Iξ can be rewritten in the form

Is =
−h

π

∮

cs

(s+ − z)(z − s−)
dz

ws
=
−2h

π

∫ s+

s−
(s+ − z)(z − s−)

dz

ws
, (62)

where the integration boundaries s− and s+ are pairs of successive real roots of w2
s = P 0

µ(s)
as defined in Eq. (23). Tab. II summarizes what we obtained in Sec. 3 for the relevant
roots η± and ξ±, in the four phases ts’, ts, tl and tp. The two senses of rotational motion
in phase tp will be taken care of by different signs of Iη. For a systematic discussion of
the integrals Is it is convenient to interpret them as closed-loop integrals (“periods”) on
the elliptic curves Γs. The two columns at right in Tab. II show how the loops cη and cξ

surround the relevant roots on Γη and Γξ, respectively.
We saw in Sec. 3.2 that in the asymmetric case there exist four different types of

Liouville foliations of the energy surfaces in phase space, see Fig. 5a, while in the symmetric
case the number is three, see Fig. 5b. Let us now consider the action representation of
the energy surfaces, i. e., the lines h = const in the (Iη, Iξ)-plane of actions. In such a
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Table II: Integration boundaries s− and s+ for the actions integrals Eq. (62), and integration paths cs

on the corresponding elliptic curves Γs. The signs below and above the slits on the real axis indicate the
sign of ws.

representation the frequency vectors (ωη, ωξ)t are normal to the energy surface whereas
the rotation numbers

Wη ξ =
ωη

ωξ
= − dIξ

dIη

∣∣∣∣
h

= −∂Iξ/∂g

∂Iη/∂g
(63)

are given by their slopes. The latter equality shows that Wη ξ can easily be calculated
from the derivatives of Is with respect to g,

∂Is

∂g
= −σs

1
2π

∮

cs

dz

ws
. (64)

These are elliptic integrals of the first kind.
The action representation of energy surfaces is particularly important for the corre-

sponding quantum system. Then, the EBK quantization is obtained with a regular lattice
of mesh width ~ in the space of actions: lattice sites on energy surfaces correspond to
semi-classical quantum states.

For the asymmetric case the energy surfaces in (Iη, Iξ)-representation are shown in the
top part of Fig. 16. Part b corresponds to the branch of ts where motion is confined to
the neighborhood of the light center f1; the actions on this branch are denoted by (I ′η, I ′ξ).
All other branches of motion (cf. Fig. 5a) are represented in part a. Negative values of
Iη correspond to rotational motion with negative sense (at h > hc2). The values of Iξ are
always non-negative.

Let us first interpret points on the axes of the diagram. Iη = 0 is motion along the

z-axis, q
r

in Fig. 16a and q
r

in Fig. 16b (for h < hc3). Motion with Iξ = 0 is either

rotation along an ellipse, q
r
6at Iη > 0 and q

r
6 at Iη < 0 (for h > hc2), or motion along

the z-axis between the two centers: q
r

in the range hc1 < h < hc2, q
r

and q
r

for h < hc1.

All this is indicated by the labels that were introduced in Fig. 5 and Table I. The system
of separatrices corresponding to the unstable critical orbits q

r
, q

r
and q

r
is also shown,

and their bifurcations are indicated by letters S, P, D, in accordance with the bifurcation
diagram Fig. 9. The dashed line connecting D to the orgin in Fig. 16a separates region ts’

from region ts, i.e. the tori to the right of this line coexist with tori which for the same
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Figure 16: a) Energy surfaces in (Iη, Iξ)-representation for the asymmetric planar case with µ = 1/3,
except for the part of phase ts where the motion is confined to the neighborhood of the center f1. b)
(I ′η, I ′ξ) representation of the latter motion in ts. The energies are the same as in Fig. 6. c) and d) show
the corresponding rotation numbers Wη ξ = ωη/ωξ and W ′

η ξ as functions of Iη and I ′η, respectively. For
reasons of representation −Wη ξ is shown for Iη < 0.
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Figure 17: a) Energy surfaces in (Iη, Iξ)-representation for the symmetric planar case. b) The corre-
sponding actions (Jη, Jξ) for the symmetry reduced system. The energies h1, h2, h3 are the same as in
Fig. 16. c) and d) show the corresponding rotation numbers Wη ξ = ωη/ωξ and W̃η ξ as functions of Iη and
Jη, respectively. For reasons of representation −Wη ξ is shown for Iη < 0.

h and g are located about the light center f1. This line represents no separatrix. Pairs
(Iη, Iξ) in the shaded regions do not occur as natural actions. An interesting forbidden
region is the triangle in part a) which is bounded on both sides by the unstable critical
orbits q

r
. Lines of constant energy jump from its left border to the right at fixed Iξ, with

an increment in Iη which can be read off Fig. 16b. The interpretation of this behavior is
that the merging along the orbit q

r
of the two tori in phase ts is reflected in the additive

combination of their η-actions.
The lines of constant energy are shown for the same four parameters hi as in Fig. 6.

They seem to go smoothly through the separatrices, but closer inspection shows that, as
usual, their slopes diverge logarithmically. This is shown in the bottom part of Fig. 16
where the rotation numbers Wηξ are plotted against the actions Iη.

Energy surfaces for the symmetric case, and the corresponding rotation numbers, are
shown in Figures 17a and c. Compared to the asymmetric case the main difference is that
the point C has moved to infinite values of Iξ.

The symmetric planar two center problem possesses reflection symmetry with respect
to the two Cartesian coordinate axes y = 0 and z = 0. This may be used to define a
simpler symmetry reduced system by factoring out the symmetries, with actions (Jη, Jξ).
In physical terms, we may think of introducing reflecting planes so that the motion is
confined to the quadrant x, z ≥ 0. Rotational motion is thereby turned into oscillatory
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Figure 18: Integration paths cη (left) and cξ (right) for the integrals Iη and Iξ according to Eq. (59).
From top to bottom, the left column shows the arrangement of η-zeros resulting from a small non-zero
angular momentum l and values (h, g) which for l = 0 would lead to η-regions II to V in Fig. 2. Similarly
the right column represents the arrangement of ξ-zeros when a small angular momentum is added in
ξ-regions II and III.

motion, hence all actions are now positive. Iξ is unaffected by this reduction, Jξ = Iξ.
The same is true for the η-action in phase ts, Jη = Iη, but in phases tl and tp it is reduced
to Jη = 1

2Iη. As a consequence, the energy surface becomes continuous, cf. Figures 17b
and d. In this representation they serve as a convenient starting point for a semiclassical
quantization. The different parities of the quantum mechanical wave functions of the full
system can be taken into account by imposing Dirichlet or Neumann boundary conditions
on the symmetry lines.

5.2 General l

The expression Eq. (59) remains applicable in the case l 6= 0, but as discussed in Sec. 4,
the elliptic curves Γη, Γξ, and the integration paths cη and cξ are different. The real roots
η1,2 and ξ1,2 are repelled from the points z = ±1 which in turn become poles of the action
integrand with residues given in Eq. (60). This is depicted in Fig. 18 which shows the
various relevant arrangements of roots of P l

µ(η) (left) and P l
1(ξ) (right), together with the

paths cη and cξ,for the same (h, g) that lead to the pictures in Tab. II but with a small
non-zero angular momentum l. The full lines correspond to the immediate definition of
the integrals, the dashed lines are equivalent deformations and will be discussed in Sec. 6.

There are effectively only two kinds of root structure, corresponding to the phases
TS and TP. In phase TS the root structure of P l

1(ξ) is given by the first line on the
right, that of P l

µ(η) by the third line on the left of Fig. 18. Of the two η-loops there,
the right one corresponds to motion near the center f2 and serves to compute Iη, the left
one corresponds to motion near the center f1 and serves to compute I ′η. All other root
structures evolving from those for l = 0, see Tab. II, lead to only one kind of oscillatory
η-motion, and to only one kind of oscillatory ξ-motion. This is characteristic of phase TP.

The five different bifurcation diagrams Σh
g,l of Fig. 13 translate into the five parts of

Fig. 19. They show surfaces of constant energy Eh in the space of natural actions (Iϕ, Iη, Iξ)
for the same energies h1 through h5. As in the planar case, separate pictures represent the
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Figure 19: Energy surfaces in action space of the asymmetric two-center problem with µ = 1/3. The five
different energy values hi are the same as in Fig. 13. For reasons of representation the scaling of the axes
changes with the energy. For a constant scaling the ”size” of the energy surfaces would grow with energy.

motion in phase TS which is confined to the center f1, with actions denoted by (I ′ϕ, I ′η, I ′ξ).
The individual pictures show more or less tent-like structures. This is familiar from

other studies of integrable systems with three degrees of freedom, such as rigid bodies [25]
or ellipsoidal billiards [44, 53]. The lines of the bifurcation diagrams Σh

g,l are mapped to
the boundaries of the tent; in this sense the individual parts of Fig. 19 may be viewed as
very special versions of bifurcation diagrams. But they are more. Every inner point of the
surface represents the actions (Iϕ, Iη, Iξ), or (I ′ϕ, I ′η, I ′ξ), of a 3-torus with energy h; the
surface normal gives the vector of frequencies (ωϕ, ωη, ωξ), and rotation numbers may be
obtained from the appropriate slopes, by generalization of Eq. (63). The most important
application of these surfaces, however, is their use as a basis for semi-classical quantization.
This will be discussed in connection with monodromy, in Sec. 7.

The corners of the tent structures represent the singular parts of the bifurcation dia-
gram, as indicated by the same labels as in Fig. 13. This includes the cusps C± as well as
the singular points L1+

1 and L2+
µ . Except for the latter two points and the corners L1

µ and
L1=

1 , the edges at l = 0 do not belong to the critical set. The following Sec. 6 will deal
with attempts to construct action representations of Eh which are smooth at l = 0.

The boundaries Iη = 0 (or I ′η = 0) connecting the corners L1
µ and R±

2 (or L2−
µ and R±

1 )
have action Iη = 0. They belong to the regular part of the critical set, corresponding to
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stable RPOs as discussed in Sec. 4: motion along hyperboloids η = const. Similarly, the
boundaries Iξ = 0 (or I ′ξ = 0) connecting the corners L1=

1 and R±
2 (or L1=

1 and R±
1 ) have

action Iξ = 0. They are another regular part of the critical set, corresponding to stable
RPOs: motion along ellipsoids ξ = const. In the energy range hc1 < h < hc this boundary
is interrupted by the occurrence of the unstable relative equilibria R±

s , from where a line
of unstable RPOs extends across the tent and breaks it up into two pieces. The pre-images
in phase space of the surfaces in (Iϕ, Iη, Iξ) and (I ′ϕ, I ′η, I ′ξ) space are connected along these
RPOs. This is also true for the unstable RPOs connecting the cusps C± in the energy
range hc < h < hc3, see pictures c) and d) in the Figure.

The essential structural features of the five different types of energy surfaces in action
representation are the following.

1. For an energy h < hc1 the energy surface in action representation consists of two
disconnected surfaces without inner singularities. They represent the two smooth
families of 3-tori TH (the larger one) and TL (the smaller) in the respective energy
surface. The line R+

1 , L2−
µ , R−

1 separates regions TS and TP on the TH -surface, i. e.,
tori of family TH below this line coexist with tori with the same (h, g, l) of family
TL. This line is no separatrix.

2. For an energy in the range hc1 < h < hc the action representation of family TH

consists of two disconnected pieces, separated by a line of unstable RPOs. In the
original bifurcation diagram, the corresponding two families TH and the family TL are
connected at this separatrix (attached to an unstable RPO) in a non-differentiable
manner.

3. For an energy hc < h < hc2 the family TH is again smoothly connected, though not
simply connected. It contains an internal line of unstable RPOs which allows for a
connection with the family TL. The surface corresponding to TL is always simply
connected.

4. The new feature for an energy in the range hc2 < h < hc3 is the isolated singularity
L1+

1 on the edge l = 0. This adds another complication to the connectedness of TH .

5. At energies h > hc3 the family TL has disappeared, and TH is a surface with two
point singularities.

To complete the presentation of actions (Iϕ, Iη, Iξ), Fig. 20 shows the four different
types of energy surfaces for the symmetric case µ = 1/2. Corresponding to the sections at
constant energy h in Fig. 15, the left parts exhibit the action representation for the full
system, but it should be borne in mind that the component touching the Iξ-axis appears
twice: once for each of the two equal centers. This is not shown in separate pictures.
Instead, the smaller part in each of the four illustrations shows the symmetry reduced
system with actions (Jϕ, Jη, Jξ) where Jϕ = Iϕ/2 and Jξ = Iξ in general, Jη = Iη/2 in
the phase TP. The latter energy surfaces have the nice property of being continuous even
though they possess separatrices.

6 Smooth Actions and Monodromy

The edges l = 0 of the energy surfaces appear naturally if the actions are defined through
the separating coordinates, but the absence of singularities (except at L1+

1 , L3−
µ and L2+

µ )
indicates that they do not represent criticality. Therefore it should be possible to choose
actions in terms of which the energy surfaces are smooth at l = 0. The aim of this section
is to find out to what extent this can be done. It will be seen that smooth actions can be
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Figure 20: Energy surfaces of the symmetric two-center problem. The values of hi are the same as in
Fig. 15. For each value of h, the left part represents the full system while the right part includes symmetry
reduction. As in Fig. 19 the scaling of the axes changes with energy for reasons of representation.

found along pieces of l = 0, but not simultaneously along the whole line. The points L1+
1 ,

L3−
µ and L2+

µ are obstacles which give rise to the phenomenon of monodromy.
Let us derive new actions K = (Kϕ,Kη,Kξ)t which coincide with the natural actions

I = (Iϕ, Iη, Iξ)t for l ≥ 0, and which continue smoothly to l < 0. For l < 0 the actions K
must be related to the original actions by unimodular transformations M:




Iϕ

Iη

Iξ


 7→ M




Iϕ

Iη

Iξ


 =:




Kϕ

Kη

Kξ


 . (65)

The matrix M has integer components and unit determinant. The requirement alone that
the new actions shall be continuous at l = 0 restricts M to the form

M =




1 0 0

mη 1 0

mξ 0 1


 . (66)

In order to determine the remaining integers mη and mξ let us consider the derivatives of
Iη and Iξ with respect to l in the limit l → 0+. The derivatives are

∂Is

∂l
= −σs

l

2π

∮

cs

1
z2 − 1

dz
ws

. (67)

Like the integrands in the action integrals (57), the integrands in Eq. (67) have poles at
±1, with residues

Res
z=±1

1
z2 − 1

dz

ws
= ±1

2
1√−l2

. (68)

The limit l → 0 calls for special attention because the branch points of the curves Γη and
Γξ approach the poles at ±1; it must be checked whether the vanishing of the prefactor



Two-Center Problem 37

l in (67) is fast enough to compensate the divergence of the integral. In order to see
what happens consider once more the integration paths on the curves for small angular
momentum as shown in Fig. 18. To evaluate the integrals, it is advantageous to modify
the integration paths by pulling them away from the branch points, but as indicated by
the dashed lines, this leaves behind small integration paths which encircle the poles. The
latter can be evaluated with the calculus of residues, while the contributions from the new
large integration paths are finite as l → 0 so that the prefactor l makes them vanish for
l = 0. The remarkably simple result for the integrals (67) in this limit is therefore

lim
l→0+

(∂Iη

∂l
,
∂Iξ

∂l

)
=





(−1/2,−1/2) for TP → ts’ and TS → ts
(−1,−1/2) for TP → tl

(−1, 0) for TP → tp

. (69)

Each collision of a pole and a branch point gives a contribution −1/2, independent of
l. The same results with opposite signs hold for l → 0−. In the case TS → ts the two
families of tori give the same results. In the limits TP → tp and TP → tl the integrand
in ∂Iη/∂l has contributions from both poles ±1, see the second and the fourth row of the
first column in Fig. 18. As indicated in the second row of the second column in Fig. 18,
the integral ∂Iξ/∂l is non-critical in the limit TP → tp, hence there is no need to modify
the integration path.

As a byproduct of these results and the last column in the identity (56), we obtain
resonances in the frequencies, as l → 0±:

ωη + ωξ = ±2ωϕ for ts and ts’ ,

2ωη + ωξ = ±2ωϕ for tl , (70)
ωη = ± ωϕ for tp .

The integers mη and mξ in Eq. (66) can now be determined from equating the deriva-
tives as l → 0+ and l → 0−:

lim
l→0+

∂Is

∂l

!= lim
l→0−

∂Ks

∂l
= ms + lim

l→0−
∂Is

∂l
= ms − lim

l→0+

∂Is

∂l
. (71)

It follows from Eq. (69) that mη and mξ depend on whether the phases for l = 0 are ts’/ts,
tl or tp. Accordingly, we get the three matrices

Ms = Ms′ =




1 0 0

−1 1 0

−1 0 1


 , Ml =




1 0 0

−2 1 0

−1 0 1


 , Mp =




1 0 0

−2 1 0

0 0 1


 . (72)

The fact that these matrices are different implies that it is not possible to construct energy
surfaces which are smooth across all four (l = 0)-phases simultaneously. Fig. 21 shows
how the three transformations remove the corresponding sections of the edges l = 0 of the
energy surfaces. The representation in I-space, see Fig. 19, is taken to K = (Kϕ,Kη,Kξ)-
space. The pictures coincide for l ≥ 0 but differ for l < 0. Let us consider the five energy
values h = h1, . . . , h5 in some detail.

The energy surface for h = h1 < hc1 involves only the phases ts and ts’; hence it be-
comes globally smooth with the transformation Ms = Ms′ , see Fig. 21a. With decreasing
h, the motion about the two centers is more and more Kepler-like, the two corresponding
pieces of the energy surface become flatter and flatter. For energies h > hc1, at least two
types of transitions occur for l = 0. They are of type ts/ts’ or tl for h = h2, h3, and of
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type ts/ts’, tl or tp for h = h4, h5. With actions K chosen so that they are smooth across
one transition, the other transitions still appear as edges with discontinuities in slope.
Fig. 21b and c show the two sets of partially smooth surfaces at h = h2, d and e the same
for h = h3. The three variations each at h = h4 and h = h5 are presented in the remaining
six illustrations.

The essence of monodromy is displayed in these pictures: Consider for example the
energy surface for h = h4, see Fig. 22 and start with a point on the energy surface with
actions K = I of a torus Th,g,l of family TP with l > 0. Fig. 22 shows three smooth
paths on different partially smooth energy surfaces which connect this point to actions of
the time reversed torus Th,g,−l. Since the partially smooth energy surface involve different
smoothing matrices, the actions of Th,g,−l are different for all three paths. This means
that there exist 1-parameter families of tori on the energy surface which start and end
with the same torus, such that the action changes smoothly along the path, but the initial
and final action are different.

The image of a connected smooth family of tori under the momentum map is a loop in
(h, g, l) space. Monodromy within one energy surface in phase space can occur whenever
a connected family of non-critical tori is not simply connected. For loops with constant
energy this occurs for h > hc. Depending on h, there exist up to homology (see below)
one or two elementary paths with monodromy. One of them encircles the singularity
L1+

1 which appears when h grows larger than hc2. The other case is more interesting; it
emerges at h = hc with a path that encircles not a point singularity but the slit between
the cusps C±. This slit persists up to the energy h = hc3 where it shrinks to the singular
point L2+

µ . From there on, this point singularity inherits the monodromy property, see
Fig. 13.

In order to understand the set of possible non-contractible loops of tori, the classifica-
tion into phases TS and TP in (h, g, l)-space is not quite appropriate. For monodromy we
need to classify families of tori in phase space. The difference occurs when the pre-image
of the energy-momentum map has disjoint components. Then it is typical that only one
component contains critical points, while the other is composed of regular points only. In
the asymmetric two-center problem, this is the case with families TH (“heavy family”) and
TL (“light family”). In the symmetric case, there are three families of tori, but only one
of them, the pre-image of TP, contains non-contractible loops. We call it also the heavy
family TH . In the following, we consider the image M3(TH) of the heavy family under the
momentum mapping.

Now we can state: The heavy family in the two-center problem has monodromy. In
Sec. 4 we discussed the singularities insideM3(TH): the line of critical values L1+

1 emanat-
ing from the point P , and the second more interesting obstacle which is two-dimensional
in the energy range hc < h < hc3, connecting to the isolated line L2+

µ (h > hc3) in the
point D.

In order to give a comprehensive characterization of the monodromy of the system, it is
useful to introduce the notion of homology (see [29] for an introduction). In particular, the
first homology group H1(M3(TH),Z) is the set of 1-cycles, or simply cycles for short, i. e.,
the set of oriented non-contractible closed loops. Cycles are considered to be equivalent
in H1(M3(TH),Z) if they can be smoothly transformed into each other. The operation
of combining, or “adding”, cycles equips H1(M3(TH),Z) with a natural Abelian group
structure. It is established by choosing a basis in terms of non-equivalent paths p1, p2,
which we choose according to Fig. 23, and then associating with any cycle p the pair of
integers in the decomposition p = n1p1 + n2p2. Obviously, the first homology group of
M3(TH) is H1(M3(TH),Z) = Zp1 + Zp2, i. e., it is isomorphic to Z2.

Let us examine how the actions change along the cycles p1 and p2. In Fig. 23 the
points (1) and (2) on p1, and (3) and (4) on p2, are located symmetrically with respect to
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Figure 21: Partially smooth energy surfaces Eh of the asymmetric two-center problem. The energies h
and smoothing matrices M are the following: (a) h = h1, Ms = Ms′ ; (b) h = h2, Ms = Ms′ ; (c) h = h2,
Ml; (d) h = h3, Ms = Ms′ ; (e) h = h3, Ml; (f) h = h4, Ms = Ms′ ; (g) h = h4, Ml; (h) h = h4, Mp; (i)
h = h5, Ms = Ms′ ; (j) h = h5, Ml; (k) h = h5, Mp.
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Figure 22: Partially smooth energy surfaces Eh of the asymmetric two-center problem with h = h4 and
smoothing matrices (a) Ms = Ms′ ; (b) Ml; (c) Mp.
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Figure 23: Cycles p1 and p2 in the plane h = h4 of the bifurcation diagram Σh
g,l, cf. Fig. 13.
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the g-axis, i. e., they differ only in the sign of l. Consider first the cycle p1. Starting at
point (1) with the natural actions I = (Iϕ, Iη, Iξ)t and varying them smoothly along the
left half of the cycle to point (2), it follows from the smoothing scheme described above
that they are mapped to actions at (2) according to

I 7→ M̃lI , M̃l = Ml R1 (73)

where R1 is the reflection matrix diag(-1,1,1). Equivalently, the actions I at point (1) are
mapped to (2) along the right half of the cycle p1 according to

I 7→ M̃−1
p I , M̃p = Mp R1 . (74)

The monodromy matrix Mp1 of the cycle p1 is defined as the linear mapping from the
actions at point (2) in Eq. (74) to the actions at point (2) in Eq. (73), i.e.

Mp1 = M̃l M̃−1
p = M̃l M̃p =




1 0 0

0 1 0

−1 0 1


 (75)

where we used that the square of each of the matrices M̃s = M̃s′ , M̃l and M̃p = MpR1

gives the identity matrix, i. e., each matrix coincides with its inverse. Monodromy is
expressed by the fact that the matrix Mp1 differs from the identity matrix. It describes a
global twisting in the heavy family of 3-tori along the path p1. Analoguous considerations
for the cycle p2 lead to the monodromy matrix

Mp2 = M̃s′ M̃−1
l = M̃s′ M̃l =




1 0 0

1 1 0

0 0 1


 . (76)

Note that Mp1 only changes the ξ-component of I while Mp2 changes the η-component.
As a consequence, the two matrices commute. This makes it easy to compute the mon-
odromy for an arbitrary cycle p = n1 p1 + n2p2:

Mp = Mn1
p1

Mn2
p2

=




1 0 0

n2 1 0

−n1 0 1


 = 1 + n1(Mp1 − 1) + n2(Mp2 − 1) . (77)

The Abelian character of the first homology group H1(M3(TH),Z) is inherited by the
monodromy group generated by Mp1 and Mp2 .

The billiard inside a rotationally symmetric ellipsoid also has monodromy [49]. In
this case, however, there is only one isolated line of critical values in the image of the
momentum map, and as a result it is possible to find a second action besides the angular
momentum that is invariant for arbitrary loops. This is similar for the symmetric two-
center problem, in which the action Iξ is invariant. In the asymmetric case, however, it is
not possible to find more than one action that is invariant under monodromy caused by
both classes of loops.

7 Quantum Monodromy

The monodromy discussed in Sec. 6 has implications for the spectrum of the corresponding
quantum system known as quantum monodromy. The quantum mechanical two-center
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problem is described by the Hamiltonian operator

Ĥ = − ~
2

2m
∆− µ1

r1
− µ2

r2
(78)

where we adopt the molecular interpretation: µ1 = Z1e
2, µ2 = Z2e

2, and m is the mass of
the electron. The main focus will be on the cases (Z1, Z2) = (1, 2) and (Z1, Z2) = (1, 1),
i. e., we consider the Born-Oppenheimer approximation to the molecular ions HHe++ and
H+

2 , respectively. As with the classical problem we are only interested in bound states,
hence we search for solutions of the stationary Schrödinger equation Ĥψ = hψ with
ψ ∈ L2(R3) and h < 0. In accordance with the notation of the previous sections, h
denotes the energy and should not be confused with Planck’s constant which will always
be written as 2π~. It is convenient to perform the same scaling as in the classical case.
Measuring distances in units of half the distance between the nuclei, a, and energy in units
of (Z1 + Z2)e2/a, the scaled stationary Schrödinger equation reads

(
− ~̃

2

2
∆̃− µ

r̃1
− 1− µ

r̃2

)
ψ = h̃ψ (79)

where ∆̃ is the Laplacian in terms of scaled variables (x, y, z)/a, and µ = Z1/(Z1 + Z2).
Planck’s constant is replaced by the dimensionless parameter

2π~̃ =
2π~√

ame2(Z1 + Z2)
. (80)

Except for the tilde indicating the scaled Planck’s constant, the tildes will again be omitted
in the following.

The eigenvalue equation (79) can be separated with the same coordinates (ϕ, η, ξ)
that were defined in Equations (3) and (4) for the classical problem. The usual ansatz
ψ(ϕ, η, ξ) = φ(ϕ)χ(η, ξ) leads to the eigenvalue problem of the angular momentum oper-
ator L̂z with eigenvalues and eigenfunctions

lm = ~̃m, φm(ϕ) = exp(imϕ) , m ∈ Z . (81)

The remaining function χ fulfills

1
ξ2 − η2

(
Ĥξ + Ĥη

)
χ(η, ξ) = hχ(η, ξ) (82)

where

Ĥξ = − ~̃
2

2

( ∂

∂ξ
(ξ2 − 1)

∂

∂ξ
− m2

ξ2 − 1

)
− ξ , (83)

Ĥη = − ~̃
2

2

( ∂

∂η
(1− η2)

∂

∂η
− m2

1− η2

)
− (1− 2µ)η . (84)

Eq. (82) can be separated with the ansatz χ(η, ξ) = Y (η)X(ξ) which yields the couple of
ordinary differential equations

− ~̃2

ξ2 − 1
d
dξ

(
(ξ2 − 1)

d
dξ

)
X(ξ) =

(ξ2 − 1)(2hξ2 + 2ξ − 2g)− ~̃2m2

(ξ2 − 1)2
X(ξ) ,

− ~̃2

1− η2

d
dη

(
(1− η2)

d
dη

)
Y (η) =

(1− η2)(−2hη2 + 2(1− 2µ)η + 2g)− ~̃2m2

(1− η2)2
Y (η) ,

(85)
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g being the separation constant. Eq. (85) allows for a direct comparison with the ex-
pressions for the separated momenta in the classical case, see Eq. (40). The separation
constant g is the eigenvalue of the operator

Ĝ =
1

ξ2 − η2

(
ξ2Ĥη + η2Ĥξ

)
, (86)

i. e., the set of equations (85) is equivalent to the set of equations ĤY (η)X(ξ) = hY (η)X(ξ)
and ĜY (η)X(ξ) = gY (η)X(ξ). Like in the classical case, Ĝ can be decomposed into
Ĝ = Ĥ + Ω̂ [27]. With the total angular momentum operator L̂ = −i~̃(r × ∇), the
operator Ω̂ in Cartesian coordinate representation reads

Ω̂ =
1
2

(
L̂

2
+ ~̃2

( ∂2

∂x2
+

∂2

∂y2

))
+ µ

z + 1
r1

− (1− µ)
z − 1

r2
, (87)

cf. Eq. (12).
For the quantum mechanical two-center problem there are thus three mutually com-

muting observables Ĥ, Ĝ and L̂z. The energy eigenstates can be chosen to be common
eigenstates of all three observables, with triples of eigenvalues (h, g, l). The joint spectrum
σ(Ĥ,Ĝ,L̂z) of Ĥ, Ĝ and L̂z is obtained from solving Eq. (85). Technically, this is a coupled
boundary value problem where both equations have regular singular points at ±1 with
indices ±|m|/2, and an irregular singular point at infinity [39]. For the actual solution one
has to resort to a numerical procedure as, e. g., described in [8, 7, 54].

The trace of the classical monodromy in the quantum system becomes apparent in a
semiclassical analysis. The classical analogues of the quantum operators Ĥ, Ĝ and L̂z

are the classical phase space functions H, G and pϕ. This can be made mathematically
precise in the framework of so-called microlocal analysis (see e. g. [12]) so that H, G
and pϕ are the zeroth order terms, the principal symbols, in a power series expansion
of the quantum operators with respect to the scaled Planck’s constant (80). The first
order semiclassical approximation of the joint spectrum σ(Ĥ,Ĝ,L̂z) in this sense is given
by the EBK quantization of the classical tori. Let us first consider the part of σ(Ĥ,Ĝ,L̂z)
located in the classical region TP. Classically, the region TP represents a single smooth
three-parameter family of 3-tori (as opposed to region TS where each (h, g, l) represents
two 3-tori in phase space). In terms of the natural actions (55) the EBK quantization
conditions for the 3-tori of type TP are

Iϕ = l = ~̃(m + αϕ/4) , Iη = ~̃(nη + αη/4) , Iξ = ~̃(nξ + αξ/4) (88)

with quantum numbers (m,nη, nξ) ∈ Z×N×N and Maslov indices (αϕ, αη, αξ) = (0, 2, 2)
corresponding to the fundamental paths defined in Eq. (54). The Maslov indices reflect
the rotational character of the degree of freedom ϕ and the oscillatory character of η
and ξ motion. In the space of the natural actions (Iϕ, Iη, Iξ) the quantum mechanical
eigenvalues form a regular grid of mesh width ~̃. By (numerical) inversion of the mapping
(h, g, l) 7→ (Iϕ, Iη, Iξ), this grid structure is transmitted smoothly to the space of the
eigenvalues (h, g, l). Here the fact that the natural actions I are not smooth at l = 0 is
no problem because the EBK quantization conditions are invariant under a change to the
different locally smooth actions K defined according to Eq. (65). The actions K fulfill
again EBK quantization conditions of the form K = ~̃(n + α) with a vector of integers n
and the same vector of Maslov indices α = (αϕ, αη, αξ)t = (0, 2, 2)t. The reason for this
invariance is the fact that the vector of Maslov indices is an eigenvector, with eigenvalue 1,
of each of the matrices Ma, a ∈ {s′, p, l}, and the monodromy matrices Mp1 and Mp2 :

Maα = Mp1α = Mp2α = α . (89)
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Figure 24: a) Surface of eigenvalues of Born-Oppenheimer H+
2 with nη = 26. The left boundary

corresponds to the right boundary in Fig. 15, in the sense that g is maximal as a function of l at fixed h.
The open circle marks the intersection with L1+

1 . b) Surface of eigenvalues of Born-Oppenheimer HHe++

with nξ = 11. The triangle in the middle corresponds to the kite shape singularity in Fig. 13. Both pictures
are for ~̃ = 1/20.

Such invariance was also found in [49, 48], and we believe that it holds generally in the
context of monodromy.

The quantum monodromy of the two-center problem concerns the global topology of
the grid of eigenvalues σ(Ĥ,L̂z ,Ĝ). Since a three-dimensional picture would be too cum-
bersome we resort to illustrating the quantum monodromy by choosing certain subsets of
eigenvalues located on smooth two-dimensional surfaces in TP.

Starting with the case of Born-Oppenheimer H+
2 , we look for a smooth surface in TP

which intersects the line L1+
1 transversely. A glance at Equations (65), (72), and (76)

reveals that surfaces Kη = ~̃(nη + 1/2) with nη = const are a good choice: smoothing
with either Ml or Mp gives the same action component Kη = Iη − 2Iϕ for l < 0 in both
cases, and furthermore it is invariant under the monodromy transformation Mp1 . We take
nη sufficiently large (nη = 26) and consider the two-dimensional subgrid of eigenvalues on
this surface. Fig. 24a shows the projection of the corresponding grid of values (h, g, l) to
the (h, l)-plane. The grid structure induced by the EBK quantization is evident. The non-
trivial global topology of the grid becomes apparent if a lattice cell is transported along a
closed path p1 around the intersection point with L1+

1 . In accordance with the monodromy
matrix Mp1 this lattice cell returns sheared by one lattice site. Due to this lattice defect
there are only two quantum numbers that allow for an unambiguous “smooth” numbering
of the eigenstates. A possible choice of “good” quantum numbers in this sense would be
nη and m, or any combination thereof.

For Born-Oppenheimer HHe++ the quantum monodromy about the line L1+
1 is of the

same nature as in the case of H+
2 , and we omit the presentation of a separate figure.

Instead we illustrate the monodromy associated with the non-local singularity which in a
section at constant energy has the shape of a kite, see Fig. 13. A simple surface in action
space that intersects this singularity transversely is obtained with Kξ = ~̃(nξ + 1/2) and
nξ = const, where Kξ = Iξ − Iϕ for l < 0 for both M = Ms′ and M = Ml. The surface is
invariant under Mp2 . Fig. 24b shows the grid of eigenvalues on this surface in projection
to the (g, l)-plane. Compared to the bifurcation diagrams Σh

g,l in Fig. 13, the kite shaped
region here is distorted because the surface is not iso-energetic. The non-local defect of
the eigenvalue lattice is detected from transporting a lattice cell along a closed path p2

around the singularity. In accordance with the monodromy matrix Mp2 , the lattice cell
returns sheared by one lattice site. If nξ is further increased the kite shaped region on
Kξ = ~̃(nξ +1/2) eventually shrinks to a point in the Hopf bifurcation discussed in Sec. 4,
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Figure 25: The same surface of eigenvalues of Born-Oppenheimer HHe++ as in Fig. 24b now with a
different transport of a lattice cell. Small squares mark eigenvalues which correspond to tori of the light
family TL.

and the quantum monodromy about this point gives a similar picture as in Fig. 24a.
For eigenstates with eigenvalues in TP and not too far from this singularity, there

are again only two “good” quantum numbers, e. g. nξ and m. But for energies h > hc2

where both singularities coexist, neither nξ nor nη are good quantum numbers; only the
angular momentum number m remains as a globally useful label for the eigenstates of the
Born-Oppenheimer HHe++ molecule.

Fig. 24b also shows quantum states in region TS, i. e., inside the kite. This is possible
because Kξ is smooth across the non-local singularity which is solely due to collisions of
roots of the polynomial P l

1/3(η) – the bifurcations of tori only involve the η degree of
freedom. Within region TS there are two classical 3-tori for each (h, g, l), and the EBK
quantization in Eq. (88) has to be modified to incorporate the tunnelling between these
tori. Semiclassically, this can be achieved by a so-called uniform semiclassical quantization
[38, 14] based on a WKB ansatz for the separated quantum mechanical wave functions.
For the two-center problem this has been worked out in detail in [35]. A refined treatment
using the more general phase integral method can be found in the series of papers [3, 4, 5].

The higher density of the spectrum inside TS, as compared to the surrounding TP,
reflects the existence of the two families of tori, TH and TL. As the two families are mixed
by the tunnelling, it is not strictly possible to relate a given eigenstate to one or the other.
But to the extent that the tunnelling effect is small (in particular, at small values of ~̃), the
two families may be discerned in the spectrum. In this sense, the small squares in Fig. 25
can be said to belong to the family TL whereas the dots belong to the family TH . The
distinction becomes more and more difficult near the right boundary of the kite where the
two families merge along a separatrix. Consider now what happens at the left border of
the kite. The family TL ceases to exist whereas the family TH continues smoothly across
it and into the region TP. Accordingly, if only the lattice corresponding to tori TH is
taken into account, it is possible to transport a lattice cell across the left boundary to the
interior of region TS. The same is not possible at the right border which is a singularity
for both families of tori.
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8 Concluding Remarks

The present paper consists of two major parts. The first (Secs. 2-4) is a collection of
largely known classical results on the qualitative dynamics of the two-center problem and
its bifurcation behavior. The second (Secs. 5-7) is an analysis of the system in terms of
action variables.

We found it useful to collect and present the existing information as it is widely scat-
tered in the literature of more than 150 years, and has accordingly been expressed in a
number of different frameworks. A coherent picture emerges when the energy momentum
map from phase space to the space of constants of motion is introduced and analyzed for
criticality. This method requires Liouville integrability of the system, but that was estab-
lished early on for all versions of Euler’s two-center problem: planar and three-dimensional,
symmetric and asymmetric. Jacobi gave the clue for separation in terms of elliptic coor-
dinates. He found an integral of the motion, G, generating a flow in phase space which
is independent of the Hamiltonian flow and commuting with it. Like H, G is not the
generator of a compact symmetry group; its flow, in general, fills a 3-torus densely. But
the combination of the invariance of H and G guarantees the integrability of the planar
problem. Generalization to the three-dimensional problem is almost trivial because the
compact symmetry group generated by the angular momentum pϕ may be factored out.

Standard methods were used to analyze the bifurcations of the energy momentum map.
For the planar problem, the main result is presented in Fig. 3. The set of critical values
(g, h) defines four regions of regularity for the asymmetric case, three for the symmetric.
The regular types of motion were characterized by the topology of the Liouville tori. The
set Σ0 of bifurcation values (g, h), and the nature of their pre-images, were studied in
detail, including the stability of critical periodic orbits. The corresponding results for the
three-dimensional two-center problem were not given as a picture of the bifurcation set Σ
in (h, g, l)-space, but rather in terms of its projections to the (h, l)-plane in Fig. 9, and
its different types of cross section at constant l (Figures 10 and 11 for the asymmetric
case, Fig. 14 for the symmetric) or at constant h (Fig. 13 for the asymmetric, Fig. 15
for the symmetric case). Of particular interest was the question how the two-dimensional
bifurcation set Σ0 of the planar problem is contained in the more comprehensive set Σ of
the full problem. The important finding was that although the values (h, g, l) belonging
to the TP family of tori is a connected set, it is not simply connected but in its interior
contains two sets of singularities: a one-dimensional line L1+

1 and a fan like object which is
two-dimensional in the energy range hc1 < h < hc3 but shrinks to the line L2+

µ at energies
h > hc3.

In the second part we computed action variables and used them for a discussion of
the system’s quantum mechanics. The Liouville-Arnold theorem establishes the local ex-
istence of action variables in the regular regions of the conserved quantities; it leaves open
the question to what extent these variables can be made global. We started with the
computation of “natural” actions, those defined by the separating variables. It turned out
that they are elliptic integrals of various kinds, depending on whether or not the system is
planar and/or symmetric. The “surfaces” of constant energy h in action space are given
in Figures 16 and 17 for the planar system (asymmetric and symmetric, respectively), and
correspondingly for the full problem in Figures 19, 20. From these surfaces it is straightfor-
ward to discuss rotation numbers and questions of stability against perturbations, in the
sense of the Kolmogorov-Arnold-Moser theorem. But rather than pursuing this question,
we addressed the problem of finding, for the family of tori TP, global actions that are
smooth at the pre-images of regular values (h, g, l). Inspection of Fig. 19 shows that the
natural actions do not quite fulfill this requirement: they exhibit discontinuities in slope
for l = 0 even though the bifurcation analysis had shown that, except for special values
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(h, g), the line l = 0 is regular.
The reason for the non-existence of globally smooth actions in TP was traced to the

Hamiltonian monodromy of the two-center problem. The multiple connectedness of TP

equips it with a homology group of type Z2, and each non-contractible cycle is associated
with a non-trivial monodromy matrix which we calculated.

In the final part of the paper we showed that classical monodromy leads to quan-
tum monodromy, i. e. the impossibility to label the lattice of quantum states globally
and uniquely by quantum numbers. This was explicitly worked out for the molecular
ions HHe++ and H+

2 , with the distance between the nuclei considered as fixed (Born-
Oppenheimer approximation) and an effective Planck constant assumed unrealistically
small. Therefore, the application to HHe++ and H+

2 should not be taken too serious, but
Rydberg states in polyelectronic molecules might exhibit the properties discussed here if
the bonding is maintained by the non-excited electrons.
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Birkhäuser, Basel, Boston, Berlin, 1997.
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[20] R. H. Cushman and D. A. Sadovskíı. Monodromy in the hydrogen atom in crossed
fields. Physica D, 142:166–196, 2000.

[21] A. Deprit. Le problème des deux centres fixes. Bull. Soc. Math. Belg., 14:12–45, 1962.

[22] Y. Duan and J. M. Yuan. Periodic orbits of the hydrogen molecular ion. Eur. Phys.
J. D, 6:319–326, 1999.

[23] Y. Duan, J. M. Yuan, and C. Bao. Periodic orbits of the hydrogen molecular ion and
their quantization. Phys. Rev. A, 52(5):3497–3502, 1995.

[24] J. J. Duistermaat. On global action-angle coordinates. Comm. Pure Appl. Math.,
33:687–706, 1980.

[25] H. R. Dullin, M. Juhnke, and P. H. Richter. Action integrals and energy surfaces of
the Kovalevskaya top. Bifurcation and Chaos, 4(6):1535–1562, 1994.

[26] A. Einstein. Zum Quantensatz von Sommerfeld und Epstein. Verh. DPG, 19:82–92,
1917.

[27] H. A. Erikson and E. L. Hill. A note on the one-electron states of diatomic molecules.
Phys. Rev., 75(1):29–31, 1949.

[28] A. T. Fomenko. Topological classification of all integrable Hamiltonian differential
equations of general type with two degrees of freedom. In T. Ratiu, editor, The
Geometry of Hamiltonian Systems, pages 131–339, New York, 1991. Springer.

[29] T. Frankel. The Geometry of Physics. Cambridge University Press, Cambridge, 1997.

[30] J. M. Greene. A method for determining a stochastic transition. J. Math. Phys.,
20:1183–1201, 1979.

[31] Cushman R. H. and J. J. Duistermaat. The quantum mechanical spherical pendulum.
Bull. Amer. Math. Soc., 19:475–479, 1988.

[32] J. E. Howard and T. D. Wilkerson. Problem of two fixed centers and a finite dipole:
a unified treatment. Phys. Rev. A, 52(6):4471–4492, 1995.

[33] C. G. J. Jacobi. Vorlesungen über Dynamik. Chelsea Publ., New York, 1969.
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