PRÁCTICO 4

Integrales de línea y desarrollos en serie

1. Calcular las siguientes integrales:

$$\int_{1}^{2} \left(\frac{1}{t} - i\right)^{2} dt \; ; \qquad \int_{0}^{\frac{\pi}{6}} e^{2ti} dt$$

2. Sean $m, n \in \mathbb{Z}$.

(a) Probar que
$$\int_0^{2\pi} e^{im\theta} e^{-in\theta} d\theta = \begin{cases} 0, & \text{si } m \neq n, \\ 2\pi, & \text{si } m = n. \end{cases}$$

(b) Calcular $\int_C z^m z^{-n} dz$, donde C es el círculo |z|=1 recorrido en sentido antihorario.

3. Evaluar la integral
$$\int_{[-i,1+2i]} \operatorname{Im} z \, dz$$
.

4. Evaluar la integral $\int_{[z_1,z_2,z_3]} f(z) dz$, donde $z_1 = -i$, $z_2 = 2 + 5i$, $z_3 = 5i$ y $f(x + iy) = x^2 + iy$.

5. Sea
$$f(z) = y - x - 3x^2i$$
. Calcular $\int_C f(z)dz$, donde:

- (a) C es el segmento de recta que une $z_1=0$ con $z_2=1+i$.
- (b) $C = [0, i] \cup [i, 1 + i].$

6. Calcular $\int_C \frac{z+2}{z} dz$, donde C es:

- (a) la semicircunferencia $z=2e^{it},\,t\in[0,\pi].$
- (b) la semicircunferencia $z = 2e^{it}, t \in [\pi, 2\pi].$
- (c) la circunferencia $z=2e^{it},\,t\in[0,2\pi].$

7. Sea $f(z)=e^z$. Calcular $\int_C f(z)dz$, donde C es el arco que va de $z_1=\pi i$ a $z_2=1$ por:

- (a) el segmento de recta que une esos puntos.
- (b) la porción de los ejes coordenados que unen esos puntos.

8. Hallar el valor de la integral de g(z) a lo largo del circulo |z-i|=2 recorrido en sentido horario en los casos:

$$g(z) = \frac{1}{z^2 + 4};$$
 $g(z) = \frac{1}{(z^2 + 4)^2}.$

9. Calcular:

(a)
$$\int_{\gamma_n} \frac{dz}{z}$$
, donde $\gamma_n : [0, 2\pi] \to \mathbb{C}$, $\gamma_n(t) = e^{int}$ con $n \in \mathbb{Z}$.

(b)
$$\int_{\gamma} z^n dz$$
, donde $n \in \mathbb{Z}$ y $\gamma : [0, 2\pi] \to \mathbb{C}$, $\gamma(t) = e^{it}$.

(c) $\int_{\sigma} \frac{dz}{z}$, donde σ es la poligonal [1-i,1+i,-1+i,-1-i,1-i].

Notar que las integrales de la función $\frac{1}{z}$ de los puntos (a), (b) y (c) resultan iguales.

- 10. Calcular $\int_{\gamma} (z^2 1)^{-1} dz$ para:
 - (a) $\gamma(t) = 1 + e^{it} \text{ para } 0 \le t \le 2\pi.$
 - (b) $\gamma(t) = 2e^{it} \text{ para } -\pi \le t \le \pi.$
- 11. Si $\sum_{n=1}^{\infty} z_n = S$, probar que:
 - (a) $\sum_{n=1}^{\infty} \overline{z_n} = \overline{S}$,
 - (b) $\sum_{n=1}^{\infty}cz_{n}=cS$ para cualquier número complejo c.
- 12. Hallar la región de convergencia de las siguientes series de potencias:
 - (a) $\sum_{n=1}^{\infty} (-1)^n \frac{z^n}{n!}$.
 - (b) $\sum_{n=0}^{\infty} \left(1 \frac{1}{n}\right)^n z^n.$
 - (c) $\sum_{n=0}^{\infty} \operatorname{sen}\left(\frac{n\pi}{2}\right) z^n$.
- 13. Probar que si la serie $\sum_n a_n z^n$ tiene radio
o de convergencia igual a r, entonces la serie derivad
a $\sum_n n a_n z^{n-1}$ también tiene radio de convergencia igual a r.
- 14. Demostrar que $e^z = e \sum_{n=0}^{\infty} \frac{(z-1)^n}{n!}$ para todo $z \in \mathbb{C}$.
- 15. Hallar el desarrollo en serie, centrado en 0, de la siguiente función e indicar su dominio de convergencia:

2

$$f(z) = \frac{z}{z^4 + 9} = \frac{z}{9} \left(\frac{1}{1 + (z^4/9)} \right).$$

- 16. Encontrar el radio de convergencia de las siguientes series de potencias:
 - (a) $\sum_{n=0}^{\infty} a^n z^n$ $a \in \mathbb{C}$;
 - (b) $\sum_{n=0}^{\infty} a^{n^2} z^n \quad a \in \mathbb{C};$
 - (c) $\sum_{n=0}^{\infty} n^p z^n;$
 - (d) $\sum_{n=0}^{\infty} \frac{z^n}{n!};$
 - (e) $\sum_{n=0}^{\infty} z^{n!}.$

Ejercicios adicionales

- 17. Probar que $\int_{\gamma} f(z) dz$ es independiente de la parametrización de γ^* en el siguiente sentido. Si $h: [c,d] \mapsto [a,b]$ es biyectiva y continuamente derivable, con h(c) = a y h(d) = b y $\gamma_1 = \gamma \circ h$, entonces $\int_{\gamma_1} f(z) dz = \int_{\gamma} f(z) dz$.
- 18. Evaluar la integral $\int_{\gamma} \overline{z} \, dz$, donde γ recorre la parábola $y=x^2$ desde (1,1) hasta (2,4).
- 19. Calcular las siguientes integrales, donde el camino es un contorno arbitrario entre los límites de integración.

$$\int_{i}^{\frac{i}{2}} e^{\pi z} dz; \qquad \int_{1}^{3} (z-2)^{3} dz.$$

20. Sea C la circunferencia |z|=3, recorrida en sentido antihorario. Probar que si

$$g(w) = \int_C \frac{2z^2 - z - 2}{z - w} dz, \qquad |w| \neq 3,$$

entonces $g(2) = 8\pi i$. ¿Cuánto vale g(w) cuando |w| > 3?

- 21. Sea la circunferencia unidad $z = e^{i\theta}, \theta \in [-\pi, \pi]$.
 - (a) Probar que para cualquier $a \in \mathbb{R}$ vale:

$$\int_C \frac{e^{az}}{z} \, dz = 2\pi i.$$

(b) Escribir la integral anterior en términos de θ para deducir la fórmula de integración

$$\int_0^{\pi} e^{a\cos\theta} \cos(a\sin\theta) \, d\theta = \pi.$$

- 22. Considerar la serie $\sum_{n=1}^{\infty} z^n$.
 - (a) Probar que si |z| < 1, la serie converge a $\frac{z}{1-z}$.
 - (b) Escribiendo $z = re^{i\theta}$, deducir las siguientes igualdades para 0 < r < 1:

$$\sum_{n=1}^{\infty} r^n \cos(n\theta) = \frac{r \cos \theta - r^2}{1 - 2r \cos \theta + r^2} ; \qquad \sum_{n=1}^{\infty} r^n \sin(n\theta) = \frac{r \sin \theta}{1 - 2r \cos \theta + r^2} .$$

- 23. Sea $\{a_n\}$ una sucesión de números complejos.
 - (a) Si $\limsup_{n\to\infty} |a_{n+1}/a_n| = \alpha$, ¿qué se puede decir sobre el radio de convergencia la serie de potencias $\sum_n a_n z^n$?
 - (b) Y si $|a_{n+1}/a_n|$ tiende a α , ¿qué se puede decir?
- 24. Sean γ y σ las curvas poligonales [1,i] y [1,1+i,i]. Expresar a γ y σ como caminos y calcular $\int_{\gamma} f$ y $\int_{\sigma} f$ donde $f(z) = |z|^2$. ¿Porqué no la vale la independencia de caminos?

3

25. Evaluar las siguientes integrales.

(a)
$$\int_{\gamma} \frac{e^{iz}}{z^2} dz$$
, con $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$.

- (b) $\int_{\gamma} \frac{e^z e^{-z}}{z^n} dz$, con $\gamma(t) = e^{it} y \ 0 \le t \le 2\pi$.
- 26. Sea $I(r)=\int_{\gamma}\frac{e^{iz}}{z}dz$ con $\gamma(t)=re^{it},\,0\leq t\leq 1.$ Probar que $\lim_{r\to\infty}I(r)=0.$
- 27. Calcular el radio de convergencia de la serie de potencias $\sum_{n=0}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$ y discutir la convergencia en z = 1, -1, i.
- 28. Si $\sum a_n z^n$ tiene radio de convergencia R, ¿cuáles son los radios de convergencia de $\sum a_n z^{2n}$ y de $\sum a_n^2 z^n$?
- 29. ¿Para qué z es $\sum \left(\frac{z}{1+z}\right)^n$ convergente?