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Abstract

In this work, we present the BMM 2D estimator, a robust estimator for the parameters of the bidimensional
autoregressive model (AR-2D model). The new estimator is a two-dimensional extension of the BMM es-
timator for the parameters of the autoregressive models used in time series analysis. We demonstrate that
the BMM 2D estimator is consistent and asymptotically normal, which provides a valuable tool to carry out
inferential studies about the parameters of the AR-2D model. We compare its performance with existing
estimators through a Monte Carlo study, considering different levels of additive contamination and window
sizes. The results show that the new estimator competes successfully with the other methods, both in accu-
racy and precision. In the context of image restoration problems, we illustrate the performance of the BMM
2D estimator compared with the least squares estimator.
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1. Introduction

In the area of image processing and computer vision, the use and development of techniques called “robust”
is frequent, not referring to the term robustness imperiously from a formal statistical perspective. Within this
framework, the classic tools do not consider the structure or topology inherent to the images and, in most
situations, the models require strong hypotheses about the laws that govern the observed process (Alata &
Olivier (2003), Bustos et al. (2009), Dormann et al. (2007), Latha et al. (2014), Ojeda et al. (2010), Quintana
et al. (2011), Sahu et al. (2015), Sain & Cressie (2007), Vallejos & Mardesic (2004) and Zielinski et al. (2010)).
Two-dimensional autoregressive models were introduced by Whittle (1954) as a class of models capable of
capturing spatial correlation in the data collected. These models have proven to be of great importance
in several areas that benefit from image processing (Smith et al. (1986), Dormann et al. (2007), Sain &
Cressie (2007)) since they make it possible to represent the intensity of an image through a small number of
parameters and naturally extend the definition of autoregressive models for time series to Z2. Consequently,
several of the robust tools developed to estimate the parameters of the one-dimensional autoregressive model
have been implemented for AR-2D models under contaminated spatial data (see Kashyap & Eom (1988),
Allende et al. (1998), Ojeda et al. (2002)).

In the context of robust estimators of the parameters of the AR-2D model with a finite and arbitrary
number of parameters, at least three estimators have been defined and studied: the M, GM and RA estimators.
In 1988, Kashyap & Eom (1988) presented the M estimators for the AR-2D models. Then, for the same
models, Allende et al. (1998) implemented an extension of the M estimators: the Generalized M estimators
(GM). They extend the GM estimators defined for unidimensional AR models used to model process in time
series. While the performance of these two estimators is acceptable for contaminated data with innovative
contamination, there are not known rigorous studies on its asymptotic properties. Similarly, robust Residual
Autocovariance (RA) estimators were introduced by Ojeda et al. (2002) for two-dimensional autoregressive
models extending the definition for time series of the estimator with the same name (Bustos & Yohai (1986)).
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The performance of this estimator is better than the M estimator and slightly higher than the GM estimator
under innovative and additive contamination. In addition, the RA estimator outperforms its competitors
M and GM because its asymptotic properties are known. Indeed, this estimator is strongly consistent and
asymptotically normal with known variance-covariance matrix. In contrast, the main disadvantage of the RA
estimator compared to the M and GM estimators is its high computational cost, which makes it an ineligible
tool in practical applications. Finally, it should be noted that in Britos & Ojeda (2018) an estimator, called
BMM 2D, was defined to estimate the parameters of the two-dimensional autoregressive model with three
parameters, partially extending the definition given in Muler et al. (2009) for time series. This estimator
proved to be a successful tool for estimating the three parameters of the model when the spatial data are
contaminated by different contamination schemes, showing good performance (in precision, as well as accuracy
and computational time) compared to the estimators mentioned above.

In this paper we present the BMM 2D estimator for the parameters of the unilateral autoregressive
spatial processes with p parameters, generalizing the definition established in Britos & Ojeda (2018). This
estimator preliminarily estimates the M-scale of the innovation process and then makes an M-estimation
of the parameters, relying on an auxiliary model called BIP-AR 2D which allows to control the effect of
the outliers in the innovative process. Later, we study the asymptotic behavior of the BMM 2D estimator
and we give precise conditions for the strongly consistency and asymptotic normality of the estimator. The
paper is organized as follows. Section 2 presents the motivation of this study based on: the adequacy of
AR-2D models in the representation of real images; the impact of contamination on the performance of
classical least square estimators, and empirical evidence that the BMM version of such estimators is able to
resist additive contamination. In section 3, the AR-2D model is formally defined with p parameters and the
definition of the auxiliary model BIP-AR 2D is presented. Section 4 defines the BMM estimator of a 2D
autoregressive model with p parameters and Section 5 analyzes its performance in an AR-2D model with two
parameters under additive contamination compared to other two-dimensional estimators (LS, M, GM, RA).
In section 6, the theorems that give strong consistency and asymptotic normality to the BMM estimator are
established. Section 7 discusses some final remarks and directions for future work. Finally, some necessary
lemmas are enunciated and demonstrated in the Appendix to prove the theorems presented in Section 6 and
these theorems are proven.

2. Motivation

Unilateral two-dimensional (AR-2D) autoregressive models have shown a successful performance in the
local approximation of digital images. This is due to the great expressiveness these models have to represent
a great diversity of textures present in the images. In this section we show graphic examples about the ability
of these models to represent texture images of real scenarios. We use the algorithm presented in (Britos
& Ojeda (2018)), defined to approximate images through a unilateral AR-2D model with three parameters.
Figure 1 shows the results obtained with the said procedure. The images of the Figs. 1 (a) and 1 (g) were
obtained from the USC-SIPI image database http://sipi.usc.edu/database/ and contaminated with additive
noise, adding a constant value (equal to 50 or 70) in 10 % of the pixels of the images, obtaining the images
of the Figures 1 (b) and 1 (h), respectively. From the contaminated images, an AR-2D model was adjusted
using a window the size of the entire image. Initially, we restore the original images estimating the parameters
from the LS estimator, obtaining the images of the Figures 1 (c) and 1 (i). Later, in a second instance we use
the robust BMM-2D estimator. The Figures 1 (e) and 1 (k) show the results of the images restored for this
case. In general, the contamination prevents a reliable statistical analysis since the results can be affected by
the presence of outliers. However, the similarity between the estimated and the original images suggests that
the AR-2D model is suitable for representing real images even in the presence of contamination. Figs. 1 (d)
and (j) present the pixel-to-pixel differences between true images and those restored from the LS estimator
of the parameters. Similarly, Figures 1 (f) and 1 (l) show the differences using the robust BMM estimator.
The better the estimate, the lower the information present in these difference images. When these differences
come from the LS estimator, the presence of a residual structure that was not explained by the restoration
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model is observed; the residual structure is much less noticeable in the differences from the BMM restoration,
which contain less information. This fact suggests that analyzing and studying the properties of the robust
BMM estimator in detail are relevant tasks.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 1: Original and contaminated images, their LS and BMM estimations and their residuals. (a) Original X. (b) Contam-
inated. (c) LS estimation X̂1. (d) X − X̂1. (e) BMM estimation X̂2. (f) X − X̂2. (g) Original X. (h) Contaminated. (i) LS
estimation X̂1. (j) X − X̂1. (k) BMM estimation X̂2. (l) X − X̂2.

3. The model under study

3.1. The Central Two-dimensional Autoregressive Model

We consider a stationary and strongly causal bidimensional AR process Y , with mean µ0, that can be
represented by

Φ0(B1, B2)(Yi,j − µ0) = εi,j ,

with innovation process ε = {εi,j} where εi,j ’s are i.i.d. random variables with symmetric and strictly
unimodal distribution and Φ0(B1, B2) is a polynomial operator given by Φ0(B1, B2) = 1−

∑
(k,l)∈T φ

0
k,lB

k
1B

l
2,

where T = TL = {(i, j) ∈ Z2 : 0 ≤ i, j ≤ L, (i, j) 6= (0, 0)}, with fixed L ∈ N and φ0
k,l ∈ R, ∀(k, l) ∈ T .

Φ0(B1, B2) is called “unilateral polynomial with support in T”(Britos (2019)).
We can consider that the Y process is observed in WM , a strongly causal window: WM = {(i, j) ∈ Z2 :

0 ≤ i, j ≤M}, with M ∈ N and L�M . We define (WM ∼ T )L := {(i, j) ∈WM : (i− L, j − L) ∈WM}. To
simplify the notation, we write (WM ∼ T ) instead of (WM ∼ T )L. Therefore, ∀(i, j) ∈ (WM ∼ T ), Yi,j can
be expressed as

Yi,j = µ0 +
∑

(k,l)∈T

φ0
k,l(Yi−k,j−l − µ0) + εi,j . (3.1)

A sufficient condition for the Y process to be strongly causal is that
∑

(k,l)∈T |φk,l| < 1 (see Guyon (1995)).
In that case, Y supports an infinite moving average representation as following:

Ẏi,j =
∑

(k,l)∈I

λk,lεi−k,j−l, (3.2)

where I = {(k, l) ∈ Z2 : k, l ≥ 0}, λk,l ∈ R, ∀(k, l) ∈ I and λ0,0 = 1.
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We assume that the parameters of the model (3.1) are unknown. These are the coefficients {φ0
k,l}(k,l)∈T of

the unilateral polynomial (indexed in T , subset of Z2) and the mean µ0 of the process. Therefore, to obtain
a vector representation of the parameters, we define a complete order on Z2, called spiral order and denoted
by �. Figure 2 gives a clear idea of this order. For more details it can be consulted Britos (2019).

j(+)

i(+)

(a)

j(+)

i(+)

(b)

Figure 2: (a) Spiral order in Z2 (�), (b) Spiral order restricted to I

According to the spiral order, we can obtain the following vector expression of the parameters:

β0 = (φ0, µ0) = (φ0
1,0, φ

0
1,1, φ

0
0,1, φ

0
2,0, φ

0
2,1, φ

0
2,2, φ

0
1,2, φ

0
0,2, ..., φ

0
L,0, ..., φ

0
L,L, φ

0
L−1,L, ..., φ

0
0,L, µ0),

where
φ0 = (φ0

1,0, φ
0
1,1, φ

0
0,1, φ

0
2,0, φ

0
2,1, φ

0
2,2, φ

0
1,2, φ

0
0,2, ..., φ

0
L,0, ..., φ

0
L,L, φ

0
L−1,L, ..., φ

0
0,L).

In this way, the parametric space is expressed as

B = {β = (φ, µ) : φ ∈ B0, µ ∈ R},

where B0 = {φ ∈ R(L+1)2−1 :
∑

(k,l)∈T |φk,l| ≤ 1− ε} with a fixed ε > 0.
For all β ∈ B, the residual function εi,j(β) is defined as

εi,j(β) = Ẏi,j − φ′Ỹi,j , (3.3)

for all (i, j) ∈ (WM ∼ T ) and εi,j(β) = 0 in any other case, where

Ỹi,j = (B(1,0)Ẏi,j , B
(1,1)Ẏi,j , B

(0,1)Ẏi,j , ..., B
(L,0)Ẏi,j , ..., B

(L,L)Ẏi,j , ..., B
(0,L)Ẏi,j)

= (Ẏi−1,j , Ẏi−1,j−1, Ẏi,j−1, ..., Ẏi−L,j , ..., Ẏi−L,j−L, ..., Ẏi,j−L).

Note that if (i, j) ∈ (WM ∼ T ), (3.3) is equivalent to:

εi,j(β) = (Yi,j − µ)−
∑

(k,l)∈T

φk,l(Yi−k,j−l − µ). (3.4)

In addition, εi,j = εi,j(β0), ∀(i, j) ∈ (WM ∼ T ).
From here on we will refer to the model presented in this subsection, as the pure or central two-dimensional

autoregressive model and we will denote it AR-2D.
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3.2. A Class of Bounded Nonlinear AR Bidimensional Models (BIP-AR 2D)

The robustness is related to the possibility of accurately estimating the parameters of a model that satisfies
precise conditions (assumptions of the model), when in fact we observe a contaminated process, where the
assumptions are not strictly satisfied. We can model an AR-2D process contaminated with an α fraction of
outliers by:

Zi,j = (1− ξαi,j)Yi,j + ξαi,jWi,j ,

where Y is a pure AR-2D process, W is a replacement process and ξα is a process of ones and zeros such that
P (ξαi,j = 1) = α and P (ξαi,j = 0) = 1− α. To estimate the Y parameters in a robust way, when the Z process
has been observed instead, we define a new family of models that help control the effect of atypical data
on parameter estimation. It is a new class of bounded models, not linear, derived from the AR-2D models,
which we will call the AR-2D models of bounded innovative propagation (BIP-AR 2D). This class is defined
from the two-dimensional generalization of the analog model presented for time series by Muler et al. (2009).
The BIP-AR 2D model arises from the need to estimate the parameters of the pure AR-2D model in the
best possible way when a contaminated process is observed, controlling through of a bounded function, the
outliers that can be propagated in innovations.

Consider Y as in (3.1) with innovation process ε. Let ρ : R → R be a continuous and not constant
function, such that ρ(0) = 0, ρ(x) = ρ(−x) and ρ(x) is not decreasing in |x|. Let be a constant b ∈ R such
that E(ρ(Z)) = b when Z is a variable with strictly unimodal symmetric density. Then, the M-scale σ of ε
is defined as the solution of the following equation:

E
(
ρ
(εi,j
σ

))
= b, (3.5)

and the family of auxiliary models, called the BIP-AR 2D family, is given by:

Ẋi,j =
∑

(k,l)∈I\{(0,0)}

λk,lση
(εi−k,j−l

σ

)
+ εi,j , (3.6)

where the coefficients λk,l are defined as in (3.2); εi,j ’s are the variables of the ε process, η is an odd and
bounded function, and σ is the M-scale of ε. Due to the properties of the constant b, when ε ∼ N(0, σ2

ε),
we have that σ = σε. In this case, εi,j/σε ∼ N(0, 1) and E(ρ(εi,j \ σε)) = b; then, σε is the M-scale of ε
corresponding to b and ρ.

We choose a bounded function η such that it satisfies η(x) = x for |x| ≤ k for some k > 0. So, in the
model (3.6), η does not affect the values of the εi,j/σ when they are in the range [−k, k]; but it controls or
limits them if they exceed in absolute value to k. In any case, since λi,j → 0 when (i, j) → ∞ (the limit is
calculated according to the order restricted to I), it is expected that the effect of atypical observations in εi,j
disappears in future observations.

Note that (3.6) can be written as:

Ẋi,j = σΦ−1
0 (B1, B2)η

(εi,j
σ

)
− ση

(εi,j
σ

)
+ εi,j ,

and multiplying both members by Φ0(B1, B2), we get:

Φ0(B1, B2)Ẋi,j = ση
(εi,j
σ

)
− σΦ0(B1, B2)η

(εi,j
σ

)
+ Φ0(B1, B2)εi,j .
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The previous expression is equivalent to:

Xi,j = µ0 +
∑

(k,l)∈T

φ0
(k,l)(Xi−k,j−l − µ0) + σ

∑
(k,l)∈T

φ0
(k,l)η

(εi−k,j−l
σ

)
+ εi,j −

∑
(k,l)∈T

φ0
(k,l)εi−k,j−l.

In the strongly causal window WM , for each (i, j) ∈ (WM ∼ T ), using the equality above, the residual
functions εbi,j(β, σ)’s of the BIP-AR 2D model can be recursively defined:

εbi,j(β, σ) = Xi,j − µ−
∑

(k,l)∈T

φ(k,l)(Xi−k,j−l − µ)−
∑

(k,l)∈T

φ(k,l)ση

(
εbi−k,j−l(β, σ)

σ

)
+
∑

(k,l)∈T

φ(k,l)ε
b
i−k,j−l(β, σ),

(3.7)

and εbi,j(β, σ) = 0 in any other case.

4. BMM 2D Estimator

This section presents a new estimator of the parameters in the AR-2D models (central model) as another
alternative to existing robust methods, which is competitive with respect to the other methods and shows
desirable asymptotic properties. The new proposal, called BMM estimation calculates, in a first stage M
scale estimates obtained from the residual functions of the AR-2D and BIP-AR 2D models, leaving us with
the lowest estimated scale. Then, in a second stage, M estimates of the autoregression parameters of the
pure AR-2D model are obtained from the scale estimated in the previous stage and considering the residual
functions of the two models. Finally, we choose the best estimate. This estimator is a two-dimensional
extension of the proposed estimator for time series by Muler et al. (2009) to estimate the parameters of an
AR-2D model with p-parameters. In 1964, Huber (1964) introduced the M-scale estimate. According to this
proposal, given a sample u = (u1, ..., uN ) with ui ∈ R, an M-estimate of the scale, SN (u), is defined by the
value s ∈ (0,∞) that satisfies

1

n

n∑
i=1

ρ
(ui
s

)
= b, (4.1)

where b = E(ρ(Z)) when Z has strictly unimodal symmetric density and ρ is a function that satisfies the
property P1:

P1: ρ(0) = 0, ρ(x) = ρ(−x), ρ(x) is continuous, nonconstant and nondecreasing in |x|.
Let Y be a pure AR-2D process with innovation process ε; and let {yi,j} be a succession of observed data by
this process, restricted to the strongly causal window WM . We start from (3.5) trying to estimate σ through
the strategy presented by (4.1) using the data and the two expressions for residuals ((3.4) and (3.7)).

Next, we define the BMM 2D estimate in the AR-2D model following the steps detailed below:

First Step: At this stage, we obtain a robust estimate of σ. To do this, we estimate σ using the residuals
of the AR-2D model and the residuals of the BIP-AR 2D model. Finally, we choose the smallest of estimates.

Let ρ1 be a function that satisfies P1 and such that b = E(ρ1(Z)) when Z has strictly unimodal symmetric
density. Then we define an estimate of β0 ∈ B as

β̂S = argmin
β∈B

SN (εN (β)),

and the corresponding estimate of σ is given by

sN = SN (εN (β̂S)),
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where εN (β) = (εM−1,M (β), εM−1,M−1(β), εM,M−1(β), εM−2,M (β), ..., εL,L(β), εL+1,L(β), ..., εM,L(β)), with
εi,j(β) as in (3.4) and SN (εN (β)) is the M-estimate of the scale based on ρ1, b and the sample εN (β),
that is,

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β, σ)

SN (εN (β))

)
= b.

To obtain the estimate of σ for the residuals of the BIP-AR model, β̂bS was defined by the minimization
of SN (εbN (β, σ̂(φ))) over B, where σ̂(φ) estimates the scale σ for every φ as if these were the true values of
the model and the εi,j ’s were normal. In this case, since the M-scale σ coincides with the standard deviation
of εi,j and by (3.6), we obtain that

σ2 =
σ2
y

1 + κ2
∑

(k,l)∈I\{(0,0)} λ
2
k,l(φ)

,

where κ2 = var(η(εi,j/σ)) and σ2
y = var(Yi,j). Let σ̂2

y be a robust estimate of σ2
y such that σ̂y → σy a.e.

and κ2 = V ar(η(Z)) where Z ∼ N(0, 1). Then we define

σ̂2(φ) =
σ̂2
y

1 + κ2
∑

(k,l)∈I\{(0,0)} λ
2
k,l(φ)

. (4.2)

Later, the estimated scale sbN corresponding to the BIP-AR 2D model is defined by

β̂bS = argmin
β∈B

SN (εbN (β, σ̂(φ))),

and
sbN = SN (εbN (β̂bS , σ̂(φ̂bS)))

where, for simplicity, we denote σ̃ = σ̂(φ) and

εbN (β, σ̃) = (εbM−1,L(β, σ̃), εbM−1,M−1(β, σ̃), εbM,M−1(β, σ̃), ..., εbL,L(β, σ̃), εbL+1,L(β, σ̃), ..., εbM,L(β, σ̃)),

with εbi,j(β, σ̃) defined as in (3.7) and SN (εbN (β, σ̂(φ))) is the M-estimate of the scale based on ρ1, b and the

sample εbN (β, σ̂(φ)), that is

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ̃)

SN (εbN (β, σ̂(φ)))

)
= b.

Finally, our estimate of σ is
s∗N = min(sN , s

b
N ).

Second Step: Consider a function ρ2 that satisfies P1 and such that ρ2 ≤ ρ1. Let MN and M b
N functions

defined on B given by:

MN (β) =
1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εi,j(β)

s∗N

)
, (4.3)

and

M b
N (β) =

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εbi,j(β, s

∗
N )

s∗N

)
.

The corresponding M-estimates of the parameters for each function are:

β̂M = argmin
β∈B

MN (β) and β̂bM = argmin
β∈B

M b
N (β).
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Then, we define the BMM 2D estimate as

β̂∗M =

{
β̂M , if MN (β̂M ) ≤M b

N (β̂bM )

β̂bM , if MN (β̂M ) > M b
N (β̂bM ).

Remark 1. In the strongly causal AR-2D model with three parameters, the λk,l’s have a known expression
and can be calculated according to the work of Basu & Reinsel (1993). A general expression of λk,l’s for a
model with more parameters can be obtained by calculating the coefficients of Taylor’s multinomial expansion
of Φ(B1, B2)−1.

5. Experiments

In this section, we will analyze the performance of the new BMM 2D estimator to estimate the parameters
in an AR-2D model under additive contamination compared to other two-dimensional estimators (LS, M, GM,
RA). For this purpose, we carried out some Monte Carlo experiments where the parameters were estimated
when the process is affected by the additive contamination that adds a constant in a certain percentage of
locations. All simulations were implemented in the statistical software R (R Core Team (2017)). The code
was presented in the electronic supplementary material 1 of the work Britos & Ojeda (2018).

We considered the AR-2D model with two parameters and a mean of 0 given by:

Yi,j = φ0
1,0Yi−1,j + φ0

0,1Yi,j−1 + εi,j , (5.1)

with φ0
1,0 = 0.15, φ0

0,1 = 0.17 and ε = {εi,j} a white noise process where εi,j ’s are identically distributed
independent random variables with distribution N(0, 1). The unilateral polynomial associated with the
model is:

Φ0(z1, z2) = 1− φ0
1,0z1 − φ0

0,1z2.

It is important to mention that the set of parameters was chosen randomly satisfying the condition
|φ0

1,0|+ |φ0
0,1| < 1.

The study was conducted with contaminated observations under the model:

Zi,j = (1− ξαi,j)Yi,j + ξαi,j(Yi,j + k)

where 0 < α < 1, ξα is a process of ones and zeros such that P (ξαi,j = 1) = α and P (ξαi,j = 0) = 1− α, and k
is a constant value.

5.1. Estimation of parameters

In this subsection we present some technical details for the computational calculation of the BMM 2D
estimator as well as for the computation of the other bidimensional estimators.

According to the definition (4.1), we can write S2
N (εN (β)) =

∑
(i,j)∈(WM∼T ) r

2
i,j(β) where

ri,j(β) =
SN (εN (β))

N1/2b1/2
ρ

1/2
1

(
εi,j(β)

SN (εN (β))

)
.

Then,
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∑
(i,j)∈(WM∼T )

r2
i,j(β) =

∑
(i,j)∈(WM∼T )

S2
N (εN (β))

N.b
ρ1

(
εi,j(β)

SN (εN (β))

)

=
S2
N (εN (β))

N.b

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

SN (εN (β))

)

=
S2
N (εN (β))

N.b
.N.b = S2

N (εN (β)).

Then, to calculate β̂S any non-linear least squares algorithm can be used; in our case we use the Levenberg-
Marquardt algorithm implemented in the nls.lm function of R package minpack.lm. This algorithm interpo-
lates between the Gauss-Newton algorithm and the descent method (Marquardt (1963)).

Similarly we transform the problem of minimizing SN (εbN (β, σ̂(φ))) into a problem of nonlinear least
squares.

For the calculation of β̂M and β̂bM in the second stage, we used again the Levenberg-Marquardt algorithm
using an idea similar to the previous one and taking as initial estimate the best estimate calculated in the
first stage.

In the simulations we consider the following functions:

ρ2(x) =


0.5x2, if |x| ≤ 2;

0.002x8 − 0.052x6 + 0.432x4 − 0.972x2 + 1.792, if 2 < |x| ≤ 3;

3.25, if 3 < |x|
,

ρ1(x) = ρ2( x
0.405) and η = ρ′2. The function ρ1 was chosen such that if b = max(ρ1)/2, then b = E(ρ1(Z))

when Z ∼ N (0, 1) and so the scale matches the standard deviation for normal samples.

The same function ρ2 was used to calculate M-estimate. In addition, for the implementation of the GM
estimator the weights were set according to Allende et al. (2001) as:

li,j = 1, ∀ i, j y

ti,j =
ψH((Y 2

i−1,j + Y 2
i−1,j−1 + Y 2

i,j−1)/3)

(Y 2
i−1,j + Y 2

i−1,j−1 + Y 2
i,j−1)/3

,

where ψH is the following Huber function (Kashyap & Eom (1988)):

ψH(x) =


x, if |x| ≤ 1.5;

1.5, if 1.5 < x;

−1.5, if x < −1.5.

5.2. Simulations

In each experiment, 500 simulations of the model were generated, and the mean sample value, the mean
square error (MSE) and the sample variance were calculated. Three levels of contamination (5%, 10% and
15%) and different window sizes were considered: 8× 8, 16× 16, 32× 32 and 57× 57.

In the first experiment the capacity of the BMM 2D method was analyzed to estimate the parameters
of the model when it is additively contaminated as in (5) with k = 6, considering a window of size 32 × 32
and varying the percentage of contamination among 5%, 10% and 15%, in comparison with the LS, M, GM

9



and RA methods. Table 1 shows the estimated values for φ0
1,0 and φ0

0,1, using the five different procedures
analyzed. Figure 3 shows the corresponding boxplots of the residues. It can be seen how as the level of
contamination increases the estimates get worse. However, the BMM estimate remains close to the true
parameter values even at the highest contamination.
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Figure 3: Boxplots of estimated residuals LS, M, GM, RA and BMM for the AR-2D model with two parameters and contami-
nated:(a) φ̂1,0−φ1,0 with φ1,0 = 0.15 and (b) φ̂0,1−φ0,1 with φ0,1 = 0, 17. The contamination is additive with k = 6, the window
size is 32× 32 and the percentage of contamination varies among 5, 10 and 15.

Table 1: Estimates of φ1,0 = 0.15 and φ0,1 = 0.17 in an AR-2D model with additive contamination (k = 6) and window size
32× 32.

φ1,0 φ0,1

% LS M GM RA BMM LS M GM RA BMM

5% φ̂ 0.0923 0.0556 0.1238 0.1435 0.1447 0.0846 0.0647 0.1404 0.1623 0.1669
mseφ 0.0044 0.0094 0.0017 0.0016 0.0013 0.0084 0.0116 0.0018 0.0014 0.0013
σ̂2
φ̂

0.0010 0.0005 0.0011 0.0016 0.0012 0.0011 0.0005 0.0010 0.0014 0.0013

10% φ̂ 0.1073 0.0320 0.1092 0.1179 0.1366 0.1020 0.0360 0.1206 0.1306 0.1491
mseφ 0.0028 0.0142 0.0026 0.0027 0.0015 0.0056 0.0182 0.0035 0.0034 0.0020
σ̂2
φ̂

0.0010 0.0003 0.0009 0.0017 0.0014 0.0010 0.0003 0.0010 0.0018 0.0016

15% φ̂ 0.1367 0.0213 0.1026 0.0855 0.1268 0.1327 0.0251 0.1138 0.1000 0.1427
mseφ 0.0011 0.0168 0.0033 0.0054 0.0022 0.0024 0.0212 0.0041 0.0062 0.0023
σ̂2
φ̂

0.0024 0.0212 0.0041 0.0062 0.0023 0.0010 0.0002 0.0010 0.0013 0.0016

In the second experiment, the percentage of additive contamination (with k = 6) was set at 10% and the
window size of the observation varied among 8 × 8, 16 × 16, 32 × 32 and 54 × 54. In the windows of size
32× 32 and 54× 54, the BMM method was the best in the sense that its estimates were found closer to the
true values. In the size 16 × 16 the best estimates came from the methods BMM and RA while in the size
8 × 8 the best were GM, RA and BMM although the estimator RA presented greater dispersion than the
others. This behavior was deduced from the comparison of the values estimated by the BMM method with
the respective estimates obtained by the other procedures. The results can be seen in Table 2 and in Figure
4.

Finally, in the third experiment, only the LS, RA and BMM estimates were compared (since they were
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Figure 4: Boxplots of the estimated residuals LS, M, GM, RA and BMM for the AR-2D model with two parameters and
contaminated:(a) φ̂1,0 − φ1,0 with φ1,0 = 0.15 and (b) φ̂0,1 − φ0,1 with φ0,1 = 0, 17. The contamination is additive with k = 6 at
10% and the window size varies among 8, 16, 32 and 57.

Table 2: Estimates of φ1,0 = 0.15 and φ0,1 = 0.17 in an AR-2D model with additive contamination to 10% (k = 6).

φ1,0 φ0,1

N LS M GM RA BMM LS M GM RA BMM

8 φ̂ 0.1028 0.0373 0.1014 0.0935 0.0904 0.0929 0.0425 0.1279 0.1209 0.1150
mseφ 0.0227 0.0188 0.0210 0.0429 0.0219 0.0223 0.0244 0.0249 0.0752 0.0332
σ̂2
φ̂

0.0205 0.0061 0.0187 0.0398 0.0184 0.0164 0.0082 0.0232 0.0729 0.0302

16 φ̂ 0.1062 0.0300 0.1056 0.1181 0.1206 0.0972 0.0379 0.1185 0.1347 0.1327
mseφ 0.0065 0.0158 0.0070 0.0088 0.0075 0.0095 0.0188 0.0070 0.0084 0.0074
σ̂2
φ̂

0.0046 0.0014 0.0050 0.0078 0.0067 0.0042 0.0014 0.0043 0.0072 0.0061

32 φ̂ 0.1073 0.0320 0.1092 0.1179 0.1366 0.1020 0.0360 0.1206 0.1306 0.1491
mseφ 0.0028 0.0142 0.0026 0.0027 0.0015 0.0056 0.0182 0.0035 0.0034 0.0020
σ̂2
φ̂

0.0010 0.0003 0.0009 0.0017 0.0014 0.0010 0.0003 0.0010 0.0018 0.0016

57 φ̂ 0.1077 0.0319 0.1080 0.1169 0.1447 0.1032 0.0370 0.1222 0.1355 0.1642
mseφ 0.0021 0.0140 0.0021 0.0015 0.0004 0.0048 0.0178 0.0026 0.0016 0.0004
σ̂2
φ̂

3.1e-04 0.0001 3.2e-04 4.6e-04 4.2e-04 3.2e-04 9.1e-05 2.8e-04 3.8e-04 3.9e-04

the ones that presented the best performance).The value of k varied among 2, 4, 6 and 8, the window size
was set at 57× 57 and the percentage of contamination at 10%. Table 3 and Figure 5 show the results. The
LS estimate worsens as the k value increases. In all cases the RA estimates were far from the true parameter
values. On the other hand, the BMM estimate is bad when k = 2 but for values of k greater than 2 this
estimate improves substantially despite being confronted with more extreme contamination.
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Figure 5: Boxplots of the estimated residuals LS, RA and BMM for the AR-2D model with two parameters and contaminated:(a)
φ̂1,0 − φ1,0 with φ1,0 = 0.15 and (b) φ̂0,1 − φ0,1 with φ0,1 = 0, 17. The contamination is additive with 10% of outliers, window
size 57× 57 and the value of k varies among {2, 4, 6, 8}.

Table 3: Estimates of φ1,0 = 0.15 and φ0,1 = 0.17 in an AR-2D model with additive contamination at 10% and window size
57× 57.

φ1,0 φ0,1

k LS RA BMM LS RA BMM

2 φ̂ 0.1467 0.1308 0.1279 0.1333 0.1445 0.1419
mseφ 0.0003 0.0007 0.0008 0.0016 0.0010 0.0011
σ̂2
φ̂

0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

4 φ̂ 0.1211 0.1050 0.1404 0.1113 0.1214 0.1619
mseφ 0.0011 0.0023 0.0006 0.0037 0.0027 0.0006
σ̂2
φ̂

0.0003 0.0003 0.0005 0.0003 0.0003 0.0005

6 φ̂ 0.1077 0.1169 0.1447 0.1032 0.1355 0.1642
mseφ 0.0021 0.0015 0.0004 0.0048 0.0016 0.0004
σ̂2
φ̂

3.1e-04 4.6e-04 4.2e-04 3.2e-04 3.8e-04 3.9e-04

8 φ̂ 0.1018 0.1249 0.1369 0.0990 0.1454 0.1575
mseφ 0.0026 0.0012 0.0006 0.0053 0.0012 0.0006
σ̂2
φ̂

3.1e-04 6.2e-04 4.4e-04 2.6e-04 5.6e-04 4.4e-04
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6. Asymptotic Results

In this section we will present the main results of this work: Theorem 4 and Theorem 6, which demonstrate
the consistency and asymptotic normality (respectively) of the BMM 2D estimator for pure AR-2D processes.
To prove Theorem 4 we first show the consistency of the estimator β̂S and then the consistency of the estimator
β̂M (Theorems 1 and 3, respectively). Theorem 2 relates the properties of the β̂S estimator with the BMM 2D
estimator, β̂∗M . Finally, to prove Theorem 6 we will need to prove the asymptotic normality of the estimator

β̂M (Theorem 5) before.
These results depend on several lemmas that will be enunciated in this chapter and whose demonstrations

can be found in the Appendix. The demonstration strategies are inspired by some ideas presented in Muler
et al. (2009), providing in this work demonstrations of the statements for the two-dimensional version.

Consider the following properties:

P1 ρ(0) = 0, ρ(x) = ρ(−x), ρ(x) is continuous, nonconstant and nondecreasing in |x|.

P2 The Y = {Yi,j}(i,j)∈Z2 process is a strictly stationary AR-2D and ergodic process defined over (Ω,A, P )
with parameter β0 = (φ0, µ0) ∈ B and innovation process ε = {εi,j}(i,j)∈Z2 .

P3 The random variables εi,j , of the innovation process ε, have an absolutely continuous distribution with
a symmetric and strictly unimodal density.

P4 P (εi,j ∈ C) < 1 for any compact C.

P5 The η function is continuous, odd and bounded.

The following theorem establishes the consistency of the β̂S estimator obtained in the first stage of the
BMM 2D estimator definition.

Theorem 1. Let Y be a process that satisfies P2 with an innovation process ε satisfying P3. Let ρ1 be a
bounded function that satisfies P1 with sup ρ1 > b and ψ1 := ρ′1 bounded and continuous function. Then:

i) β̂S is strongly consistent to estimate β0, i.e., β̂S −→
N→∞

β0 a.e ..

ii) sN −→
N→∞

s0 a.e. where s0 is defined by E(ρ1(εi,j/s0)) = b.

The next theorem states that the scale estimator, s∗N , converges almost everywhere to s0.

Theorem 2. Let Y be a process that satisfies P2 with an innovation process ε satisfying P3 and P4. Let
ρ1 be a bounded function that satisfies P1 with sup ρ1 > b. Suppose that ψ1 := ρ′1 is bounded, continue and
that η satisfies P5. Then, if Y is not a white noise,

s∗N = min(sN , s
b
N )→ s0 a.e..

The next theorem demonstrates that the β̂M estimator, obtained in the second stage of the BMM 2D
estimator definition, is consistent to estimate β0.

Theorem 3. Let Y be a process that satisfies P2 with an innovation process ε satisfying P3. Let ρ1 and ρ2

bounded functions satisfying P1. Let ψi := ρ′i be bounded and continuous functions with i = 1, 2 and such
that sup ρ1 > b. Then,

β̂M −→ β0 a.e..

Finally, the consistency of the BMM 2D estimator, β̂∗M , is demonstrated in the following theorem.

Theorem 4. Suppose that the assumptions of Theorem 3, P4 and P5 hold. Then if the Y process is not a
white noise, with probability 1, there exits N0 such that β̂∗M = β̂M ∀N ≥ N0 and then

β̂∗M −→ β0 a.e..
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In the following, Theorem 5 establishes the asymptotic normality of the β̂M estimator obtained in the
second stage of the BMM 2D estimator definition.

Theorem 5. Suppose that the assumptions of Theorem 3 hold. Moreover, suppose that ψ′2 is a continuous
and bounded function, σ2

ε = E(ε2
i,j) <∞ and the symmetric matrix C = (Ci,j) of dimension [(L+ 1)2 − 1]×

[(L+ 1)2 − 1] defined by

C =



∑
(k,l)∈I λ

2
k,l

∑
(k,l)∈I λk,lλk,l−1

∑
(k,l)∈I λk,lλk+1,l−1 . . .

∑
(k,l)∈I λk,lλk+1,l−L∑

(k,l)∈I λk,lλk,l−1
∑

(k,l)∈I λ
2
k,l

∑
(k,l)∈I λk,lλk−1,l . . .

∑
(k,l)∈I λk,lλk+1,l+1−L∑

(k,l)∈I λk,lλk+1,l−1
∑

(k,l)∈I λk,lλk−1,l
∑

(k,l)∈I λ
2
k,l . . .

∑
(k,l)∈I λk,lλk,l+1−L

...
...

...
. . .

...∑
(k,l)∈I λk,lλk+1,l−L · · ·

∑
(k,l)∈I λ

2
k,l


is not singular. Then, √

N(β̂M − β0)
D→ N (0, D)

where

D =
s2

0.E
(
ψ2

2

(
εi,j
s0

))
E2
(
ψ′2

(
εi,j
s0

)) .

(
σ−2
ε C−1 0

0 ξ−2
0

)
,

with ξ0 = −1 +
∑

(k,l)∈T φ
0
k,l.

Finally, the following theorem proves the asymptotic normality of the BMM 2D estimator β̂∗M :

Theorem 6. Suppose that the assumptions of Theorem 5, P4 and P5 hold. Then,

√
N(β̂∗M − β0)

D→ N (0, D)

where D is defined as in Theorem 5.

7. Concluding remarks

In this work, we have presented the new estimator for the parameters of the two-dimensional autoregressive
model with p-parameters (BMM 2D estimator). It was initially developed for time series (Muler et al. (2009))
and extended to two-dimensional processes modeled by AR-2D models with three-parameter (Britos & Ojeda
(2018)). The main result of this paper is that, we have established and demonstrated that under certain
conditions, the BMM 2D estimator is consistent and asymptotically normal.

In Britos & Ojeda (2018), it was verified that the BMM 2D estimator competes successfully with other
estimators known in the literature (LS, M, GM and RA 2D) under different replacement contamination
schemes, both in accuracy and precision. In this paper, we study the performance of our estimator under
additive contamination that adds a fixed constant compared to other existing estimators. The results of these
experiments confirm the conclusion of Britos & Ojeda (2018). Among the robust estimators (M, GM and
RA), the only one that has asymptotic properties is the RA 2D estimator; but it presents computational
implementation difficulties and disadvantages related to its high computational cost, compared with the BMM
2D estimator.

In the following we outline future lines of research. First, we propose to study the theoretical properties
of robustness of the BMM 2D estimator: breakpoint, maximum asymptotic bias and influence curve. These
concepts have not been addressed for the BMM 2D estimator, and there are not studies of these properties
known for proposals M, GM and RA.
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Second, within the analysis and image processing, it would be very interesting to study in depth the
potential and limitations of the BMM 2D estimator for edge detection, classification and restoration of
digital images in combination with other techniques known in the area and the possible contribution to
specific problems such as detection of burning areas.

Appendix

Suppose that we have Y a causal strongly stationary AR-2D process defined over (Ω,A, P ) with mean µ0,
innovation process ε = {εi,j} and unilateral polynomial Φ0 with support in T as in 3.1. Consider β = (φ, µ)
in B. Through simple accounts, the following expressions are obtained for the first and second derivatives of
εi,j(β):

∂εi,j(β)

∂φk,l
= −Ẏi−k,j−l, ∀(k, l) ∈ T, (7.1)

∂εi,j(β)

∂µ
= −1 +

∑
(k,l)∈T

φk,l =: ξ, (7.2)

∂2εi,j(β)

∂φm,n∂φk,l
= 0, ∀(k, l), (m,n) ∈ T, (7.3)

∂2εi,j(β)

∂φk,l∂µ
= 1, ∀(k, l) ∈ T and (7.4)

∂2εi,j(β)

∂2µ
= 0. (7.5)

We define the vector 5 (εi,j(β)) that contains the first-order derivatives of εi,j(β) as:

5 (εi,j(β)) =
(
∂εi,j(β)
∂φ1,0

,
∂εi,j(β)
∂φ1,1

,
∂εi,j(β)
∂φ0,1

, ...,
∂εi,j(β)
∂µ

)t
= (−Ẏi−1,j ,−Ẏi−1,j−1,−Ẏi,j−1, ..., ζ)t.

The following definition will allow us to obtain some necessary results to prove the theorems of this work.

Definition 1. Given the function ρ1 that satisfies P1, s(β) is defined as the function s : B → R given by

Eβ0

(
ρ1

(
εi,j(β)

s(β)

))
= b, (7.6)

where b is such that b = E(ρ1(Z)) when Z has symmetric and strictly unimodal density.

Note that with this new definition and because εi,j = εi,j(β0), it turns out that the value s0, defined in
the Theorem 1, is equal to s(β0).

Given the function ρ2 used in the second stage of the definition of the BMM 2D estimator, we define the
function ψ2 as ψ2 := ρ′2. Below we will present some simple results that are obtained with the functions ρ1,
ρ2 and ψ2, which will allow us to prove the theorems.

Result 1.

5
(
ρ2

(
εi,j(β)

s0

))
=

1

s0
ψ2

(
εi,j(β)

s0

)
.5 (εi,j(β)) . (7.7)
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This result is a consequence of

∂

∂φk,l
ρ2

(
εi,j(β)

s0

)
= − 1

s0
ψ2

(
εi,j(β)

s0

)
Ẏi−k,j−l, ∀(k, l) ∈ T and (7.8)

∂

∂µ
ρ2

(
εi,j(β)

s0

)
=

1

s0
ψ2

(
εi,j(β)

s0

)
ξ. (7.9)

Result 2.

52

(
ρ2

(
εi,j(β)

s0

))
=

1

s2
0

ψ′2

(
εi,j(β)

s0

)
.5 (εi,j(β))5 (εi,j(β))t +

1

s0
ψ2

(
εi,j(β)

s0

)
.52 (εi,j(β)) . (7.10)

This result arises from the facts:

∂2

∂φm,n∂φk,l
ρ2

(
εi,j(β)

s0

)
=

1

s2
0

ψ′2

(
εi,j(β)

s0

)
Ẏi−k,j−lẎi−m,j−n, ∀(k, l), (m,n) ∈ T, (7.11)

∂2

∂µ∂φk,l
ρ2

(
εi,j(β)

s0

)
= − ξ

s2
0

ψ′2

(
εi,j(β)

s0

)
Ẏi−k,j−l +

1

s0
ψ2

(
εi,j(β)

s0

)
, ∀(k, l) ∈ T and (7.12)

∂2

∂µ
ρ2

(
εi,j(β)

s0

)
=
ξ2

s2
0

ψ′2

(
εi,j(β)

s0

)
. (7.13)

Result 3. .

a)

E

(
ψ2

(
εi,j(β0)

s0

))
= 0. (7.14)

b)

E

[
5
(
ρ2

(
εi,j(β)

s0

))]
= E

(
1

s0
ψ2

(
εi,j(β)

s0

))
.E [5 (εi,j(β))] = 0. (7.15)

The Result 3-(a) is because ψ2 is odd and the distribution of εi,j is symmetric. The Result 3-(b) arises

from (7.7) and (7.14) and the fact that 5 (εi,j(β)) is independent of ψ2

(
εi,j(β)
s0

)
.

Result 4. If V0 is defined as

V0 = E

[
5
(
ρ2

(
εi,j(β0)

s0

))
.5

(
ρ2

(
εi,j(β0)

s0

))t]
, (7.16)

then V0 can be rewritten as

V0 = E

[
1

s2
0

ψ2
2

(
εi,j(β)

s0

)
.5 (εi,j(β)) .5 (εi,j(β))t

]
= E

(
1

s2
0

ψ2
2

(
εi,j(β)

s0

))
.E
[
5 (εi,j(β))5 (εi,j(β))t

]
(7.17)

where

E
[
5 (εi,j(β))5 (εi,j(β))t

]
= E

(
(Ẏi−s,j−tẎi−m,j−n)(s,t),(m,n)∈T (−ξẎi−s,j−t)(s,t)∈T

(−ξẎi−s,j−t)(s,t)∈T ξ2

)
=

(
(E(Ẏi−s,j−tẎi−m,j−n))(s,t),(m,n)∈T 0

0 ξ2

)
=

(
C̃ 0L×1

01×L ξ2

)
(7.18)

with C̃ = (E(Ẏi−s,j−tẎi−m,j−n))(s,t),(m,n)∈T symmetric.
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This last result was obtained by (7.7) and the independence of 5 (εi,j(β)) with ψ2

(
εi,j(β)
s0

)
.

Remark 2. It should be noted that

E(Ẏi−s,j−tẎi−m,j−n) =
∑

(k,l)∈I

∑
(q,r)∈I

λk,lλq,rE(εi−s−k,j−t−lεi−m−q,j−n−r). (7.19)

Since the variables εi,j ś are i.i.d. with mean 0, the sum (7.19) becomes

E(Ẏi−s,j−tẎi−m,j−n) = σ2
ε

∑
(k,l)∈I

λk,lλk+s−m,l+t−n.

Therefore,

C̃ = σ2
εC

where C is like in Theorem 5.

The following lemma allow us to demonstrate Lemmas 4 and 11.

Lemma 1. Let Y be a process that satisfies P2 with an innovation process ε satisfying P3. Then, for any
d > 0 we have there exists a stationary and ergodic process W 0 = {W 0

i,j}(i,j)∈Z2 defined on (Ω,A, P ) such
that

supβ∈B0×[−d,d]|εi,j(β)| ≤W 0
i,j , ∀(i, j) ∈ Z2.

Further, E(|W 0
i,j |2) <∞.

Proof of Lemma 1:
An equivalent expression to residual functions εi,j(β) (3.4) is

εi,j(β) = Yi,j −
∑

(k,l)∈T

φk,lYi−k,j−l + µξ, (7.20)

where ξ = −1 +
∑

(k,l)∈T φk,l (see (7.2)). Then

|εi,j(β)| ≤ |Yi,j |+
∑

(k,l)∈T

|φk,l||Yi−k,j−l|+ |µξ|.

Since β ∈ B0 × [−d, d],
∑

(k,l)∈T |φk,l| < 1 and |µ| ≤ d, then |ξ| < 1. Later, as #(T ) <∞, we have that

|εi,j(β)| ≤ |Yi,j |+
∑

(k,l)∈T

|Yi−k,j−l|+ 2d <∞.

We define W 0 = {W 0
i,j}(i,j)∈Z2 such that W 0

i,j := |Yi,j | +
∑

(k,l)∈T |Yi−k,j−l| + 2d. Further, as Y is a

stationary process with finite first-order moment, W 0 is a stationary process and E((W 0
i,j)

2) <∞.

Let us prove that W 0 is ergodic. Let g : (RZ2
,BZ2

) → (RZ2
,BZ2

) measurable function defined by
g(X) = |B(0,0)(X)| +

∑
(k,l)∈T |B(k,l)(X)| + 2d, where |B(k,l)(X)|(i, j) = |B(k,l)(X)(i, j)|. Then W 0 = g(Y ).

Given A ∈ I = {A′ ∈ BZ2
: A′ is B(k,l) − invariant ∀(k, l) ∈ Z2}, we want to show that PW 0(A) = 0 or 1.

Due to the fact that PW 0(A) = P (W 0 ∈ A) = P (g(Y ) ∈ A) = P (Y −1(g−1(A))) = P (Y ∈ g−1(A)), it is
enough to prove that g−1(A) ∈ I.
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First let us show that g−1(A) is contained in B(s,t)(g−1(A)) = {B(s,t)(X) : g(X) ∈ A}, ∀(s, t) ∈ Z2. Let
X ∈ g−1(A), later g(X) ∈ A, i.e., |B(0,0)(X)|+

∑
(k,l)∈T |B(k,l)(X)|+2d ∈ A. Applying B(−s,−t) to the above,

we have that B(−s,−t)|B(0,0)(X)| +
∑

(k,l)∈T B
(−s,−t)|B(k,l)(X)| + 2d ∈ B(−s,−t)(A) = A (because A ∈ I).

Then,

|B(0,0)(B(−s,−t)(X))|+
∑

(k,l)∈T

|B(k,l)(B(−s,−t)(X))|+ 2d ∈ A,

that is, g(B(−s,−t)(X)) ∈ A. Therefore, X = B(s,t)(B(−s,−t)(X)) ∈ B(s,t)(g−1(A)). Later, g−1(A) ⊆
B(s,t)(g−1(A)). Similarly, we can prove that B(s,t)(g−1(A)) ⊆ g−1(A). Hence g−1(A) ∈ I and P (Y ∈
g−1(A)) = 0 or 1.

�
The next three lemmas prove Theorem 1. The first lemma sets properties on the function s(β). The

following two lemmas establish relations between the function s(β) and the estimator of scale with the
residuals of the AR-2D model (SN (εN (β))).

Lemma 2. Let Y be a process that satisfies P2 with an innovation process ε satisfying P3. Suppose that ρ1

is a function satisfying P1 and that the function s is as in (7.6). Then,

i) if β 6= β0, we have that s0 = s(β0) < s(β).

ii) s is continuous.

Proof of Lemma 2:
Let us prove (i). Note that we always can choose a positive solution of the equation (7.6) because if s is

a solution, |s| is also a solution (since P1 is satisfied). Later, s(β) is positive.
Let β = (φ, µ) 6= β0 = (φ0, µ0). We have that

εi,j(β) = Φ(B1, B2)(Yi,j − µ)

= Φ(B1, B2)(Yi,j − µ0) + Φ(B1, B2)(µ0 − µ)

= Φ(B1, B2)Φ0(B1, B2)−1εi,j +

1−
∑

(k,l)∈T

φk,l

 (µ0 − µ)

= ω(B1, B2)εi,j + c.(µ0 − µ), (7.21)

where ω(B1, B2) := Φ(B1, B2)Φ0(B1, B2)−1 and c = −ξ. Since β, β0 ∈ B, then Φ(z1, z2)Φ0(z1, z2)−1 can be
written over D∗ as a power series sum: 1 +

∑
(k,l)∈I\{(0,0)}wk,lz

k
1z

l
2 (see Guyon (1995)). Later,

ω(B1, B2) = 1 +
∑

(k,l)∈I\{(0,0)}

wk,lB
k
1B

l
2.

Put
4i,j(β) :=

∑
(k,l)∈I\{(0,0)}

wk,lεi−k,j−l + c.(µ0 − µ).

Then, by the equation (7.21),
εi,j(β) = εi,j +4i,j(β).

Later,

ρ1

(
εi,j(β)

s0

)
= ρ1

(
εi,j +4i,j(β)

s0

)
and

Eβ0

(
ρ1

(
εi,j(β)

s0

))
= Eβ0

(
ρ1

(
εi,j +4i,j(β)

s0

))
.
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Let S(p, q) be defined as

S(p, q) = Eβ0

(
ρ1

(
εi,j + p

q

))
, (7.22)

for p, q ∈ R with q 6= 0. Note that S(p, q) is decreasing in |q|. Lemma 3.1 of Yohai (1985), shows that if
P1 and P3 are satisfied, then for all p, q 6= 0 we have

S(0, q) ≤ S(p, q),

and equality holds if and only if p = 0. Later,

Eβ0

(
ρ1

(
εi,j(β)

s0

))
= S(4i,j(β), s0)

≥ S(0, s0) = Eβ0

(
ρ1

(
εi,j
s0

))
= b

and equality is valid if and only if 4i,j(β) = 0 a.e.. Due to the identifiability of the AR-2D model, this
happens if and only if β = β0. Then β 6= β0 implies

Eβ0

(
ρ1

(
εi,j(β)

s0

))
= S(4i,j(β), s0) > b = S(4i,j(β), s(β)) = Eβ0

(
ρ1

(
εi,j(β)

s(β)

))
and therefore, as S(p, q) is decreasing in |q| and s(β) is a positive function, we have s0 = s(β0) < s(β).

Now let us demonstrate (ii).
Let ε > 0 be arbitrarily small. Due to the function S(p, q) defined in the equation (7.22) is decreasing in

|q|, we define β1 ∈ B and s1 = s(β1) > 0 such that

Eβ0

(
ρ1

(
εi,j(β1)

s1 + ε

))
= S(4i,j(β1), s1 + ε) < S(4i,j(β1), s1) = Eβ0

(
ρ1

(
εi,j(β1)

s1

))
= b (7.23)

and

Eβ0

(
ρ1

(
εi,j(β1)

s1 − ε

))
= S(4i,j(β1), s1 − ε) > S(4i,j(β1), s1) = Eβ0

(
ρ1

(
εi,j(β1)

s1

))
= b. (7.24)

Let q1(λ) and q2(λ) be random variables defined by

q1(λ) = sup
||β−β1||≤λ

ρ1

(
εi,j(β)

s1 + ε

)
,

q2(λ) = sup
||β−β1||≤λ

ρ1

(
εi,j(β)

s1 − ε

)
.

Then, the succession of random variables {q1(1/n)}n≥1 and {q2(1/n)}n≥1 converge to ρ1

(
εi,j(β1)
s1+ε

)
and

ρ1

(
εi,j(β1)
s1−ε

)
respectively.

By the Lebesgue’s Dominated Convergence Theorem,

lim
n−→∞

∫
Ω
q1(1/n)dPβ0(ω) =

∫
Ω
ρ1

(
εi,j(β1)

s1 + ε

)
dPβ0(ω) = Eβ0

(
ρ1

(
εi,j(β1)

s1 + ε

))
(7.25)

and

lim
n−→∞

∫
Ω
q2(1/n)dPβ0(ω) =

∫
Ω
ρ1

(
εi,j(β1)

s1 − ε

)
dPβ0(ω) = Eβ0

(
ρ1

(
εi,j(β1)

s1 − ε

))
, (7.26)
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and hence, by (7.23) with (7.25) and by (7.24) with (7.26), respectively, there exists n0 such that if n ≥ n0,∫
Ω
ρ1

(
εi,j(β)

s1 + ε

)
dPβ0 ≤

∫
Ω
q1(1/n)dPβ0 < b =

∫
Ω
ρ1

(
εi,j(β)

s(β)

)
dPβ0 (7.27)

and ∫
Ω
ρ1

(
εi,j(β)

s1 − ε

)
dPβ0 ≥

∫
Ω
q2(1/n)dPβ0 > b =

∫
Ω
ρ1

(
εi,j(β)

s(β)

)
dPβ0 (7.28)

∀β such that ||β − β0|| <
1

n
≤ 1

n0
.

Later, let δ = 1
n0

. By the equations (7.27) and (7.28), if ||β − β0|| < δ, we have∫
Ω
ρ1

(
εi,j(β)

s1 + ε

)
dPβ0 <

∫
Ω
ρ1

(
εi,j(β)

s(β)

)
dPβ0

and ∫
Ω
ρ1

(
εi,j(β)

s1 − ε

)
dPβ0 >

∫
Ω
ρ1

(
εi,j(β)

s(β)

)
dPβ0 .

Since ρ1 is a positive function, we obtain that

ρ1

(
εi,j(β)

s1 + ε

)
< ρ1

(
εi,j(β)

s(β)

)
a.e.

and

ρ1

(
εi,j(β)

s1 − ε

)
> ρ1

(
εi,j(β)

s(β)

)
a.e..

Therefore, as ρ1(|u|) is non-decreasing and s(β) is positive, we have s1 − ε < s(β) < s1 + ε, i.e., s is
continuous in any β1 ∈ B. Later, s is continuous.

�

Lemma 3. Under the assumptions of Theorem 1, for any d > 0, we have that

lim
N→∞

sup
β∈B0×[−d,d]

|SN (εN (β))− s(β)| = 0 a.e..

Proof of Lemma 3:
Let

h1 = inf
β∈B0×[−d,d]

s(β) and h2 = sup
β∈B0×[−d,d]

s(β).

Then, by definition of s(β), we have that h1 > 0 and h2 <∞.

We consider the continuous function f(y, β, c) = ρ1

(
Φ(B1,B2)(y−µ)

c

)
− Eβ0

(
ρ1

(
Φ(B1,B2)(y−µ)

c

))
defined over

R × C with C = B0 × [−d, d] × [h1/2, 2h2] compact. Due to Y = {Yi,j}(i,j)∈Z2 is a ergodic process we have
that E(f(Y, β, c)) = 0 and further sup(β,c)∈C |f(Y, β, c)| ≤ K (because a continuous function on a compact is
bounded). By Lemma 3 of Muler & Yohai (2002) we obtain

lim
N−→∞

sup
β∈B0×[−d,d],c∈[h1/2,2h2]

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

c

)
− Eβ0

(
ρ1

(
εi,j(β)

c

))∣∣∣∣∣∣ = 0 a.e., (7.29)

where N = #(WM ∼ T ) = (M − L+ 1)2.
Let 0 ≤ ε ≤ h1/2. We define the functions gi : B → R for i = 1, 2 as

g1(β) = Eβ0

(
ρ1

(
εi,j(β)

s(β) + ε

))
and g2(β) = Eβ0

(
ρ1

(
εi,j(β)

s(β)− ε

))
.
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By the definition of s(β) and due to ρ1 satisfies P1, we have that g1(β) < b and g2(β) > b, ∀β ∈ B.
Since B0 is a compact set and, g1 and g2 are continuous (because s(β) and εi,j(β) are continuous and ρ1

satisfies P1), we have

κ1 := sup
β∈B0×[−d,d]

g1(β) < b and κ2 := inf
β∈B0×[−d,d]

g2(β) > b.

Let δ = min(b− κ1, κ2 − b). By Eq. (7.29), there exists N0 such that

sup
β∈B0×[−d,d],c∈[h1/2,2h2]

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

c

)
− Eβ0

(
ρ1

(
εi,j(β)

c

))∣∣∣∣∣∣ ≤ δ

2
a.e. ∀N ≥ N0. (7.30)

Note that s(β)− ε ∈ [h1/2, 2h2] since h1/2 = h1− h1
2 < s(β)− h1

2 < s(β)− ε and also s(β)− ε < h2− ε <
h2 + ε < h2 + h2 = 2h2 due to the condition in ε and by the definitions of h1 and h2 respectively.

Hence, by (7.30), we obtain that

− 1

N

∑
(i,j)∈WM∼T

ρ1

(
εi,j(β)

s(β)− ε

)
+ Eβ0

(
ρ1

(
εi,j(β)

s(β)− ε

))
≤ δ

2
a.e., ∀β ∈ B0 × [−d, d], ∀N ≥ N0,

that is,

g2(β)− δ
2

= Eβ0

(
ρ1

(
εi,j(β)

s(β)− ε

))
− δ

2
≤ 1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s(β)− ε

)
a.e., ∀β ∈ B0× [−d, d], ∀N ≥ N0.

Later, taking infimum one gets

inf
β∈B0×[−d,d]

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s(β)− ε

)
≥ inf

β∈B0×[−d,d]
g2(β)− δ

2
= κ2 −

δ

2
a.e.. (7.31)

Furthermore, by the definition of δ, we know that κ2 − δ
2 ≥ b+ δ

2 > b, and by Eq. (7.31) we have

inf
β∈B0×[−d,d]

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s(β)− ε

)
> b =

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

SN (εN (β))

)
a.e.. (7.32)

Similarly, we can observe that s(β) + ε ∈ [h1/2, 2h2] since h1/2 < h1 < h1 + ε < s(β) + ε and also
s(β) + ε < h2 + ε < h2 + h1

2 < h2 + h2 = 2h2.
Therefore, by (7.30), we obtain that

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s(β) + ε

)
− Eβ0

(
ρ1

(
εi,j(β)

s(β) + ε

))
≤ δ

2
a.e., ∀β ∈ B0 × [−d, d], ∀N ≥ N1,

that is,

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s(β) + ε

)
≤ Eβ0

(
ρ1

(
εi,j(β)

s(β) + ε

))
+
δ

2
= g1(β)+

δ

2
a.e., ∀β ∈ B0×[−d, d], ∀N ≥ N1, .

Later, taking supreme, we have

sup
β∈B0×[−d,d]

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s(β) + ε

)
≤ sup

β∈B0×[−d,d]
g1(β) +

δ

2
= κ1 +

δ

2
a.e.. (7.33)
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In addition, by the definition of δ, one knows that κ1 + δ
2 ≥ b−

δ
2 < b, and by (7.33) we get that

sup
β∈B0×[−d,d]

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s(β) + ε

)
< b =

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

SN (εN (β))

)
a.e.. (7.34)

Let us prove that there exists an (i0, j0) ∈ (WM ∼ T ) such that
∣∣∣ εi0,j0 (β)

s(β)+ε

∣∣∣ < ∣∣∣ εi0,j0 (β)

SN (εN (β))

∣∣∣ a.e., ∀β ∈
B0 × [−d, d].

Suppose that
∣∣∣ εi,j(β)
s(β)+ε

∣∣∣ ≥ ∣∣∣ εi,j(β)
SN (εN (β))

∣∣∣ , ∀(i, j) ∈ (WM ∼ T ) and ∀β ∈ B0 × [−d, d]. Hence, s(β) +

ε > 0, SN (εN (β)) > 0 and by the monotonicity of ρ1(|u|) we obtain that ρ1

(
εi,j(β)
s(β)+ε

)
= ρ1

(
|εi,j(β)|
s(β)+ε

)
≥

ρ1

(
|εi,j(β)|

SN (εN (β))

)
= ρ1

(
εi,j(β)

SN (εN (β))

)
, ∀(i, j) ∈ (WM ∼ T ) and ∀β ∈ B0 × [−d, d], which means

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s(β) + ε

)
≥

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

SN (εN (β))

)
, ∀β ∈ B0 × [−d, d]

but this is absurd by (7.34). Later,
|εi0,j0 (β)|
s(β)+ε <

|εi0,j0 (β)|
SN (εN (β)) almost everywhere for any (i0, j0) ∈ (WM ∼ T ).

Thus, s(β) + ε > SN (εN (β)), a.e. ∀β ∈ B0 × [−d, d].
In the same way, (7.32) demonstrates that s(β)−ε < SN (εN (β)), a.e. ∀β ∈ B0×[−d, d] and for all N > N1.

Hence, |SN (εN (β))− s(β)| ≤ ε, a.e., ∀β ∈ B0 × [−d, d] and ∀N > max(N0, N1), that is,

sup
β∈B0×[−d,d]

|SN (εN (β))− s(β)| ≤ ε a.e. ∀N > max(N0, N1).

Then,
lim
N→∞

sup
β∈B0×[−d,d]

|SN (εN (β))− s(β)| = 0 a.e.

and the lemma is proven. �

Lemma 4. Under the assumptions of Theorem 1, there exits d > 0 satisfying

lim inf
N→∞

inf
|µ|>d,β∈B

SN (εN (β)) > s0 + 1 a.e..

Proof of Lemma 4:
Given β = (φ, µ) with φ ∈ B0, let us call ϑi,j(β) := εi,j(β)− εi,j(φ, 0). By the definition of εi,j(β) (7.20),

we have

ϑi,j(β) = µξ = −µ

1−
∑

(k,l)∈T

φk,l

 , ∀(i, j) ∈ (WM ∼ T ). (7.35)

Furthermore, it is easy to see that
ϑi,j(β) = µ.ϑi,j(φ, 1).

Using the compactness of B0, there exist δ > 0 and K1 > 0 such that for all φ ∈ B0, one obtains that

δ ≤ 1−
∑

(k,l)∈T

φk,l ≤ K1. (7.36)

Later, by (7.35) and using (7.36), we have

inf
φ∈B0

|ϑi,j(β)| = inf
φ∈B0

∣∣∣∣∣∣µ
1−

∑
(k,l)∈T

φk,l

∣∣∣∣∣∣ ≥ δ

2
|µ| (7.37)
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and by Lemma 1 we obtain
sup
φ∈B0

|εi,j(φ, 0)| ≤W 0
i,j (7.38)

where W 0 = {W 0
i,j}(i,j)∈Z2 is a stationary process.

Due to the fact that sup ρ1 > b and limx−→∞ρ1(|x|) = sup ρ1, there exist k0 > 0 and λ > 1 such that for
all |x| ≥ k0, we get that

ρ1(x) ≥ λb. (7.39)

Since {W 0
i,j}(i,j)∈Z2 is strictly stationary, for each (i, j), the variables W 0

i,j ’s have the same distribution,
then there exits m such that

P (W 0
i,j < m/2) >

1

λ
. (7.40)

Let k be defined by

k = max

(
m

s0 + 1
, k0

)
(7.41)

and let d be a constant such that d ≥ max(4(s0 + 1)k/δ, |µ0|). Then, using (7.37) we obtain that

inf
φ∈B0,|µ|>d

|ϑi,j(β)| ≥ δ

2
d ≥ 2(s0 + 1)k. (7.42)

Because ρ1 satisfies P1, we get that

inf
φ∈B0,|µ|>d

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s0 + 1

)
≥ 1

N

∑
(i,j)∈(WM∼T )

ρ1

(
inf

φ∈B0,|µ|>d

∣∣∣∣εi,j(β)

s0 + 1

∣∣∣∣) I(Ai,j) (7.43)

where Ai,j = {W 0
i,j < m/2} and I(Ai,j) denotes the indicator function of Ai,j . By Eq. (7.38) and the

definition of ϑi,j , we can obtain that

|εi,j(β)| ≥ |ϑi,j(β)| − |εi,j(φ, 0)| ≥ |ϑi,j(β)| −W 0
i,j . (7.44)

Then Eqs. (7.41), (7.44) and (7.42) imply that

Ai,j ⊂ {W 0
i,j < k.(s0 + 1)} ⊂

{
inf

|µ|>d,φ∈B0
|εi,j(β)| > k.(s0 + 1)

}
. (7.45)

Due to the fact that ρ1 ≥ 0 and ρ1(|u|) is non-decreasing, by (7.45), we have

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
inf

φ∈B0,|µ|>d

∣∣∣∣εi,j(β)

s0 + 1

∣∣∣∣) I(Ai,j) ≥
1

N

∑
(i,j)∈(WM∼T )

ρ1(k)I(Ai,j)

=
ρ1(k)

N

∑
(i,j)∈(WM∼T )

I(Ai,j). (7.46)

Since W 0
i,j is an ergodic and stationary process, by the Ergodic Theorem (Guyon (1995)) and by (7.40)

we get

lim
N−→∞

1

N

∑
(i,j)∈(WM∼T )

I(Ai,j) = E(I(Ai,j)) = P (Ai,j) >
1

λ
(7.47)

in L2 and, hence, converges a.e.. Then, by (7.43) and (7.46):

inf
φ∈B0,|µ|>d

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s0 + 1

)
≥ ρ1(k)

N

∑
(i,j)∈(WM∼T )

I(Ai,j).
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Taking lower limit and by expression (7.47) we obtain

lim inf
N−→∞

inf
φ∈B0,|µ|>d

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s0 + 1

)
>
ρ1(k)

λ
a.e.. (7.48)

In addition, Eqs. (7.39) and (7.41) imply

ρ1(k)

λ
≥ b, (7.49)

then, by (7.48) and (7.49):

lim inf
N−→∞

inf
φ∈B0,|µ|>d

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s0 + 1

)
> b =

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

SN (εN (β))

)
a.e..

Later, for N large enough, one has that

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

s0 + 1

)
>

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εi,j(β)

SN (εN (β))

)
∀φ ∈ B0, |µ| > d a.e..

By arguments similar to those used in Lemma 3 we have

s0 + 1 < SN (εN (β)), ∀φ ∈ B0, |µ| > d a.e..

Therefore,
inf

|µ|>d,β∈B
SN (εN (β)) > s0 + 1 a.e. for N � 0.

Finally, taking lower limit, we obtain

lim inf
N→∞

inf
|µ|>d,β∈B

SN (εN (β)) > s0 + 1 a.e..

Later, the lemma is proven.
�

Next we demonstrate Theorem 1.

Proof of Theorem 1:
First let us prove some preliminary results.
Take ε > 0 arbitrarily small and d as in Lemma 4. From Lemma 2, s(β) is continuous and reaches an

absolute minimum at β0 ∈ B. Let us see that there exists a γ > 0 such that

min
β∈B0×[−d,d],||β−β0||≥ε

s(β) ≥ s0 + γ. (7.50)

Since B0 is compact and s(β) is continuous, ∀ β ∈ B0× [−d, d] and ||β− β0|| ≥ ε, there exists a 0 < γ < 1
such that s(β)− s(β0) > γ, that is, s(β) > γ + s(β0) = γ + s0. Then

min
β∈B0×[−d,d],||β−β0||≥ε

s(β) ≥ s0 + γ.

By Lemma 3, ∃N1 such that sup
β∈B0×[−d,d]

|SN (εN (β))− s(β)| < γ/4 a.e. ∀N > N1. Then

−SN (εN (β)) + s(β) ≤ | − Sn(εN (β)) + s(β)| < γ

4
, ∀β ∈ B0 × [−d, d];
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later

s(β)− γ

4
< SN (εN (β)), ∀β ∈ B0 × [−d, d];

and therefore

s(β)− γ

4
< SN (εN (β)), ∀β ∈ B0 × [−d, d] and ||β − β0|| ≥ ε.

Taking minimum in the last expression and by the equation (7.50) we have

min
β∈B0×[−d,d],||β−β0||≥ε

SN (εN (β)) ≥ min
β∈B0×[−d,d],||β−β0||≥ε

s(β)− γ

4

≥ s0 + γ − γ

4

= s0 +
3

4
γ

> s0 +
γ

2
a.e..

Therefore,

min
β∈B0×[−d,d],||β−β0||≥ε

SN (εN (β)) > s0 +
γ

2
a.e.. (7.51)

Because β0 ∈ B0 × [−d, d] (φ0 ∈ B0 and |µ0| ≤ d) and by Lemma 3

sup
β∈B0×[−d,d]

|SN (εN (β))− s(β)| < γ

4
a.e.,

then

SN (εN (β0))− s(β0) <
γ

4
a.e.;

later

SN (εN (β0)) <
γ

4
+ s(β0) =

γ

4
+ s0 a.e..

Hence
SN (εN (β0)) <

γ

4
+ s0 a.e.. (7.52)

By Lemma 4,

sup
N≥0

(
inf
k≥N

(
inf

|µ|>d,φ∈B0
(Sk(εk(β))

))
> s0 + 1 a.e..

Due to BN := inf
k≥N

(
inf

|µ|>d,φ∈B0
(Sk(εk(β))

)
is an increasing succession, ∃N2 such that BN ≥ s0 +

γ a.e. (0 < γ < 1), ∀N ≥ N2. Then

BN := inf
k≥N

(
inf

|µ|>d,φ∈B0
(Sk(εk(β))

)
≥ s0 + γ a.e., ∀N ≥ N2;
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later

inf
|µ|>d,φ∈B0

(Sk(εk(β))) ≥ s0 + γ a.e., ∀k ≥ N and ∀N ≥ N2.

In particular,
inf

|µ|>d,φ∈B0
(SN (εN (β))) ≥ s0 + γ a.e., ∀N ≥ N2. (7.53)

Let us show (i), that is, β̂S → β0 a.e..

Given ε > 0, let N0 = max(N1, N2). So, if N ≥ N0, then (7.50), (7.51), (7.52) and (7.53) are satisfied.
From (7.51) and (7.53) one gets that

min
β∈B,||β−β0||≥ε

SN (εN (β)) ≥ s0 +
γ

2
a.e.. (7.54)

Furthermore, by the definition of β̂S ,

SN (εN (β)) ≥ SN (εN (β̂S)) ∀β ∈ B.

In particular, when β = β0,
SN (εN (β0)) ≥ SN (εN (β̂S)). (7.55)

By (7.52) and (7.55),

s0 +
γ

4
> SN (εN (β0)) ≥ SN (εN (β̂S)) a.e.. (7.56)

If ||β̂S − β0|| ≥ ε, by (7.54) we obtain

SN (εN (β̂S)) ≥ s0 +
γ

2
a.e., (7.57)

and besides Eqs. (7.54) and (7.56) imply

s0 +
γ

4
> SN (εN (β0)) ≥ SN (εN (β̂S)) ≥ s0 +

γ

2
a.e.,

which is absurd. Therefore, it must be that ||β̂S − β0|| ≤ ε a.e. ∀N > N0 = max(N1, N2), i.e.,

β̂S −→
N→∞

β0 a.e..

Now let us see (ii), i.e., sN −→
N→∞

s0 = s(β0) a.e..

By the continuity of s(β) and as β̂S −→
N→∞

β0 a.e., then s(β̂S) −→
N→∞

s(β0) = s0 a.e..

In addition, β̂S ∈ B0 × [−d, d] because β̂S −→
N→∞

β0 a.e., for N � 0. Later, by Lemma 3, |SN (εN (β̂S)) −

s(β̂S)| −→
N→∞

0 a.e..

Finally, due to the fact that

|sN − s0| ≤ |SN (εN (β̂S))− s(β̂S)|+ |s(β̂S)− s0|,

we have that
sN −→

N→∞
s0 a.e..

�
The following lemma will allow us to demonstrate Lemma 6.
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Lemma 5. Let C = {f : B × R>0 → R}, A ∈ M (M+1)×(M+1)(C) where A = [vi,j(β, σ)]0≤i,j≤M such that
∀(i, j) ∈ (WM ∼ T ),

vi,j(β, σ) = µf i,j1 (φ) + σf i,j2 (β, σ) +
∑

(k,l)∈T

φk,lvi−k,j−l(β, σ) (7.58)

where for each (i, j) ∈ (WM ∼ T ), f i,j1 is a polynomial in φ and f i,j2 is a bounded function on a compact.
Then, ∀(i, j) ∈ (WM ∼ T ):

vi,j(β, σ) = µgi,j1 (φ) + σgi,j2 (β, σ) +
∑

(m,n)∈W c
M

gi,jm,n(φ)vm,n(β, σ) (7.59)

where W c
M = WM \ (WM ∼ T ) and such that ∀(i, j) ∈ (WM ∼ T ) and ∀(m,n) ∈ WC

M , gi,j1 and gi,jm,n are

polynomials in φ and ∀(i, j) ∈ (WM ∼ T ), gi,j2 is a bounded function on a compact.

Proof of Lemma 5:
In the following, we will do an induction demonstration in M .
Suppose that M = 2. Then L = 1, (WM ∼ T ) = {(2, 2), (1, 2), (1, 1), (2, 1)} and the matrix A is

A =

 v0,2(β, σ) v1,2(β, σ) v2,2(β, σ)
v0,1(β, σ) v1,1(β, σ) v2,1(β, σ)
v0,0(β, σ) v1,0(β, σ) v2,0(β, σ)


where vi,j(β, σ) is as in (7.58). By (7.58), v1,1(β, σ) satisfies (7.59). Replacing the expression of v1,1(β, σ) in
v1,2(β, σ) and v2,1(β, σ), we obtain that (7.59) is satisfied. In the same way, replacing the expression (7.59)
of v1,1(β, σ), v1,2(β, σ) and v2,1(β, σ) in v2,2(β, σ) we have that v2,2(β, σ) satisfies (7.59). Later, the lemma
holds with M = 2.

Suppose that the lemma is valid for M = k, let us show that for M = k + 1 too is valid.
Let A be a matrix of size (M + 1) ∗ (M + 1):

A = [vi,j(β, σ)]0≤i,j≤(k+1).

We consider the submatrix of size M ∗ M : A1,k = A[1 : (k + 1), 1 : (k + 1)] = [v1
s,t(β, σ)]0≤s,t≤k where

v1
s,t(β, σ) = vs+1,t+1(β, σ). Later, v1

i,j(β, σ) satisfies the condition (7.58) and by inductive hypothesis, for all

(i, j) ∈ (W1,M−1 ∼ T ) = {(m,n) : (L+ 1) ≤ m ≤ (k + 1), (L+ 1) ≤ n ≤ (k + 1)} :

v1
i−1,j−1(β, σ) = vi,j(β, σ) = µgi,j1,1(φ) + σgi,j1,2(β, σ) +

∑
(m,n)∈W c

1,M−1

gi,j1,m,n(φ)vm,n(β, σ) (7.60)

where W c
1,M−1 := W1,M−1 \ (W1,M−1 ∼ T ).

The idea is to prove:

(a) vi,j(β, σ) is written as (7.59) for all

(i, j) ∈ H1 := {(L, n) : L ≤ n ≤ (k + 1)} ∪ {(m,L) : L+ 1 ≤ m ≤ (k + 1)}.

(b) vi,j(β, σ) is written as (7.59) for all
(i, j) ∈ (W1,M−1 ∼ T ).
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Let us show (a).

I) Let us take the submatrix of size M ∗M : A2,k = A[0 : k, 0 : k] = [ṽi,j(β, σ)]0≤i,j≤k where ṽi,j(β, σ) =
vi,j(β, σ).

Due to the matrix A2,k satisfies the conditions of the lemma, by inductive hypothesis we have that for
all (i, j) ∈ (W2,M−1 ∼ T ) = {(m,n) : L ≤ m ≤ k, L ≤ n ≤ k}:

ṽi,j(β, σ) = vi,j(β, σ) = µgi,j2,1(φ) + σgi,j2,2(β, σ) +
∑

(m,n)∈W c
2,M−1

gi,j2,m,n(φ)vm,n(β, σ) (7.61)

where W c
2,M−1 = W2,M−1\(W2,M−1 ∼ T ) ⊂W c

M := WM \(WM ∼ T ). In particular, vi,j(β, σ) is written
as (7.61) for all (i, j) ∈ H2 := {(L, n) : L ≤ n ≤ k} ∪ {(m,L) : L+ 1 ≤ m ≤ k} ⊂ H1.

II) It remains to be seen that vL,k+1(β, σ) and vk+1,L(β, σ) are written as (7.59). By definition (7.58), one
gets that

vL,k+1(β, σ) = µfL,k+1
1 (φ) + σfL,k+1

2 (β, σ) +
∑

(m,n)∈T

φm,nvL−m,k+1−n(β, σ)

= µfL,k+1
1 (φ) + σfL,k+1

2 (β, σ) +
∑

(s,t)∈VL,k+1

φL−s,k+1−tvs,t(β, σ)

= µfL,k+1
1 (φ) + σfL,k+1

2 (β, σ) +
∑

(s,t)∈VL,k+1∩W c
M

φL−s,k+1−tvs,t(β, σ)

+
∑

(s,t)∈VL,k+1∩(WM∼T )

φL−s,k+1−tvs,t(β, σ)

where VL,k+1 = {(m,n) : 0 ≤ m ≤ L, k + 1 − L ≤ n ≤ k + 1, (m,n) 6= (L, k + 1)} and since
VL,k+1 ∩ (WM ∼ T ) ⊂ H2, then by (I), vL,k+1(β, σ) satisfies (7.59). In the same way, we can see
that vk+1,L(β, σ) also satisfies (7.59). Later, (a) is demonstrated.

Let us prove (b). As seen in (7.60), for all (i, j) ∈ (W1,M−1 ∼ T ),

vi,j(β, σ) = µgi,j1,1(φ) + σgi,j1,2(β, σ) +
∑

(m,n)∈W c
1,M−1

gi,j1,m,n(φ)vm,n(β, σ)

= µgi,j1,1(φ) + σgi,j1,2(β, σ) +
∑

(m,n)∈W c
1,M−1∩W

c
M

gi,j1,m,n(φ)vm,n(β, σ)

+
∑

(m,n)∈W c
1,M−1∩(WM∼T )

gi,j1,m,n(φ)vm,n(β, σ)

= µgi,j1,1(φ) + σgi,j1,2(β, σ) +
∑

(m,n)∈W c
1,M−1∩W

c
M

gi,j1,m,n(φ)vm,n(β, σ)

+
∑

(m,n)∈H1

gi,j1,m,n(φ)vm,n(β, σ).

Note that W c
1,M−1 ∩W c

M ⊂W c
M . Furthermore, as we demonstrated in (a), one gets that

∑
(m,n)∈H1

gi,j1,m,n(φ)vm,n(β, σ) =
∑

(m,n)∈H1

gi,j1,m,n(φ)

µgm,n1 (φ) + σgm,n2 (β, σ) +
∑

(s,t)∈W c
M

gm,ns,t (φ)vs,t(β, σ)

 .
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Later, (b) is proven and, therefore, the lemma is demonstrated.
�

The following three lemmas, allow us to prove Theorem 2. Lemma 6 gets a bound for the residues in the
BIP-AR-2D model, which allowed us to demonstrate Lemmas 7 and 12. The results of Lemmas 7 and 8 are
used directly in the proof of Theorem 2. These lemmas establish relationships between the M-scale at the
true parameters and the M-estimators of scale under residuals of a BIP-AR-2D model.

Lemma 6. Let Y be a process that satisfies P2. Given d > 0 and σ̃ > 0, there exit constants C > 0 and
D > 0 such that

sup
β∈B0×[−d,d]

sup
0<σ≤σ̃

|εbi,j(β, σ)− Yi,j | ≤ Cσ̃ +D, ∀(i, j) ∈ (WM ∼ T ).

Proof of Lemma 6:
For (i, j) ∈ (WM ∼ T ), β ∈ B0 × [−d, d] and σ ≤ σ̃, let

vi,j(β, σ) = εbi,j(β, σ)− Yi,j ,

Di,j(β, σ) = −
∑

(k,l)∈T

φk,lη

(
εbi−k,j−l(β, σ)

σ

)
and vi,j(β, σ) = −Yi,j , ∀(i, j) ∈WM \ (WM ∼ T ).

From the definition of εbi,j(β, σ) (see (3.7)), it follows that ∀(i, j) ∈ (WM ∼ T ), vi,j(β, σ) satisfies the
recursive equation

vi,j(β, σ) = µ

−1 +
∑

(k,l)∈T

φk,l

+ σDi,j(β, σ) +
∑

(k,l)∈T

φk,lvi−k,j−l(β, σ).

Using Lemma 5, we have that ∀(i, j) ∈ (WM ∼ T ), vi,j(β, σ) is written as

vi,j(β, σ) = µf i,j1 (φ) + σf i,j2 (β, σ) +
∑

(m,n)∈WM\(WM∼T ) f
i,j
m,n(φ)vm,n(β, σ)

= µf i,j1 (φ) + σf i,j2 (β, σ)−
∑

(m,n)∈WM\(WM∼T ) f
i,j
m,n(φ)Ym,n

where
∀(i, j), f i,j1 is a polynomial,

∀(i, j) and ∀(m,n) ∈WM \ (WM ∼ T ), f i,jm,n is a polynomial and
∀(i, j), f i,j2 is a bounded function on compact sets.

Due to the fact that B0 is compact, µ ∈ [−d, d] and η is bounded, there exist C1 and C such that

sup
β∈B0×[−d,d]

sup
0<σ≤σ̃

|µf i,j1 (φ) + σf i,j2 (β, σ)| ≤ dC1 + σ̃C, (i, j) ∈ (WM ∼ T ).

In addition, as B0 is compact, there exists C3 constant such that

sup
β∈B0×[−d,d]

sup
0<σ≤σ̃

∣∣∣∣∣∣
∑

(m,n)∈WM\(WM∼T )

f i,jm,n(φ)Ym,n

∣∣∣∣∣∣ ≤ C3, (i, j) ∈ (WM ∼ T ).

Therefore, there exist C and D positive constants such that

sup
β∈B0×[−d,d]

sup
0<σ≤σ̃

|vi,j(β, σ)| ≤ Cσ̃ +D, (i, j) ∈ (WM ∼ T ).

Later, the lemma is proven.
�

29



Lemma 7. Under the assumptions of Theorem 2, given d > 0, there exists δ > 0 such that

lim inf
N→∞

inf
β∈B0×[−d,d]

SN (εbN (β, σ̂(φ))) ≥ s0 + δ a.e..

Proof of Lemma 7:
To demonstrate the lemma, we will prove that there exists δ > 0 such that

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ)

s0 + δ

)
>

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ̂(φ))

SN (εbN (β, σ̂(φ)))

)
= b a.e.. (7.62)

As well as σ̂(φ) ≤ σ̂Y and σ̂Y → σY a.e., then σ̂(φ) ≤ σY for all N > N0 and we have

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ̂(φ))

s0 + δ

)
>

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ̂(φ))

SN (εbN (β, σ̂(φ)))

)
a.e. ∀β ∈ B0 × [−d, d].

Then, ∃(i0, j0) ∈ (WM ∼ T ) such that

|εbi,j(β, σ̂(φ))|
s0 + δ

>
|εbi,j(β, σ̂(φ))|

SN (εbN (β, σ̂(φ)))
a.e. ∀β ∈ B0 × [−d, d].

Later,
SN (εbN (β, σ̂(φ))) ≥ s0 + δ

and taking the smallest, we have that

inf
β∈B0×[−d,d]

SN (εbN (β, σ̂(φ))) > s0 + δ a.e..

Therefore,
lim inf
N→∞

inf
β∈B0×[−d,d]

SN (εbN (β, σ̂(φ))) ≥ s0 + δ a.e..

Finally, the lemma is proven.

To prove (7.62), we consider two facts:
1) There exists δ > 0 such that

lim inf
N→∞

sup
β∈B0×[−d,d],σ≤σY

1

N

∑
(i,j)∈(WM∼T )

E

(
ρ1

(
εbi,j(β, σ)

s0 + δ

))
≥ b+ δ a.e.. (7.63)

2)

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ)

s0 + δ

)
− E

(
ρ1

(
εbi,j(β, σ)

s0 + δ

))
−→ 0 a.e..

Let us see 1).
By the definition of σ̂(φ) (4.2), σ̂(φ) ≤ σ̂Y , where σ̂Y is a robust estimator of σY such that limN→∞σ̂Y =

σY a.e.. Using Lemma 6, we can find constants C1 > 0 and C2 > 0 such that

sup
β∈B0×[−d,d]

|εbi,j(β, σ̂(φ))− Yi,j | ≤ C1σ̂Y + C2, ∀(i, j) ∈ (WM ∼ T ).

Since limN→∞σ̂Y = σY a.e., with probability 1, ∃N0 such that for N > N0, ∀(i, j) ∈ WM , there exist
constants C̃1 and C̃2 such that

C1σ̂Y + C2 < C̃1σY + C̃2 a.e..
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Let D = C̃1σY + C̃2. Then ∀ N > N0, ∀(i, j) ∈ (WM ∼ T ) we have

sup
β∈B0×[−d,d]

|εbi,j(β, σ)− Yi,j | ≤ D ∀σ ≤ σY (7.64)

and, in particular,
sup

β∈B0×[−d,d]
|εbi,j(β, σ̂(φ))− Yi,j | ≤ D.

On the other hand, we can write the process {Yi,j} as Yi,j = µ0 + εi,j + vi,j , where {vi,j} is a stationary
process that depends of εk,l, when (k, l) � (i, j) and (k, l) 6= (i, j) (vi,j =

∑
(k,l)∈T φk,lεi−k,j−l).

As innovation process ε satisfies P4, then the distribution of εi,j is unbounded, (∀δ > 0, P (|εi,j | > δ) > 0).
In addition, as Yi,j is not a white noise, also we have that vi,j has unbounded distribution because: suppose
that vi,j has bounded distribution, then ∃δ > 0 such that

0 = P (|vi,j | > δ) ≥ P (|Yi,j − εi,j | > δ + |µ0|) ≥ P (|εi,j | − |Yi,j | > δ + |µ0|).

Since ∃M > 0 such that |Yi,j | < M (because E(|Yi,j |2) = σ2
Y <∞), then

0 = P (|εi,j | − |Yi,j | > δ + |µ0|) ≥ P (|εi,j | > δ + |µ0|+M).

Which is absurd since εi,j has an unbounded distribution.

Let
ui,j(β, σ) = µ0 + vi,j + (εbi,j(β, σ)− Yi,j), ∀(i, j) ∈ (WM ∼ T ). (7.65)

We can write

εbi,j(β, σ) = Yi,j + (εbi,j(β, σ)− Yi,j) = Yi,j + ui,j(β, σ)− µ0 − vi,j = εi,j + ui,j(β, σ). (7.66)

Note that (7.64) and (7.65) imply that ∀ β ∈ B0 × [−d, d], σ ≤ σY and ∀N > N0 we have

|ui,j(β, σ)| = |vi,j − (−µ0 − (εbi,j(β, σ)− Yi,j))|
≥ |vi,j | − |µ0 + (εbi,j(β, σ)− Yi,j)|
≥ |vi,j | − |µ0| − |εbi,j(β, σ)− Yi,j |
≥ |vi,j | − |µ0| −D.

Therefore, ∀(i, j) ∈ (WM ∼ T ) and ∀N > N0 we have

{|vi,j | > D + |µ0|+ 1} ⊂
{

inf
β∈B0×[−d,d],σ≤σY

|ui,j(β, σ)| ≥ 1

}
.

Since vi,j is stationary and its distribution is unbounded (all they have the same distribution), we have

γ = P (|vi,j | > D + |µ0|+ 1) > 0.

Let us call Ai,j = {|vi,j | > D + |µ0|+ 1}.

According to the definition of s0, we have Eβ0 (ρ1(εi,j/s0)) = b.

As we saw in Lemma 2, if S(u, q) = Eβ0

(
ρ1

(
εi,j+u
q

))
, for q 6= 0 and u 6= 0, one gets that S(0, q) < S(u, q),

i.e., Eβ0

(
ρ1

(
εi,j
q

))
< Eβ0

(
ρ1

(
εi,j+u
q

))
.

In particular, if q = s0 6= 0, we obtain

b = Eβ0

(
ρ1

(
εi,j
s0

))
< Eβ0

(
ρ1

(
εi,j + u

s0

))
∀u 6= 0.

31



This implies that

inf
|u|≥1

Eβ0

(
ρ1

(
εi,j + u

s0

))
> b.

Later,

(1− γ)Eβ0

(
ρ1

(
εi,j
s0

))
+ γ inf

|u|≥1
Eβ0

(
ρ1

(
εi,j + u

s0

))
> (1− γ)b+ γb = b. (7.67)

Let F be a function defined by F (q) = (1− γ)S(0, q) + γ inf |u|≥1 S(u, q).
F is a decreasing function in |q| (because S(p, q) is decreasing in |q|) and continuous (by the Lebesgue’s

Dominated Convergence Theorem). By (7.67), F (s0) > b. Later, ∃δ > 0 such that

F (s0 + δ) ≥ b+ δ,

that is,

(1− γ)Eβ0

(
ρ1

(
εi,j
s0 + δ

))
+ γ inf

|u|≥1
Eβ0

(
ρ1

(
εi,j + u

s0 + δ

))
≥ b+ δ. (7.68)

Let

h(u) = Eβ0

(
ρ1

(
εi,j + u

s0 + δ

))
and

γN =
1

N

∑
(i,j)∈(WM∼T )

I(Ai,j).

For each (i, j) ∈ (WM ∼ T ) and N > N0 we have

inf
|u|≥1

h(u) ≤ inf
|ui,j(β,σ)|≥1,β∈B0×[−d,d],σ≤σY

h(ui,j(β, σ)),

then

I(Ai,j) inf
|u|≥1

h(u) ≤ I(Ai,j) inf
|ui,j(β,σ)|≥1,β∈B0×[−d,d],σ≤σY

h(ui,j(β, σ))

= inf
|ui,j(β,σ)|≥1,β∈B0×[−d,d],σ≤σY

I(Ai,j)h(ui,j(β, σ))

≤ inf
|vi,j |≥D+|µ0|+1,β∈B0×[−d,d],σ≤σY

I(Ai,j)h(ui,j(β, σ))

= inf
β∈B0×[−d,d],σ≤σY

I(Ai,j)h(ui,j(β, σ)).

Later, adding over (WM ∼ T ), one gets that

γN inf
|u|≥1

h(u) ≤ 1

N

∑
(i,j)∈WM∼T

inf
β∈B0×[−d,d],σ≤σY

I(Ai,j)h(ui,j(β, σ))

≤ inf
β∈B0×[−d,d],σ≤σY

1

N

∑
(i,j)∈WM∼T

I(Ai,j)h(ui,j(β, σ))

≤ 1

N

∑
(i,j)∈WM∼T

I(Ai,j)h(ui,j(β, σ)) ∀β ∈ B0 × [−d, d], σ ≤ σY , N > N0. (7.69)
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Further, as

h(u) = Eβ0

(
ρ1

(
εi,j + u

s0 + δ

))
= S(u, s0 + δ)

≥ S(0, s0 + δ)

= Eβ0

(
ρ1

(
εi,j
s0 + δ

))
= h(0) ∀u, (7.70)

then by (7.69) and (7.70), we obtain

γN inf
|u|≥1

h(u) + (1− γN )h(0) ≤

≤ 1

N

∑
(i,j)∈(WM∼T )

I(Ai,j)h(ui,j(β, σ)) +

1− 1

N

∑
(i,j)∈(WM∼T )

I(Ai,j)

h(ui,j(β, σ))

=
1

N

∑
(i,j)∈(WM∼T )

I(Ai,j)h(ui,j(β, σ)) +
1

N

∑
(i,j)∈(WM∼T )

I(Aci,j)h(ui,j(β, σ))

=
1

N

∑
(i,j)∈(WM∼T )

(
I(Ai,j)h(ui,j(β, σ)) + I(Aci,j)h(ui,j(β, σ))

)
=

1

N

∑
(i,j)∈(WM∼T )

h(ui,j(β, σ))

≤ sup
β∈B0×[−d,d],σ≤σY

1

N

∑
(i,j)∈(WM∼T )

h(ui,j(β, σ)).

Hence,

γN inf
|u|≥1

h(u) + (1− γN )h(0) ≤ sup
β∈B0×[−d,d],σ≤σY

1

N

∑
(i,j)∈(WM∼T )

h(ui,j(β, σ)),

and as γN → γ a.e. (by Law of Large Numbers for Ergodic Processes (Guyon (1995))), and by Eq. (7.68) we
have

lim inf
N→∞

sup
β∈B0×[−d,d],σ≤σY

1

N

∑
(i,j)∈(WM∼T )

h(ui,j(β, σ)) ≥ γ inf
|u|≥1

h(u) + (1− γ)h(0)

≥ b+ δ a.e..

Then 1) is proven.

Now let us show 2).

Let

Ri,j(β, σ) = ρ1

(
εbi,j(β,σ)

s0+δ

)
− h(ui,j(β, σ))

= ρ1

(
εi,j+ui,j(β,σ)

s0+δ

)
− h(ui,j(β, σ)).

Let us consider the following order relationship in I: given (k, l), (i, j) ∈ I we say that (k, l) is related to
(i, j) under the relationship 444 (denoted (k, l)444(i, j)) if and only if k ≤ i and l ≤ j. Later, we define for each
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(i, j) ∈ I, the σ-algebra Fi,j generated by the set of random variables {Rk,l : (k, l)444(i, j)}. We can prove
that, given (i, j) ∈ I, Fk,l ⊆ Fi,j for each (k, l)444(i, j); that is, {Fk,l} is a non-decreasing succession of sub
σ-algebra of A.

In the same way as for time series (Muler et al. (2009)), it results that {Ri,j(β, σ),Fi,j} is a martingale
difference succession.

Let us get in the conditions of Law of Large Numbers for Martingale Differences (Quang & Van Huan
(2010)): let {b(i,j)} be a succession given by b(i,j) = (i − L + 1)(j − L + 1). This succession satisfies that
4b(i,j) = 0, ∀(i, j) ∈ Z2 and b(i,j) →∞ when (i, j)→∞ (with both orders: � and 444). In addition,

∑
(0,0)444(i,j)

E(|Ri,j(β, σ)|2)

b2(i,j)
=
∑

(i,j)∈I

E(|Ri,j(β, σ)|2)

b2(i,j)
≤M

∑
(i,j)∈I

1

b2(i,j)
<∞.

Later, by this theorem, we have

1

b(M,M)

∑
(0,0)444(i,j)444(M,M)

Ri,j(β, σ) =
1

N

∑
(i,j)∈(WM∼T )

Ri,j(β, σ)→ 0 a.e.. (7.71)

and 2) is proven.

Since Ri,j(β, σ) is continuous and using compactness arguments, ∀ε > 0, we can find (βl, σl, δl), 1 ≤ l ≤ mo

with βl ∈ B0 × [−d, d], σl ≤ σY , such that, if we define

Vl = {(β, σ) : ||β − βl||+ |σ − σl| ≤ δl},

one obtains that B0 × [−d, d]× [0, σY ] ⊂ ∪m0
l=1Vl (finite covering of B0 × [−d, d]× [0, σY ]) and

sup
(β,σ)∈Vl

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

[Ri,j(β, σ)−Ri,j(βl, σl)]

∣∣∣∣∣∣ ≤ ε, ∀l = 1, ...,m0.

Later,

sup
β∈B0×[−d,d],σ≤σY

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

Ri,j(β, σ)

∣∣∣∣∣∣ ≤
m0∑
l=1

sup
(β,σ)∈Vl

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

[Ri,j(β, σ)−Ri,j(βl, σl)]

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

Ri,j(βl, σl)

∣∣∣∣∣∣ .
Taking upper limit on this last inequality and by (7.71) we have

lim sup
N→∞

sup
β∈B0×[−d,d],σ≤σY

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

Ri,j(β, σ)

∣∣∣∣∣∣ ≤ m0.ε a.e.,

and as this applies for all ε > 0, we obtain

lim sup
N→∞

sup
β∈B0×[−d,d],σ≤σY

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

Ri,j(β, σ)

∣∣∣∣∣∣ = 0 a.e.. (7.72)
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Finally, by (7.63) and (7.72), we almost everywhere have that,

b+ δ ≤ sup
β∈B0×[−d,d],σ≤σY

1

N

∑
(i,j)∈(WM∼T )

(
ρ1

(
εbi,j(β, σ)

s0 + δ

)
−Ri,j(β, σ)

)

≤ sup
β∈B0×[−d,d],σ≤σY

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ)

s0 + δ

)
+ sup
β∈B0×[−d,d],σ≤σY

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

Ri,j(β, σ)

∣∣∣∣∣∣ .
Later, taking lower limit:

b < b+ δ ≤ lim inf
N→∞

sup
β∈B0×[−d,d],σ≤σY

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ)

s0 + δ

)
+

lim sup
N→∞

sup
β∈B0×[−d,d],σ≤σY

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

Ri,j(β, σ)

∣∣∣∣∣∣
= lim inf

N→∞
sup

β∈B0×[−d,d],σ≤σY

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ)

s0 + δ

)
a.e.,

which implies that ∀β ∈ B0 × [−d, d] and σ ≤ σY :

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ)

s0 + δ

)
>

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ̂(φ))

SN (εbN (β, σ̂(φ)))

)
a.e.

and the lemma is proven. �

Lemma 8. Under the assumptions of Theorem 2, there exits d > 0 such that

lim inf
N→∞

inf
|µ|>d,φ∈B0

SN (εbN (β, σ̂(φ))) ≥ s0 + 1 a.e..

Proof of Lemma 8:
As we saw in Lemma 6,

|vi,j(β, σ)| = |εbi,j(β, σ̂(φ))− Yi,j |

=

∣∣∣∣∣∣µf i,j1 (φ) + σ̂(φ)f i,j2 (β, σ̂(φ))−
∑

(m,n)∈WM\(WM∼T )

f i,jm,n(φ)Ym,n

∣∣∣∣∣∣
≥ |µ||f i,j1 (φ)| −

∣∣∣∣∣∣−σ̂(φ)f i,j2 (β, σ̂(φ)) +
∑

(m,n)∈WM\(WM∼T )

f i,jm,n(φ)Ym,n

∣∣∣∣∣∣
≥ |µ||f i,j1 (φ)| − σ̂(φ)|f i,j2 (β, σ̂(φ))| −

∣∣∣∣∣∣
∑

(m,n)∈WM\(WM∼T )

f i,jm,n(φ)Ym,n

∣∣∣∣∣∣ .
Later,

|εbi,j(β, σ̂(φ))| ≥ |µ||f i,j1 (φ)| − σ̂(φ)|f i,j2 (β, σ̂(φ))| −

∣∣∣∣∣∣
∑

(m,n)∈WM\(WM∼T )

f i,jm,n(φ)Ym,n

∣∣∣∣∣∣− |Yi,j |. (7.73)
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Due to f i,jm,n are polynomials on the compact B0 ∀(m,n) ∈WM \ (WM ∼ T ) and ∀(i, j) ∈ (WM ∼ T ), we
get that

sup
φ∈B0

∣∣∣∣∣∣
∑

(m,n)∈WM\(WM∼T )

f i,jm,n(φ)Ym,n

∣∣∣∣∣∣ ≤ D1.

Besides, as 0 < σ̂(φ) ≤ σ̂Y and f i,j2 are bounded functions on compact sets we have

sup
φ∈B0

σ̂(φ)|f i,j2 (β, σ̂(φ))| ≤ σ̂Y .C,

and then

inf
φ∈B0

−
∣∣∣∣∣∣

∑
(m,n)∈WM\(WM∼T )

f i,jm,n(φ)Ym,n

∣∣∣∣∣∣− σ̂(φ)|f i,j2 (β, σ̂(φ))|

 ≥ −D1 − σ̂Y .C. (7.74)

Since B0 is compact, ∀φ ∈ B0 there exists ε > 0 such that ε ≤ f i,j1 (φ). Later,

inf
φ∈B0

|µ||f i,j1 (φ)| ≥ ε

2
|µ|. (7.75)

Therefore, taking the lowest in (7.73) and using the values found in (7.75) and (7.74), we have

inf
φ∈B0

|εbi,j(β, σ̂(φ))| ≥ inf
φ∈B0

|µ||f i,j1 (φ)| − |Yi,j |

+ inf
φ∈B0

−
∣∣∣∣∣∣

∑
(m,n)∈WM\(WM∼T )

f i,jm,n(φ)Ym,n

∣∣∣∣∣∣− σ̂(φ)|f i,j2 (β, σ̂(φ))|


≥ ε

2
|µ| − |Yi,j | −D1 − σ̂Y .C. (7.76)

Due to the fact that sup ρ1 > b (by hypothesis of Theorem 2) and limn→∞ ρ1(|x|) = sup ρ1, there exist k0

and λ > 1 such that ∀|x| ≥ k0,
ρ1(x) ≥ λb. (7.77)

In addition, as limn→∞ σ̂Y = σY a.e., there exist D̃1 and C̃ such that D1 + σ̂Y .C ≤ D̃1 + σY .C̃.

Let k1 be a constant such that the set defined as Ci,j = {|Yi,j | ≤ k1 − D̃1 − C̃σY } satisfies P (Ci,j) ≥ 1
λ .

Let k = max(k1/(s0 + 1), k0) and d a constant such that d > 4k(s0+1)
ε .

Then, by the definition of k and (7.76), on Ci,j one gets that

inf
φ∈B0,|µ|>d

|εbi,j(β, σ̂(φ))| ≥ ε

2
d− k1 − D̃1 − C̃σY + D̃1 + C̃σY

=
ε

2
d− k1

> k(s0 + 1) > k. (7.78)

For all β = (φ, µ) such that |µ| > d, φ ∈ B0 we have that∣∣∣∣∣εbi,j(β, σ̂(φ))

s0 + 1

∣∣∣∣∣ ≥ inf
|µ|>d,φ∈B0

∣∣∣∣∣εbi,j(β, σ̂(φ))

s0 + 1

∣∣∣∣∣ .
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As ρ1 satisfies P1, ∀|µ| > d,φ ∈ B0 and ∀(i, j) ∈ (WM ∼ T ) we obtain

ρ1

(
εbi,j(β, σ̂(φ))

s0 + 1

)
≥ ρ1

(
inf

|µ|>d,φ∈B0

∣∣∣∣∣εbi,j(β, σ̂(φ))

s0 + 1

∣∣∣∣∣
)

≥ ρ1

(
inf

|µ|>d,φ∈B0

∣∣∣∣∣εbi,j(β, σ̂(φ))

s0 + 1

∣∣∣∣∣
)
I(Ci,j).

Then, ∀|µ| > d,φ ∈ B0

1

N

∑
(i,j)∈WM∼T

ρ1

(
εbi,j(β, σ̂(φ))

s0 + 1

)
≥ 1

N

∑
(i,j)∈WM∼T

ρ1

(
inf

|µ|>d,φ∈B0

∣∣∣∣∣εbi,j(β, σ̂(φ))

s0 + 1

∣∣∣∣∣
)
I(Ci,j).

Later, taking the infimum one has:

inf
|µ|>d,φ∈B0

1

N

∑
(i,j)∈WM∼T

ρ1

(
εbi,j(β, σ̂(φ))

s0 + 1

)
≥ 1

N

∑
(i,j)∈WM∼T

ρ1

(
inf

|µ|>d,φ∈B0

∣∣∣∣∣εbi,j(β, σ̂(φ))

s0 + 1

∣∣∣∣∣
)
I(Ci,j). (7.79)

Furthermore, by (7.78) and due to ρ1 satisfies P1, we obtain

ρ1

(
inf

φ∈B0,|µ|>d
|εbi,j(β, σ̂(φ))|

)
> ρ1(k), ∀(i, j) ∈ (WM ∼ T ),

then, adding over (WM ∼ T ):

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
inf

φ∈B0,|µ|>d
|εbi,j(β, σ̂(φ))|

)
I(Ci,j) >

ρ1(k)

N

∑
(i,j)∈(WM∼T )

I(Ci,j);

and taking lower limit, we have

lim inf
N→∞

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
inf

φ∈B0,|µ|>d
|εbi,j(β, σ̂(φ))|

)
I(Ci,j) ≥ lim inf

N→∞

ρ1(k)

N

∑
(i,j)∈(WM∼T )

I(Ci,j). (7.80)

By the equation (7.77), the fact that {I(Ci,j)} is stationary and ergodic and E(I(Ci,j)) = P (Ci,j) ≥ 1/λ,
we have by the Ergodic Theorem (Guyon (1995)) that

lim inf
N→∞

ρ1(k)

N

∑
(i,j)∈(WM∼T )

I(Ci,j) = ρ1(k)P (Ci,j) ≥ λb
1

λ
= b a.e..

Then, by (7.79) and (7.80) we have

lim inf
N→∞

inf
|µ|>d,φ∈B0

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ̂(φ))

s0 + 1

)
≥ b a.e..

Later, for the last one, for N large enough and ∀|µ| > d,φ ∈ B0,

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ̂(φ))

s0 + 1

)
≥ b =

1

N

∑
(i,j)∈(WM∼T )

ρ1

(
εbi,j(β, σ̂(φ))

SN (εbN (β, σ̂(φ)))

)
a.e.,

and, by similar arguments to those used in Lemma 3, there exist (i0, j0) ∈ (WM ∼ T ) such that
|εbi0,j0 (β,σ̂(φ))|

s0+1 >
|εbi0,j0 (β,σ̂(φ))|
SN (εbN (β,σ̂(φ)))

a.e.. Thus, for N � 0 and ∀|µ| > d,φ ∈ B0 we have

SN (εbN (β, σ̂(φ))) > s0 + 1 a.e..
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Therefore,
lim inf
N→∞

inf
|µ|>d,φ∈B0

SN (εbN (β, σ̂(φ))) ≥ s0 + 1 a.e..

and the lemma is proven.
�

Next we demonstrate Theorem 2.

Proof of Theorem 2:
Let δ̃ > 0 as in Lemma 7.
From Lemmas 7 and 8 we define δ = min(δ̃, 1) such that

lim inf
N→∞

inf
β∈B

SN (εbN (β, σ̂(φ))) ≥ s0 + δ a.e..

Then, ∃N1 such that
inf
β∈B

SN (εbN (β, σ̂(φ))) ≥ s0 + δ a.e.,∀N > N1

or equivalently,
SN (εbN (β, σ̂(φ))) ≥ s0 + δ a.e., ∀β ∈ B, ∀N > N1.

In particular,
SN (εbN (β̂bS , σ̂(φ̂bS))) ≥ s0 + δ a.e., ∀N > N1,

that is,
sbN ≥ s0 + δ a.e., ∀N > N1.

By Theorem 1 (ii), sN −→ s0 a.e.. Thus, there exists N2 such that |sN − s0| < δ a.e. ∀N > N2. Later,

sN < δ + s0 a.e., ∀N > N2.

Then, if N > max(N1, N2) we obtain that sN < δ + s0 ≤ sbN a.e..
Therefore,

s∗N = min(sN , s
b
N ) = sN , a.e. ∀N > max(N1, N2)

and on account that sN −→ s0 a.e., then s∗N −→ s0 a.e. and the theorem is proven.
�

The next three lemmas intervene directly in the proof of Theorem 3. Lemma 9 presents properties about
the expected function of the residuals of the AR-2D model on the function ρ2 (m(β)). Lemmas 10 and 11 es-
tablish relationships between the function m(β) and the objective function that determines the M-estimation
of the parameters of the AR-2D model using the residual functions of that model.

Lemma 9. Let Y be a process that satisfies P2 with an innovation process ε satisfying P3. Suppose that ρ2

is a function satisfying P1. Let m : B → R be a function defined by:

m(β) := Eβ0

(
ρ2

(
εi,j(β)

s0

))
.

Then,

i)
β0 = argmin

β∈B
m(β).

ii) m is a continuous function.
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Proof of Lemma 9:
First, let us show (i).
Let β = (φ, µ) 6= β0 = (φ0, µ0). As in Lemma 2, we can express: εi,j(β) = εi,j + 4i,j(β) where

4i,j(β) =
∑

(k,l)∈I\{(0,0)}wk,lεi−k,j−l +
(

1−
∑

(k,l)∈T φk,l

)
.(µ0 − µ).

Then,

m(β) = Eβ0

(
ρ2

(
εi,j(β)

s0

))
= Eβ0

(
ρ2

(
εi,j +4i,j(β)

s0

))
.

In addition, as S̃(p, q) := Eβ0

(
ρ2

(
εi,j+p
q

))
is decreasing in |q| and S̃(0, q) < S̃(p, q) for all p 6= 0, q 6= 0, then

m(β) = S̃(4i,j(β), s0)

≥ S̃(0, s0)

= Eβ0

(
ρ2

(
εi,j
s0

))
= m(β0).

Equality holds if and only if 4i,j(β) = 0 a.e.. Due to the identifiability of the AR model this happens if
and only if β = β0. Later, if β 6= β0 then m(β) > m(β0). Therefore, β0 = argminβ∈Bm(β).

Now let us see (ii):
The continuity of m(β) is immediate since εi,j(β) and ρ2 are continuous and, in addition, ρ2 is bounded.

Then by Lebesgue’s Dominated Convergence Theorem, m is continuous.
�

Lemma 10. Let Y be a process that satisfies P2. Suppose that ρ2 is a function satisfying P1. We define

MN (β) =
1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εi,j(β)

s∗N

)
,

as in (4.3). Then,

lim
N→∞

sup
β∈B0×[−d,d]

∣∣∣∣MN (β)− Eβ0
(
ρ2

(
εi,j(β)

s0

))∣∣∣∣ = 0 a.e., ∀d > 0.

Proof of Lemma 10:
By the Dominated Convergence Theorem, as ρ2 is a continuous and bounded function and εi,j(β) is

continuous, we have that

M(β, v) = Eβ0

(
ρ2

(
εi,j(β)

v

))
is a continuous function respect to the two variables.

Then, given ε > 0 and β ∈ B0 × [−d, d], by the continuity of M(β, v) in v = s0 we have there exists
0 < δ(β) < s0 such that if |v − s0| < δ(β) then |M(β, v)−M(β, s0)| < ε/2 for each β ∈ B0 × [−d, d]. By the
compactness of B0 × [−d, d], we obtain that ∃δ > 0 such that |M(β, v)−M(β, s0)| ≤ ε/2, ∀β ∈ B0 × [−d, d]
and ∀v ∈ [s0 − δ, s0 + δ], and then

sup
β∈B0×[−d,d],v∈[s0−δ,s0+δ]

|M(β, v)−M(β, s0)| ≤ ε/2. (7.81)
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Let us consider the continuous function f(y, β, v) =
∣∣∣ρ2

(
Φ(B1,B2)(y−µ)

v

)
− Eβ0

(
ρ2

(
Φ(B1,B2)(y−µ)

v

))∣∣∣ de-

fined in R× C0 with C0 = {(β, v) : β ∈ B0 × [−d, d], v ∈ [s0 − δ, s0 + δ]} compact. Since {Yi,j} is an ergodic
process, Eβ0(f(Y, β, v)) = 0 and sup(β,v)∈C0

|f(Y, β, v)| ≤ K with K a constant, by Lemma 3 of Muler &
Yohai (2002), we have that

lim
N−→∞

sup
(β,v)∈C0

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εi,j(β)

v

)
− Eβ0

(
ρ2

(
εi,j(β)

v

))∣∣∣∣∣∣ = 0 a.e.. (7.82)

By Theorem 2, limN→∞ s
∗
N = s0 a.e.. Then with probability 1, there exists N0 such that ∀N > N0,

s∗N ∈ [s0 − δ, s0 + δ] and

sup
β∈B0×[−d,d]

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εi,j(β)

s∗N

)
− Eβ0

(
ρ2

(
εi,j(β)

s∗N

))∣∣∣∣∣∣ < ε/2 a.e.. (7.83)

By (7.81) and (7.83) we have that ∀N > N0,∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εi,j(β)

s∗N

)
− E

(
ρ2

(
εi,j(β)

s0

))∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εi,j(β)

s∗N

)
− E

(
ρ2

(
εi,j(β)

s∗N

))∣∣∣∣∣∣+

∣∣∣∣E (ρ2

(
εi,j(β)

s∗N

))
− E

(
ρ2

(
εi,j(β)

s0

))∣∣∣∣
< ε/2 + ε/2, ∀β ∈ B0 × [−d, d] a.e..

Then, taking the supreme:

sup
β∈B0×[−d,d]

∣∣∣∣∣∣ 1

N

∑
(i,j)∈WM∼T

ρ2

(
εi,j(β)

s∗N

)
− E

(
ρ2

(
εi,j(β)

s0

))∣∣∣∣∣∣ < ε a.e., ∀N > N0

and the lemma is proven.
�

Lemma 11. Under the assumptions of Theorem 3, there exist d > 0 and δ > 0 such that

lim inf
N→∞

inf
|µ|>d,φ∈B0

MN (β) > m(β0) + δ a.e.,

where m(β0) is defined as in Lemma 9 and MN (β) as in Lemma 10.

Proof of Lemma 11:
Given β = (φ, µ) with φ ∈ B0. Let ϑi,j(β) = εi,j(β) − εi,j(φ, 0). By the definition of εi,j(β) (7.20) we

have that

ϑi,j(β) = µξ = −µ

1−
∑

(k,l)∈T

φk,l

 , ∀(i, j) ∈ (WM ∼ T ). (7.84)

Furthermore, it is easy to see that
ϑi,j(β) = µ.ϑi,j(φ, 1).

Using the compactness of B0, there exist δ̃ > 0 and K1 > 0 such that for all φ ∈ B0,

δ̃ ≤ 1−
∑

(k,l)∈T

φk,l ≤ K1. (7.85)
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Later, by (7.84) and using (7.85) we obtain that

inf
φ∈B0

|ϑi,j(β)| = inf
φ∈B0

∣∣∣∣∣∣µ
1−

∑
(k,l)∈T

φk,l

∣∣∣∣∣∣ ≥ δ̃

2
|µ| (7.86)

and by Lemma 1, we have
sup
φ∈B0

|εi,j(φ, 0)| ≤W 0
i,j (7.87)

where W 0 = {W 0
i,j} is a stationary process.

Since the process ε satisfies P3 and ρ2 satisfies P1, then m(β0) = E(ρ2(εi,j/s0)) < sup ρ2. Later, ∃δ > 0
such that sup ρ2 > m(β0) + δ. In addition, as limx−→∞ρ2(|x|) = sup ρ2, there exist k0 > 0 and λ > 1 such
that ∀|x| ≥ k0 we get that

ρ2(x) ≥ λ(m(β0) + δ). (7.88)

As {W 0
i,j} is a strictly stationary process, for each (i, j), the variables W 0

i,j ’s have the same distribution,
so there exists m such that

P (W 0
i,j < m/2) >

1

λ
. (7.89)

We define k as

k = max

(
m

s∗N
, k0

)
(7.90)

and let d be a constant such that d ≥ max(4s∗Nk/δ̃, |µ0|). Then, using (7.86) we obtain that

inf
φ∈B0,|µ|>d

|ϑi,j(β)| ≥ δ̃

2
d ≥ 2s∗Nk. (7.91)

Due to the fact that ρ2 satisfies P1, one gets that

inf
φ∈B0,|µ|>d

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εi,j(β)

s∗N

)
≥ 1

N

∑
(i,j)∈(WM∼T )

ρ2

(
inf

φ∈B0,|µ|>d

∣∣∣∣εi,j(β)

s∗N

∣∣∣∣) I(Ai,j) (7.92)

where Ai,j = {W 0
i,j < m/2} and I(Ai,j) denotes the indicator function of Ai,j . By the equation (7.87) and

the definition of ϑi,j(β), we can write

|εi,j(β)| ≥ |ϑi,j(β)| − |εi,j(φ, 0)| ≥ |ϑi,j(β)| −W 0
i,j . (7.93)

Then, Eqs. (7.90), (7.93) and (7.91) imply

Ai,j ⊂ {W 0
i,j < k.s∗N} ⊂

{
inf

|µ|>d,φ∈B0
|εi,j(β)| > k.s∗N

}
. (7.94)

As ρ2 ≥ 0, and ρ2(|u|) is non-decreasing, by (7.94) we have

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
inf

φ∈B0,|µ|>d

∣∣∣∣εi,j(β)

s∗N

∣∣∣∣) I(Ai,j) ≥
1

N

∑
(i,j)∈(WM∼T )

ρ2(k)I(Ai,j)

=
ρ2(k)

N

∑
(i,j)∈(WM∼T )

I(Ai,j). (7.95)
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Since W 0
i,j is a stationary and ergodic process, by Ergodic Theorem (Guyon (1995)) and (7.89), we obtain

that

lim
N−→∞

1

N

∑
(i,j)∈WM∼T

I(Ai,j) = E(I(Ai,j)) = P (Ai,j) >
1

λ
(7.96)

in L2 and, therefore, it converges almost everywhere. Then, Eqs. (7.92) and (7.95), imply that

inf
φ∈B0,|µ|>d

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εi,j(β)

s∗N

)
≥ ρ2(k)

N

∑
(i,j)∈(WM∼T )

I(Ai,j).

Taking lower limit and by expression (7.96), we have

lim inf
N−→∞

inf
φ∈B0,|µ|>d

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εi,j(β)

s∗N

)
>
ρ2(k)

λ
a.e.. (7.97)

In addition, by (7.88) and (7.90) we obtain

ρ2(k)

λ
≥ m(β0) + δ. (7.98)

Thus, from (7.97) and (7.98):

lim inf
N−→∞

inf
φ∈B0,|µ|>d

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εi,j(β)

s∗N

)
> m(β0) + δ a.e..

That is,
lim inf
N→∞

inf
|µ|>d,φ∈B0

MN (β) > m(β0) + δ a.e.

and the lemma is proven.
�

Next we demonstrate Theorem 3.

Proof of Theorem 3:
Given ε > 0 and let d and δ be as in Lemma 11. By Lebesgue’s Dominated Convergence Theorem, the

function m(β) defined in (9) is continuous since ρ2 and εi,j(β) are continuous functions and ρ2 is bounded.
By Lemma 9, m(β) reaches an absolute minimum at β0. In addition, m(β) is continuous at β0 because

m(β) is continuous ∀β ∈ B. Thus, ∃0 < γ < δ such that if ||β−β0|| ≥ ε then m(β)−m(β0) = |m(β)−m(β0)| >
γ. Later,

m(β) > γ +m(β0), ∀β such that ||β − β0|| ≥ ε,

that is,
min

||β−β0||≥ε
m(β) > γ +m(β0).

Consequently,
min

β∈B0×[−d,d],||β−β0||≥ε
m(β) ≥ min

||β−β0||≥ε
m(β) > γ +m(β0).

Hence,

min
β∈B0×[−d,d],||β−β0||≥ε

m(β) > γ +m(β0). (7.99)

On the other hand, by Lemma 10, ∃N1 such that supβ∈B0×[−d,d] |MN (β) − m(β)| < γ
4 a.e. ∀N > N1.

Then,
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−MN (β) +m(β) <
γ

4
a.e., ∀β ∈ B0 × [−d, d],

further,

m(β)− γ

4
< MN (β) a.e., ∀β ∈ B0 × [−d, d].

Then,

m(β)− γ

4
< MN (β) a.e., ∀β ∈ B0 × [−d, d] and ||β − β0|| ≥ ε.

Therefore, from the previous inequality and using (7.99), we have

min
β∈B0×[−d,d],||β−β0||≥ε

MN (β) > min
β∈B0×[−d,d],||β−β0||≥ε

m(β)− γ

4

> γ +m(β0)− γ

4
= m(β0) +

3

4
γ

> m(β0) +
γ

2
a.e..

Later,

min
β∈B0×[−d,d],||β−β0||≥ε

MN (β) > m(β0) +
γ

2
a.e., ∀N > N1. (7.100)

In addition, since β0 ∈ B0 × [−d, d] and by Lemma 10 we can write

|MN (β0)−m(β0)| < γ

4
a.e., ∀N > N1,

that is,

MN (β0) <
γ

4
+m(β0) a.e., ∀N > N1. (7.101)

Then, by Lemma 11,
lim inf
N→∞

inf
|µ|>d,φ∈B0

MN (β) > m(β0) + δ a.e.,

thus,

sup
N≥0

(
inf
k≥N

(
inf

|µ|>d,φ∈B0
Mk(β)

))
≥ m(β0) + δ a.e..

Due to the fact that infk≥N
(
inf |µ|>d,φ∈B0 Mk(β)

)
is an increasing succession, ∃N2 such that

inf
k≥N

(
inf

|µ|>d,φ∈B0
Mk(β)

)
≥ m(β0) + δ a.e., ∀N ≥ N2,

so,
inf

|µ|>d,φ∈B0
Mk(β) ≥ m(β0) + δ a.e., ∀k ≥ N ∀N ≥ N2.

In particular:

inf
|µ|>d,φ∈B0

MN (β) ≥ m(β0) + δ > m(β0) +
γ

2
a.e., ∀N ≥ N2. (7.102)

Now let us prove that β̂M −→ β0 a.e.. Given ε > 0, let N0 := max(N1, N2). If N > N0, (7.99), (7.100),
(7.101) and (7.102) are satisfied.

From (7.100) and (7.102) one obtains

inf
β∈B,||β−β0||≥ε

MN (β) ≥ m(β0) +
γ

2
a.e.. (7.103)

By the definition of β̂M ,
MN (β) ≥MN (β̂M ), ∀β ∈ B.
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In particular,
MN (β0) ≥MN (β̂M ). (7.104)

If ||β̂M − β0|| ≥ ε then by (7.103) it would have that

MN (β̂M ) ≥ m(β0) +
γ

2
. (7.105)

Then, by (7.101), (7.104) and (7.105) it would have that

m(β0) +
γ

4
> MN (β0) ≥MN (β̂M ) ≥ m(β0) +

γ

2
a.e.,

which is absurd. Therefore, must be that ||β̂M − β0|| < ε a.e. ∀N > N0 = max(N1, N2), that is,
β̂M −→ β0 a.e. and the theorem is proven.

�
The next two lemmas establish relationships between the function m(β) and the objective function that

determines the M-estimation of the parameters of the AR-2D model using the residual functions of the
BIP-AR 2D model. These lemmas make it possible to prove the final theorem: Theorem 4.

Lemma 12. Under the assumptions of Theorem 3, for all d > 0, there exists δ > 0 such that

lim inf
N→∞

inf
β∈B0×[−d,d]

M b
N (β) ≥ m(β0) + δ a.e..

Proof of Lemma 12:
The demonstration of this lemma is similar to Lemma 7.

By Lemma 6 we can find constants C1 > 0 and C2 > 0 such that ∀d > 0 and ∀σ̃ > 0,

sup
β∈B0×[−d,d]

sup
0≤σ≤σ̃

|εbi,j(β, σ)− Yi,j | ≤ C1σ̃ + C2.

Given α > 0 and calling D = C1(s0 + α) + C2, ∀σ ∈ [0, s0 + α], we have that

sup
β∈B0×[−d,d]

|εbi,j(β, σ)− Yi,j | ≤ D. (7.106)

In addition. we can write the process {Yi,j} as Yi,j = µ0 + εi,j + vi,j , where vi,j is a stationary process
that depend of εk,l when (k, l) ≺ (i, j) (vi,j =

∑
(k,l)∈T φk,lεi−k,j−l).

Due to the fact that Yi,j is not a white noise and the distribution of εi,j is unbounded, we have also that
vi,j has unbounded distribution.

Let
ui,j(β, σ) = µ0 + vi,j + (εbi,j(β, σ)− Yi,j), ∀(i, j) ∈ (WM ∼ T ). (7.107)

We can write

εbi,j(β, σ) = Yi,j + (εbi,j(β, σ)− Yi,j) = Yi,j + ui,j(β, σ)− µ0 − vi,j = εi,j + ui,j(β, σ). (7.108)

Therefore, by (7.106) and (7.107), ∀(i, j) ∈ (WM ∼ T ) we have

{|vi,j | > D + |µ0|+ 1} ⊂
{

inf
β∈B0×[−d,d],σ≤σY

|ui,j(β, σ)| ≥ 1

}
.

Since vi,j is stationary and its distribution is unbounded (all they have the same distribution), we obtain

γ = P (|vi,j | > D + |µ0|+ 1) > 0.
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Let us call Ai,j = {|vi,j | > D + |µ0|+ 1}.

According to the definition of m(β), we have m(β0) = Eβ0 (ρ2(εi,j/s0)). As we saw in Lemma 2, for q 6= 0

and u 6= 0, Eβ0

(
ρ2

(
εi,j
q

))
< Eβ0

(
ρ2

(
εi,j+u
q

))
is satisfied.

In particular, if q = s0 6= 0 we have

m(β0) = Eβ0

(
ρ2

(
εi,j
s0

))
< Eβ0

(
ρ2

(
εi,j + u

s0

))
, ∀u 6= 0.

This implies that,

inf
|u|≥1

Eβ0

(
ρ2

(
εi,j + u

s0

))
> m(β0).

Later,

(1− γ)Eβ0

(
ρ2

(
εi,j
s0

))
+ γ inf

|u|≥1
Eβ0

(
ρ2

(
εi,j + u

s0

))
> (1− γ)m(β0) + γm(β0) = m(β0).

With arguments similar to those used in Lemma 7, we can find a δ > 0 such that

(1− γ)Eβ0

(
ρ2

(
εi,j
s0 + δ

))
+ γ inf

|u|≥1
Eβ0

(
ρ2

(
εi,j + u

s0 + δ

))
≥ m(β0) + δ. (7.109)

Let

h(u) = Eβ0

(
ρ2

(
εi,j + u

s0 + δ

))
and

γN =
1

N

∑
(i,j)∈(WM∼T )

I(Ai,j).

In a similar way to that done in Lemma 7, for all β ∈ B0 × [−d, d], 0 ≤ σ ≤ s0 + α,

γN inf
|u|≥1

h(u) + (1− γN )h(0) ≤ 1

N

∑
(i,j)∈(WM∼T )

h(ui,j(β, σ)).

Therefore,

γN inf
|u|≥1

h(u) + (1− γN )h(0) ≤ inf
β∈B0×[−d,d],σ≤s0+α

1

N

∑
(i,j)∈(WM∼T )

h(ui,j(β, σ)). (7.110)

Since γN → γ a.e. (by Law of Large Numbers for Ergodic Processes (Guyon (1995))), and by (7.110) and
(7.109), we have that

lim inf
N→∞

inf
β∈B0×[−d,d],σ≤s0+α

1

N

∑
(i,j)∈WM∼T

h(ui,j(β, σ)) ≥ γ inf
|u|≥1

h(u) + (1− γ)h(0)

≥ m(β0) + δ a.e.. (7.111)

In the other hand, let

Ri,j(β, σ) = ρ2

(
εbi,j(β,σ)

s0+δ

)
− h(ui,j(β, σ))

= ρ2

(
εi,j+ui,j(β,σ)

s0+δ

)
− h(ui,j(β, σ)).
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Similarly to Lemma 7, taking the σ-algebra Fi,j generated by the set of random variables {Rk,l :
(k, l)444(i, j)} under the relationship 444 (see Lemma 7), it results that {Ri,j(β, σ),Fi,j} is a martingale differ-
ence succession. Later, by Large Numbers Law for Martingale Differences (Quang & Van Huan (2010)), one
gets that

1

N

∑
(i,j)∈(WM∼T )

Ri,j(β, σ) = 0 a.e..

By the compactness of B0 × [−d, d]× [0, s0 + α], we obtain

lim sup
N→∞

sup
β∈B0×[−d,d],σ≤s0+α

∣∣∣∣∣∣ 1

N

∑
(i,j)∈WM∼T

Ri,j(β, σ)

∣∣∣∣∣∣ = 0 a.e.. (7.112)

Finally, by (7.111) and (7.112) we have that for N large enough, almost everywhere

m(β0) + δ ≤ inf
β∈B0×[−d,d],σ≤s0+α

1

N

∑
(i,j)∈(WM∼T )

(
ρ2

(
εbi,j(β, σ)

s0 + δ

)
−Ri,j(β, σ)

)

≤ inf
β∈B0×[−d,d],σ≤s0+α

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εbi,j(β, σ)

s0 + δ

)

+ sup
β∈B0×[−d,d],σ≤s0+α

∣∣∣∣∣∣ 1

N

∑
(i,j)∈(WM∼T )

Ri,j(β, σ)

∣∣∣∣∣∣ .
Later, taking lower limit:

m(β0) + δ ≤ lim inf
N→∞

inf
β∈B0×[−d,d],σ≤s0+α

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εbi,j(β, σ)

s0 + δ

)
a.e.,

that is, for N > N1, ∀σ ≤ s0 + α we have

m(β0) + δ ≤ inf
β∈B0×[−d,d]

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εbi,j(β, σ)

s0 + δ

)
a.e..

By Theorem 2, ∃N2 such that s∗N < s0 + min(α, δ), ∀N > N2. Later, 0 ≤ s∗N ≤ s0 + α and since ρ2

satisfies P1, we get that

m(β0) + δ ≤ inf
β∈B0×[−d,d]

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εbi,j(β, s

∗
N )

s0 + δ

)

≤ inf
β∈B0×[−d,d]

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εbi,j(β, s

∗
N )

s∗N

)
a.e..

Therefore,

m(β0) + δ ≤ lim inf
N→∞

inf
β∈B0×[−d,d]

M b
N (β) a.e..

Later, the lemma is proven.
�

Lemma 13. Under the assumptions of Theorem 3, there exist d > 0 and δ > 0 such that

lim inf
N→∞

inf
|µ|>d,φ∈B0

M b
N (β) ≥ m(β0) + δ a.e..
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Proof of Lemma 13:
The demonstration of this lemma is similar to that of Lemma 8.

In the same way that Lemma 8, there exist positive constants ε, D1 and C such that for any α > 0, if
0 < σ ≤ s0 + α, we have that

inf
φ∈B0

|εbi,j(β, σ)| ≥ ε

2
|µ| −D1 − (s0 + α).C − |Yi,j |. (7.113)

Since sup ρ2 > m(β0), there exists δ > 0 such that sup ρ2 > m(β0) + δ. Later, as limn→∞ ρ2(|x|) = sup ρ2,
there exist k0 and λ > 1 such that ∀|x| ≥ k0 we obtain

ρ2(x) ≥ λ(m(β0) + δ). (7.114)

Let k1 be a constant such that the set Ci,j = {|Yi,j | ≤ k1 −D1 − C(s0 + α)} satisfies P (Ci,j) ≥ 1
λ .

Let
k = max(k1/s

∗
N , k0)

and let d constant such that

d > max(
4ks∗N
ε

, |µ0|).

Then, by the definition of k and (7.113), on Ci,j it happens that

inf
φ∈B0,|µ|>d

|εbi,j(β, σ)| ≥ ε

2
d−D1 − C(s0 + α)− k1 +D1 + C(s0 + α)

=
ε

2
d− k1

> k.s∗N . (7.115)

For all β = (φ, µ) such that |µ| > d, φ ∈ B0, 0 ≤ σ ≤ s0 + α, we have∣∣∣∣∣εbi,j(β, σ)

s∗N

∣∣∣∣∣ ≥ inf
|µ|>d,φ∈B0

∣∣∣∣∣εbi,j(β, σ)

s∗N

∣∣∣∣∣ .
Due to the fact that ρ2 satisfies P1, we have that ∀|µ| > d,φ ∈ B0:

ρ2

(
εbi,j(β, σ)

s∗N

)
≥ ρ2

(
inf

|µ|>d,φ∈B0

∣∣∣∣∣εbi,j(β, σ)

s∗N

∣∣∣∣∣
)

≥ ρ2

(
inf

|µ|>d,φ∈B0

∣∣∣∣∣εbi,j(β, σ)

s∗N

∣∣∣∣∣
)
I(Ci,j) ∀(i, j) ∈ (WM ∼ T ).

Then ∀|µ| > d and φ ∈ B0, adding over (WM ∼ T ):

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εbi,j(β, σ)

s∗N

)
≥ 1

N

∑
(i,j)∈(WM∼T )

ρ2

(
inf

|µ|>d,φ∈B0

∣∣∣∣∣εbi,j(β, σ)

s∗N

∣∣∣∣∣
)
I(Ci,j).

Later, taking lower limit we get

inf
|µ|>d,φ∈B0

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εbi,j(β, σ)

s∗N

)
≥ 1

N

∑
(i,j)∈(WM∼T )

ρ2

(
inf

|µ|>d,φ∈B0

∣∣∣∣∣εbi,j(β, σ)

s∗N

∣∣∣∣∣
)
I(Ci,j) (7.116)
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for σ ≤ s0 + α. In addition, by the equation (7.115) and due to the fact that ρ2 satisfies P1 we have

ρ2

(
inf

φ∈B0,|µ|>d

∣∣∣∣∣εbi,j(β, σ)

s∗N

∣∣∣∣∣
)
≥ ρ2(k) ∀(i, j) ∈ (WM ∼ T ).

Then, adding over (WM ∼ T ):

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
inf

φ∈B0,|µ|>d

∣∣∣∣∣εbi,j(β, σ)

s∗N

∣∣∣∣∣
)
I(Ci,j) >

ρ2(k)

N

∑
(i,j)∈(WM∼T )

I(Ci,j),

and taking lower limit:

lim inf
N→∞

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
inf

φ∈B0,|µ|>d

∣∣∣∣∣εbi,j(β, σ)

s∗N

∣∣∣∣∣
)
I(Ci,j) ≥ lim inf

N→∞

ρ2(k)

N

∑
(i,j)∈(WM∼T )

I(Ci,j). (7.117)

Using the definition of k and by (7.114) and {I(Ci,j)} is a stationary and ergodic process with E(I(Ci,j)) =
P (Ci,j) ≥ 1/λ, we have by Ergodic Theorem (Guyon (1995)) that

lim inf
N→∞

ρ2(k)

N

∑
(i,j)∈(WM∼T )

I(Ci,j) = ρ2(k)P (Ci,j)

≥ λ(m(β0) + δ)
1

λ
= m(β0) + δ a.e.. (7.118)

Then, Eqs. (7.116), (7.117) and (7.118) imply for 0 ≤ σ ≤ s0 + α that

lim inf
N→∞

inf
|µ|>d,φ∈B0

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εbi,j(β, σ)

s∗N

)
≥ m(β0) + δ a.e..

In addition, as s∗N → s0 a.e., for N � 0, s∗N ≤ s0 + α is satified and

inf
|µ|>d,φ∈B0

1

N

∑
(i,j)∈(WM∼T )

ρ2

(
εbi,j(β, s

∗
N )

s∗N

)
≥ m(β0) + δ a.e.,

that is,
lim inf
N→∞

inf
|µ|>d,φ∈B0

M b
N (β) ≥ m(β0) + δ a.e..

Later, the lemma is proven.
�

Finally, we will prove Theorem 4.

Proof of Theorem 4:
Given d > 0 and δ1 > 0 as in Lemma 13, let δ2 > 0 be as in Lemma 12. Then, there exists δ =

min(δ1, δ2) > 0 such that

lim inf
N→∞

inf
β∈B

M b
N (β) ≥ m(β0) + δ. (7.119)

First let us show that
MN (β̂M ) −→ m(β0) a.e.. (7.120)
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For the continuity of m(β) and as β̂M −→ β0 a.e., then m(β̂M ) −→ m(β0) a.e. and hence |m(β̂M ) −
m(β0)| −→ 0 a.e..

In addition, by Lemma 10, limN→∞ supβ∈B0×[−d,d] |MN (β)−m(β)| = 0 a.e.. Due to the fact that β̂M −→
β0 a.e. and β0 ∈ B× [−d, d], we have β̂M ∈ B× [−d, d] for a N large enough. Later, |MN (β̂M )−m(β̂M )| −→ 0
and (7.120) is proven.

Hence, on account of |MN (β̂M ) − m(β0)| ≤ |MN (β̂M ) − m(β̂M )| + |m(β̂M ) − m(β0)|, we have that
|MN (β̂M )−m(β0)| −→ 0 a.e..

By (7.119), ∃N1 such that M b
N (β) ≥ infβ∈BM

b
N (β) ≥ m(β0) + δ, ∀N > N1. In particular, m(β0) + δ ≤

M b
N (β̂bM ).

By (7.120), ∃N2 such that |MN (β̂M )−m(β0)| < δ, ∀N > N2. Then MN (β̂M ) < m(β0) + δ, ∀N > N2.

Therefore, MN (β̂M ) < m(β0) + δ ≤M b
N (β̂bM ).

Finally, by the definition of β̂∗M , one obtains that β̂∗M = β̂M , ∀N > max(N1, N2) and since β̂M −→ β0 a.e.,
then we have

β̂∗M −→ β0 a.e.

as we wanted to demonstrate.
�

The following lemmas allow us to test the asymptotic normality of the β̂M estimator.

Lemma 14. Under the assumptions of Theorem 5, we obtain that

1√
N

∑
(i,j)∈(WM∼T )

5
(
ρ2

(
εi,j(β0)

s0

))
D→ N (0, V0),

where

V0 = E

[
5
(
ρ2

(
εi,j(β0)

s0

))
.5

(
ρ2

(
εi,j(β0)

s0

))t]
.

Proof of Lemma 14:
As we saw in (7.17):

V0 = E

(
1

s2
0

ψ2
2

(
εi,j(β0)

s0

))
.E
[
5 (εi,j(β0))5 (εi,j(β0))t

]
.

Since E
(

1
s20
ψ2

2

(
εi,j(β)
s0

))
<∞, ψ2 is bounded and E

[
5 (εi,j(β))5 (εi,j(β))t

]
<∞ (because E(Y 2) <∞)

then V0 <∞.

In the following, we will prove that given a vector column c 6= 0 in R(L+1)2 , we have that

Zi,j := c′ 5
(
ρ2

(
εi,j(β0)

s0

))
together with Fi,j (σ-algebra generated by {Zs,t : (s, t)≺(i, j)}) is a stationary martingale difference succes-
sion:
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1) Due to ψ2 is bounded, E(Y 2) <∞ and (7.7), we have:

E(|Zi,j |) = E

(∣∣∣∣c′ 5 (ρ2

(
εi,j(β0)

s0

))∣∣∣∣)

= E

∣∣∣∣∣∣
(L+1)2∑
k=1

ck 5k

(
ρ2

(
εi,j(β0)

s0

))∣∣∣∣∣∣


≤ E

(L+1)2∑
k=1

|ck|.
∣∣∣∣5k

(
ρ2

(
εi,j(β0)

s0

))∣∣∣∣


=

(L+1)2∑
k=1

|ck|.E
(∣∣∣∣5k

(
ρ2

(
εi,j(β0)

s0

))∣∣∣∣)

=

(L+1)2∑
k=1

|ck|
s0
E

(∣∣∣∣ψ2

(
εi,j(β0)

s0

)∣∣∣∣) .E (|5k (εi,j(β0))|) <∞.

2) It remains to be seen that E(Zi,j |Zs,t) = 0 if (s, t)≺(i, j). Because (7.7) holds, 5 (εi,j(β0)) is a function

of Zs,t, ψ2

(
εi,j(β0)
s0

)
is independent of Zs,t and by (7.14) we obtain

E

(
c′ 5

(
ρ2

(
εi,j(β0)

s0

))∣∣∣∣Zs,t) =

(L+1)2∑
k=1

ckE

(
5k

(
ρ2

(
εi,j(β0)

s0

))∣∣∣∣Zs,t)

=

(L+1)2∑
k=1

ckE

(
1

s0
ψ2

(
εi,j(β0)

s0

)
5k (εi,j(β0))

∣∣∣∣Zs,t)

=

(L+1)2∑
k=1

ckE

(
1

s0
ψ2

(
εi,j(β0)

s0

)∣∣∣∣Zs,t)5k (εi,j(β0))

=

(L+1)2∑
k=1

ckE

(
1

s0
ψ2

(
εi,j(β0)

s0

))
5k (εi,j(β0)) = 0.

Therefore, {Zi,j ,Fi,j} is a martingale difference succession. Let us show that it is stationary.
a) By (7.15):

E(Zi,j) = E

(
c′ 5

(
ρ2

(
εi,j(β0)

s0

)))

=

(L+1)2∑
k=1

ckE

(
5k

(
ρ2

(
εi,j(β0)

s0

)))
= 0.
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b)

Cov(Zi,j , Zi+l,j+m) = E(Zi,j .Zi+l,j+m)

= E

(L+1)2∑
k=1

ck 5k

(
ρ2

(
εi,j(β0)

s0

))
.

(L+1)2∑
r=1

cr 5r

(
ρ2

(
εi+l,j+m(β0)

s0

))
=

(L+1)2∑
k=1

(L+1)2∑
r=1

ckcrE

(
5k

(
ρ2

(
εi,j(β0)

s0

))
.5r

(
ρ2

(
εi+l,j+m(β0)

s0

)))

=

(L+1)2∑
k=1

(L+1)2∑
r=1

ckcr
s20

E

(
ψ2

(
εi,j(β0)

s0

)
ψ2

(
εi+h,j+l(β0)

s0

)
5k (εi,j(β0))5r (εi+l,j+m(β0))

)

=

(L+1)2∑
k=1

Ak. (7.121)

• If l 6= 0 or m 6= 0 ⇒ Ak = 0 ∀k = 1, ..., (L+ 1)2 by (7.14).

• If l = 0 and m = 0, (7.121) is equal to

= E

(
ψ2

2

(
εi,j(β0)

s0

)) (L+1)2∑
k=1

(L+1)2∑
r=1

ckcr
s2

0

E(5k (εi,j(β0)) .5r (εi,j(β0)))

= E

(
ψ2

2

(
εi,j(β0)

s0

))(L+1)2−1∑
k=1

(L+1)2−1∑
r=1

ckcr
s2

0

E(5k (εi,j(β0)) .5r (εi,j(β0)))

+ 2
c(L+1)2

s2
0

ξ0

(L+1)2−1∑
k=1

ckE(5k (εi,j(β0))) +
c2

(L+1)2

s2
0

ξ2
0


= E

(
ψ2

2

(
εi,j(β0)

s0

))(L+1)2−1∑
k=1

(L+1)2−1∑
r=1

ckcr
s2

0

(Cov((5k (εi,j(β0)) ,5r (εi,j(β0)) + µ2)

+ 2
c(L+1)2

s2
0

ξ0

(L+1)2−1∑
k=1

ckµ+
c2

(L+1)2

s2
0

ξ2
0

 ,

which is independent of i, j since Yi,j is stationary.

Furthermore

E(|Zi,j |2) = E

(
ψ2

2

(
εi,j(β0)

s0

)) (L+1)2∑
k=1

(L+1)2∑
r=1

ckcr
s2

0

E(5k (εi,j(β0)) .5r (εi,j(β0)))

= E

(
1

s2
0

ψ2
2

(
εi,j(β0)

s0

)) (L+1)2∑
k=1

ck

(L+1)2∑
r=1

crE(5 (εi,j(β0)) .5 (εi,j(β0))t)k,r

= E

(
1

s2
0

ψ2
2

(
εi,j(β0)

s0

))
ct.E(5 (εi,j(β0)) .5 (εi,j(β0))t).c

= ct.V0.c.
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Later, by Central Limit Theorem for Martingales (see Cohen (2016)) we have:

1√
N

∑
(i,j)∈(WM∼T )

Zi,j
D→ N (0, c′.V0.c),

that is,
1√
N

∑
(i,j)∈(WM∼T )

c′.5
(
ρ2

(
εi,j(β0)

s0

))
D→ N (0, c′.V0.c)

which, by the Theorem 29.4 of Billingsley (2013), implies

1√
N

∑
(i,j)∈(WM∼T )

5
(
ρ2

(
εi,j(β0)

s0

))
D→ N (0, V0).

�

Lemma 15. Under the assumptions of Theorem 5, we obtain

1√
N

∥∥∥∥∥∥
∑

(i,j)∈(WM∼T )

[
5
(
ρ2

(
εi,j(β0)

s∗N

))
−5

(
ρ2

(
εi,j(β0)

s0

))]∥∥∥∥∥∥→ 0 in probability.

Proof of Lemma 15:
By (7.7), we can write

1√
N

∑
(i,j)∈(WM∼T )

[
5
(
ρ2

(
εi,j(β0)

s∗N

))
−5

(
ρ2

(
εi,j(β0)

s0

))]

=
1√
N

∑
(i,j)∈(WM∼T )

[
1

s∗N
ψ2

(
εi,j(β0)

s∗N

)
− 1

s0
ψ2

(
εi,j(β0)

s0

)]
.5 (εi,j(β0)) .

We define the functions AN,k(v) for 0 ≤ v ≤ 1 and 1 ≤ k ≤ (L+ 1)2 as

AN,k(v) =
1√
N

∑
(i,j)∈(WM∼T )

ψ2

(
εi,j(β0)

(0.5 + v)s0

)
.5k (εi,j(β0)) .

Since Theorem 2 establishes limN→∞ s
∗
N = s0 a.e., then the convergence is in probability too. To prove

this lemma is sufficient to prove that AN,k(v) are tight for 1 ≤ k ≤ (L+ 1)2.
Using Theorem 12.3 of Billingsley (2013), it is sufficient to prove the following two conditions,

(i) AN,k(0) is tight.

(ii) For any 0 ≤ v1 ≤ v2 and any λ > 0, we have that there exists a constant c1 such that

P (|AN,k(v2)−AN,k(v1)| ≥ λ) ≤ c1

λ2
(v2 − v1)2.

Let us prove (ii). We define for 1 ≤ k ≤ (L+ 1)2:

G(a, v) := ψ2

(
a

(0.5 + v)s0

)
.
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Then,

E((AN,k(v2)−AN,k(v1))2) (7.122)

=
1

N
E

 ∑
(i,j)∈(WM∼T )

(G(εi,j , v2)−G(εi,j , v1))5k (εi,j(β0))

2
=

1

N

 ∑
(i,j)∈(WM∼T )

E(B2
i,jC

2
i,j) +

∑
(i,j)∈(WM∼T )

∑
(l,m)∈(WM∼T )|(l,m)6=(i,j)

E(Bi,jCl,mBl,mCi,j)


where

Bi,j = ψ2

(
εi,j

(0.5 + v2)s0

)
− ψ2

(
εi,j

(0.5 + v1)s0

)
(7.123)

and
Ci,j = 5k (εi,j(β0)) . (7.124)

Let Ỹi,j = (Yi−1,j , Yi−1,j−1, Yi,j−1, Yi−2,j , Yi−2,j−1, Yi−2,j−2, Yi−1,j−2, Yi,j−2, ...) be the vector with the pasts
of Yi,j . If l ≤ i and m ≤ j but (l,m) 6= (i, j), it is true that

E(Bi,jCl,mBl,mCi,j) = E(E(Bi,jCl,mBl,mCi,j |Ỹi,j)).

Due to Bl,m depends of Yl,m ∈ Ỹi,j :

E(E(Bi,jCl,mBl,mCi,j |Ỹi,j)) = E(E(Bi,jCl,mCi,j |Ỹi,j)Bl,m).

As Ci,j ∈ Ỹi,j :
E(E(Bi,jCl,mCi,j |Ỹi,j)Bl,m) = E(E(Bi,jCl,m|Ỹi,j)Bl,mCi,j).

Since Cl,m ∈ Ỹl,m ⊂ Ỹi,j :

E(E(Bi,jCl,m|Ỹi,j)Bl,mCi,j) = E(E(Bi,j |Ỹi,j)Bl,mCi,jCl,m).

In addition, as Bi,j depends of εi,j , it results that Bi,j does not depend of Ỹi,j and then

E(Bi,j |Ỹi,j) = E(Bi,j) = 0. (7.125)

On the other hand, as Bi,j is independent of Ci,j , we have that

E(B2
i,jC

2
i,j) = E(B2

i,j)E(C2
i,j). (7.126)

Eqs. (7.122), (7.123), (7.124), (7.125) and (7.126) imply that

E((AN,k(v2)−AN,k(v1))2) (7.127)

=
1

N

 ∑
(i,j)∈(Wn∼T )

E(B2
i,j)E(C2

i,j)


= E

(
ψ2

(
εi,j

(0.5 + v2)s0

)
− ψ2

(
εi,j

(0.5 + v1)s0

))2

.E(5k (εi,j(β0)))2.

Let v1 < v < v2. Then, using Mean Value Theorem we have that

ψ2

(
εi,j

(0.5 + v2)s0

)
− ψ2

(
εi,j

(0.5 + v1)s0

)
=

(v2 − v1)

s0(0.5 + v)2
εi,jψ

′
2

(
εi,j

(0.5 + v)s0

)
,
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then,

E

(
ψ2

(
εi,j

(0.5 + v2)s0

)
− ψ2

(
εi,j

(0.5 + v1)s0

))2

=
(v2 − v1)2

s2
0(0.5 + v)4

E

(
εi,jψ

′
2

(
εi,j

(0.5 + v)s0

))2

.

Later, since ψ′2 is bounded, εi,j has finite moment second and s0 > 0, we can conclude that there exists
k0 > 0 such that

E

(
ψ2

(
εi,j

(0.5 + v2)s0

)
− ψ2

(
εi,j

(0.5 + v1)s0

))2

≤ k0(v2 − v1)2. (7.128)

In addition, as E(Y 2
i,j) <∞ (since Y has finite moment second) it results that

E(5k (εi,j(β0)))2 <∞ (see equations (7.1) and (7.2) to know the entries of the vector 5k (εi,j(β0))).

Then, by (7.127) and (7.128), there exists c1 > 0 such that

E((AN,k(v2)−AN,k(v1))2) ≤ c1(v2 − v1)2.

Thus, (ii) follows by Chebyshev’s inequality.

Let us demonstrate (i). Let us calculate E(AN,k(0)2).

E((AN,k(0))2)

=
1

N
E

 ∑
(i,j)∈(WM∼T )

ψ2

(
εi,j(β0)

s0/2

)
5k (εi,j(β0))

2
=

1

N

 ∑
(i,j)∈(WM∼T )

E(B̃2
i,jC̃

2
i,j) +

∑
(i,j)∈(WM∼T )

∑
(l,m)∈(WM∼T )|(l,m)6=(i,j)

E(B̃i,jC̃l,mB̃l,mC̃i,j)


where

B̃i,j = ψ2

(
εi,j(β0)

s0/2

)
and

C̃i,j = 5k (εi,j(β0)) .

Let us see what happens with the second adding:

In the same way like in part (ii), we can take

Ỹi,j = (Yi−1,j , Yi−1,j−1, Yi,j−1, Yi−2,j , Yi−2,j−1, Yi−2,j−2, Yi−1,j−2, Yi,j−2, ...),

the vector with the past of Yi,j . If l ≤ i and m ≤ j but (l,m) 6= (i, j),

E(B̃i,jC̃l,mB̃l,mC̃i,j) = E(E(B̃i,j |Ỹi,j)B̃l,mC̃i,jC̃l,m)

and as B̃i,j depends of εi,j , it results that B̃i,j does not depend of Ỹi,j , then

E(B̃i,j |Ỹi,j) = E(B̃i,j).

In addition, as ψ2 is odd and the distribution of εi,j is symmetric, we have that E(B̃i,j) = 0. Later, the
second summing is zero.
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Now let us see the first summing:

Due to B̃i,j is independent of C̃i,j ,

E(B̃2
i,jC̃

2
i,j) = E(B̃2

i,j)E(C̃2
i,j). (7.129)

Since the function ψ2 is bounded, there exists a constant M > 0 such that E(B̃2
i,j) < M , ∀(i, j). In

addition, from the expression of 5k (εi,j(β0))2, we have that E(C̃2
i,j) ≤ κ where κ is such that κ = max(σ2

Y +

µ2
0, ξ

2
0) = max(σ2

Y + µ2
0, (−1 +

∑
(k,l)∈T φ

0
k,l)

2). Later, by the equation (7.129) we obtain that

E(B̃2
i,jC̃

2
i,j) < M.κ.

Thus,

E(AN,k(0)2) =
1

N

∑
(i,j)∈(WM∼T )

E(B̃2
i,jC̃

2
i,j)

<
1

N

∑
(i,j)∈(WM∼T )

M.κ

= M.κ.

Let ε > 0 and δ =
(
M.κ
ε

)1/2
. By Chebyshev we get that

P (|AN,k(0)| > δ) ≤ 1

δ2
E(A2

N,k(0))

=
E(A2

N,k(0))

M.κ/ε

<
Mκ

M.κ
ε

= ε.

Therefore, AN,k(0) is tight and the lemma is proven.
�

Lemma 16. Under the assumptions of Theorem 5, we obtain that ∀d > 0 that

i)

lim
N→∞

sup
β∈B0×[−d,d]

∥∥∥∥∥∥ 1

N

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β)

s∗N

))
− E

[
52

(
ρ2

(
εi,j(β)

s0

))]∥∥∥∥∥∥ = 0 a.e.,

where ||A|| denotes the norm l2 of the A matrix.

ii)

E

[
52

(
ρ2

(
εi,j(β0)

s0

))]
=

1

s2
0

E

(
ψ′2

(
εi,j
s0

))
.E
(
5(εi,j(β0)).5 (εi,j(β0))t

)
.

Proof of Lemma 16:
The proof of (i) is similar to that of Lemma 10:

By the Theorem of Dominated Convergence, as ψ′2 = ρ′′2 is continuous and bounded and εi,j(β) is contin-
uous, we have

M̃(β, v) = Eβ0

(
52

(
ρ2

(
εi,j(β)

v

)))
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is a continuous function respect to the two variables.

Then, given ε > 0 and β ∈ B0 × [−d, d], by the continuity of M̃(β, v) in v = s0 we have that there exists
0 < δ(β) < s0 such that if |v − s0| < δ(β) then |M̃(β, v) − M̃(β, s0)| < ε/2 for each β ∈ B0 × [−d, d]. By
compactness of B0 × [−d, d] we obtain that ∃δ > 0 such that |M̃(β, v) − M̃(β, s0)| ≤ ε/2, ∀β ∈ B0 × [−d, d]
and ∀v ∈ [s0 − δ, s0 + δ], and so

sup
β∈B0×[−d,d],v∈[s0−δ,s0+δ]

|M̃(β, v)− M̃(β, s0)| ≤ ε/2. (7.130)

We consider the function

f(y, β, v) =

(L+1)2∑
k=1

(L+1)2∑
l=1

∣∣∣∣52
k,l

(
ρ2

(
Φ(B1, B2)(y − µ)

v

))
− Eβ0

(
52
k,l

(
ρ2

(
Φ(B1, B2)(y − µ)

v

)))∣∣∣∣ .
This function is continuous, defined in R × C0 with C0 = {(β, v) : β ∈ B0 × [−d, d], v ∈ [s0 − δ, s0 + δ]}
compact. As {Yi,j} is an ergodic process, Eβ0(f(Y, β, v)) = 0 and sup(β,v)∈C0

|f(Y, β, v)| ≤ K with K
constant, by Lemma 3 of Muler & Yohai (2002) we have that

lim
N−→∞

sup
(β,v)∈C0

1

N

∑
(i,j)∈(WM∼T )

f(Yi,j , β, v) = 0 a.e..

Later,

lim
N−→∞

sup
(β,v)∈C0

∥∥∥∥∥∥ 1

N

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β)

v

))
− Eβ0

(
52

(
ρ2

(
εi,j(β)

v

)))∥∥∥∥∥∥
≤ lim

N−→∞
sup

(β,v)∈C0

(L+1)2∑
k=1

(L+1)2∑
l=1

1

N

∑
(i,j)∈(WM∼T )

∣∣∣∣52
k,l

(
ρ2

(
εi,j(β)

v

))
− Eβ0

(
52
k,l

(
ρ2

(
εi,j(β)

v

)))∣∣∣∣2
1/2

= lim
N−→∞

sup
(β,v)∈C0

1

N

∑
(i,j)∈(WM∼T )

f(Yi,j , β, v) = 0 a.e.

Since Theorem 2 establishes that limN→∞ s
∗
N = s0 a.e., then, with probability 1, there exists N0 such

that ∀N > N0, s∗N ∈ [s0 − δ, s0 + δ] and

sup
β∈B0×[−d,d]

∥∥∥∥∥∥ 1

N

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β)

v

))
− Eβ0

(
52

(
ρ2

(
εi,j(β)

v

)))∥∥∥∥∥∥ < ε/2 a.e.. (7.131)

Eqs. (7.130) and (7.131) imply that, ∀N > N0,∥∥∥∥∥∥ 1

N

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β)

s∗N

))
− Eβ0

(
52

(
ρ2

(
εi,j(β)

s0

)))∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1

N

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β)

s∗N

))
− Eβ0

(
52

(
ρ2

(
εi,j(β)

s∗N

)))∥∥∥∥∥∥+

+

∥∥∥∥Eβ0 (52

(
ρ2

(
εi,j(β)

s∗N

)))
− Eβ0

(
52

(
ρ2

(
εi,j(β)

s0

)))∥∥∥∥
< ε/2 + ε/2, ∀β ∈ B0 × [−d, d] a.e..
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Then, taking supreme one gets

sup
β∈B0×[−d,d]

∥∥∥∥∥∥ 1

N

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β)

s∗N

))
− E

[
52

(
ρ2

(
εi,j(β)

s0

))]∥∥∥∥∥∥ < ε a.e., ∀N > N0

and the part (i) of the lemma is proven.
Now we will demonstrate (ii). By (7.10) and from the fact that 5(εi,j(β0)) and 52(εi,j(β0)) depend of

Ỹi,j , we obtain that

E

(
52

(
ρ2

(
εi,j(β0)

s0

)))
=

1

s2
0

E

(
ψ′2

(
εi,j(β0)

s0

))
.E
(
5 (εi,j(β0))5 (εi,j(β0))t

)
+

1

s0
E

(
ψ2

(
εi,j(β0)

s0

))
.E
(
52 (εi,j(β0))

)
.

By (7.14), we have that E(ψ2(εi,j(β0)/s0)) = 0. Therefore,

E

(
52

(
ρ2

(
εi,j(β0)

s0

)))
=

1

s2
0

E

(
ψ′2

(
εi,j(β0)

s0

))
.E
(
5 (εi,j(β0))5 (εi,j(β0))t

)
(7.132)

and (ii) is proven.
�

Proof of Theorem 5:
By the definition of β̂M we get that

MN (β̂M ) ≤MN (β), ∀β ∈ B

Thus, β̂M satisfies: ∑
(i,j)∈(WM∼T )

5

(
ρ2

(
εi,j(β̂M )

s∗N

))
= 0.

Due to the fact that β0 and β̂M are in B, then by the Mean Value Theorem we obtain that

0 =
∑

(i,j)∈(WM∼T )

5

(
ρ2

(
εi,j(β̂M )

s∗N

))

=
∑

(i,j)∈(WM∼T )

5
(
ρ2

(
εi,j(β0)

s∗N

))
+

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β̃)

s∗N

))
(β̂M − β0) (7.133)

where β̃ is an intermediate point between β0 and β̂M , that is, β̃ = β0 + θ(β̂M − β0) with 0 < θ < 1.

By Theorem 3, it is has that β̂M → β0 a.e. and, hence, β̃ → β0 a.e..
Let d > 0 be such that d > |µ0|. Later, with probability 1, there exits N0 such that β̂M ∈ B0 × [−d, d],
∀N ≥ N0.
Let

AN =
1

N

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β̃)

s∗N

))
.

Let us prove that

lim
N→∞

AN = E

[
52

(
ρ2

(
εi,j(β0)

s0

))]
a.e.. (7.134)
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Given ε > 0. As β̃ → β0 a.e., one gets that β̃ ∈ B × [−d, d] for an N large enough. Then, by Lemma
16-(i), ∃N0 such that∥∥∥∥∥∥ 1

N

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β̃)

s∗N

))
− E

[
52

(
ρ2

(
εi,j(β̃)

s0

))]∥∥∥∥∥∥ < ε/2 a.e. ∀N > N0. (7.135)

Due to the function ρ′′2 = ψ′2 is continuous and bounded and the residual functions εi,j(β)’s are continuous,

by Lebesgue’s Dominated Convergence Theorem, it turns out that E
[
52
(
ρ2

(
εi,j(β)
s0

))]
is a continuous

function. Then, since β̃ → β0 a.e., we can obtain N1 such that ∀N > N1:∥∥∥∥∥E
[
52

(
ρ2

(
εi,j(β0)

s0

))]
− E

[
52

(
ρ2

(
εi,j(β̃)

s0

))]∥∥∥∥∥ < ε/2 a.e.. (7.136)

Hence, as ∥∥∥∥∥∥ 1

N

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β̃)

s∗N

))
− E

[
52

(
ρ2

(
εi,j(β0)

s0

))]∥∥∥∥∥∥ ≤∥∥∥∥∥∥ 1

N

∑
(i,j)∈(WM∼T )

52

(
ρ2

(
εi,j(β̃)

s∗N

))
− E

[
52

(
ρ2

(
εi,j(β̃)

s0

))]∥∥∥∥∥∥
+

∥∥∥∥∥E
[
52

(
ρ2

(
εi,j(β̃)

s0

))]
− E

[
52

(
ρ2

(
εi,j(β0)

s0

))]∥∥∥∥∥ , (7.137)

Eqs. (7.135) and (7.136), imply for all N > max(N0, N1) that (7.137) is less than ε. Then, (7.134) is satisfied.

By Lemma 16-(ii), A := E
[
52
(
ρ2

(
εi,j(β0)
s0

))]
is not singular and since AN → A a.e. then, for an N

large enough, it is obtained that AN is not singular.
Otherwise, dividing (7.133) by N and calling

CN :=
1√
N

∑
(i,j)∈(WM∼T )

5
(
ρ2

(
εi,j(β0)

s∗N

))
,

it is obtained that the equation (7.133) is equivalent to:

√
N

N
CN +AN (β̂M − β0) = 0

1√
N
CN +AN (β̂M − β0) = 0

CN +
√
NAN (β̂M − β0) = 0

AN
√
N(β̂M − β0) = −CN .

Then, for N large enough such that AN is not singular, the previous equality becomes

√
N(β̂M − β0) = −A−1

N CN .

In order to prove the theorem we will see that A−1
N CN

D→ N (0, D).
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First let us show that CN
D→ N (0, V0) with V0 as in (7.16).

Let ZN := 1√
N

∑
(i,j)∈(WM∼T )5

(
ρ2

(
εi,j(β0)
s0

))
. Then, by Lemma 15, it turns out

||CN − ZN || → 0 in probability,

that is,

CN − ZN → 0 in probability.

In addition, Lemma 14 establishes that ZN
D→ Z with Z ∼ N (0, V0). Then, by Slutsky,

ZN + (CN − ZN )
D→ Z + 0 = Z,

that is,

CN
D→ Z with Z ∼ N (0, V0). (7.138)

Now let us prove that A−1
N CN

D→ N (0, A−1V0(A−1)t).

Let h : R(L+1)2 → R(L+1)2 be a function defined by h(X) = A−1X. h is measurable and continuous
function in R(L+1)2 and by (7.138) and Theorem 29.2 of Billingsley (2013) we obtain that

h(CN ) = A−1CN
D→ h(Z) = A−1Z with A−1Z ∼ N (0, A−1V0(A−1)t).

On the other hand, as CN is bounded (ρ′2 is bounded) and A−1
N → A−1 a.e. (invert a matrix is a continuous

function), one gets that
||A−1CN −A−1

N CN || → 0 in probability.

Then,
A−1CN −A−1

N CN → 0 en probability. (7.139)

Later, since A−1
N CN = (A−1

N CN −A−1CN ) +A−1CN , by Theorem 5.1.5 of Lehmann (2004) and using (7.139)
and (7.138) we have that

A−1
N CN

D→ N (0, A−1V0(A−1)t)

Therefore, √
N(β̂M − β0)

D→ N (0, A−1V0(A−1)t).

It remains to be seen that D = A−1V0(A−1)t.

By (7.17),

V0 =
1

s2
0

E

[
ψ2

(
εi,j(β0)

s0

)2
]
.E
[
5 (εi,j(β0)) .5 (εi,j(β0))t

]
;

and by (7.10), we have that

52

(
ρ2

(
εi,j(β0)

s0

))
=

1

s2
0

ψ′2

(
εi,j(β0)

s0

)
.5 (εi,j(β0)) +

1

s0
ψ2

(
εi,j(β0)

s0

)
.52 (εi,j(β0)) .

Then,

A = E

[
1

s2
0

ψ′2

(
εi,j(β0)

s0

)
.5 (εi,j(β0)) .5 (εi,j(β0))t +

1

s0
ψ2

(
εi,j(β0)

s0

)
.52 (εi,j(β0))

]
= E

(
1

s2
0

ψ′2

(
εi,j(β0)

s0

))
.E [5 (εi,j(β0)) 5 (εi,j(β0))t] + E

(
1

s0
ψ2

(
εi,j(β0)

s0

))
.E
[
52 (εi,j(β0))

]
.
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By (7.14), the last equation becomes

A = E

(
1

s2
0

ψ′2

(
εi,j(β0)

s0

))
.E [5 (εi,j(β0)) 5 (εi,j(β0))t].

Later,

A−1 =
1

E
(

1
s20
ψ′2

(
εi,j(β0)
s0

)) .E [5 (εi,j(β0)) 5 (εi,j(β0))t]−1.

In addition, since E [5 (εi,j(β0))5(εi,j(β0))t] is symmetric, then E [5 (εi,j(β0))5(εi,j(β0))t]−1 is symmetric.
Hence,

A−1V0(A−1)′ = A−1V0A
−1 =

E
(

1
s20
ψ2

2

(
εi,j(β0)
s0

))
E
(

1
s20
ψ′2

(
εi,j(β0)
s0

))2 .E [5 (εi,j(β0)) 5 (εi,j(β0))′]−1

=
s2

0E
(
ψ2

2

(
εi,j(β0)
s0

))
E
(
ψ′2

(
εi,j(β0)
s0

))2 .E [5 (εi,j(β0)) 5 (εi,j(β0))′]−1.

Finally, by (7.18), one has that

E
[
5 (εi,j(β))5 (εi,j(β))t

]
=

(
σ2
εC 0L×1

01×L ξ2

)
.

Then,

E [5 (εi,j(β0)) 5 (εi,j(β0))t]−1 =

(
σ−2
ε C−1 0

0 ξ−2
0

)
and, therefore, the theorem is proven.

�
Proof of Theorem 6:

By the demonstrate of Theorem 4, ∃N0 such that if N > N0 then β̂∗M = β̂M .

Let ZN =
√
N(β̂∗M − β0) with cumulative distribution function FZN

and YN =
√
N(β̂M − β0) with

cumulative distribution function FYN .
Then, since ZN = YN for N > N0, result that FZN

= FYN for N > N0.
By Theorem 5, ∃N1 such that if N > N1, |FYN (x)−FZ(x)| < ε ∀x where FZ is the cumulative distribution

function corresponding to N (0, D).

Then, for N > max(N0, N1), we obtain that |FZN
(x) − F (x)| < ε ∀x. Therefore, ZN

D→ Z and the
theorem is proven.

�
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