

EXP - UNC 11404/2020

PROGRAMA DE ASIGNATURA	
ASIGNATURA: Técnicas de Detección de Exoplanetas	AÑO: 2020
CARACTER: Especialidad	UBICACIÓN EN LA CARRERA: 5° año 1° cuatrimestre
CARRERA: Licenciatura en Astronomía	
REGIMEN: Cuatrimestral	CARGA HORARIA: 120 horas

FUNDAMENTACIÓN Y OBJETIVOS

Fundamentación: existen en la actualidad más de 4000 exoplanetas caracterizados con distintas técnicas de detección, casi todas ellas indirectas. Es necesario comprender el fundamento de dichas técnicas y sus limitaciones para poder comprender la población de estos nuevos mundos, comparados con los planetas del sistema solar y sus cuerpos menores.

Objetivos: Al finalizar la materia los estudiantes estarán en condiciones de comprender las limitaciones de cada una de las técnicas de detección e identificar bias observacionales, como así también poder poner en contexto la formación del sistema solar.

CONTENIDO

Unidad I : La población de exoplanetas.

Definición. Compilaciones online y catálogos. Clasificación por masa o radio. Distribuciones de períodos, masas, excentricidades de exoplanetas. Propiedades de las estrellas con exoplanetas.

Unidad II: La órbita en el espacio. Órbitas keplerianas y órbitas osculadoras.

Desarrollos en series de elementos orbitales. Ajuste de planetas individuales y ajustes de sistemas múltiples. Ajustes multiparamétricos no lineales. Fourier para datos no equispaciados. Periodogramas. Algoritmos genéticos; simplex; Detectabilidad y efectos de selección.

Unidad III: Técnica de velocidad radial. Corrimiento al rojo.

Resolución espectral. Determinación de velocidades baricéntricas. Actividad estelar. Otras fuentes de periodicidad. Efectos de alto orden: Rossiter Mc Laughlin. Instrumentos actuales e implementación de futuros instrumentos. Ejemplos de curvas de velocidad radial. Ajustes a datos sintéticos.

Unidad IV: Técnica de tránsitos.

Curvas de luz simplificadas y completas. Efectos de excentricidad en las curvas; anillos planetarios; Búsquedas desde el espacio comparadas con proyectos desde tierra. Mision Kepler, K2. Exactitus en la fotometría y tiempos. Técnicas secundarias: TTV (transit time variation), TDV (transit duration variation). Tránsitos de exolunas. Ejemplos de curvas de luz. Ajustes a datos sintéticos.

Unidad V : Técnicas complementarias.

Limitaciones y Bias: imagen directa (astrometría), pulsar timming, microlentes. Ejemplos de curvas de luz. Ajustes a datos sintéticos.

Unidad VI: Sistemas extrasolares simples y sistemas binarios.

Catálogo actual. Paradigmas de formación.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

Murray C. D., Dermott S. F., Solar System Dynamics, Cambridge University Press, 2008. Determinacion de parámetros planetarios con técnicas de tránsitos / Ximena Saad Olivera. Famaf Ajustes orbitales y dinámica de sistemas planetarios extrasolares / Cristian Andrés Giuppone.

EXP - UNC 11404/2020

Famaf

The Exoplanet Handbook. Michael Perryman. 2nd edition. Cambridge University Press, 2018.

EVALUACIÓN

FORMAS DE EVALUACIÓN

Clases teórico-prácticas dos veces por semana. En las clases se expondrán los temas del contenido y se trabajará con los alumnos para que apliquen los conceptos a un problema específico adecuado a la orientación e interés de cada uno.

Entrega de un informe final de acuerdo a la técnica elegida.

La materia no considera régimen de promoción.

Examen oral individual de toda la materia frente al tribunal designado.

REGULARIDAD

"El alumno deberá:

1. ASISTENCIA

Cobertura del 70% de la totalidad de las horas previstas, tanto teóricas como prácticas. Aprobar todos los prácticos entregados.

CORRELATIVIDADES

Para Cursar y Rendir:

Astronomía esférica (regular).

Métodos matemáticos de la física I (aprobada). Óptica astronómica (aprobada).