FUNCIONES COMPLEJAS Período 2021-II

Práctico 6

 ${f Ej.~1}$ Mostrar que si una serie de números complejos converge absolutamente entonces la serie es convergente

Ej. 2 Mostrar que $\sum_{n=1}^{\infty} z^n = \frac{z}{1-z}$, |z| < 1, y haciendo $z = re^{i\theta}$, con 0 < r < 1, en la fórmula anterior, deducir las siguientes igualdades:

$$\sum_{n=1}^{\infty} r^n \cos(n\theta) = \frac{r \cos \theta - r^2}{1 - 2r \cos \theta + r^2}, \qquad \sum_{n=1}^{\infty} r^n \sin(n\theta) = \frac{r \sin \theta}{1 - 2r \cos \theta + r^2}.$$

Ej. 3 Si
$$\sum_{n=1}^{\infty} z_n = S$$
 y c es un número complejo, mostrar que $\sum_{n=1}^{\infty} \overline{z_n} = \overline{S}$ y que $\sum_{n=1}^{\infty} cz_n = cS$.

Ej. 4 (Opcional) Sean f y g funciones analíticas en el disco abierto $B_R(z_0)$. Demostrar:

- 1. Si existe una sucesión en el disco $\{z_n\}$ tal que $f(z_k) = 0$ para todo $k \in \mathbb{N}$ y que converge al centro del disco, entonces f debe ser identicamente cero. [Hint: Probar que $f^{(n)}(z_0) = 0$ para todo $n \in \mathbb{N}$ considerando la serie de Taylor de f alrededor de z_0 .]
- 2. Si el producto de funciones f.g es constante e igual a cero entonces f es identicamente cero o g es identicamente cero.

Ej. 5 Deducir la representación en serie de Maclaurin
$$z \cosh(z^2) = \sum_{n=0}^{\infty} \frac{z^{4n+1}}{(2n)!}, \quad z \in \mathbb{C}.$$

Ej. 6 Verificar que
$$e^z = e \sum_{n=0}^{\infty} \frac{(z-1)^n}{n!}$$
 para todo $z \in \mathbb{C}$.

Ej. 7 Hallar la serie de Maclaurin de la siguiente función e indicar su dominio de convergencia:

$$f(z) = \frac{z}{z^4 + 9} = \frac{z}{9} \left(\frac{1}{1 + (z^4/9)} \right).$$

Ej. 8 Desarrollar en serie de Taylor las funciones $\cos z$ y $\sinh z$ centradas en $z_0 = \pi/2$ y $z_0 = \pi i$ respectivamente.

Ej. 9 Escribir la representación en serie de Maclaurin de $f(z) = \sin(z^2)$ y deducir que $f^{(4n)}(0) = 0$ y $f^{(2n+1)}(0) = 0$ para todo $n \in \mathbb{N} \cup \{0\}$.

Ej. 10 Sean λ un complejo no nulo y n un entero no negativo. Se define el coeficiente binomial $\binom{\lambda}{n}$ como $\binom{\lambda}{0} = 1$ y $\binom{\lambda}{n} = \frac{\lambda(\lambda-1)...(\lambda-n+1)}{n!}$ si $n \geq 1$. Verificar que si |z| < 1 entonces

$$(1+z)^{\lambda} = \sum_{n=0}^{\infty} \binom{\lambda}{n} z^n$$

Ej. 11 Sea w un complejo tal que |w| < 1. Dada la función f y el anillo D, escribir la representación en serie de Laurent centrada en el centro del anillo D de las siguientes funciones:

1.
$$\frac{\sin(\pi z)}{(z-1)^3}$$
, $D = \{z \in \mathbb{C} : 0 < |z-1| < \infty\}$

5.
$$\frac{1}{z(1+z^2)}$$
, $D = \{z \in \mathbb{C} : 1 < |z| < \infty\}$

2.
$$\tan(z)$$
, $D = \{z \in \mathbb{C} : 0 < |z - \frac{\pi}{2}| < \pi\}$

6.
$$\frac{z}{(z+1)(z+2)}$$
, $D = \{z \in \mathbb{C} : 0 < |z+2| < 1\}$

3.
$$\frac{1}{z}$$
, $D = \{z \in \mathbb{C} : 1 < |z - i| < \infty\}$

7.
$$\frac{w}{z-w}$$
, $D = \{z \in \mathbb{C} : |w| < |z| < \infty\}$

4.
$$\frac{1}{z(1+z^2)}$$
, $D = \{z \in \mathbb{C} : 0 < |z| < 1\}$

8.
$$\frac{1}{(\tan(z))^2} - \frac{1}{z^2}$$
, $D = \{z \in \mathbb{C} : 0 < |z| < \frac{\pi}{2}\}$

Ej. 12 Mostrar que si
$$z \neq 0$$
, entonces $\exp\left(\frac{\lambda}{2}\left(z - \frac{1}{z}\right)\right) = \sum_{n = -\infty}^{\infty} J_n(\lambda)z^n$ donde

$$J_n(\lambda) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - \lambda \sin(\theta)) d\theta, \ n \in \mathbb{Z}.$$

Los coeficientes $J_n(\lambda)$ son llamados funciones de Bessel de primera clase (Wikipedia: Bessel functions).

Ej. 13 Tomando derivada en el desarrollo en serie de Maclaurin $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$, para |z| < 1, obtener las siguientes representaciones en el mismo disco abierto:

1.
$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)z^n$$
,

2.
$$\frac{2}{(1-z)^3} = \sum_{n=0}^{\infty} (n+1)(n+2)z^n$$
,

Ej. 14 Sea θ un ángulo entre $-\pi$ y π . Hallar el desarrollo en serie de Taylor de las siguientes funciones en los puntos indicados, y determinar el radio de convergencia de la serie obtenida.

1.
$$\frac{1}{z^2}$$
, en $z_0 = -1$.

3.
$$\frac{1}{1+i-\sqrt{2}z}$$
, en $z_0=0$.

1.
$$\frac{1}{z^2}$$
, en $z_0 = -1$. 3. $\frac{1}{1+i-\sqrt{2}z}$, en $z_0 = 0$. 5. $z(\cos(z))^2$, en $z_0 = \pi$. 7. $\frac{e^z}{1-z}$, en $z_0 = 0$.

7.
$$\frac{e^z}{1-z}$$
, en $z_0 = 0$.

2. Log
$$z$$
, en $z_0 = i$.

2.
$$\log z$$
, en $z_0 = i$. 4. $\operatorname{Arctan}(z)$, en $z_0 = 0$. 6. \sqrt{z} , en $z_0 = e^{i\theta}$. 8. ze^{2z} , en $z_0 = -1$.

6.
$$\sqrt{z}$$
, en $z_0 = e^{i\theta}$.

8.
$$ze^{2z}$$
, en $z_0 = -1$.

Ej. 15 Expandir la función $\frac{1}{(1+z^2)}$ en serie de Taylor para |z|<1 y en serie de Laurent para |z|>1.

Ej. 16 Expandir la función $\frac{1}{\text{Log}(1+z)}$ en serie de Laurent centrada en $z_0 = 0$ y determinar la región de convergencia.

Ej. 17 Hallar la región de convergencia de las siguientes series de potencias:

$$1. \sum_{n=1}^{\infty} (-1)^n \frac{z^n}{n!}$$

$$2. \sum_{n=0}^{\infty} \left(1 - \frac{1}{n}\right)^n z^n,$$

3.
$$\sum_{n=0}^{\infty} \sin\left(\frac{n\pi}{2}\right) z^n.$$

1.
$$\sum_{n=1}^{\infty} (-1)^n \frac{z^n}{n!}$$
, 2. $\sum_{n=0}^{\infty} \left(1 - \frac{1}{n}\right)^n z^n$, 3. $\sum_{n=0}^{\infty} \sin\left(\frac{n\pi}{2}\right) z^n$. 4. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^{n(n+1)}$. 5. $\sum_{n=1}^{\infty} \frac{z^n}{1 + (1+i)^n}$.

5.
$$\sum_{n=1}^{\infty} \frac{z^n}{1 + (1+i)^n}.$$