

EX-2023-00247117- -UNC-ME#FAMAF

PROGRAMA DE ASIGNATURA	
ASIGNATURA: Física II	AÑO : 2023
CARACTER: Obligatoria	UBICACIÓN EN LA CARRERA: 2° año 1° cuatrimestre
CARRERA: Licenciatura en Matemática Aplicada	
REGIMEN: Cuatrimestral	CARGA HORARIA: 120 Horas.

FUNDAMENTACIÓN Y OBJETIVOS

La materia está orientada a proveer el conocimiento básico de fenómenos eléctricos y magnéticos, culminando con el concepto de onda electromagnética. Se da un enfoque conceptual y fenomenológico, a la vez que se proveen las herramientas básicas de cálculo vectorial que permitan el planteo de situaciones físicas elementales.

CONTENIDO

1. Carga eléctrica y campo eléctrico

Fenómenos eléctricos elementales. Carga eléctrica. Ley de Coulomb. Campo eléctrico. Ejemplos de cálculo: carga puntual y dipolo eléctrico. Carga en movimiento en un campo eléctrico. Concepto de flujo de un campo vectorial e integral de superficie. Ley de Gauss. Aplicación al cálculo del campo de una carga puntual. Esfera uniformemente cargada. Conductores. El campo eléctrico en la cercanía de un conductor.

2. Potencial eléctrico

Integral curvilínea del campo eléctrico. Diferencia de potencial y función potencial. Gradiente de una función escalar. Derivación del campo a partir del potencial. Potencial de una distribución de carga. Potencial de un hilo de carga infinito y disco cargado uniformemente. Divergencia de un campo vectorial. Teorema de Gauss. Laplaciana. Ecuación de Poisson y Laplace.

3. Energía electrostática

Energía potencial eléctrica. Generador electrostático. Capacidad y condensadores. Energía almacenada en un campo eléctrico. Densidad de energía eléctrica. Materiales dieléctricos en condensadores. Vectores desplazamiento y polarización. Energía almacenada en un condensador.

4. Corriente eléctrica

Corriente y densidad de corriente. Corriente estacionaria y conservación de la carga. Conductividad eléctrica y resistencia. Ley de Ohm. Física de la conducción eléctrica. Transporte de cargas en un circuito eléctrico. Disipación de energía en la conducción. Fuerza electromotriz.

5. Campo magnético

Fenómenos magnéticos simples. Definición del campo magnético. Unidades de medición. Ley de Ampere: campo magnético asociado con una corriente lineal. Campo de un solenoide. Fuerza de Lorentz. Fuerza entre conductores con corriente eléctrica. Inducción electromagnética. Ley de Faraday. Flujo del campo magnético y fuerza electromotriz inducida. Inductancia.

6. Energía magnética

Energía almacenada en un campo magnético. Densidad de energía magnética. Materiales magnéticos. Magnetización. Vectores densidad de flujo magnético, intensidad de campo magnético y magnetización.

7. Resistencia, condensador e inductancia como elementos circuitales

Comportamiento de los elementos en corriente contínua (CC). Disipación térmica en una resistencia. Elementos ideales y reales. Circuitos equivalentes. Resistencias en serie y en paralelo. Condensadores en serie y paralelo. Inductancias en serie y paralelo.

EX-2023-00247117- -UNC-ME#FAMAF

8. Circuitos eléctricos básicos

Leyes de Kirchhoff. Circuitos RC y RL: transitorios. Circuitos LC y RLC: oscilaciones. Transferencia de energía eléctrica a magnética y vice versa.

9. Corriente alterna

Comportamiento de R, C y L en corriente alterna (CA). Impedancia, reactancia, admitancia, conductancia y susceptancia. Circuito RLC en CA. Resonancia.

10. Electromagnetismo

Ecuaciones de Maxwell. Corriente de desplazamiento. Ondas electromagnéticas. Vector de Poynting.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- D. Halliday, R. Resnick y J. Walker, Fundamentals of Physics, Wiley & Sons (2011).
- R. Resnick, D. Halliday y K. S. Krane, Física (vol. 2), Grupo Editorial Patria (2007).
- D. Halliday y R. Resnick, Física (parte 2), Compañía Editorial Continental (1984).
- R. Feynman, R. B. Leighton y M. Sands, Lectures on Physics: The Electromagnetic Field, Addison-Wesley (1964).

BIBLIOGRAFÍA COMPLEMENTARIA

- R. A. Serway y J. W. Jewett, Física para Ciencias e Ingeniería, vol. II, 10a edición, Cengage (2019).
- R. A. Sears, M. Zemansky, H. D. Young y R. A. Freeman, Física Universitaria vol. 2, Pearson Education, 12a edición (2009).
- M. Alonso y E. J. Finn, Fisica vol II: Campos y Ondas, Addison-Wesley (1987).

EVALUACIÓN

FORMAS DE EVALUACIÓN

Los/as estudiantes serán evaluados mediante exámenes parciales durante el cursado (dos parciales y un recuperatorio). La aprobación de la materia será mediada por un examen final escrito. Quienes aprueben el examen escrito con 4 deberán rendir además un examen oral. Dicho examen oral se promociona con un promedio de 7 en los parciales de regularidad.

REGULARIDAD

La regularidad se define aprobando dos exámenes parciales o sus correspondientes recuperatorios.

PROMOCIÓN

La materia no tiene promoción.