

EX-2022-00597456- -UNC-ME#FAMAF

PROGRAMA DE ASIGNATURA	
ASIGNATURA: Física General III	AÑO : 2022
CARACTER: Obligatoria	UBICACIÓN EN LA CARRERA: 2° año 2° cuatrimestre
CARRERA: Licenciatura en Astronomía, Licenciatura en Física	
REGIMEN: Cuatrimestral	CARGA HORARIA: 120 horas

FUNDAMENTACIÓN Y OBJETIVOS

La materia está dirigida a proveer al estudiante con los conocimientos básicos e intermedios de electricidad y magnetismo. Esto involucra la presentación de la fenomenología electromagnética y su descripción matemática a un nivel intermedio, así como el desarrollo de algunas aplicaciones. El estudiante que aprueba el curso debe conocer y manejar los elementos básicos de electro y magnetostática, inducción y circuitos de corriente continua y corriente alterna. Deberá también tener un claro entendimiento de las ecuaciones de Maxwell y de su significado.

Además de otorgarle una preparación sólida en los elementos de la electricidad y el magnetismo, el curso deberá servir al estudiante como una introducción apropiada a los cursos de Física General IV (ondas) y Electromagnetismo I, así como al curso de Física Experimental III.

CONTENIDO

Campo eléctrico.

Carga eléctrica. Ley de Coulomb. Campo eléctrico. Líneas de campo. Principio de superposición. Ejemplos. Campo debido a una distribución uniforme de carga. Movimiento de una carga en un campo uniforme. Campo de un dipolo. Conservación y cuantificación de la carga. Experimento de Millikan.

Ley de Gauss.

Flujo eléctrico. Ley de Gauss. Derivación. Aplicaciones. Propiedades de un conductor en equilibrio electrostático. Forma diferencial de la ley de Gauss.

Potencial eléctrico.

Relación ente campo y potencial. Ejemplos. Energía potencial eléctrica. Potencial de un dipolo. Potencial generado por una distribución continua de carga. Potencial de un conductor cargado.

Capacitancia y dieléctricos.

Definición de capacitancia. Condensadores planos, cilíndricos y esféricos. Combinación de condensadores (en paralelo y en serie). Energía almacenada en un condensador. Condensadores con dieléctricos. Constante dieléctrica. Dipolo en un campo eléctrico. Descripción atómica de los dieléctricos. Polarización y susceptibilidad eléctricas. Vector desplazamiento.

Corriente eléctrica.

Definición y modelo microscópico. Densidad de corriente. Resistencia y resistividad. Ley de Ohm. Ejemplos. Modelo simple de la conducción eléctrica. Superconductores. Potencia eléctrica. Corrientes de convección.

Circuitos de corriente continua.

Fuerza electromotriz. Resistencias en serie y en paralelo. Reglas de Kirchhoff. Ejemplos. Circuitos RC. Descarga de un condensador.

Campo magnético.

Fenomenología. Fuerzas debidas a campos magnéticos. Fuerza de Lorentz. Fuerzas sobre conductores con corrientes. Torque sobre un lazo de corriente en un campo magnético uniforme.

EX-2022-00597456- -UNC-ME#FAMAF

Movimiento de una carga en un campo magnético uniforme. Aplicaciones: el espectrómetro de masa. El ciclotrón. Efecto Hall.

Fuentes del campo magnético.

Ley de Biot y Savart. Fuerza entre conductores paralelos. Ley de Ampère. Solenoide. Flujo magnético y Ley de Gauss del magnetismo. Corriente de desplazamiento. Ley de Ampère-Maxwell.

Magnetismo en los materiales.

Momento magnético atómico. Magnetón de Bohr. Magnetización. Vector intensidad de campo magnético. Ferromagnetismo. Histéresis Paramagnetismo y diamagnetismo. Susceptibilidad magnética. Ley de Curie. El campo magnético terrestre.

Inducción eléctrica.

Ley de Faraday. Aplicaciones. Fuerza electromotriz (fem) debida al movimiento. Ley de Lenz. Ejemplos. Fem inducida y campos eléctricos. Generador. Motor eléctrico. Corrientes parásitas. Ecuaciones de Maxwell.

Inductancia.

Autoinductancia. Circuitos RL. Energía en el campo magnético. Inductancia mutua. Oscilaciones en el circuito RL. Circuito RLC.

Circuitos de corriente alterna (CA).

Fuentes de CA. Resistencias, inductancias y condensadores en un circuito de CA. Reactancia e impedancia. El circuito RLC. Potencia y energía en un circuito de CA. Resonancia. El transformador. Rectificadores y filtros. Leyes de Kirchhoff. Representación compleja.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

R.A. Serway y J.W. Jewett, Physics for Scientists and Engineers (Brooks-Cole, cualquier edición). E.M. Purcell, Electricidad y Magnetismo, 2a Edición – Berkeley Physics Course (Reverté, Barcelona, 1990).

M. Alonso y E.J. Finn, Física, Vol. II (Addison-Wesley, Wilmington, Delaware, 1995).

D. Halliday, R. Resnick y J. Walker, Fundamentals of Physics (Wiley, cualquier edición)

BIBLIOGRAFÍA COMPLEMENTARIA

M. Alonso y E.J. Finn, Física, Vol. II (Addison-Wesley, Wilmington, Delaware, 1995).

The Feynman Lectures on Physics – Vol. II- Electromagnetismo y Materia. R. Feynman, R.B. Leighton y M. Sands. Fondo Educativo Latinoamericano S.A.

EVALUACIÓN

FORMAS DE EVALUACIÓN

- Dos evaluaciones parciales sobre contenidos teórico-prácticos, con un recuperatorio.
- El examen final consta de una evaluación escrita y, cuando se considere apropiado, de un examen oral.
- · No hay promoción.

REGULARIDAD

- 1. Cumplir un mínimo de 70% de asistencia a clases teóricas, prácticas, o de laboratorio.
- 2. Aprobar al menos dos evaluaciones parciales o sus correspondientes recuperatorios.

PROMOCIÓN

No hay régimen de promoción.