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NMR dipolar constants of motion in liquid crystals: Jeener-Broekaert, double
quantum coherence experiments and numerical calculation on a 10-spin cluster.

H.H. Segnorile, C.J. Bonin, C.E. González, R.H. Acosta, R.C. Zamar∗
Facultad de Matemática, Astronomı́a y F́ısica, Universidad Nacional de Córdoba - IFFaMAF

M.Allende y H. de la Torre - Ciudad Universitaria, X5016LAE - Córdoba, Argentina

Two proton quasi-equilibrium states were previously observed in nematic liquid crystals, namely
the S and W quasi-invariants. Even though the experimental evidence suggested that they originate
in a partition of the spin dipolar energy into a strong and a weak part respectively, from a theoretical
viewpoint, the existence of an appropriate energy scale which allows such energy separation remains
to be confirmed and a representation of the quasi-invariants is still to be given. We compare
the dipolar NMR signals yielded both by the Jeener-Broekaert experiment as a function of the
preparation time and the free evolution of the double quantum coherence (DQC) spectra excited
from the S state, with numerical calculations carried out from first principles under different models
for the dipolar quasi-invariants, in a 10-spin cluster which represents the 5CB (4’-pentyl-4-biphenyl-
carbonitrile) molecule. The calculated signals qualitatively agree with the experiments and the
DQC spectra as a function of the single-quantum detection time are sensible enough to the different
models to allow both to probe the physical nature of the initial dipolar ordered state and to assign a
subset of dipolar interactions to each constant of motion, which are compatible with the experiments.
As a criterion for selecting a suitable quasi-equilibrium model of the 5CB molecule, we impose on
the time evolution operator consistency with the occurrence of two dipolar quasi-invariants, that is,
the calculated spectra must be unaffected by truncation of nonsecular terms of the weaker dipolar
energy. We find that defining the S quasi-invariant as the subset of the dipolar interactions of each
proton with its two nearest neighbours yields a realistic characterization of the dipolar constants of
motion in 5CB. We conclude that the proton spin system of the 5CB molecule admits a partition of
the dipolar energy into a bilinear strong and a multiple-spin weak contributions therefore providing
two orthogonal constants of motion, which can be prepared and observed by means of the JB
experiment. This feature, which implies the existence of two timescales of very different nature in
the proton spin dynamics, is ultimately dictated by the topology of the spin distribution in the dipole
network and can be expected in other liquid crystals. Knowledge of the nature of the dipolar quasi-
invariants will be useful in studies of dipolar order relaxation, decoherence and multiple quantum
NMR experiments where the initial state is a dipolar ordered one.

I. INTRODUCTION

Nuclear spin dipolar quasi-invariants are, together
with the Zeeman energy, relevant observables of the spin
system in liquid crystals (LC), providing new relaxation
parameters useful to disentangle the complex molecu-
lar motions in these mesophases [1]. For instance, Lar-
mor frequency and temperature dependent experiments
showed that the relaxation times of the dipolar quasi-
invariants are very sensitive to slow cooperative molecu-
lar motions over a wide range of magnetic field strengths,
allowing to reliably estimate the spectral densities of the
nematic director [2, 3]. However, nowadays, difficulties
associated with the theoretical description still remain,
which hamper taking full advantage of the useful relax-
ation properties of the dipolar ordered states [4].

A comprehensive theoretical description of the spin dy-
namics in the relaxation or the decoherence regime in
highly correlated molecular systems must include both
the quantum correlation between spins and environment
in the microscopic timescale together with a description
of the physical processes which drive the spin system to
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the quasi-equilibrium [3–6]. However, any further theo-
retical progress depends on a suitable representation of
the dipolar quasi-invariants. This requirement also ap-
plies to manipulation of quantum states starting from
dipolar ordered states in LC, as in multiple quantum
NMR experiments [7–9]. In this work, we attempt to
provide physical insight on the origin of different thermo-
dynamic quasi-invariants and their multiple-spin nature
by comparing the output of different NMR experiments
with the corresponding signals calculated from first prin-
ciples.

The feasibility of preparing nuclear spin dipolar-
ordered states in solids has been established in the past
[10–12]. One of the best known methods for generating
dipolar order from Zeeman order is the Jeener-Broekaert
(JB) phase-shifted rf pulse pair [12]. In ordinary solids, as
CaF2, where the nuclear spins are regularly distributed,
the assembly of fluorines presents two independent quasi-
invariants at high magnetic field: the Zeeman and secular
dipolar energies [12]. The occurrence of these constants
of motion relies on the fact that, at high magnetic field,
the nonsecular terms of the dipolar energy have negligi-
ble influence on the time evolution of the quantum co-
herences in the timescale of the build up of the quasi-
equilibrium state. Recently, the tensor structure of the
density matrix after the JB pulse pair during the tran-
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sient towards the quasi-equilibrium has been studied by
encoding its coherence numbers in a basis orthogonal to
the Zeeman basis [7]. The only dipolar quasi-constant
observed was the high-field secular dipolar Hamiltonian.

The proton spin distribution in hydrated crystals
presents a higher degree of complexity than ordinary
solids, since protons are paired in water molecules
throughout the crystal lattice [13–15]. Under an ade-
quate orientation respect to the external magnetic field,
all spin pairs are equivalent and the NMR spectrum
shows a resolved doublet due to the “intrapair” inter-
actions while the “interpair” contribution provides the
crystalline broadening [15]. The spin system can be then
assumed as an arrangement of weakly coupled equivalent
pairs. Accordingly, the dipolar Hamiltonian is written in
a perturbative way as a sum of two commuting contri-
butions: an intrapair term and a smaller crystalline in-
terpair contribution, the latter truncated with respect to
the intrapair and Zeeman energies. Again in this case, it
is assumed that the elimination of the non-secular terms
of the interpair dipolar energy has no significant effect on
the coherence time evolution during the build up of the
thermal equilibrium. A Hamiltonian of this form is com-
patible with the occurrence of four quasi-invariants, three
of them (Zeeman, dipolar intrapair, and singlet orders)
associated with the unequally spaced energy levels of a
proton pair, and the crystalline dipolar interpair. This
assumption was experimentally corroborated in gypsum
[15–17] and potassium oxalate monohydrate [14].

Liquid crystals provide another example of spin sys-
tem where two kinds of independent proton-spin dipo-
lar ordered states can be prepared and observed at high
magnetic fields. Dipolar signals similar to those of the
hydrated crystals were observed in fully protonated and
partially deuterated nematics at 300 MHz as well as 16
and 27 MHz [1, 18]. It is accepted that the fast liquid-like
molecular motion averages out the intermolecular dipo-
lar interactions, however, there is a strong residual in-
tramolecular dipolar spin energy due to the orientational
order typical of these mesophases [19]. In this work we
assume that, except for spin relaxation, a picture of mag-
netically isolated clusters of dipole coupled spins is ad-
equate for representing the spin system in LC [20, 21].
This characteristic enables studying the transfer of the
high field Zeeman order to dipolar order in small spin
systems. The NMR lineshape of nematics is broad and
often shows a resolved doublet (independent of the exter-
nal field) which indicates that the interaction of a spin
with its nearest neighbours is strong enough to establish
a coherent response in spite of the broadening effects due
to more distant spins [22, 23].

The occurrence of two dipolar quasi-invariants in LC,
suggests that a perturbative approximation of the spin-
spin Hamiltonian should hold, in which the high field
Zeeman-secular dipolar energy Ho

D is split in two com-
muting terms [1] associated with two subsets, strong (S)
and weak (W), of dipolar couplings. However, the exis-
tence of an appropriate energy scale which justifies trun-

cation of the weaker term to generate two constants of
motion associated with the dipolar energy is not clearly
suggested in LC as in hydrated solids, because of the
very different nature of the dipolar network and the lim-
ited number of degrees of freedom of the LC molecule.
By encoding the spin states after the JB pulse pair on
the X-basis, it was recently shown [24] that S in 5CB
(4’-pentyl-4-biphenyl-carbonitrile) has a bilinear pairwise
tensor structure like Ho

D, while W has a much more com-
plex, multiple-spin correlated nature, in consistency with
the longer timescale associated with this quasi-invariant
[1]. However, this method does not allow finding the ap-
propriate energy scale which justifies truncation of the
weaker term to generate a second constant of motion as-
sociated with the dipolar energy.

In this work we explore the validity of representing
the quasi-equilibrium spin states after the JB prepara-
tion pulse pair in LC by a density operator with two
dipolar quasi-invariants originated in the intra-molecular
Zeeman-secular dipolar energy, and propose a method
for identifying a partition of the dipolar energy into two
dipolar constants of motion. We study the experimen-
tal single- (SQC) and double quantum coherence (DQC)
signals of 5CB, obtained from the initial S dipolar or-
dered state, and compare them with the corresponding
signals calculated through the exact quantum dynamics
of a cluster of ten spins 1

2
at the proton sites of a 5CB

molecule.
The dipolar quantum operators are built by partition-

ing the secular dipolar energy and truncating the weak
term with respect to the strong one. As the criterion for
selecting an appropriate partition, we require the time
evolution of the quantum coherence to be consistent with
the occurrence of the S and W quasi-invariants, namely
the NMR signals calculated under a satisfactory partition
of the dipolar energy must be unaffected by neglecting
the non-secular part of the weak dipolar energy in the
common eigen-basis of the Zeeman and strong dipolar
energy.

II. 5CB MOLECULE AND DIPOLAR
COUPLINGS

The 5CB molecule has 19 protons: eight at the ben-
zene rings (core) and the others at the alkyl chain. In
the numerical calculations carried out in this work, the
spin system consists of the 10 labeled protons at the 5CB
molecule sketched in Fig. 1. This is a thermotropic
LC, extensively used in NMR investigations. Its nematic
range is near room temperature which turns this com-
pound suitable from a practical point of view. The molec-
ular structure of 5CB, which is characteristic of many LC,
allows examining the idea of a quasi-equilibrium state
characterized by a single spin temperature, even in pres-
ence of protons having different environment and dynam-
ics.

The numerical calculations of this work demand the
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FIG. 1: Sketch of the 5CB (4cyano-4′-n-pentyl-H11-biphenyl)
molecule. Protons are numbered as used in the calculations.

use of dipolar couplings between the interacting protons
of our models, but only some of them are reported in the
literature. In order to estimate the remaining couplings
we use an average 5CB molecule with geometrical pa-
rameters obtained from references [26] and [27]. Table I
contains the dipolar couplings Dij between protons i and
j, as defined by Eq. (3). The dipolar couplings yielded
by the average molecule agree, within experimental er-
ror, with those of the molecular core measured in refer-
ences [26] and [28] in 5CBd11 [29], except for D47 and
D69 which are affected by internal molecular motions. In
such case, we adopted the experimental values. For the
same reason, we used the couplings calculated from the
Molecular Dynamics trajectory in reference [27] for D15,
D23, D16 and D24. One can expect that internal molec-
ular motion is not a strong perturbation to the dipolar
couplings of distant protons like the ones we estimated
from the average molecule. Then, the set of Dij values
of Table I stand for a 10-spin model for a representative
5CB molecule suitable for NMR calculations.

III. THEORETICAL APPROACH

A. Background

The relevant Hamiltonian of a system of dipole-coupled
like spins 1/2 in a strong external magnetic field Bo, in
units of h̄, is

H = HZ + Ho
D , (1)

where the Zeeman energy HZ = −ωoIz, with ωo the Lar-
mor frequency, and

Ho
D =

√
6
∑

i<j

DijT
ij
20 (2)

TABLE I: Dipolar couplings of the core and α-CH2 protons
of the average 5CB molecule with Szz = 0.54 corresponding
to 27 oC. † data from ref. [27] (scaled with a factor of 1.15);
* from refs.[26] and [28]

i j Dij (Hz) i j Dij (Hz) i j Dij (Hz)

1 2 5482.1 4 6 395.5 4 10 -120.2

5 6 -4477.9 7 9 395 5 7 -119.3

3 4 -4418.3 1 6 -383 † 6 8 -119.3

7 8 -4396.8 2 4 -383 † 2 5 100.5

9 10 -4391.5 2 7 -228.9 2 8 -90.6

4 7 -1741 * 1 4 -212 5 8 -89.5

6 9 -1741 * 2 6 -192.1 3 10 -89.4

1 5 -1121 † 6 7 173 1 8 -76.9

2 3 -1121 † 1 7 -170.7 4 5 74.7

3 7 -414.5 4 9 170.1 1 10 -74.6

6 10 -409.7 1 9 -161.3 8 9 72.4

4 8 -407.7 3 8 -156.8 3 6 71

5 9 -406.6 5 10 -156.3 7 10 70.8

3 5 401.9 2 9 -125.2 2 10 -65.4

8 10 399.8 3 9 -120.5 1 3 42

is the secular part of the dipole-dipole inter-
action (high field approximation) and Tij

20 =
1√
6

[
2Ii

zI
j
z − 1

2

(
Ii
+Ij

− + Ii
−Ij

+

)]
. In LC

Dij ≡
〈

µoγ
2h̄

4π

(
1 − 3 cos2 θij

2r3
ij

)〉
(3)

is the dipolar coupling constant of nuclei i and j averaged
over the molecular motion, rij is the distance between
spins, θij is the angle between the internuclear vector and
the magnetic field and the sums run over protons within
a molecule. Since we are interested in a time scale much
shorter than any relaxation time, the dynamics of the
spin system is represented by the Liouville-Von Neumann
equation [32].

The pulse method for creating and detecting dipolar
order in dipole-coupled spin systems at high magnetic
fields, introduced by J. Jeener and P. Broekaert (JB) [12]
consists of the phase-shifted radiofrequency (rf) pulses
90x−t1−45y−t2−45y−t sketched in Fig. 2(a). The single
quantum coherences created by the first pulse evolve dur-
ing t1 mainly under the dipole spin-spin Hamiltonian (in
the rotating frame). Along this period, multi-spin single-
quantum coherences develop, and the second 45y pulse
transforms part of the coherences just created into multi-
spin order [24, 33–35]. Within a period of a few T ∗

2 (the
characteristic decay time of the NMR signal), the sub-
systems attain states of internal quasi-equilibrium, which
can be characterized by a spin temperature [36]. Over a
much larger time scale, spin-lattice relaxation makes the
dipolar and Zeeman temperatures to depend on time, un-
til each subsystem reaches a state of thermal equilibrium
with the lattice [4]. Finally, the third pulse converts the
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created order into observable single quantum coherence.

FIG. 2: (a) Jeener-Broekaert pulse sequence to generate dipo-
lar order. The spin state after the second pulse evolves to-
wards a quasi-equilibrium state over a time period of a few
T ∗

2 . The single-quantum signal produced by the read pulse
is a measure of the order created. (b) Sketch of the 4-pulse
sequence used for selective excitation and detection of the
DQC starting from the dipolar ordered state. The first two
pulses are the Jeener-Broekaert preparation pulses. The wait-
ing time was set t2=2 ms to allow the quasi-equilibrium to
establish.

B. Time evolution operator and the dipolar
constants of motion

As pointed out in Sec. I, there is experimental evidence
that in LC two dipolar quasi-invariants can be prepared
and observed independently at high magnetic fields [1,
37]. It is convenient for later purposes to split the dipolar
Hamiltonian of Eq.(2) into two parts, in order to account
for the ocurrence of two categories of dipolar couplings:
strong and weak. Accordingly, we start by writing the
dipolar Hamiltonian as

Ho
D = Ho(S)

D + Ho(W)
D , (4)

where both terms have the tensor structure of Eq.(2).
Ho(S)

D involves the subset of the strong dipolar pairwise
interactions within the molecule, namely

Ho(S)
D =

√
6
∑

i<j ∈S

DijT
ij
20 , (5)

while

Ho(W)
D =

√
6
∑

i<j ∈W
DijT

ij
20 = Ho(W, d)

D +Ho(W, nd)
D ,

(6)

is the part of the dipolar energy which involves the weaker
pairwise interactions. Superscripts ‘d’ and ‘nd’ mean di-
agonal and nondiagonal (in blocks) parts of the W dipo-
lar energy with regard to HZ and Ho(S)

D . The occurrence
of two dipolar constants of motion demands the norm
of the operators to satisfy ‖HZ‖ � ‖Ho(S)

D ‖ � ‖Ho(W)
D ‖,

which justifies retaining only the truncated Ho(W, d)
D in

the second equality of Eq. (6), in a perturbative view.[14]
It is worth to notice that due to the truncation inherent in
its definition, Ho(W, d)

D (and also Ho(W, nd)
D ) does not pre-

serve the bilinear form of Eq.(2), and may have a much
more complex structure. [24]

An expression for Ho(W, d)
D in operator form is not

available at present, except for the case of weakly cou-
pled equivalent pairs [14]. The matrix representation
of Ho(W, d)

D used in this work, is obtained by writing
Ho(W)

D in the common eigen-basis of HZ and Ho(S)
D

(since
[
HZ ,Ho(S)

D

]
= 0), retaining only the diagonal

blocks (diagonal blocks occur when degenerate eigen-
values exist[38]). The remaining elements constitute
Ho(W, nd)

D . The Hamiltonians so defined satisfy the com-
mutation relations

[
HZ,Ho(W, d)

D

]
= 0 ,

[
HZ ,Ho(W, nd)

D

]
= 0,

[
Ho(S)

D ,Ho(W, d)
D

]
= 0 ,

[
Ho(S)

D ,Ho(W, nd)
D

]
6= 0

[
Ho

D,Ho(S)
D

]
6= 0 , (7)

and the orthogonality relations

Tr{HZHo(W, d)
D } = 0 , T r{HZHo(S)

D } = 0,

T r{Ho(S)
D Ho(W, d)

D } = 0. (8)

The dipolar Hamiltonian can be written in a condensed
way as

Ho
D = Hqe + Ho(W, nd)

D , (9)

where

Hqe ≡ Ho(S)
D + Ho(W, d)

D (10)

is the part of the Hamiltonian spanned in quasi-
invariants.

In the following we aim to classify the dipolar energy
terms into strong and weak in consistency with the per-
turbation scheme in order to define the relevant observ-
ables. The choice of the interactions which compose the
subsets S and W of Eqs. (5) and (6), is not evident in
LC due to the dispersion of the dipolar couplings within
the molecule. We adopt the criterion that the two quasi-
invariants are properly defined only if the time evolution
of the spin state calculated with the whole Hamiltonian
Ho

D is indistinguishable from that calculated with the
truncated one, Hqe. In this way we ensure that the di-
agonal part of the density operator of a quantum state,
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namely the part spanned in constants of motion, does
not evolve in time while spin dynamics developes [see
Eq.(15)]. In order to illustrate the validity of this cri-
terion we first analyze the transient towards the quasi-
equilibrium of the state ensuing the preparation pulses
of the JB sequence.

The time evolution of the density operator under Ho
D ,

at time t2 after the second JB pulse is

ρ(t1, t2) = e
−i
(
Hqe+Ho(W, nd)

D

)
t2ρ(t1, 0)ei

(
Hqe+Ho(W, nd)

D

)
t2

= Und(t2) e−iHqet2 ρ(t1, 0) eiHqet2 U †
nd(t2) , (11)

where ρ(t1, 0) ≡ ρ(t1, t2 = 0) is the den-
sity operator immediately after the second pulse,
Und(t) = T− exp

{
−i
∫ t

0 Ho(W, nd)
D (s) ds

}
is a time-

ordered exponential operator where operators are or-
dered from right to left as time decreases [39] and
Ho(W, nd)

D (s) = e−iHqesHo(W, nd)
D eiHqes.

The proton spin cluster will be adequately character-
ized by two dipolar constants of motion whenever a parti-
tion of the dipolar interactions can be found which allows
a perturbative approximation of the time evolution op-
erator. In other words, two dipolar quasi-invariants can
be defined provided a suitable choice of the interactions
involved in Ho(S)

D and Ho(W)
D can be done which enables

us to define Ho(W, nd)
D so that Und(t2) ' 1 for t2 < tqe,

being tqe a characteristic time for the establishment of
the quasi-equilibrium state. Under these conditions the
time dependence of the spin density operator of Eq. (11)
can be approximated by

ρ(t1, t2) ' Uqe(t2) ρ(t1, 0) U †
qe(t2) , (12)

where we defined the truncated time evolution operator

Uqe(t) ≡ e−iHqet . (13)

The initial density operator can be written as the sum
of a diagonal (in blocks) and a nondiagonal term in the
eigen-basis of Hqe

ρ(t1, 0) = ρqe(t1) + ρnd(t1), (14)

where the quasi-equilibrium term ρqe does not evolve un-
der Hqe, and ρnd represents the multiple quantum coher-
ences excited by the JB pulse pair [7, 24, 40, 41]. There-
fore Eq. (12) is

ρ(t1, t2) ' ρqe(t1) + ρnd(t1, t2), (15)

with ρnd(t1, t2) = Uqe(t2) ρnd(t1, t2 = 0) U †
qe(t2). In

Eq.(15), ρqe can be spanned in the quasi-invariants HZ ,
Ho(S)

D , Ho(W, d)
D and, in principle, other constants of mo-

tion [34], and thus [ρqe,Hqe] = 0. For times t2 > tqe

the coherences will have decayed and, in the absence of
rf pulses and neglecting spin-lattice relaxation, the state
of the spin system becomes time independent. Finally,
for times t2 � tqe, spin-lattice relaxation causes a time

dependence of ρqe which can be neglected within the
timescale treated in this work. Based on previous ex-
perimental results [1], we assume that after a waiting
time t2 > tqe and much smaller than the spin-lattice re-
laxation times, the spin density operator can be written
as

ρqe(t1) = 1 − βS (t1)Ho(S)
D − βW (t1)Ho(W, d)

D , (16)

where the inverse temperatures βS and βW depend only
on the preparation time and are defined as:

βA(t1) =
Tr{ρA}
Tr{A2} , (17)

with A = Ho(S)
D ,Ho(W, d)

D . By properly setting t1 it is
possible to prepare the spin system in each of the dipolar
ordered states [1]; let us call a state of S order to one
which corresponds to βW ' 0 and W order to the one
with βS = 0 [24].

Finally, it is convenient to consider the action of the
truncated time evolution operator in more detail. For
instance, the evolution of any operator O under Hqe can
be expressed as

O(t) = e−iHo(W, d)
D

t
{
O − it

[
Ho(S)

D ,O
]

− t2

2

[
Ho(S)

D ,
[
Ho(S)

D ,O
]]

+ · · ·
}

eiHo(W, d)
D t,(18)

according with Eqs.(10) and (13). This expression makes
evident that the influence of the S quasi-invariant on the
time evolution depends on the norm of the commutator∥∥∥∥
[
Ho(S)

D ,O
]∥∥∥∥ rather than on the relation between the

norms of Ho(S)
D and Ho(W, d)

D which are directly deter-
mined by the intensity of the dipolar couplings. This im-
plies that a mere comparison of dipolar couplings is not
a robust recipe for generating the S and W constants of
motion in general cases.

C. Evolution of the coherences

In order to study the nature of the quasi-equilibrium
states ρqe after the JB pulse pair in LC, we analyze the
signals from the usual JB experiment of Fig. 2 (a) and
the DQC spectra generated with the pulse sequence by
S. Emid, J. Smidt and A. Pines [25], depicted in Fig. 2
(b).

The signal after the read pulse of the JB sequence is

M (t1, t) ∝ Tr

{
Iy U0(t) ei π

4 Iy ρqe(t1)e−i π
4 IyU †

0 (t)
}

,

(19)
where

U0(t) = e−iHo
Dt. (20)
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The hypothesis that the spin state can be represented by
a quasi-equilibrium density matrix as Eq. (16) can be
tested by studying the signal M (t1, t) as a function of
the preparation time t1. To further find a suitable parti-
tion of the dipolar energy we use the 2D-DQC diagram
generated through the experiment of Fig. 2 (b) starting
from S order. Then, the state after the second pulse of
this sequence is

ρqe = 1− βS Ho(S)
D . (21)

The third pulse, represented by R3 ≡ ei π
2 Ix,y , transforms

Ho(S)
D into zero and double quantum coherences [25]:

R3Ho(S)
D R†

3 = H(S)
0 ±H(S)

2 , (22)

with

H(S)
0 ≡ −1

2H
o(S)
D

H(S)
2 ≡ 3

2

∑
k<l∈S Dkl

(
Tkl

2,+2 + Tkl
2,−2

)
,

where indices k, l run over the spin sites involved in Ho(S)
D ,

and Tkl
2,±2 = 1

2 Ik
±Il

± . The sign before H2 in Eq.(22)
depends on the phase (x or y) of the third pulse, which
is used to select the term containing the DQC through a
proper phase cycling.

Following the same reasoning that took us from
Eq.(11) to Eq.(12), a suitable election of the interac-
tions involved in Ho(S)

D , in consistency with the occur-
rence of two dipolar quasi-constants, allows approxi-
mating U0(t) −→ Uqe(t) instead of Eq. (20). Then,
the state after the third pulse is given by ρ(t3) '
1 − βS e−iHqet3(H(S)

0 ± H(S)
2 ) eiHqet3 . The fourth pulse,

R4 = ei π
4 Iy , transforms the double quantum coherences

H(S)
2 and the dipolar order (zero quantum) back into sin-

gle quantum coherence, and the observed 2D signal, after
the phase cycling that selects the DQC contribution, be-
comes

S(t3, τ ) ≡
〈
Iy(t3, τ )

〉
∝ βS Tr

{
Iye−iHqeτR4 e−iHqet3

× H(S)
2 eiHqet3R†

4e
iHqeτ

}
.(23)

Thus, the invariance of the dipolar signals using the
complete evolution operator of Eq. (20) or the trun-
cated one of Eq. (13), may serve as a criterion for prob-
ing the suitability of the model used to define Ho(S)

D and
Ho(W, d)

D . It is worth to remark that operators H(S)
2 and

Hqe in Eq.(23) are completely determined by the partic-
ular election of the interactions involved in Ho(S)

D . In this
way, the frequency content of the calculated signals and
therefore, their agreement with the experiment depends
on the suitability of such election. In Section VI we cal-
culate the NMR signals of Eq.(23) yielded by different
models adopted for the spin system.

IV. EXPERIMENT

The experiments were carried out at 7 T in a Bruker
Avance II spectrometer at 27 oC. The sample (Sigma-
Aldrich) used is the liquid crystal 5CB in nematic phase
with a Zeeman spin-lattice relaxation time, T1Z = 630
ms and a dipolar S relaxation time TS= 310 ms. The
π
2

pulse width is 2.7 µs, t1=26 µs was used to prepare
the maximum S dipolar order in 5CB [1]. The amount
of W order is negligible for this setting (t1 = 71 ± 1 µs
corresponds to the pure W order condition); a time t2=
2 ms was chosen to allow the quasi-equilibrium to estab-
lish [24]. Since t2 � T1Z there is no Zeeman order, as
assumed in Eq. (16).

Fig. 4(a) shows the experimental JB dipolar signals of
5CB for different preparation times t1. In order to ob-
serve the DQC signal only, we used the phase cycle (x,-
x,y,-y) for the 3rd pulse and (x,x,-x,-x) for the receiver.
A typical signal S(t3, τ ) of 5CB at t3= 10µs is illustrated
in Fig. 2 (b). We recorded the evolution of S(t3, τ ) for
increasing times t3 from 5 to 500 µs in steps of 10 µs
and τ in steps of 4 µs. Then for every observation time
τ , there is a pseudo-FID S(t3) which attenuates over a
time t3 ≈ 100 µs. The amplitude of these pseudo-FIDs
oscillate with τ . We tested the sequence in a sample of
powdered adamantane and obtained a pseudo-FID show-
ing the same shape as reported in reference [25].

The Fourier transform in t3 gives the spectrum in the
DQC frequency ν2, F (ν2, τ ), as a function of the single
quantum detection time τ . Figure 3 shows a contour
plot of F (ν2, τ ) in 5CB measured on-resonance (this fre-
quency corresponds to the on-resonance condition at the
isotropic phase). A cut of this plot at τ = 27 µs shows
unresolved peaks near 15 kHz and also some structure
about 6 kHz. This structure manifests all along the τ
axis, as illustrated by the cut at τ = 127 µs which cor-
reponds to the second maximum of the single quantum
signal and shows a peak near 15 kHz. The frequency-time
2D plot clarifies that the amplitudes of the frequency (ν2)
components vary appreciably with τ . We verified that in
contrast with 5CB, powder adamantane (which has only
one dipolar quisiinvariant [24]) has a featureless DQC
spectra similar to the reported Gaussian shaped one of
potassium oxalate monohydrate [14], where the spin sys-
tem can be well represented by a model of weakly coupled
pairs. It is worth mentioning that when irradiated with
an offset frequency, ∆ν0, the center of the DQC spectra
of both 5CB and adamantane shift to 2∆ν0 as expected
[25].

V. NUMERICAL CALCULATIONS AND
INTERACTION MODELS

Representing the spin system of 5CB molecule implies
considering all its 19 protons, however, calculation of the
FID of an N spin system entails manipulating a 2N di-
mensional Hilbert space. Thus, we restricted our calcu-
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FIG. 3: Contour plot of the experimental on-resonance double
quantum coherence amplitude spectra of 5CB as a function
of the observation time τ at 27oC, 300 MHz. Below: cuts at
τ = 27 µs (left) and τ = 127 µs (right).

TABLE II: Sets of interactions used to define Ho(S)
D in the

calculations of the dipolar signals and the DQC spectra.

model interactions

i 7-8, 9-10, 5-6, 3-4 ,1-2

ii 7-8, 9-10, 5-6, 3-4, 1-2, 6-9, 4-7, 1-5, 2-3

lations to 10 spins: the 8 aromatic and the two α-CH2

protons, as shown in Fig. 1. The different models used
to represent the interaction Hamiltonians needed for cal-
culating the output signals through Eqs. (19) and (23)
are shown in Table II, where the right column shows the
subsets of interactions i, j involved in Ho(S)

D of Eq. (5),
labeled as in Fig.1. These models basically differ in the
number of neighbours each spin interacts with. Model
(i) only includes the strongest dipolar interaction of each
spin; that is, a model of weakly interacting strong pairs.
Model (ii) incorporates the interaction of α-CH2 protons
with the nearest protons of the core and between benzene
rings; in this way, all spins (except 8 and 10) take part
of two interactions.

The operators used to calculate the NMR signals for
the 10-spin system were represented by matrices of di-
mension 1024×1024, operating under rules of conven-
tional matrix algebra. The angular momentum opera-
tors, and therefore all the other operators needed, were
first represented in the Zeeman eigenbasis. By diago-
nalizing the dipolar Hamiltonian of Eq.(2) one finds the
matrix which transforms to a convenient basis where the

evolution operator is also diagonal. In order to optimize
memory usage and speed operations we used sparse ma-
trices, using the criterion that matrix elements αkl satis-
fying |αkl| < 10−6 are considered as zero. Consistently,
operators are defined by rounding to 5 significant dig-
its. In order to evaluate the effect of such procedure, we
compared the results obtained with and without numeric
truncation on a 4-spin and 8-spin cluster, and found them
indistinguishable.

VI. RESULTS AND DISCUSSION

A. Dipolar single quantum signals

We first calculate the dipolar NMR signals after the
JB sequence of Eq.(19) at different preparation times t1,
with Ho(S)

D according to the models of Table II. Fig.
4 (b) shows that the calculated signals for the 10-spin
cluster, provide a good description of the experimental
signals of 5CB shown in Fig. 4(a). Notice that no extra
attenuation has been added to the calculated signals. Ad-
ditionally, we found that all the calculated signals have
the same qualitative characteristics as the experimental
ones, which are, symmetry in the preparation and obser-
vation times [1] (not shown), the first maximum of the
S signal occurs around 30 µs and crosses through zero
around 70 µs [1]. However, we verified that the signals
yielded by different models (i and ii) and different time
evolution operators (U0 or Uqe) are not significantly dis-
tinct. In contrast, the signals calculated with models
(i) and (ii) but using an approximate evolution operator
US ≡ e−i t Ho(S)

D instead of U0, have a definitely different
shape than the experiment for every t1, as can be seen
in Fig.4(c). Indeed, as commented at the end of Section
III B, even when ‖Ho(S)

D ‖ � ‖Ho(W)
D ‖, which justifies the

neglect of non-diagonal components of Ho(W)
D , the diag-

onal part of the weaker couplings cannot be ignored in
the time evolution of the coherence. This means that the
small terms involved in Ho(W, d)

D play a decisive role in
the transfer from the Zeeman order to the dipolar order
(especially at longer preparation times), which also de-
termines the complex behaviour of the dipolar signals as
a function of t1 in the JB sequence.

We also verified that there is a good qualitative agree-
ment between the calculated and the experimental dipo-
lar signals of alkyl deuterated 5CB [18] (5CBd11), which
has 8 protons. In this case we used only the dipolar in-
teractions of Table I which involve the aromatic protons
and again distinguished two ways of defining Ho(S)

D by
including (or not) the inter-ring couplings. Similarly to
the 10-spin 5CB case, the SQC signals are not sensible
enough to the different models.

The agreement between calculated and experimental
signals shown in Fig.4 confirms that the two-dipolar-
quasi-invariants view allows a good description of the
experiment [42]. Additionally, it supports our starting
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FIG. 4: Dipolar signals after the JB sequence at preparation
times from t1 = 30 µs to 80 µs, (a) experiment, (b) calculated
with model (ii) and evolution under Ho

D and (c) calculated

with model (ii) and evolution under Ho(S)
D .

assumption of considering only the intramolecular dipo-
lar energy and indicates that there is no need of addi-
tional energy terms like long range intermolecular dipole
couplings or chemical shift effects to explain the main
features of the experimental results. However, the cal-
culation of the outcome of the JB experiment still does
not allow a clear qualification of the different possible
ways of partitioning the dipolar energy into strong and
weak. Therefore we applied the same test to the 2D sig-
nals obtained through the DQC experiment described in
the previous section.

B. Double quantum spectra

Figure 5 shows the calculated F (ν2, τ ) from Eq. (23),
for the 10-spin models. The upper row of Fig. 5 corre-
sponds to model (i) and the lower to model (ii). Plots in
the left column were calculated using the time evolution
operator of Eq. (20), while the right column corresponds
to the truncated one defined in Eq. (13). We represented
the additional decoherence due to spins that were not
included in the calculation, and other possible sources
through a Gaussian decay in both time domains t3 and
τ of frequency width at half height of approximately 3
kHz.

As seen in Figs. 5 (a) and 5 (c), both models yield

frequency components around 15 kHz for τ < 100µs, in
agreement with the experiment of Fig. 3. However, a
drastic difference between models arises when using the
truncated time evolution. In Fig. 5 (b) the effect of trun-
cation on model (i) is significant since the spectra loose
the high frequency structure for every time τ . On the
contrary, the effect of truncation on model (ii) is unim-
portant all along the τ axis as seen by comparing Figs. 5
(c) and (d). This is precisely the condition which opera-
tors Ho(S)

D and Ho(W, d)
D must fulfil in order to represent

satisfactorily a system with two dipolar constants of mo-
tion. The 2D analysis of the DQC spectra modulated by
the time evolution of the SQC allows the identification
of higher frequency components that would otherwise be
screened by the width of the lower frequency lines in a 1D
experiment. This test provides clear evidence of the effect
of truncation, in contrast to the calculations of the single
quantum dipolar signals which are much less sensitive to
the different models. It also indicates the suitability of
introducing two quasi-invariants associated with different
scales of the dipolar energy to describe the spin dynamics
in small spin clusters.

FIG. 5: Contour plots of the calculated double quantum spec-
tra amplitude as a function of the observation time for models
(i) and (ii) of the spin system as labeled in Table II. (a),(b):
weakly coupled pairs; (c),(d) correlated spins; (a),(c): evolu-
tion with the complete Hamiltonian; (b),(d): evolution with
the truncated Hamiltonian. Szz=0.75.

In the particular case of weakly coupled pairs, oper-
ators H(S)

2 and Ho(S)
D in Eq. (23) commute. Accord-

ingly, the term Ho(S)
D within Hqe in Uqe, has no effect

on the time evolution of the DQC, which is only driven
by Ho(W, d)

D , as can be seen from Eq.(18). The absence
of higher frequency structure in Fig. 5 (b) is a conse-
quence of this peculiarity of model (i). Conversely, the



9

occurrence of such structure in the DQC spectra is a con-
sequence of the correlated-pairwise-interaction behaviour
of the S quasiinvariant.

The difference between models (i) and (ii) resides in
the degree of correlation. In model (ii) the whole clus-
ter becomes a correlated entity. This way of partitioning
the dipolar energy explains the main features of the DQC
spectra prepared from an S state as initial condition. The
10-spin set provides enough complexity to account for the
main aspects of the 2D frequency-time profile. Neverthe-
less, the alkyl protons that could not be included in the
calculations, possess rather strong residual dipolar cou-
plings of the order of those of the ortho pairs of the ben-
zene rings, and significant intergroup dipolar couplings
[43, 44]. A subset of the strongest correlated pairwise
interactions of the alkyl protons should thereby be also
included in Ho(S)

D together with those of model (ii).
It is worth to mention that only two free parameters:

the order parameter Szz and the linewidth of the cal-
culated signals, were needed to match the characteristic
features of the complex pattern of the 2-D diagram of
Fig. 3. Szz=0.75 was used as the scaling factor in Figs.
4 and 5 in order to agree with the experiment. This
value of Szz is somewhat larger than the measured by
NMR methods for 27 oC [45]. One could anticipate that
considering the 19 protons of the 5CB molecule might
correct this difference.

C. Conclusions

Summarizing, we can conclude that 5CB molecules ad-
mit a partition of the dipolar energy into two orthogo-
nal commuting terms, associated with two energy scales,
therefore providing two different spin reservoirs where
the original Zeeman order can be stored by means of a
Jeener-Broekaert experiment. We confirm that the quasi-
equilibrium state after the JB preparation pulse pair can
be expanded in terms of two constants of motion which
derive from the intramolecular dipolar energy. The re-
sults are consistent with the S reservoir involving all
protons of the molecule but only a subset of the dipo-
lar couplings. The fact that Ho(S)

D is better described
by a model where all spins are correlated (and not by
a weakly-interacting-pairs model) is compatible with the
multiple-spin correlated nature of the W reservoir ob-
served in reference [24]. Also we find that the small W
energy term plays a significant role in the time evolution
of the spin state in spite of the weak interactions involved
in this constant of motion.

Some other nematic liquid crystals (5CBd11 [18], p-
azoxyanisole [4, 37] and others) show single-quantum
dipolar signals shapes which also change with the prepa-
ration time of the JB sequence in similar way. Similitude
with 5CB suggests that one might also ascribe this char-
acteristic feature to the occurrence of two constants of
motion which derive from the intramolecular dipolar en-
ergy to a class of standard thermotropic nematic liquid

crystals. The simple experiment applied in this work
allows a deep analysis of the DQC spectrum since the
modulation provided by the free evolution in the single
quantum time variable enhances the occurrence of DQC
frequencies that are screened in a 1D experiment. This
kind of DQC frequency vs. SQC time evolution analy-
sis may be applied to study the nature of the different
dipolar quasiinvariants in other LC samples [46] or even
in solids.

Formally, the quasi-equilibrium state of an N spin sys-
tem should in principle be written as an expansion of at
least 2N orthogonal terms which commute with the total
Hamiltonian, so generalizing Eq. (16) [47]. However, in
LC only a small number of invariants can be observed. A
theoretical method for generating a subset of additional
orthogonal constants of motion starting from the Zeeman
and secular dipolar Hamiltonian, which are products of
spin operators, was recently presented [34]. Numerical
calculations on regularly spaced linear chains of spins
1/2 showed that states of multi-spin order greater than
two-spin order would be unobservable in such many-body
spin clusters, of typically N ≥ 10 spins. This character-
istic is also present in ordinary solids, like CaF2, where
the Zeeman and the secular dipolar energy are the only
observed quasi-invariants [7, 12]. For a regular disposi-
tion of the spins in the network and N sufficiently large,
local field effects would be able to mask the local spin
dynamics governed by the nearest neighbours, prevent-
ing the existence of two different timescales of the spin
dynamics, and therefore of any other constant of motion
of multiple-spin character. On the contrary, in a spin
cluster like the one of a typical LC molecule, the spin ar-
rangement is far from being regular, thus two scales (at
least) of dipolar couplings remain, even for clusters of
considerable number of spins, like 5CB. The occurrence
of a second, multi-correlated dipolar quasi-invariant, is a
consequence of this feature.

Thus, the evolution of the single quantum coherence
under the dipolar energy during the preparation of the JB
experiment is characterized by two time scales governed
by the S and W interactions. In the early t1 timescale,
evolution under the dipolar energy generates bilinear cor-
relations which can then give rise to a two-spin order
state represented by Ho(S)

D . By other hand, Ho(W, d)
D

represents multi-spin order originated in multiple-spin
correlations which have grown up over a longer t1 time
scale. This ordered state can be observed by setting
the preparation time in the condition βS = 0 [1, 24].
The occurrence of such spin dynamics is dictated by the
topology of the spin distribution in the network, which
ultimately determines the characteristics of the multiple-
spin-correlation growth [35].

An expression for Ho(W, d)
D in operator form is still un-

known, except for the case of an ensemble of dilute pairs
like the hydrated crystals [14]. Full decomposition of the
signal into spherical tensor components [48] might con-
tribute to a complete determination of this operator for
a given LC.
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