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Abstract

We consider semigroups {αt : t ≥ 0} of normal, unital, positive maps αt on a W ∗-algebra
M. The (predual) semigroup νt(ρ) := ρ ◦ αt on normal states ρ of M leaves invariant the face
Fp := {ρ : ρ(p) = 1} supported by the projection p ∈ M, iff αt(p) ≥ p (i.e., p is sub-harmonic). We
complete the arguments showing that the sub-harmonic projections form a complete lattice. We then
consider ro, the smallest projection which is larger than each support of a minimal invariant face; then
ro is subharmonic. In finite dimensional cases and when αt is completely positive, sup αt(ro) = 1 and
ro is also the smallest projection p for which αt(p) → 1. If {νt : t ≥ 0} admits a faithful family of
normal stationary states then ro = 1 is useless; if not, it helps to reduce the problem of the asymptotic
behaviour of the semigroup for large times.
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1 Introduction and preliminaries

We consider a von Neumann algebra M and denote its normal state space by S. A quantum dynamical
semigroup {αt : t ≥ 0} is a family of normal, unital, positive, linear maps αt : M → M with the property
αt ◦ αs = αt+s where α0 is the identity. Then, the map νt : S → S defined by νt(ρ) = ρ ◦ αt is affine, ν0 is
the identity, and νt ◦ νs = νt+s. Conversely, given a semigroup {νt : t ≥ 0} of affine maps on S, the dual
maps are a positive quantum dynamical semigroup.

One often demands on physical grounds, that αt be completely positive. When M is the algebra of all
bounded linear operartors on a Hilbert space, the generator of a one-parameter semigroup of completely
positive, linear, normal, unital maps which is strongly continuous in t has the canonical GKS-Lindblad form.

The long-time asymptotics of such semigroups has been studied in the 1970’s and in the 1980’s, af-
ter pioneering papers of E.B. Davies[1] , culminating with the work of Frigerio[2, 3, 4] , and U. Groh [5] .
More recent studies are due to Fagnola & Rebolledo[6, 7] , Umanitá[8] , Mohari[10, 11] and Baumgartner
& Narnhofer[12] . We refer to Ref. [7] for a recent overview. In pertinent cases, the asympotics can be
studied via the GKS-Lindblad generator.

In this note all states (positive linear functionals of unit norm) are normal. Limits of states are with
respect to the distance induced by the norm. But recall that the norm-closure of a convex set of states
coincides with its weak-closure. All projections are ortho-projections (self-adjoint idempotents). For a
projection p, p⊥ = 1−p. Limits in M are invariably in the w∗-topology. The support of a state ρ –written
sρ– is the smallest projection p ∈ M such that ρ(p) = 1.
We will consider a quantum dynamical semigroup {αt : t ≥ 0} and will always explicitly state additional
positivity hypotheses. In particular, if each αt is completely positive, we say that the semigroup is CP. A
state ω is stationary if νt(ω) = ω ◦ αt = ω.
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2 Invariant faces and sub-harmonic projections

A face is a convex subset F of S which is stable under convex decomposition: if tρ + (1 − t)µ ∈ F for
0 < t < 1 with ρ, µ ∈ S then ρ, µ ∈ F . If p ∈ M is a projection then Fp := {ρ ∈ S : ρ(p) = 1} is a closed
face; namely the face supported by p. A fundamental result[13, 14] is that every closed face is of this form;
i.e. it is the face supported by some projection. Clearly, Fp ⊂ Fq iff p ≤ q. The following result is implicit
or partially explicit in the work of Fagnola & Rebolledo and Umanitá.

Proposition 1 Suppose ν is an affine map of S into itself and let α be the dual normal, linear, positive map
of M into itself. For a projection p ∈ M the following conditions are equivalent: (1) the face Fp supported
by p is ν-invariant; (2) α(p) ≥ p; (3) pα(a)p = pα(pap)p for every a ∈ M; (4) α(p⊥ap⊥) = p⊥α(p⊥ap⊥)p⊥

for every a ∈ M.

Proof: We first prove the chain (2) ⇒ (1) ⇒ (3) ⇒ (2). If α(p) ≥ p then, for any state ρ one has
ν(ρ)(p) = ρ(α(p)) ≥ ρ(p). Thus, ρ(p) = 1 implies ν(ρ)(p) = 1, i.e. ν(Fp) ⊂ Fp. If ν(Fp) ⊂ Fp, we show
that

(∗) ω(pα(pap)p) = ω(pα(a)p) for every ω ∈ S .

Since every normal linear functional is the linear combination of at most four states, this then implies that
pα(pap)p = pα(a)p. To prove (*) observe that, by the Cauchy-Schwarz inequality for states, the claim is
trivially valid if ω(p) = 0. Otherwise, consider the state ωp(a) := ω(pap)/ω(p). Clearly ωp ∈ Fp; thus,

ω(p)−1ω(pα(pap)p) = ωp(α(pap)) = ν(ωp)(pap) = ν(ωp)(a)

= ωp(α(a)) = ω(p)−1ω(pα(a)p) ;

which is (*). Finally, if pα(pap)p = pα(a)p, then p− pα(p)p = pα(p⊥)p = 0 and Lemma 2 of the Appendix
implies α(p) ≥ p.
If 0 ≤ x = p⊥xp⊥ ≤ 1 then, by Lemma 2 of the Appendix, x ≤ p⊥ and α(x) ≤ α(p⊥); when (2) is the
case α(p⊥) ≤ p⊥ so that α(x) ≤ p⊥ which by the aforementioned Lemma, implies p⊥α(x)p⊥ = α(x).
For general 0 ≤ x = p⊥xp⊥ we consider x/‖x‖ and obtain p⊥α(x)p⊥ = α(x). Since every a ∈ M is a
linear combination of at most four positive elements, we conclude that (2) implies (4). But (4) implies
α(p⊥) = p⊥α(p⊥)p⊥ which, by the same Lemma, gives α(p⊥) ≤ p⊥ which is equivalent to α(p) ≥ p. �

In the context of positive one-parameter semigroups {αt : t ≥ 0}, a projection p satisfying αt(p) ≥ p
has been termed sub-harmonic[6] . We say the projection p is sub-harmonic for the linear, normal, unital
and positive map α on M if α(p) ≥ p.
Proposition 1 relates the sub-harmonic property of a projection to the more geometric notion of invariance
of the supported face. This relationship can be immediately put to use:

Proposition 2 If a family of projections is sub-harmonic for a linear, normal, unital and positive map α
on M, then the infimum of the family is sub-harmonic for α.

Proof: If {Fι : ι ∈ I} is a family of closed faces Fι of S then
∩

ι Fι is, clearly, a closed face and it is the
largest closed face contained in each Fι. The support of

∩
ι Fι is exactly inf{pι : ι ∈ I}, where pι is the

support of Fι. Moreover, if each Fι is ν-invariant then so is the intersection. �

The corresponding statement for the supremum of such a family has been observed and proved (directly)[8] .
For projections p that are super-harmonic, i.e. α(p) ≤ p (equivalently p⊥ is sub-harmonic), we have (in
reply to a question posed in Ref. [9]):

Corollary 1 If a family of projections is super-harmonic for a linear, normal, unital and positive map α
on M, then the supremum of the family is super-harmonic for α.

Proof: sup{p : p ∈ F} = (inf{p⊥ : p ∈ F})⊥ and inf{p⊥ : p ∈ F} is sub-harmonic by the previous
proposition. �

The corresponding statement for the infimum of a super-harmonic family follows from the result for
the supremum of a sub-harmonic family by orthocomplementation as above. Thus,
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Theorem 1 The set of sub-harmonic and the set of super-harmonic projections with respect to a linear,
normal, unital and positive map on M are both complete lattices.

A minimal invariant face is a closed νt-invariant face which does not properly contain another non-
empty closed νt-invariant face. Equivalently, it is a face whose support is a minimal sub-harmonic projec-
tion, i.e. a sub-harmonic projection that is not larger than a non-zero sub-harmonic projection other than
itself. One can prove, and this goes back to –at least– Davies (see Ref. [1], Theorem 3.8 of Sect. 6.3), that
if the minimal invariant face admits a stationary state then it is unique and its support is the support of
the face. Moreover (Ref. [5], Proposition 3.4) the restriction of νt to the face is ergodic (the Cesàro means
converge to the stationary state).

3 A “recurrent” projection

We define the minimal recurrent projection ro as the smallest projection which is larger than every minimal
sub-harmonic projection. Equivalently, ro is the support of the smallest νt-invariant face which contains
every minimal νt-invariant face. By virtue of its definition and the result mentioned above –to the effect
that the supremum of a family of sub-harmonic projections is sub-harmonic– it follows that the minimal
recurrent projection is sub-harmonic. Hence the directed family αt(ro) which is bounded above by 1 has a
lowest upper bound in M denoted by x which is positive and below 1. Since x = limt→∞ αt(ro) it follows
that αt(x) = x for every t ≥ 0. Let s[x] denote the support of x, that is the smallest projection p ∈ M
with xp = x. The following treatment follows the lines of work by Mohari[11] .

Lemma 1 If {αt : t ≥ 0} is CP, then s[x] = 1.

Proof: s[x]⊥ is the largest projection q with xq = 0, and it is sub-harmonic by a result of Ref. [11] quoted
in the appendix. Assume that s[x] 6= 1; then there is a minimal sub-harmonic non-zero projection q with
q ≤ s[x]⊥. One has xq = 0. By the definition of ro, we have q ≤ ro and thus q = qroq ≤ qαt(ro)q ≤ qxq = 0,
which contradicts the assumption. �

Let J := {a ∈ M : limt→∞ αt(a∗a) = 0}. Since for each state ρ, one has the Cauchy-Schwarz
inequality

|ρ(αt(a∗b∗))| = |ρ(αt(ba))| = |νt(ρ)(ba)|

≤
√

νt(ρ)(bb∗)νt(ρ)(a∗a) ≤ ‖b‖
√

ρ(αt(a∗a)) ;

we infer that J is a linear subspace of M. If c ∈ M and a ∈ J , the same inequality applied to b = a∗c∗c
shows that ca ∈ J ; thus J is a left-ideal.

If M is finite-dimensional (that is *-isomorphic to the direct sum of finitely many full matrix algebras)
then, on the one hand, s[x] = 1 implies that x is invertible, and Mohari has shown that if x is invertible
then x = 1; and –on the other hand– J is closed and there is a projection such that J = M · z. Then

Theorem 2 If M is finite dimensional and {αt : t ≥ 0} is CP, then sup{αt(ro) : t ≥ 0} = 1. Moreover
J = M· r⊥o and ro is the smallest projection p ∈ M with limt→∞ αt(p) = 1.

Proof: There is[13] a projection z ∈ M with J = M· z. Lema 1 implies that x is invertible and Theorem
2.5 of Ref. [11] gives x = 1. Hence r⊥o ∈ J and thus r⊥o ≤ z or ro ≥ z⊥. Suppose p is a minimal
sub-harmonic projection; there is a stationary state ω in the minimal invariant face supported by p and it
follows (see end of §2) that it is unique and sω = p. Since ω(z) = ω(αt(z)) → 0, we have ω(z⊥) = 1 and
thus p ≤ z⊥. But then, by the definition of ro, ro ≤ z⊥. Thus ro = z⊥. �

It follows from the Cauchy-Schwarz inequality for states that limt→∞ αt(ar⊥o ) = limt→∞ αt(r⊥o a) = 0
for every a ∈ M so that αt(a) � αt(roaro) for large t and every a ∈ M. If {νt : t ≥ 0} admits a faithful
family of stationary states, then the minimal recurrent projection is the identity. This happens because
for a stationary state ω, one has ω(r⊥o ) = ω(αt(r⊥o )) ↓ 0 and thus ω(r⊥o ) = 0. However in this case there
are results[4, 5, 10] on the asymptotic behaviour of the semigroup.
Other recurrent projections have been considered. For example (Ref. [5], p. 407; Ref. [8]), the supremum
r of the supports of the stationary states (if any are available), which is then sub-harmonic and above ro.

There is no reason to expect that the above theorem 2 holds in infinite dimension.
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4 Appendix

We collect here a number of technical results used in the above proofs.

Lemma 2 For x ∈ M satisfying 1 ≥ x ≥ 0 and p ∈ M a projection one has:

a) the following five conditions are equivalent:

(1) x ≥ p ; (2) pxp = p ; (3) x = p + p⊥xp⊥ ; (4) xp = p ; (5) px = p .

b) the following four conditions are equivalent:

(1) p ≥ x ; (2) pxp = x ; (3) x = xp ; (4) x = px .

Proof: a): Given 1 ≥ x ≥ p, multiplication from left and right by p gives p ≥ pxp ≥ p and thus pxp = p.
If pxp = p then p(1 − x)p = 0 which implies (1 − x)1/2p = 0 and thus (1 − x)p = 0 or xp = p; taking
adjoints p = px.
And xp = p or px = p implies pxp = p.
Finally either of the equivalent conditions (4) or (5) imply that x − p = p⊥xp⊥ ≥ 0.

b): p ≥ x iff p⊥ ≤ 1 − x. Apply a). �

The following crucial observation and the proof, repeated here for convenience, are due to Mohari[11] .

Proposition 3 (Mohari) Suppose α : M → M is linear, unital, normal and completely positive and
x ∈ M is positive with α(x) = x. Then the support of x is super-harmonic.

Proof: M acts on a Hilbert space K. By the Stinespring Representation Theorem there is a nor-
mal ∗-homomorphism π of M into B(H) (the algebra of bounded linear operators on a Hilbert space
H) and an isometry V : K → H such that α(a) = V ∗π(a)V for all a ∈ M. If M ⊂ B(K) then
the support s[a] of the self-adjoint a ∈ M coincides with the smallest projection q ∈ B(K) such that
qa = a (Proposition 1.10.4 of [13]). Now if x satisfies the hypothesis, s ≡ s[x] and z = s⊥, then
0 = zxz = zα(x)z = zV ∗π(x)V z = (yV z)∗(yV z) where y =

√
π(y). Thus yV z = 0 and hence π(x)V z = 0.

The support of π(x) is π(s) and since V z maps K into the kernel of π(x), we conclude that π(s)V z = 0.
But then, α(s)z = V ∗π(s)V z = 0 or α(s) = α(s)s which by the Lemma above implies α(s) ≤ s. �
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