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We consider quantum systems where the underlying Hilbert space H is the tensor
product of two finite dimensional Hilbert spaces. A state of such a system is identified
with a density operator. A state is said to be separable if it can be written as a convex
sum of pure product states of the system; that is to say vector states where the vectors
are product vectors. The separable states form a convex subset of the states of the
system.

For the simplest bipartite composite system we have the following result

Theorem 1 If the eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ λ4 of the two qubit state ρ satisfy

3λ1 +
√

2λ2 + (3 −
√

2)λ3 ≤ 2, then ρ is separable.

The states satisfying the inequality have spectra in the simplex spanned by the
spectra (always numbered taking into account multiplicities and nonincreasingly)
(1/2, 1/6, 1/6, 1/6), ((2+

√
2)/8, (2+

√
2)/8, (2−

√
2)/8, (2−

√
2)/8), (1/3, 1/3, 1/3, 0)

and (1/4, 1/4, 1/4, 1/4).
The method used to prove this also gives a different proof of the following result

given in [1] (Theorem 3)

Theorem 2 If the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd of the state ρ of a bipartite

quantum system of dimension d satisfy 3λd + (d− 1)λd−1 ≥ 1, then ρ is separable.

Both results provide simple spectral criteria ensuring separability. In the case of two
qubits (d = 4) Theorem 2 is much weaker than Theorem 1 .

The proof to be given uses certain tools developped in [1] which we briefly
present. Given a state ρ on a d-dimensional bipartite quantum system, we let
spec(ρ) = (λ1, λ2, · · · , λd) denote the vector of repeated eigenvalues of ρ enumerated
so that λ1 ≥ λ2 ≥ · · · ≥ λd. Consider the normalized trace τ over H, then τ factorizes
as the trace over the two factors of H so that τ is a separable state. Consider the
segment with endpoints ρ and τ : ρt = t · ρ + (1 − t) · τ , 0 ≤ t ≤ 1. The modulus
of separability ` [1], measures how far can you go towards ρ beginning at τ until you
lose separability: `(ρ) = sup{t : ρt is separable}. The quantity (1/`) − 1 was studied
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by Vidal and Tarrach [2] as the “random robustness of entanglement”. It can be
shown ([2, 1]) that the supremum is a maximum; that ρt is separable iff t ≤ `(ρ); that
`(ρ) > 0; and that 1/` is a convex map on the states

`(s.ρ+ (1 − s) · φ) ≥
(

s

`(ρ)
+

1 − s

`(φ)

)−1

. (1)

The other ingredient is the so called gap-representation of [1]. Let spec(ρ) =

(λ1, λ2, · · · , λd) and ρ =
∑d

j=1 λj · ρj be the spectral decomposition of ρ where the ρj

are pairwise orthogonal pure vector states. Define µj = j(λj−λj+1), j = 1, 2, · · · , d−1;

ρ̂j = j−1
∑j

m=1 ρj , j = 1, 2, · · · , d. Notice that
∑d−1

j=1 µj = 1 − dλd; that ρ̂d = τ ; and
that

spec(ρ̂j) = (1/j, 1/j, · · · , 1/j︸ ︷︷ ︸
j

, 0, · · · , 0) .

So ρ̂1 is pure. Then a gap-representation of ρ is ρ =
∑d−1

j=1 µj · ρ̂j + d λd · τ . Noticing
that λd = 1/d iff ρ = τ , we assume that this is not the case and write

ρ = (1 − dλd) · ω + dλd · τ , ω =
d−1∑

j=1

µj

1 − dλd
· ρ̂j .

By the results mentioned, ρ is separable iff

(1 − dλd) ≤ `(ω) . (2)

Applying (1) to the state ω in its gap representation, we have

`(ω) ≥




d−1∑

j=1

µj

(1 − dλd)`(ρ̂j)




−1

= (1 − dλd)




d−1∑

j=1

µj

`(ρ̂j)




−1

;

thus (2) is satisfied (and thus ρ is separable) if
∑d−1

j=1 µj/`(ρ̂j) ≤ 1. We can replace
the `(ρ̂j) by lower bounds.

Proposition If `(ρ̂j) ≥ pj ≥ 0 for j = 1, 2, · · · , d− 1 and
∑d−1

j=1 µj/pj ≤ 1 then ρ is

separable.

The prime reason for introducing the gap-representation is that not only the last
summand τ but also the second last ρ̂d−1 are separable. This follows from a result
of Gurvits and Barnum [3]: If tr(φ2) ≤ 1/(d− 1) for a bipartite composite system of
dimension d then φ is separable. Now indeed tr(ρ̂2

d−1) = 1/(d− 1).
The least possible modulus of separability has been computed by Vidal and Tar-

rach [2]: inf{`(φ) : φ a state } = 2/(2+d); the infimum is assumed at a pure state. To
prove theorem 2, put p1 = p2 = · · · = pd−2 = 2/(2+d) and pd−1 = 1 in the proposition.

Turning to theorem 1, consider the numbers ̂̀
j := inf{`(φ) : spec(φ) = e(j)},

which give the minimal moduli of separability for the states spanning all possible gap-
representations. Replacing pj by l̂j in the Proposition gives us a general inequality
providing a sufficient condition for separability. No general information is available
for the l̂j except the calculation of [4] for two qubits where l̂1 = 1/3, l̂2 = 1/

√
2,

and l̂3 = 1. From this and the proposition one gets theorem 1. Since l̂1 = 1/3, and

l̂3 = 1 follow from the results quoted above, we only give the calculation of l̂2 in the
appendix.
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Appendix A. Calculation of ` for a two qubit state with
spec=(1/2,1/2,0,0)

[4] gives a direct calculation of ̂̀
1, ̂̀

2 and ̂̀
3 using the Wootters Criterion [5]. Recall

that if ρ is a state of a two qubit system, the Wootters operator W asssociated to it is

W = (
√
ρ(σy ⊗ σy)ρ(σy ⊗ σy)

√
ρ)1/2 .

Here all operators are taken as matrices with respect to a product orthonormal basis.

σy =

(
0 −i
i 0

)

and ρ is the complex conjugate of ρ taken with respect to the basis which is real.
The Wootters Criterion is: ρ is separable if and only if the (repeated) eigenvalues
w1 ≥ w2 ≥ w3 ≥ w4 of W satisfy w1 ≤ w2 + w3 + w4.
We will calculate the modulus of separability for any state ρ for which spec(ρ) =
(1/2, 1/2, 0, 0) by calculating the spectrum of the Wootters operator associated to
ρt = tρ+ (1 − t)τ , 0 ≤ t ≤ 1. The spectrum of ρt consists of two double eigenvalues
α = (1 + t)/4 and β = (1− t)/4 (which coincide for t = 0 where ρ0 = τ). In order not
to overload the notation we consider a density operator A with spec(A) = (α, α, β, β)
where α + β = 1/2, and α ≥ β ≥ 0; thus 1/4 ≤ α ≤ 1/2. The spectral
decomposition of A reads A = αP + βP⊥, where P is an orthoprojection of rank
2 and P⊥ = 1 − P is its orthocomplement, another orthoprojection of rank 2. It
follows that (σy ⊗ σy)A(σy ⊗ σy) = αQ + βQ⊥ is the spectral decomposition where
Q = (σy ⊗σy)P (σy ⊗σy) is an orthoprojection of rank 2 and Q⊥ = 1−Q. Using this
one obtains for the square of the Wootters operator associated to A the formula

W 2 = β21 + β(α− β)(P +Q) + (α− β)(
√
αβ − β)(PQ+QP )

+(α2 − β2 − 2
√
αβ(α − β))PQP .

Now since P , P⊥, Q and Q⊥ are orthoprojections of rank 2 in a four dimensional
Hilbert space, we have three mutually exclusive alternatives for the subspaces U and
V spanned by P and Q respectively: (1) U ∩ V = {0} which happens when and only
when Q = 1 − P which is equivalent to tr(PQ) = 0; (2) dim(U ∩ V ) = 2 which
happens when and only when Q = P which is equivalent to tr(PQ) = 2; and (3)
dim(U ∩ V ) = 1 which happens when and only when there are unit vectors ψ, φ
and χ in the four dimensional Hilbert space which satisfy 〈ψ, φ〉 = 〈ψ, χ〉 = 0 and
| 〈χ, φ〉 |< 1 such that P =| ψ〉〈ψ | + | φ〉〈φ | and Q =| ψ〉〈ψ | + | χ〉〈χ |. One has
tr(PQ) = 1+ | 〈χ, φ〉 |2. This alternative is equivalent to tr(PQ) ∈ [1, 2).

The three alternatives are distingushed by the value of tr(PQ). For convenience
we introduce the following characteristic geometric parameter ξ = tr(PQ) − 1, which
will determine the modulus of separability completely. We now distinguish the three
possibilities.
(1) which occurs iff ξ = −1. Here PQ = 0 allows one to compute W 2 = αβ1. The
Wootters Criterion is satisfied and the associated state is separable.
(2) which occurs iff ξ = 1. Here P = Q allows on to calculate directly W = A, and
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the Wootters Criterion is just α ≤ 1/2 so the associated state is separable.
(3) which occurs iff 0 ≤ ξ < 1. We may assume that

ψ =




1
0
0
0


 , φ =




0
1
0
0


 , χ =




0√
ξ
η1
η2


 , η =

(
η1
η2

)
,

where η 6= 0 because ‖ η ‖2=‖ χ ‖2 −ξ = 1−ξ > 0. We now partition C4 = C⊕C⊕C2,
so that

P =




1 0 〈0 |
0 1 〈0 |
| 0〉 | 0〉 02


 , Q =




1 0 〈0 |
0 ξ

√
ξ〈η |

| 0〉
√
ξ | η〉 | η〉〈η |


 .

Doing the necessary matrix multiplications we get from our previous formula for W 2

W 2 =




α2 0 〈0 |
0 αβ + α(α − β)ξ (α − β)

√
ξαβ 〈η |

| 0〉 (α− β)
√
ξαβ | η〉 β212 + β(α − β) | η〉〈η |


 .

It is now clear that α2 is an eigenvalue of W 2. The eigenvalue condition for an
eigenvalue ζ to the eigenvector x⊕ µ for the lower right 3× 3 block on C ⊕ C2 is

(ζ − αβ − α(α − β)ξ)x = (α− β)
√
ξαβ〈η, µ〉 (A.1)

(ζ − β2)µ = (α− β)(
√
ξαβ x+ β〈η, µ〉) η . (A.2)

Putting x = 0 and taking as we may µ 6= 0 orthogonal to η, (A.1) is satisfied and
(A.2) reduces to (ζ − β2)µ = 0, thus β2 is an eigenvalue of W 2. We are now left with
the problem of finding eigenvectors orthogonal to those already found. They are of
the form x ⊕ cη with x, c ∈ C. Inserting such eigenvectors into (A.1) and (A.2), the
discussion of the solutions is tedious but straightforward. One obtains the two missing
eigenvalues of W 2 to be

ζ±(α, ξ) =
α

2
(1 − 2α) +

ξ

8
(4α− 1)2

±4α− 1

4

√
2ξα(1 − 2α) + ξ2(2α− 1/2)2 .

Having the four eigenvalues of A we must decide which is the largest. We have
α ≥ β by assumption, and clearly ζ+(α, ξ) ≥ ζ−(α, ξ). Moreover, ξ 7→ ζ+(α, ξ) is
increasing and ζ+(α, 1) = α2. Thus, α is the largest eigenvalue of W and the Wootters
Criterion reads: α ≤ β+

√
ζ+(α, ξ)+

√
ζ−(α, ξ). Manipulation of this inequality show

that it is equivalent to α ≤
(
1 + (1/

√
2 − ξ)

)
/4.

Recalling that α = (1 + t)/4, we arrive at: If the two qubit state ρ has
spec(ρ) = (1/2, 1/2, 0, 0) then

`(ρ) =

{
1 , if Q = 1− P

1√
3−tr(PQ)

, otherwise

where P is the spectral orthoprojection to the eigenavlue 1/2 and Q = (σy⊗σy)P (σy⊗
σy). Since tr(PQ) ∈ [1, 2] when Q 6= 1 − P , we obtain ̂̀

2 = inf{`(ρ) : spec(ρ) =
(1/2, 1/2, 0, 0)} = 1/

√
2.
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