A simple spectral condition implying separability for states of bipartite quantum systems

M E Gabach Clément and G A Raggio

FaMAF, Universidad Nacional de Córdoba, X5000 Córdoba, Argentina

E-mail: raggio@famaf.unc.edu.ar

Abstract. We give a simple spectral condition in terms of the ordered eigenvalues of the state of a bipartite quantum system which is sufficient for separability.

PACS numbers: 03.65.Ud, 03.67.-a

We consider quantum systems where the underlying Hilbert space \mathcal{H} is the tensor product of two finite dimensional Hilbert spaces. A state of such a system is identified with a density operator. A state is said to be separable if it can be written as a convex sum of pure product states of the system; that is to say vector states where the vectors are product vectors. The separable states form a convex subset of the states of the system.

For the simplest bipartite composite system we have the following result

Theorem 1 If the eigenvalues $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4$ of the two qubit state ρ satisfy $3\lambda_1 + \sqrt{2}\lambda_2 + (3 - \sqrt{2})\lambda_3 \leq 2$, then ρ is separable.

The states satisfying the inequality have spectra in the simplex spanned by the spectra (always numbered taking into account multiplicities and nonincreasingly) $(1/2, 1/6, 1/6, 1/6), ((2 + \sqrt{2})/8, (2 + \sqrt{2})/8, (2 - \sqrt{2})/8), (1/3, 1/3, 1/3, 0)$ and (1/4, 1/4, 1/4, 1/4).

The method used to prove this also gives a different proof of the following result given in [1] (Theorem 3)

Theorem 2 If the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ of the state ρ of a bipartite quantum system of dimension d satisfy $3\lambda_d + (d-1)\lambda_{d-1} \geq 1$, then ρ is separable.

Both results provide simple spectral criteria ensuring separability. In the case of two qubits (d = 4) Theorem 2 is much weaker than Theorem 1.

The proof to be given uses certain tools developped in [1] which we briefly present. Given a state ρ on a *d*-dimensional bipartite quantum system, we let $spec(\rho) = (\lambda_1, \lambda_2, \dots, \lambda_d)$ denote the vector of repeated eigenvalues of ρ enumerated so that $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d$. Consider the normalized trace τ over \mathcal{H} , then τ factorizes as the trace over the two factors of \mathcal{H} so that τ is a separable state. Consider the segment with endpoints ρ and τ : $\rho_t = t \cdot \rho + (1 - t) \cdot \tau$, $0 \leq t \leq 1$. The modulus of separability ℓ [1], measures how far can you go towards ρ beginning at τ until you lose separability: $\ell(\rho) = \sup\{t : \rho_t \text{ is separable}\}$. The quantity $(1/\ell) - 1$ was studied by Vidal and Tarrach [2] as the "random robustness of entanglement". It can be shown ([2, 1]) that the supremum is a maximum; that ρ_t is separable iff $t \leq \ell(\rho)$; that $\ell(\rho) > 0$; and that $1/\ell$ is a convex map on the states

$$\ell(s.\rho + (1-s) \cdot \phi) \ge \left(\frac{s}{\ell(\rho)} + \frac{1-s}{\ell(\phi)}\right)^{-1} . \tag{1}$$

The other ingredient is the so called gap-representation of [1]. Let $spec(\rho) = (\lambda_1, \lambda_2, \dots, \lambda_d)$ and $\rho = \sum_{j=1}^d \lambda_j \cdot \rho_j$ be the spectral decomposition of ρ where the ρ_j are pairwise orthogonal pure vector states. Define $\mu_j = j(\lambda_j - \lambda_{j+1}), j = 1, 2, \dots, d-1$; $\hat{\rho}_j = j^{-1} \sum_{m=1}^j \rho_j, j = 1, 2, \dots, d$. Notice that $\sum_{j=1}^{d-1} \mu_j = 1 - d\lambda_d$; that $\hat{\rho}_d = \tau$; and that

$$spec(\widehat{\rho}_j) = (\underbrace{1/j, 1/j, \cdots, 1/j}_{j}, 0, \cdots, 0)$$

So $\hat{\rho}_1$ is pure. Then a gap-representation of ρ is $\rho = \sum_{j=1}^{d-1} \mu_j \cdot \hat{\rho}_j + d \lambda_d \cdot \tau$. Noticing that $\lambda_d = 1/d$ iff $\rho = \tau$, we assume that this is not the case and write

$$\rho = (1 - d\lambda_d) \cdot \omega + d\lambda_d \cdot \tau, \quad \omega = \sum_{j=1}^{d-1} \frac{\mu_j}{1 - d\lambda_d} \cdot \widehat{\rho}_j.$$

By the results mentioned, ρ is separable iff

$$(1 - d\lambda_d) \le \ell(\omega) . \tag{2}$$

Applying (1) to the state ω in its gap representation, we have

$$\ell(\omega) \ge \left(\sum_{j=1}^{d-1} \frac{\mu_j}{(1-d\lambda_d)\ell(\widehat{\rho}_j)}\right)^{-1} = (1-d\lambda_d) \left(\sum_{j=1}^{d-1} \frac{\mu_j}{\ell(\widehat{\rho}_j)}\right)^{-1} ;$$

thus (2) is satisfied (and thus ρ is separable) if $\sum_{j=1}^{d-1} \mu_j / \ell(\hat{\rho}_j) \leq 1$. We can replace the $\ell(\hat{\rho}_j)$ by lower bounds.

Proposition If $\ell(\hat{\rho}_j) \ge p_j \ge 0$ for $j = 1, 2, \dots, d-1$ and $\sum_{j=1}^{d-1} \mu_j / p_j \le 1$ then ρ is separable.

The prime reason for introducing the gap-representation is that not only the last summand τ but also the second last $\hat{\rho}_{d-1}$ are separable. This follows from a result of Gurvits and Barnum [3]: If $tr(\phi^2) \leq 1/(d-1)$ for a bipartite composite system of dimension d then ϕ is separable. Now indeed $tr(\hat{\rho}_{d-1}^2) = 1/(d-1)$.

The least possible modulus of separability has been computed by Vidal and Tarrach [2]: $\inf\{\ell(\phi): \phi \text{ a state }\} = 2/(2+d)$; the infimum is assumed at a pure state. To prove theorem 2, put $p_1 = p_2 = \cdots = p_{d-2} = 2/(2+d)$ and $p_{d-1} = 1$ in the proposition.

Turning to theorem 1, consider the numbers $\hat{\ell}_j := \inf\{\ell(\phi) : spec(\phi) = e^{(j)}\}$, which give the minimal moduli of separability for the states spanning all possible gaprepresentations. Replacing p_j by \hat{l}_j in the Proposition gives us a general inequality providing a sufficient condition for separability. No general information is available for the \hat{l}_j except the calculation of [4] for two qubits where $\hat{l}_1 = 1/3$, $\hat{l}_2 = 1/\sqrt{2}$, and $\hat{l}_3 = 1$. From this and the proposition one gets theorem 1. Since $\hat{l}_1 = 1/3$, and $\hat{l}_3 = 1$ follow from the results quoted above, we only give the calculation of \hat{l}_2 in the appendix.

Appendix A. Calculation of ℓ for a two qubit state with spec=(1/2, 1/2, 0, 0)

[4] gives a direct calculation of $\hat{\ell}_1$, $\hat{\ell}_2$ and $\hat{\ell}_3$ using the Wootters Criterion [5]. Recall that if ρ is a state of a two qubit system, the Wootters operator W associated to it is

$$W = (\sqrt{\rho}(\sigma_y \otimes \sigma_y)\overline{\rho}(\sigma_y \otimes \sigma_y)\sqrt{\rho})^{1/2}$$
.

Here all operators are taken as matrices with respect to a product orthonormal basis.

$$\sigma_y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right)$$

and $\overline{\rho}$ is the complex conjugate of ρ taken with respect to the basis which is real. The Wootters Criterion is: ρ is separable if and only if the (repeated) eigenvalues $w_1 \ge w_2 \ge w_3 \ge w_4$ of W satisfy $w_1 \le w_2 + w_3 + w_4$.

We will calculate the modulus of separability for any state ρ for which $spec(\rho) = (1/2, 1/2, 0, 0)$ by calculating the spectrum of the Wootters operator associated to $\rho_t = t\rho + (1-t)\tau$, $0 \le t \le 1$. The spectrum of ρ_t consists of two double eigenvalues $\alpha = (1+t)/4$ and $\beta = (1-t)/4$ (which coincide for t = 0 where $\rho_0 = \tau$). In order not to overload the notation we consider a density operator A with $spec(A) = (\alpha, \alpha, \beta, \beta)$ where $\alpha + \beta = 1/2$, and $\alpha \ge \beta \ge 0$; thus $1/4 \le \alpha \le 1/2$. The spectral decomposition of A reads $A = \alpha P + \beta P^{\perp}$, where P is an orthoprojection of rank 2 and $P^{\perp} = \mathbf{1} - P$ is its orthocomplement, another orthoprojection of rank 2. It follows that $(\sigma_y \otimes \sigma_y)\overline{A}(\sigma_y \otimes \sigma_y) = \alpha Q + \beta Q^{\perp}$ is the spectral decomposition where $Q = (\sigma_y \otimes \sigma_y)\overline{P}(\sigma_y \otimes \sigma_y)$ is an orthoprojection of rank 2 and $Q^{\perp} = \mathbf{1} - Q$. Using this one obtains for the square of the Wootters operator associated to A the formula

$$W^{2} = \beta^{2} \mathbf{1} + \beta(\alpha - \beta)(P + Q) + (\alpha - \beta)(\sqrt{\alpha\beta} - \beta)(PQ + QP) + (\alpha^{2} - \beta^{2} - 2\sqrt{\alpha\beta}(\alpha - \beta))PQP .$$

Now since P, P^{\perp}, Q and Q^{\perp} are orthoprojections of rank 2 in a four dimensional Hilbert space, we have three mutually exclusive alternatives for the subspaces U and V spanned by P and Q respectively: (1) $U \cap V = \{0\}$ which happens when and only when $Q = \mathbf{1} - P$ which is equivalent to tr(PQ) = 0; (2) $dim(U \cap V) = 2$ which happens when and only when Q = P which is equivalent to tr(PQ) = 2; and (3) $dim(U \cap V) = 1$ which happens when and only when there are unit vectors ψ , ϕ and χ in the four dimensional Hilbert space which satisfy $\langle \psi, \phi \rangle = \langle \psi, \chi \rangle = 0$ and $|\langle \chi, \phi \rangle| < 1$ such that $P = |\psi\rangle \langle \psi| + |\phi\rangle \langle \phi|$ and $Q = |\psi\rangle \langle \psi| + |\chi\rangle \langle \chi|$. One has $tr(PQ) = 1 + |\langle \chi, \phi \rangle|^2$. This alternative is equivalent to $tr(PQ) \in [1, 2)$.

The three alternatives are distinguished by the value of tr(PQ). For convenience we introduce the following characteristic geometric parameter $\xi = tr(PQ) - 1$, which will determine the modulus of separability completely. We now distinguish the three possibilities.

(1) which occurs iff $\xi = -1$. Here PQ = 0 allows one to compute $W^2 = \alpha\beta \mathbf{1}$. The Wootters Criterion is satisfied and the associated state is separable.

(2) which occurs iff $\xi = 1$. Here P = Q allows on to calculate directly W = A, and

the Wootters Criterion is just $\alpha \leq 1/2$ so the associated state is separable. (3) which occurs iff $0 \leq \xi < 1$. We may assume that

$$\psi = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \quad \phi = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad \chi = \begin{pmatrix} 0\\\sqrt{\xi}\\\eta_1\\\eta_2 \end{pmatrix}, \quad \eta = \begin{pmatrix} \eta_1\\\eta_2 \end{pmatrix}$$

where $\eta \neq 0$ because $\| \eta \|^2 = \| \chi \|^2 - \xi = 1 - \xi > 0$. We now partition $\mathbb{C}^4 = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}^2$, so that

$$P = \begin{pmatrix} 1 & 0 & \langle 0 | \\ 0 & 1 & \langle 0 | \\ | 0 \rangle & | 0 \rangle & 0_2 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & 0 & \langle 0 | \\ 0 & \xi & \sqrt{\xi} \langle \eta | \\ | 0 \rangle & \sqrt{\xi} | \eta \rangle & | \eta \rangle \langle \eta | \end{pmatrix}$$

Doing the necessary matrix multiplications we get from our previous formula for W^2

$$W^{2} = \begin{pmatrix} \alpha^{2} & 0 & \langle 0 | \\ 0 & \alpha\beta + \alpha(\alpha - \beta)\xi & (\alpha - \beta)\sqrt{\xi\alpha\beta} \langle \eta | \\ | 0 \rangle & (\alpha - \beta)\sqrt{\xi\alpha\beta} | \eta \rangle & \beta^{2}\mathbf{1}_{2} + \beta(\alpha - \beta) | \eta \rangle \langle \eta | \end{pmatrix}.$$

It is now clear that α^2 is an eigenvalue of W^2 . The eigenvalue condition for an eigenvalue ζ to the eigenvector $x \oplus \mu$ for the lower right 3×3 block on $\mathbb{C} \oplus \mathbb{C}^2$ is

$$(\zeta - \alpha\beta - \alpha(\alpha - \beta)\xi)x = (\alpha - \beta)\sqrt{\xi\alpha\beta}\langle\eta,\mu\rangle$$
(A.1)

$$(\zeta - \beta^2)\mu = (\alpha - \beta)(\sqrt{\xi\alpha\beta} x + \beta\langle\eta,\mu\rangle)\eta.$$
(A.2)

Putting x = 0 and taking as we may $\mu \neq 0$ orthogonal to η , (A.1) is satisfied and (A.2) reduces to $(\zeta - \beta^2)\mu = 0$, thus β^2 is an eigenvalue of W^2 . We are now left with the problem of finding eigenvectors orthogonal to those already found. They are of the form $x \oplus c\eta$ with $x, c \in \mathbb{C}$. Inserting such eigenvectors into (A.1) and (A.2), the discussion of the solutions is tedious but straightforward. One obtains the two missing eigenvalues of W^2 to be

$$\zeta_{\pm}(\alpha,\xi) = \frac{\alpha}{2}(1-2\alpha) + \frac{\xi}{8}(4\alpha-1)^2 \\ \pm \frac{4\alpha-1}{4}\sqrt{2\xi\alpha(1-2\alpha) + \xi^2(2\alpha-1/2)^2}$$

Having the four eigenvalues of A we must decide which is the largest. We have $\alpha \geq \beta$ by assumption, and clearly $\zeta_{+}(\alpha, \xi) \geq \zeta_{-}(\alpha, \xi)$. Moreover, $\xi \mapsto \zeta_{+}(\alpha, \xi)$ is increasing and $\zeta_{+}(\alpha, 1) = \alpha^{2}$. Thus, α is the largest eigenvalue of W and the Wootters Criterion reads: $\alpha \leq \beta + \sqrt{\zeta_{+}(\alpha, \xi)} + \sqrt{\zeta_{-}(\alpha, \xi)}$. Manipulation of this inequality show that it is equivalent to $\alpha \leq (1 + (1/\sqrt{2-\xi}))/4$.

Recalling that $\alpha = (1 + t)/4$, we arrive at: If the two qubit state ρ has $spec(\rho) = (1/2, 1/2, 0, 0)$ then

$$\ell(\rho) = \begin{cases} 1 & , & \text{if } Q = \mathbf{1} - P \\ \frac{1}{\sqrt{3 - tr(PQ)}} & , & \text{otherwise} \end{cases}$$

where P is the spectral orthoprojection to the eigenvalue 1/2 and $Q = (\sigma_y \otimes \sigma_y)\overline{P}(\sigma_y \otimes \sigma_y)$. Since $tr(PQ) \in [1,2]$ when $Q \neq \mathbf{1} - P$, we obtain $\hat{\ell}_2 = \inf\{\ell(\rho) : spec(\rho) = (1/2, 1/2, 0, 0)\} = 1/\sqrt{2}$.

References

- [1] Raggio G A 2006 Spectral conditions on the state of a composite quantum system implying its separability J. Phys. A 39 617
- Vidal G and Tarrach R 1999 Robustness of entanglement Phys. Rev. A 59 141
- [2] Vidal G and Tarrach R 1999 Robustness of entanglement Phys. Rev. A 59 141
 [3] Gurvits L and Barnum H 2003 Separable balls around the maximally mixed multipartite quantum state Phys. Rev. A 68 042312
- [4] Gabach Clément M E 2005 Entrelazamiento en sistemas cuánticos compuestos. Trabajo Especial de Licenciatura en Física, FaMAF, Diciembre 2005. Unpublished.
 [5] Wootters W K 1998 Entanglement of formation of an arbitrary state of two qubits *Phys. Rev.*
- Lett. 80 2245