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Abstract. We give a simple spectral condition in terms of the ordered
eigenvalues of the state of a bipartite quantum system which is sufficient for
separability.

PACS numbers: 03.65.Ud, 03.67.-a
We consider quantum systems where the underlying Hilbert space H is the tensor
product of two finite dimensional Hilbert spaces. A state of such a system is identified
with a density operator. A state is said to be separable if it can be written as a convex
sum of pure product states of the system; that is to say vector states where the vectors
are product vectors. The separable states form a convex subset of the states of the
system.

For the simplest bipartite composite system we have the following result

Theorem 1 If the eigenvalues \1 > Ao > A3 > Ay of the two qubit state p satisfy
3\ + V2 + (3-— \/5))\3 < 2, then p is separable.

The states satisfying the inequality have spectra in the simplex spanned by the
spectra (always numbered taking into account multiplicities and nonincreasingly)
(1/2,1/6,1/6,1/6), ((2++/2)/8,(2+/2)/8,(2—/2)/8,(2—+/2)/8), (1/3,1/3,1/3,0)
and (1/4,1/4,1/4,1/4).

The method used to prove this also gives a different proof of the following result
given in [1] (Theorem 3)

Theorem 2 If the eigenvalues \y > Ao > --- > Ag of the state p of a bipartite
quantum system of dimension d satisfy 3Aq + (d — 1) g—1 > 1, then p is separable.

Both results provide simple spectral criteria ensuring separability. In the case of two
qubits (d = 4) Theorem 2 is much weaker than Theorem 1 .

The proof to be given uses certain tools developped in [1] which we briefly
present. Given a state p on a d-dimensional bipartite quantum system, we let
spec(p) = (A1, A2, - -+, Aq) denote the vector of repeated eigenvalues of p enumerated
so that Ay > Ao > --- > \;. Consider the normalized trace 7 over H, then 7 factorizes
as the trace over the two factors of H so that 7 is a separable state. Consider the
segment with endpoints p and 71 pr =t-p+ (1 —¢)-7, 0 <t < 1. The modulus
of separability ¢ [1], measures how far can you go towards p beginning at 7 until you
lose separability: ¢(p) = sup{t: p; is separable}. The quantity (1/¢) — 1 was studied
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by Vidal and Tarrach [2] as the “random robustness of entanglement”. It can be
shown ([2, 1]) that the supremum is a maximum; that p; is separable iff ¢ < £(p); that
£(p) > 0; and that 1// is a convex map on the states

Usp+(1=5)-6) > (m+ 1@8)_ | 1)

The other ingredient is the so called gap-representation of [1]. Let spec(p) =

(M, A2, -, \g) and p = 2?21 Aj - pj be the spectral decomposition of p where the p;

are pairwise orthogonal pure vector states. Define uj =jN—N41),5=1,2,---,d-1,;
pi =i ') . pj,i=1,2,---,d. Notice that Z] 1 1 =1 —d)g; that pg = 75 and
that

Sp@C(,D]) (1/]71/]a 1/]50750)
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So p; is pure. Then a gap-representation of p is p = Z‘j;ll ;- pj +d Ag - 7. Noticing
that Ay = 1/d iff p = 7, we assume that this is not the case and write

d—1
p=(1—dr\p) w+dri-T, wjzll_“;Ad B -
By the results mentioned, p is separable iff
(1 dh) < (). 2)
Applying (1) to the state w in its gap representation, we have
-1 -1
Uw) > f# = (1—d\g) St ;
=\ & T i) 2G|

thus (2) is satisfied (and thus p is separable) if Z] 1 uj/é( ;) < 1. We can replace
the ¢(p;) by lower bounds.

Proposition If¢(p;) > p; >0 for j=1,2,---,d—1 and Z?;ll wi/p; <1 then p is
separable.

The prime reason for introducing the gap-representation is that not only the last
summand 7 but also the second last pg_1 are separable. This follows from a result
of Gurvits and Barnum [3]: If tr(¢?) < 1/(d — 1) for a bipartite composite system of
dimension d then ¢ is separable. Now indeed tr(p3_,) =1/(d — 1).

The least possible modulus of separability has been computed by Vidal and Tar-
rach [2]: inf{l(¢): ¢ a state } = 2/(2+d); the infimum is assumed at a pure state. To
prove theorem 2, put p; = pa = -+ - = pg—2 = 2/(24d) and pg—1 = 1 in the proposition.

Turning to theorem 1, consider the numbers EAJ = inf{l(¢) : spec(p) = e},
which give the minimal moduli of separability for the states spanning all possible gap-
representations. Replacing p; by [; in the Proposition gives us a general inequality
providing a sufficient condition for separability. No general information is available
for the I; except the calculation of [4] for two qubits where I = 1/3 I = 1/V2,
and lA3 = 1. From this and the proposition one gets theorem 1. Since 11 =1/3, and
lAg, =1 follow from the results quoted above, we only give the calculation of lAg in the
appendix.



Appendix A. Calculation of ¢ for a two qubit state with
spec=(1/2,1/2,0,0)

[4] gives a direct calculation of 01, U5 and 75 using the Wootters Criterion [5]. Recall
that if p is a state of a two qubit system, the Wootters operator W asssociated to it is

W = (Vp(oy ® 0y)ploy @ ay)v/p)'/? .

Here all operators are taken as matrices with respect to a product orthonormal basis.

0 —i
b=\ i o

and p is the complex conjugate of p taken with respect to the basis which is real.
The Wootters Criterion is: p is separable if and only if the (repeated) eigenvalues
wy > we > ws > wy of W satisfy wy < wg + w3 + wy.

We will calculate the modulus of separability for any state p for which spec(p) =
(1/2,1/2,0,0) by calculating the spectrum of the Wootters operator associated to
pt =tp+ (1 —t)7, 0 <t < 1. The spectrum of p; consists of two double eigenvalues
a=(14+t)/4 and = (1 —t)/4 (which coincide for ¢ = 0 where pg = 7). In order not
to overload the notation we consider a density operator A with spec(A) = (o, o, 3, 3)
where a« + 8 = 1/2, and @« > 8 > 0; thus 1/4 < a < 1/2. The spectral
decomposition of A reads A = aP + 3P, where P is an orthoprojection of rank
2 and P = 1 — P is its orthocomplement, another orthoprojection of rank 2. It
follows that (0, ® 0,)A(0, ® 0,,) = aQ + BQ* is the spectral decomposition where
Q = (0, ®0,)P(0, ®0y) is an orthoprojection of rank 2 and @+ = 1 — Q. Using this
one obtains for the square of the Wootters operator associated to A the formula

W2 =321+ o — B)(P+ Q) + (a — B)(v/aB — B)(PQ + QP)
+(a? - B2 = 2\/af(a — B))PQP .

Now since P, Pt, Q and Q' are orthoprojections of rank 2 in a four dimensional
Hilbert space, we have three mutually exclusive alternatives for the subspaces U and
V spanned by P and @ respectively: (1) U NV = {0} which happens when and only
when @ = 1 — P which is equivalent to tr(PQ) = 0; (2) dim(U NV) = 2 which
happens when and only when @ = P which is equivalent to tr(PQ) = 2; and (3)
dim(U N'V) = 1 which happens when and only when there are unit vectors 1, ¢
and x in the four dimensional Hilbert space which satisfy (v, ¢) = (¥, x) = 0 and

| (x,¢) [< 1 such that P =[¢)(¢ | + [ ¢)(¢ | and Q =| ¢)(¢ | + | x){x | One has
tr(PQ) = 1+ | {x, ¢) |*>. This alternative is equivalent to tr(PQ) € [1,2).

The three alternatives are distingushed by the value of tr(PQ). For convenience
we introduce the following characteristic geometric parameter £ = tr(PQ) — 1, which
will determine the modulus of separability completely. We now distinguish the three
possibilities.

(1) which occurs iff £ = —1. Here PQ = 0 allows one to compute W? = af31. The
Wootters Criterion is satisfied and the associated state is separable.
(2) which occurs iff £ = 1. Here P = @ allows on to calculate directly W = A, and



the Wootters Criterion is just o < 1/2 so the associated state is separable.
(3) which occurs iff 0 < £ < 1. We may assume that

1 0 0
_10 _ |1 _| vE _(m
1/1_ 0 ,¢— 0 ’X_ 771 577_(772)3
0 0 2

where 7 # 0 because || n ||?=|| x [|> —¢ = 1—£ > 0. We now partition C* = CaoCaC?,
so that

1 0 (0] 1 0 (O]
P={ 0 1 (0] |,Q=| 0 & VEm|
[0) [0) 02 10) VEIn) [n)n]
Doing the necessary matrix multiplications we get from our previous formula for W?2
a? 0 (0]

W2=1| 0 af+ala—pB)E (a = pB)vEaf (n|
10) (a=B)VEaB | n) Lo+ Bla—B)|n)n]

It is now clear that a? is an eigenvalue of W?2. The eigenvalue condition for an
eigenvalue ¢ to the eigenvector x @ u for the lower right 3 x 3 block on C @ C? is

((—af —ala—p))r = (a— B)vEaB(n, ) (A1)
(=B =(a=B)(VEaBx+Bnu)n . (A.2)

Putting © = 0 and taking as we may p # 0 orthogonal to 7, (A.1) is satisfied and
(A.2) reduces to (¢ — 3%)u = 0, thus 32 is an eigenvalue of W?. We are now left with
the problem of finding eigenvectors orthogonal to those already found. They are of
the form = @ en with z,c € C. Inserting such eigenvectors into (A.1) and (A.2), the
discussion of the solutions is tedious but straightforward. One obtains the two missing
eigenvalues of W2 to be

G0, ) = 31— 20) + §(4a— 1)?

da—1
4
Having the four eigenvalues of A we must decide which is the largest. We have
a > (B by assumption, and clearly (y(a,&) > (_(a,&). Moreover, £ — (4(a,§) is
increasing and (4 (o, 1) = 2. Thus, « is the largest eigenvalue of W and the Wootters
Criterion reads: o < 3+ \/C+ (o, &)+ \/§, (, €). Manipulation of this inequality show
that it is equivalent to o < (1+ (1/v/2—¢)) /4.
Recalling that « = (1 + t)/4, we arrive at: If the two qubit state p has
spec(p) = (1/2,1/2,0,0) then

1 . ifQ=1-P
Up) = 7#(]3@ , otherwise
where P is the spectral orthoprojection to the eigenavlue 1/2 and Q = (0, ®0,)P(0,®
oy). Since tr(PQ) € [1,2] when Q # 1 — P, we obtain ¢, = inf{{(p) : spec(p) =
(1/2,1/2,0,0)} = 1//5.

+ V26a(1 —2a) + €2(2a — 1/2)2.
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