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Córdoba 5000, Argentina

August 29, 2004

The main purpose of this work is to present some uniform functions constant of
the motion, either than the well known quantities arising from spacetime symmetries.
These constants are usually associated with intrinsic characteristic of the trajectories
of a particle in a central potential field. We treat two cases.The first one is the Lenz
vector which sometimes is found in the literature[1, 2]; theother case is associated
with the isotropic harmonic oscillator, of relative importance in some simple models of
classical molecular interaction. The first example is applied to describe the perturbation
of the trajectories in the Rutherford scattering and the precession of the Keplerian orbit
of a planet. In the other case the conserved quantity is a symmetric tensor. We find
the eigenvectors and eigenvalues of that tensor while at thesame time we obtain the
solution to the problem of calculating the rotation rate of the orbits in first order of
a perturbation parameter in the potential energy, by performing a simple coordinate
transformation in the Cartesian plane. We think that the present work addresses to
many aspects of Mechanics with a didactical interest in other Physics or Mathematics
courses.

1 Introduction

It is well known that an isolated mechanical system has a set of conserved quantities
associated with its invariance property under the Galileangroup. In the Newtonian
formulation of the equations of motion this property is characterized by the absence
of a total external force and an external net torque acting onthe system; it is also
required that the internal force between a pair of particlesdepends only on the distance
between the particles1 These conserved quantities are the well known linear momentum
and angular momentum, both as conserved vectors, and the total energy2 considered a

1For the conservation of the angular momentum it is enough that the internal force between a pair of
particles be along the same line of action.

2The sum of the internal potential energy plus the kinetic energy corresponding to the motion of the
system as a whole.
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Figure 1: Trajectory and coordinate system for a positive particle scattered by an atomic
nucleus.

scalar quantity.
Curiously, these are not all the conserved quantities for a given particular system.

It may well happen that we have other conserved quantities (which may be scalars,
vectors or, in general, tensors), even for systems which arenot isolated. In all cases
the conserved quantities are uniform functions of the stateof the system (positions and
velocities)[1]. Some known examples are the Lenz vector fora particle in Coulomb
or Kepler central potential and the “position-velocity” tensor for the spatial isotropic
oscillator[2, 3, 4]. The existence of these conserved quantities is useful to find the
equation of the trajectory in a simple and quite straightforward manner and to study
the changes in those trajectories due to a small perturbation in the original potential
energy of the system.

In this work we shall consider the cases of central potentials of the forms 1/r and
r2 and their perturbations of the typern for some particular values ofn.

2 The Lenz vector

Let us consider a particle of massm in a central field with potential energy

U(r) = α/r , (1)

whereα is a positive or negative constant. The vector expression (Lenz vector)

~A =~v∧ ~J +α~r/r , (2)

is a uniform function of(~r,~v) constant of the motion[1]. In eq.(2)~J is the constant
angular momentum of the particle, with respect to the centerof force, and~v is the
velocity of the particle.
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Since~A is a constant vector it may be computed at any point on the trajectory of
the particle. The trajectory may be an ellipse, a parabola ora hyperbola, depending on
the value ofα and the energy of the particle. The orbits are symmetric respect to the
pericenter where~r and~v are mutually orthogonal. A simple calculation shows that~A is
along the line joining the center of symmetry with the pericenter. A first application of
the Lens vector it is to obtain the equation of the trajectoryby taking the scalar product
of eq.(2) with~r. For instance, if we are interested in the scattering of positive particles
by an atomic nucleus (Rutherford scattering) we takeα > 0. In this case the energy
can only be positive or null and the motion is infinite. The trajectory is a hyperbola
(E > 0), or a parabola (E = 0). Let us consider the case of a hyperbola. The initial data
may be chosen as the initial velocity at infinity,~v0, and the impact parameterρ [see
figure (1)]. Let ( ˆex, êy, êz) be a basis of Cartesian orthonormal vectors; then

~J = mv0ρ êz , ~v0 = −v0 êx , (3)
~A = mv2

0ρ êy +α êx . (4)

The particle is scattered in the direction ˆe at an angleψ with respect to the incoming
direction. The vector~A can also be expressed in terms of the outgoing parameters:

~A = mv2
0ρ ê∧ êz +α ê . (5)

Taking into account that
ê = −cosψ êx + senψ êy , (6)

we obtain

α = mv2
0ρsenψ−αcosψ , (7)

mv2
0ρ = mv2

0ρcosψ+αsenψ . (8)

From eqs.(7, 8) we have

tg
ψ
2

=
α

mv2
0ρ

, (9)

which is the usual expression for the scattering angleψ in terms of the initial datav0

andρ.
The equation of the orbit in polar coordinates (r, θ) is obtained by taking the scalar

product of eq.(2) with~r = r(cosθêx + senθêy):

~A ·~r = (J2/m)+αr ⇒ (10)
1
r

=
m
J2 [α(cosθ−1)+mv2

0ρsenθ] . (11)

2.1 The perturbed Rutherford scattering

Let the potential energy be of the form

U(r) =
α
r

+
β

nrn ⇒ ~f =
α~r
r3 +

β~r
rn+2 , (12)
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Figure 2: New system of coordinates adapted to the symmetry of the trajectory.

while at the same time we keep expression (2) for the Lenz vector; ~f is the central force
acting on the particle. Then

d~A
dt

=
β

mrn+2~r∧ ~J ⇒
d~A
dθ

=
β

Jrn~r∧ ~J . (13)

In writing eq.(13) we have used that(dθ/dt) = J/mr2. We wish to compute the total
change of~A, in first order in the parameterβ. To this end, we may integrate eq.(13)
along the unperturbed trajectory forθ varying from 0 toΘ, whereΘ = π−ψ. Let us
recall that the Lenz vector corresponding to the unperturbed trajectory is a constant
vector pointing to the pericenter in the directionγ = Θ/2 (see fig. 1). According
to eq.(13), the elementary change in~A due to the perturbation is in the plane of the
trajectory and it is perpendicular to~r at each point. Because of the symmetry of the
trajectory with respect to the point of minimal distance to the center, the total change
in ~A is only different of zero in the direction perpendicular to the line joining the center
of force and the pericenter. Then, to simplify the calculation it is convenient to choose
a new system of orthogonal coordinates(x ′,y ′) in the plane of the orbit withx ′ in the
direction of the pericenter [see figure (2)]. Then,

~r = rcosδ ê ′
x + rsinδ ê ′

y . (14)

The only component of~r, in eq.(14), that contribute to the integration of eq.(13) is the
x ′ component. Thus,

~A(Θ)−~A(0) = − êy
′ β
Z Θ

0

cosδ
rn−1 dθ , (15)
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where δ = θ − Θ/2. The integration is along the unperturbed trajectory given by
eq.(11). To show a definite result let us considern = 2. Thecosδ is obtained tak-
ing the scalar product(~A ·~r) in the (x ′,y ′) coordinate system and using thatA =
(α2 +m2v4

0ρ2)1/2. Finally,

∆~A := ~A(Θ)−~A(0)

= − ê ′
y

Z γ

0
dθ

2mβ(αcosθ+mv2
0ρsenθ)[α(cosθ−1)+mv2

0ρsinθ]

J2(α2 +m2v4
0ρ2)1/2

. (16)

The integration is straightforward and the result is notably simplified if we take into
account that

cosγ =
α
A

; senγ =
mv2

0ρ
A

.

The change in the scattering angle due to the perturbation inthe potential becomes:

δ(Θ/2)) ≃
|∆~A|

A
=

βm
2J2 (Θ− senΘ) . (17)

Writing β = m β̃; i.e., considering the perturbing potential energy per unit mass, and
introducing the angular momentum per unit massH := J/m, eq.(17) can be expressed
as

δ(Θ/2)) ≃
β̃

2H2 (Θ− senΘ) , (18)

We see from eq.(18) thatδ(Θ/2)) actually does not depend on the mass of the particle
as it is in general in the case of a force field which is proportional to the gradient of a
potential energy. This remark will result useful in some applications below.

2.2 The perturbed Kepler orbits

An interesting and somehow important case is to study the shift of the Keplerian orbit
of a planet in the solar system due to a possible widened by a massive bulge around the
equator of the Sun3. Its external gravitational potential energy per unit mass, Ũ(r,ν),
will depend on the distance to the center of the Sun and the azimuthal angleν mea-
sured from the polar axis. Hence, if we developed the potential Ũ(r,ν) in spherical
harmonics, the leading two terms are of the form

Ũ(r,ν) = −
α̃
r

+D
3cos2ν−1

r3 +O

(

1
r4

)

. (19)

The factorD depends, among other quantities, on the deformation of the sphere repre-
sented by the extra mass along the equator. We are usually interested in the orbit of a
planet in the equatorial plane whereν = π/2, then the potential̃U(r,ν) acts on it as it
has the purely radial dependence

Ũ(r) = −
α̃
r

+
β̃
r3 ; α̃ > 0 . (20)

3This change in the sphericity of the Sun will show as a significant quadrupolar term in its external
gravitational potential.
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The potential energy of a planet of massm is U(r) = mŨ(r), which of the form (12)
with n = 3.

In what follows we shall study the perihelium shift per revolution considering a
small perturbation of the Keplerian potential energy of theform β/rn, in the cases
n = 2,3.

Casen = 2.

Let

U(r) = −
α
r

+
β
r2 . (21)

Then, using the expression~A =~v∧ ~J−α~r/r, we have

d~A
dt

=
2β

mr3 êr ∧ ~J ⇒
d~A
dθ

=
2β
r

êr ∧ êz , (22)

where we have used that~J = mr2 θ̇ êz in a Cartesian orthogonal system with(êx, êy) in
the equatorial plane. The unperturbed orbit can be written as

p
r

= 1+ ecosθ , (23)

wheree = A/α ; p = J2/mα. To obtain eq.(23) we have considered that~A is constant
and it points to the perihelium. If the (perturbed) potential energy is given by eq.(21)
the vector~A will point again to the perihelium after one revolution but it will be shifted
by an angle∆θ = |∆~A|/A. To calculate∆~A, in first order ofβ, we integrate (22) along
the unperturbed orbit fromθ = 0 to θ = 2π:

∆~A := ~A(2π)−~A(0) = −
2β
p

êz ∧
Z 2π

0
êr(1+ ecosθ)dθ

= −
2βmπA

J2 êy . (24)

Then,

∆θ = −
2β̃π
H2 , (25)

where we have introduced again the constants per unit massβ̃ andH.

Casen = 3.

Let now
U(r) = −

α
r

+
γ
r3 . (26)

By a similar calculation to the previous case we obtain the result

∆θ = −
6γ̃π α̃

H4 , (27)
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whereγ = γ̃m, α = α̃m andJ = H m. This case corresponds to a flattening of the solar
sphere into an ellipsoid (or. equivalently, to a surplus mass located at the ring around
the equator of the Sun, as we have discussed). Astronomers observe the shift in the
perihelium motion after many revolutions of the planet. In particular, we may express
the perihelium shift per century by the formula

P :=
∆θ
T

= −
6πγ̃ α̃
H4 T

, (28)

whereT is the period of revolution expressed in units of centuries4. Sincer2(d θ/d t) =
H, we have that, approximately, 2πR2 = H T ; whereR is the mean distance planet-Sun.
Then, we can write eq.(28) as

P = −
6πγ̃ α̃T 3

(2π)4 R8 . (29)

Finally, if we use Kepler’s third law:(T 2/R3) = C, whereC is a constant of the same
value for all the planets5, we have

P = K R−7/2 , (30)

whereK is a constant that resumes all the previous constants and it is the same for all
the planets. We notice that the perihelium shift is greater for the planets closer to the
Sun. The measured value[5] ofP for Mercury isPM = (43,11±0,45) arc seconds per
century. Since the value of̃γ for the Sun is quite uncertain, we may obtain the value of
K from the valuePM andRM for Mercury and compute the values ofP from eq.(30).
The best fit to the observational data[6] is given by a straight line in the form

lnP = alnR+b , (31)

with slopea = −2,30±0,26. The theoretical value according to eq.(30) isa = −3,5,
which is outside the range of uncertainty of the observational data and shows that the
model is not at all satisfactory. To overcome this difficultywas one of the results
contained in the three classical tests of General Relativity which predicts[6] a slopea =
−2,5 for the residual perihelium advance of the planets observed by the astronomers6.

3 The isotropic harmonic oscillator

By an isotropic harmonic oscillator we mean a particle of mass m in a central field of
force with a potential energy given by

U(r) =
1
2

k r2 . (32)

4For instance, if the planet is the Earth, thenT = 10−2 centuries.
5Actually, C depends on the mass of the planet trough the ratiomass of the planet/reduce mass of the

system planet-Sun. The differences were not observable by Kepler and they are not significant for the present
discussion.

6The residual perihelium advance of the planets is that whichmay not be associated with any other cause
that excludes the Sun.
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Clearly, the equation of motion are separable in Cartesian coordinates. The motion of
the particle is in a plane that we choose as the(x,y) one. Thus the functions of motion,
with an adequate choice of the origen oft and the orientation of the coordinate system,
can be written as

x(t) = Acosωt ,

y(t) = Bsenωt , (33)

whereω2 = k/m = 1/α. The trajectory corresponding to eq.(33) is an ellipse withits
center at the origen and axis along the direction of the coordinate axis:

x2

A2 +
y2

B2 = 1 . (34)

It is straightforward to show that the tensor

Fi j = xix j +αviv j , (35)

wherexi = (x,y) ; vi = (vx.vy); αω2 = 1, is a constant of motion; i.e.,

d Fi j

dt
= 0 , (36)

when the equations of motion are satisfied. From eqs.(33) and(35) the components of
F are

Fi j =

(

A2 0
0 B2

)

. (37)

The eigenvalues ofFi j areA2 andB2.; the corresponding eigenvectors are along the
direction of the axis of symmetry of the ellipse (34).

3.1 Orbit perturbation by changing the potential in first ord er

We wish to study now how the trajectory changes when we perturb the potential energy
by adding to it a term of the form, for instance,

δU(r) =
β
r4 , (38)

whereβ ≪ (A2 +B2)3 k. It is clear that the tensor (35) will not longer be constant.We
have:

d Fi j

dt
=

4αβ
mr6 (xiv j + x jvi) . (39)

After a lapse of one period the tensorF will no longer be diagonal as in eq.(37); all its
components will change by first order terms keeping its symmetry property. However,
it is possible to perform a rotation of the coordinate systemby an angleψ to haveF
in a diagonal form again, with the new axis of symmetry of the ellipse along the axis
of the rotated coordinate system [see figure (3)]. To obtain the angleψ it is enough
to calculate along the unperturbed trajectory, in the original coordinate system, the
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Figure 3: Two elliptical orbits that show the rotation angleψ of the symmetry axis after
a revolution.

expression ofF after a revolution and find its eigenvectors which are, precisely, along
the direction of the symmetry axis of the rotated trajectory. Then, the angleψ is given
by the expression

tagψ =
Xy

Xx
, (40)

whereXx y Xy are the coordinate components of the new eigenvector that form an
angleψ with thex-axis. To have the tensorF after a period we integrate eq.(39) on the
unperturbed orbit forω t from 0 to 2π. Thus,

Fi j(2π)−Fi j(0) =
4αβ
ωm

Z 2π

0

(xiv j + x jvi)

r6 d(ω t) . (41)

The initial valueFi j(0) is the tensor (37). In generalFi j(2π) will have the form

Fi j(2π) = Fi j(0)+Oi j , (42)

whereOi j is of orderβ. Similarly, the eigenvectors and eigenvalues ofFi j(2π) can be
calculated up to the first order inβ. We would obtainXy = O(β); Xx = 1+ O(β) and
the eigenvaluesλ1 = A2+O(β); λ2 = B2+O(β). By a simple calculation it is possible
to show that the components of the eigenvectorX can be chosen as

Xx = 1 ; Xy =
F12(2π)

λ1−F22(2π)
. (43)

From eqs. (40), (42) and (43) we can calculate the angleψ up to orderβ by

ψ ≃
F12(2π)

A2−B2 . (44)

Then, from eq.(41)

F12(2π) =
4αβAB

m

Z 2π

0

(cos2 θ− sen2 θ)

(A2cos2 θ+B2sen2 θ)3 dθ

= −
3παβ(A4−B4)

mA4 B4 , (45)
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where we have putθ = ω t. Finally,

ψ ≃−
3παβ(A2 +B2)

mA4 B4 . (46)

The velocity of rotation of the ellipse’ axis is

Ω :=
ψω
2π

= −
3β̃(A2 +B2)

2ωA4 B4 , (47)

whereβ̃ = β/m and we have used thatαω2 = 1. Eq.(47) coincides with the result
obtained by Kotkin and Serbo[7] through a different method.

4 Final comments

The main purpose of this work was to bring to the attention of students and teachers
the existence of another uniform functions constant of the motion rather than the well
known quantities arising from spacetime symmetries. We have treated, in some de-
tails, just two cases. The first one is the Lenz vector which sometimes is found in the
literature[1, 2]; the other case is associated with the isotropic harmonic oscillator of
relative importance in some simple models of classical molecular interaction. The first
example was applied to describe the perturbation in the trajectories by the addition in
the potential energy of a small term depending only on the radial variable. As an in-
teresting application of the method, we computed the changein the outgoing direction
of a scattered particle as predicted in the Rutherford scattering. Another problem that
we considered was the precession of the Keplerian orbits of the planets in the solar
system in two cases. One of the cases has especial relevance since it may be used with
great simplicity to investigate the magnitude and characteristic of the effect on the tra-
jectories of the planets if the Sun shows a massive protuberance along its equator. We
revised this aspect of the problem following the discussionpresented by Adler et al[6],
that ends up with a comparison with the prediction and validity of General Relativity.

On the other hand, we believe that the study of a spherically symmetric perturbation
of the potential energy of the isotropic harmonic oscillator is an apparent opportunity
to present a case in which the conserved quantity is a tensor.Thus, we have to find the
eigenvectors and eigenvalues of that tensor while at the same time we obtain the rate
of rotation of the orbits by performing a simple coordinate rotation in the Cartesian
plane. We think that the present work addresses to many aspects of Mechanics with a
didactical interest in other Physics or Mathematics courses.
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