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The main purpose of this work is to present some uniform fonstconstant of
the motion, either than the well known quantities arisirgirspacetime symmetries.
These constants are usually associated with intrinsicackeristic of the trajectories
of a particle in a central potential field. We treat two casHse first one is the Lenz
vector which sometimes is found in the literature[l, 2]; tiker case is associated
with the isotropic harmonic oscillator, of relative impamte in some simple models of
classical molecular interaction. The first example is aupilo describe the perturbation
of the trajectories in the Rutherford scattering and thegssion of the Keplerian orbit
of a planet. In the other case the conserved quantity is a ggriciiensor. We find
the eigenvectors and eigenvalues of that tensor while a¢dhee time we obtain the
solution to the problem of calculating the rotation rate lué prbits in first order of
a perturbation parameter in the potential energy, by pevifty a simple coordinate
transformation in the Cartesian plane. We think that thesgmework addresses to
many aspects of Mechanics with a didactical interest inrd#tesics or Mathematics
courses.

1 Introduction

It is well known that an isolated mechanical system has afsedrserved quantities
associated with its invariance property under the Galilgaup. In the Newtonian
formulation of the equations of motion this property is cwerized by the absence
of a total external force and an external net torque actinghensystem; it is also
required that the internal force between a pair of partidegzends only on the distance
between the particlé§ hese conserved quantities are the well known linear mament
and angular momentum, both as conserved vectors, and thetergy considered a

1For the conservation of the angular momentum it is enough Heatrtternal force between a pair of
particles be along the same line of action.

2The sum of the internal potential energy plus the kineticrgneorresponding to the motion of the
system as a whole.
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Figure 1: Trajectory and coordinate system for a positivéigla scattered by an atomic
nucleus.

scalar quantity.

Curiously, these are not all the conserved quantities favengparticular system.
It may well happen that we have other conserved quantitiéscfwmay be scalars,
vectors or, in general, tensors), even for systems whichatrésolated. In all cases
the conserved quantities are uniform functions of the sthtiee system (positions and
velocities)[1]. Some known examples are the Lenz vectorfparticle in Coulomb
or Kepler central potential and the “position-velocity'hssr for the spatial isotropic
oscillator[2, 3, 4]. The existence of these conserved duesitis useful to find the
equation of the trajectory in a simple and quite straightBod manner and to study
the changes in those trajectories due to a small perturbatithe original potential
energy of the system.

In this work we shall consider the cases of central potentiithe forms 1r and
r2 and their perturbations of the typ@for some particular values of

2 The Lenz vector
Let us consider a particle of massin a central field with potential energy
uir)=a/r, (1)
wherea is a positive or negative constant. The vector expressienflvector)
A=VAJ+ar/r, (2)

is a uniform function of(F,V) constant of the motion[1]. In eq.(Z)is the constant
angular momentum of the particle, with respect to the ceotdorce, andv is the
velocity of the particle.



SinceA is a constant vector it may be computed at any point on thedi@jy of
the particle. The trajectory may be an ellipse, a parabotahyperbola, depending on
the value ofa and the energy of the particle. The orbits are symmetricagsjo the
pericenter wher& andv are mutually orthogonal. A simple calculation shows this
along the line joining the center of symmetry with the pemtee. A first application of
the Lens vector it is to obtain the equation of the trajectiyryaking the scalar product
of eq.(2) withr. For instance, if we are interested in the scattering oftjvesparticles
by an atomic nucleus (Rutherford scattering) we take 0. In this case the energy
can only be positive or null and the motion is infinite. Thgectory is a hyperbola
(E > 0), or a parabolal = 0). Let us consider the case of a hyperbola. The initial data
may be chosen as the initial velocity at infinifis, and the impact parametpr[see
figure (1)]. Let &, &y,&,) be a basis of Cartesian orthonormal vectors; then
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The particle is scattered in the directieat"an anglap with respect to the incoming
direction. The vectoA can also be expressed in terms of the outgoing parameters:

A=mipénég+aé . (5)
Taking into account that
&= —cosPé+senyé , (6)
we obtain
a = mvpseny—acosy , 7)
mvip = mvdpcos+aseny . (8)
From egs.(7, 8) we have v
tg- = 9
95 o ’ 9)

which is the usual expression for the scattering adgle terms of the initial datag
andp.

The equation of the orbit in polar coordinatesfl) is obtained by taking the scalar
product of eq.(2) witht = r(cosBé + sen6@):

Ar = (B/m+ar = (10)
% = J—n;[a(cose—l)+n1/(2)psen9]~ (11)

2.1 The perturbed Rutherford scattering

Let the potential energy be of the form

(12)
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Figure 2: New system of coordinates adapted to the symmeéthedrajectory.

while at the same time we keep expression (2) for the Lenovetts the central force
acting on the particle. Then

dA
a:7mrn+2?/\\] = @:FMJ . (13)
In writing eq.(13) we have used thét8/dt) = J/mr?. We wish to compute the total
change ofA, in first order in the parametd. To this end, we may integrate eq.(13)
along the unperturbed trajectory féwvarying from 0 to©, where® = 11— . Let us
recall that the Lenz vector corresponding to the unpertutb@ectory is a constant
vector pointing to the pericenter in the directign= ©/2 (see fig. 1). According
to eq.(13), the elementary changeArdue to the perturbation is in the plane of the
trajectory and it is perpendicular toat each point. Because of the symmetry of the
trajectory with respect to the point of minimal distancetie tenter, the total change
in Ais only different of zero in the direction perpendicularhe fine joining the center
of force and the pericenter. Then, to simplify the calcolaii is convenient to choose
a new system of orthogonal coordinates y’) in the plane of the orbit witlx” in the
direction of the pericenter [see figure (2)]. Then,

T =rcosdé; +rsindéy . (14)

The only component df, in eq.(14), that contribute to the integration of eq.(Ik3hie
x’ component. Thus,

o o (C]
A©)-A©O) = -&/B [ Tdo 15)



whered = 6 — ©/2. The integration is along the unperturbed trajectory ryibg

eg.(11). To show a definite result let us consider 2. Thecosd is obtained tak-
ing the scalar productA - F) in the (x',y’) coordinate system and using that=

(a2 + mPv3p?)Y/2. Finally,

A = A©)-A(0)
o /Vde 2mp(ocosd + mvZpsend) [ (cosd — 1) + nv3psing]
Y Jo (02 + m2vAp?)1/2

The integration is straightforward and the result is notanplified if we take into
account that

. (16)

_a _ mvgp
cosy_A ;oseny= A
The change in the scattering angle due to the perturbatitheipotential becomes:
IAA| - Bm
5(0/2)) ~ A " op (©@—senB) . a7)

Writing B = mf%; i.e., considering the perturbing potential energy pet orass, and
introducing the angular momentum per unit meiss= J/m, eq.(17) can be expressed
as

5(0/2)) ~ % (©@—senO) , (18)

We see from eq.(18) tha{©/2)) actually does not depend on the mass of the particle
as itis in general in the case of a force field which is propodi to the gradient of a
potential energy. This remark will result useful in somelaggions below.

2.2 The perturbed Kepler orbits

An interesting and somehow important case is to study tHedaftthe Keplerian orbit
of a planet in the solar system due to a possible widened bysainesbulge around the
equator of the Suh Its external gravitational potential energy per unit maks,v),
will depend on the distance to the center of the Sun and thawdhal anglev mea-
sured from the polar axis. Hence, if we developed the pc&bﬁt@r,v) in spherical
harmonics, the leading two terms are of the form

~ a 3cos?v — 1 1
U@w_r+Dﬁ+o<H>. (19)

The factorD depends, among other quantities, on the deformation ofthers repre-
sented by the extra mass along the equator. We are usuahgsiteéd in the orbit of a
planet in the equatorial plane where= 11/2, then the potentidl (r,v) acts on it as it
has the purely radial dependence

+% . &>0. (20)

3This change in the sphericity of the Sun will show as a sigaificquadrupolar term in its external
gravitational potential.



The potential energy of a planet of masgs U (r) = mU (r), which of the form (12)
with n= 3.

In what follows we shall study the perihelium shift per rexidn considering a
small perturbation of the Keplerian potential energy of them (3/r", in the cases
n=23.

Casen=2.
Let
a B
U=—-—+3 - (21)
Then, using the expressidn= VA J—aF/r, we have
dA 2B . - dA 2B,
oo s =T eNe (22)

where we have used that= mr264, in a Cartesian orthogonal system wity, &) in
the equatorial plane. The unperturbed orbit can be writsen a

$ — 1+ ecosh | (23)

wheree=A/a ; p=J?/ma. To obtain eq.(23) we have considered tAas constant
and it points to the perihelium. If the (perturbed) potdrgi@ergy is given by eq.(21)
the vectorA will point again to the perihelium after one revolution buwill be shifted
by an angleA® = \M|/A. To calculateA, in first order off3, we integrate (22) along
the unperturbed orbit frod = 01t06 = 21T

- - = 2[3 2n
AA:=A(2m) —A(0) = _?éz/\ & (1+ecosb)de
0
2BmrA
= -7 (24)
Then, -
2Bm
where we have introduced again the constants per unit fhaBdH.
Casen=3.
Let now
__ay
U(r)= . +r3 . (26)
By a similar calculation to the previous case we obtain tiselte
6yma
A= — KH : @27



wherey = ym, a = @ mandJ = Hm. This case corresponds to a flattening of the solar
sphere into an ellipsoid (or. equivalently, to a surplus sriasated at the ring around
the equator of the Sun, as we have discussed). Astronomsesvebthe shift in the
perihelium motion after many revolutions of the planet. &rtjigzular, we may express
the perihelium shift per century by the formula

_ A6 6mya

P: =—
T H4T 7

(28)

whereT is the period of revolution expressed in units of centdri&ncer?(d6/dt) =
H, we have that, approximatelyr@®? = H T; whereR s the mean distance planet-Sun.
Then, we can write eq.(28) as

6TIya T3

P—_— . 29

(2m4R8 (29)
Finally, if we use Kepler’s third law(T2/R%) = C, whereC is a constant of the same
value for all the plane®s we have

P=KR 72 | (30)

whereK is a constant that resumes all the previous constants amthi¢ isame for all
the planets. We notice that the perihelium shift is greatetife planets closer to the
Sun. The measured value[5]Bffor Mercury isPy = (43,11+0,45) arc seconds per
century. Since the value df for the Sun is quite uncertain, we may obtain the value of
K from the valueRy andRy for Mercury and compute the values Bffrom eq.(30).
The best fit to the observational data[6] is given by a stitdigh in the form

InP=alnR+b , (31)

with slopea = — 2,30+ 0, 26. The theoretical value according to eq.(3Q is — 3,5,
which is outside the range of uncertainty of the observafidata and shows that the
model is not at all satisfactory. To overcome this difficultas one of the results
contained in the three classical tests of General Rehatiuditich predicts[6] a slopa=
— 2,5 for the residual perihelium advance of the planets obsebyehe astronome?s

3 The isotropic harmonic oscillator

By an isotropic harmonic oscillator we mean a particle of smasn a central field of
force with a potential energy given by

u(r) = %krz . (32)

4For instance, if the planet is the Earth, tHea= 10~2 centuries.

5Actually, C depends on the mass of the planet trough the ratiss of the planet/reduce mass of the
system planet-Sun. The differences were not observable by Kepler and theyarsignificant for the present
discussion.

6The residual perihelium advance of the planets is that winiai not be associated with any other cause
that excludes the Sun.



Clearly, the equation of motion are separable in Cartesi@ndinates. The motion of
the particle is in a plane that we choose as(thg) one. Thus the functions of motion,
with an adequate choice of the origert @ind the orientation of the coordinate system,
can be written as

X(t) = Acoswt ,
y(t) = Bsenwt , (33)

wherew? = k/m= 1/a. The trajectory corresponding to eq.(33) is an ellipse \tith
center at the origen and axis along the direction of the doatd axis:

N
It is straightforward to show that the tensor
Fij = XX +avy; , (35)

wherex; = (X,Y) ; Vi = (W.Vy); 0 &? = 1, is a constant of motion; i.e.,

dF;
dt

=0, (36)

when the equations of motion are satisfied. From egs.(33}28)dhe components of

F are 5
Ac O

The eigenvalues ofj are A? andB2.; the corresponding eigenvectors are along the
direction of the axis of symmetry of the ellipse (34).

3.1 Orbit perturbation by changing the potential in first ord er

We wish to study now how the trajectory changes when we pethé potential energy
by adding to it a term of the form, for instance,

B

BU(r):r? )

(38)
wherep < (A2 +B?)3k. Itis clear that the tensor (35) will not longer be constali.
have: dF o
i a

dt” = m (XiVJ' —|—XjVi) . (39)
After a lapse of one period the tengomwill no longer be diagonal as in eq.(37); all its
components will change by first order terms keeping its sytnmoperty. However,
it is possible to perform a rotation of the coordinate sysbsnan anglep to haveF
in a diagonal form again, with the new axis of symmetry of thipse along the axis
of the rotated coordinate system [see figure (3)]. To obtaénangley it is enough
to calculate along the unperturbed trajectory, in the oeficoordinate system, the




Figure 3: Two elliptical orbits that show the rotation angllef the symmetry axis after
a revolution.

expression of after a revolution and find its eigenvectors which are, [@alyj along
the direction of the symmetry axis of the rotated trajectdityen, the anglg is given
by the expression

tagy =2 (40)

Ax

where Xy y X, are the coordinate components of the new eigenvector that &m
angley with the x-axis. To have the tensér after a period we integrate eq.(39) on the
unperturbed orbit fowt from 0 to 2rt Thus,

4aB [2T(XV)+X)Vi)
Ry —Fy(0) = o [ e

d(wt) . (41)

The initial valuef(0) is the tensor (37). In generBl;(2m) will have the form
Fj(2m =Fj(0)+ 0 . (42)

where(;j is of orderP. Similarly, the eigenvectors and eigenvalue$¢f21) can be
calculated up to the first order i We would obtainy = O(B); Xx = 1+ O(B) and
the eigenvaluek; = A>+ O(B); A\, = B2+ O(B). By a simple calculation it is possible
to show that the components of the eigenvedtaran be chosen as

F12(2T[)

SR A ven = 43)

From egs. (40), (42) and (43) we can calculate the atyglp to order3 by

- F12(2TI)
- AZ_ BZ

(44)
Then, from eq.(41)

F12(2T[) = do

40BAB /2" (cos?8 — sen? )
m Jo (A%cos?8+B?sen?)3
3B (A% — BY)
T A (45)

9



where we have pl = wt. Finally,

3B (A2 4+ B?)
~ TPV TR 4
v mA4 B4 (46)
The velocity of rotation of the ellipse’ axis is
B (A2 B2
Q__UJ(A)_73[3(A +B9) (a7)

oom 20A4B4

where[~3 = B/mand we have used thatw? = 1. Eq.(47) coincides with the result
obtained by Kotkin and Serbo[7] through a different method.

4 Final comments

The main purpose of this work was to bring to the attentiontoflents and teachers
the existence of another uniform functions constant of tieéion rather than the well
known guantities arising from spacetime symmetries. Westiesated, in some de-
tails, just two cases. The first one is the Lenz vector whichetones is found in the
literature[1, 2]; the other case is associated with theragit harmonic oscillator of
relative importance in some simple models of classical mgdér interaction. The first
example was applied to describe the perturbation in thedtajjies by the addition in
the potential energy of a small term depending only on th@ladriable. As an in-
teresting application of the method, we computed the chantie outgoing direction
of a scattered particle as predicted in the Rutherford exéatf. Another problem that
we considered was the precession of the Keplerian orbiteeoptanets in the solar
system in two cases. One of the cases has especial relevaced snay be used with
great simplicity to investigate the magnitude and charastie of the effect on the tra-
jectories of the planets if the Sun shows a massive protaberalong its equator. We
revised this aspect of the problem following the discusgpi@sented by Adler et al[6],
that ends up with a comparison with the prediction and vglidi General Relativity.

On the other hand, we believe that the study of a sphericahyrgetric perturbation
of the potential energy of the isotropic harmonic osciltagoan apparent opportunity
to present a case in which the conserved quantity is a tefibas, we have to find the
eigenvectors and eigenvalues of that tensor while at the sene we obtain the rate
of rotation of the orbits by performing a simple coordinat¢ation in the Cartesian
plane. We think that the present work addresses to many taspiellechanics with a
didactical interest in other Physics or Mathematics cairse
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