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FaMAF-UNC, Córdoba, Argentina

Abstract

We consider the two-spin subsystem entanglement for eigenstates of the Hamiltonian

H =
∑

1≤j<k≤N

(
1

rj,k

)α

σj · σk

for a ring of N spins 1/2 with asssociated spin vector operator (~/2)σj for the j-th spin. Here rj,k

is the chord-distance betwen sites j and k.

The case α = 2 corresponds to the solvable Haldane-Shastry model whose spectrum has very high

degeneracies not present for α 6= 2. Two spin subsystem entanglement shows high sensistivity

and distinguishes α = 2 from α 6= 2. There is no entanglement beyond nearest neighbors for all

eigenstates when α = 2. Whereas for α 6= 2 one has selective entanglement at any distance for

eigenstates of sufficiently high energy in a certain interval of α which depends on the energy.

The ground state (which is a singlet only for even N) does not have entanglement beyond nearest

neighbors, and the nearest neighbor entanglement is virtually independent of the range of the

interaction controlled by α.
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I. INTRODUCTION

Since the first studies [1–3] of entanglement in the ground-state of interacting spin 1/2

systems, a considerable amount of work has been devoted to analyze this feature. The

Hamiltonians most studied have been those with anti-ferromagnetic nearest neighbor in-

teractions (XX, XY , XY Z, XXZ etc.) between the spins in the presence of an external

magnetic field (usually constant) which is the order parameter for a quantum phase tran-

sition (i.e., non-analyticity in the ground- state energy; [4]). The fascinating and intricate

connections and relations between (mainly two-site subsystem) entanglement and the quan-

tum phase transition have been systematically studied after [5, 6]. At the other extreme,

namely models where each spin interacts identically with all the others, there are studies

of the Lipkin-Meshkov-Glick model ([7]) which is of the XY type in an external field, and

of an equivalent of the BCS model ([8]) which is of the XX type in an external field. Ref.

[9] presents a study of entanglement for nearest and next-nearest neighbors for the ground

state of a Heisenberg chain with nearest and competing ferromagnetic next-nearest neigh-

bor interactions. A recent review of the subject is [10]. Most of the studies we are aware

of restrict to the entanglement analysis of the ground state. Ref. [11] however, presents

the nearest neighbor entanglement analysis for nearest neighbor XXX and XY Heisenberg

models (with zero field) dealing with all excited states. This reference is the work we are

aware of which is most related to the point of view and results we report here.

Here, we are not concerned with the quantum phase transition aspects but concentrate on

the dependence of entanglement on the range of the spin pair-interactions. From this point-

of-view, one of the basic facts emerging from the studies mentioned above, is that two-site

subsystem entanglement in the ground-state is short-ranged in models with finite-range in-

teractions; e.g., in models with nearest neighbor interactions, it vanishes if the sites are not

nearest, or next-nearest neighbors. Extrapolating, if in a spin 1/2 chain every spin interacts

only with its two neighbors at a distance k, then two-site entanglement in the ground-state

will show up for sites at distance k, and basically only for this distance if there are no

further contributions to the energy. This is not a general claim we are making; it has just

been checked in a number of simple models. We outline a rough argument to sustain this

in the concluding remarks. As another motivating example, consider the Hamiltonian for

N spins 1/2 (σj = (σx
j , σy

j , σ
z
j ) is the vector operator formed with the three Pauli operators
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associated to the j-th spin)

∑

1≤j<k≤N

(σj · σk) + a σ1 · σp ,

with a real and p = 2, 3, · · · , N , for which the interaction constant for the spin-pair (1, p) is

1 + a, while for every other pair it is 1. The ground-state shows entanglement for the pair

(1, p) only for 0 < a, and no entanglement for all other pairs independently of the value of

a.

On the positive side, one of the basic properties of quantum entanglement, namely

monogamy [12, 13], conspires against the build-up of entanglement of a spin with too many

neighbors.

Thus, one of the question we posed ourselves was: will we obtain two-site entanglement

in the ground state at large distances if the interaction is long ranged? The other question

we posed ourselves is: what about two-site entanglement in excited states?

In this communication we get some answers to both questions, in as much as we present

some results on entanglement of 2-spin subsystems for eigenstates of a Hamiltonian where

the spins are subject to a long-range interaction inversely proportional to a power of their

distance and the external magnetic field vanishes. Our study is not restricted to the ground-

state(s), but includes the whole spectrum. In particular, we are interested in which eigen-

states show two-site entanglement for long distances, i.e. beyond nearest or next-nearest

neighbors. Besides, we are interested in the dependence on the range of the interaction, of

the distance for which it is possible to obtain two-site entanglement.

The model is presented in the next section, together with some information on its spectral

properties. In section III, we deal with the pair- or two-site entanglement. We give the

relation between the concurrence of the eigenstates reduced to the two-site subsystem, and

the two-site spin-correlation functions; and present our results emphasizing their qualitative

aspects. In the concluding section IV, we highlight those features observed which we con-

sider interesting and provide an argument for the short range of pair-entanglement in the

ground state, which proceeds via power law decay of spin correlations.
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II. THE MODEL

The model studied is the simplest possible with a very regular dependence on the distance;

it is obtained by multiplying the Heisenberg pair interaction σj · σk with a factor inversely

proportional to a power of the distance between the sites. It is thus an XXX Heisenberg

model incorporating a power law decay of the interaction strength. Instead of considering a

linear chain with periodic boundary conditions, we consider a ring. Specifically we consider

N spins 1/2 and the Heisenberg Hamiltonian is given by

HN(α) =
∑

1≤j<k≤N

σj · σk

(rj,k)α
, α > 0 ;

where

rj,k =
sin(π|j − k|/N)

sin(π/N)
, j, k = 1, 2, · · · , N ,

is proportional to the dimensionless distance (length of the chord) between vertexes j and

k in a regular, flat, N -gon whose vertices are numbered consecutively. The constant in

the definition is chosen so that the nearest neighbor distance rj,j+1 is one. For given N ,

the number of distinct distances is [N/2] –the largest integer not above N/2. We observe

that HN(0) is the isotropic Heisenberg model where each spin interacts identically with

every other spin. For N ≥ 2 fixed, the limit α → ∞ corresponds to the nearest-neighbor

antiferromagnetic XXX model studied in [11]. Thus α provides a smooth control of the

spatial decay of the interaction as one varies the distance between sites, and also an

interpolation parameter between two well known models. We often drop the index N and

parameter α in HN(α), when these are irrelevant.

The Hamiltonian H is “anti-ferromagnetic”, while −H 6= H is “ferromagnetic”. If N is

even then the least energy eigenvalue is non-degenerate, whereas it is degenerate for uneven

N .

For α = 2 this is the Haldane-Shastry model [14, 15] which is explicitely solvable [16, 17],

giving us an effective control on numerical results; this was one of the basic reasons for

considering this model (and a ring, not a chain). For α = 2, the least eigen-energy is

fourfold degenerate for uneven N , and the largest energy eigenvalue (ground-state energy of

the ferromagnetic version) is always degenerate with multiplicity N + 1.

The spectrum for α = 2 is highly degenerate with comparatively few eigenvalues and very
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different from the spectrum for α 6= 2 and same N . For example for N = 8, where the

Hilbert space has dimension 28 = 256, H has 5 eigenvalues for α = 0, 19 for α = 2 and

45 for 0 < α 6= 2, except for a discrete and finite set of values of α, where a crossing or

two reduces the number of distinct eigenvalues by 1 or 2 (see figure 1); the nearest-neighbor

XXX model corresponding to α = ∞ has 40 eigenvalues. These qualitative features do not

depend on N .

Due to the absence of computable necessary and sufficent conditions for multipar-

tite entanglement in mixed states, we study only the entanglement of the possible

pairs of spins, that is two-site entanglement. It suffices to consider the pairs (1, j) for

j = 2, · · · , [N/2] + 1; corresponding to the possible distances. Given a state ρ of system of

N spins, ρj,k denotes the reduction of ρ to the subsystem with components (i.e., sites) j and

k. The entanglement of this reduced state is detected and quantified by its concurrence, [18].

Our analysis proceeds as follows. One has

σj · σk = 2Πj,k − 1 ,

where Πj,k is the transposition interchanging the j-th and k-th components of the product

basis vectors

|ǫ1, ǫ2, · · · , ǫN〉 , ǫn = ± , n = 1, 2, · · · , N , (1)

where σz|±〉 = ± |±〉. That is,

Πj,k|ǫ1, ǫ2, · · · , ǫj, · · · , ǫk, · · · , ǫN〉 = |ǫ1, ǫ2, · · · , ǫk, · · · , ǫj, · · · , ǫN〉 .

To simplify the structure of the corresponding matrix in the above basis, we consider the

operator (Hamiltonian)

H̃N(α) =
1

2

∑

1≤j<k≤N

(
1

rj,k

)α

(Πj,k − 1)

which differs from HN(α) by an additive, (N,α)-dependent constant (see [11]). Thus HN(α)

and H̃N(α) have the same number of distinct eigenvalues with the same multiplicities

and the same spectral orthoprojectors. Figure 1 shows the spectrum of H̃ for N = 8 as

a function of α up to α = 5. We find that beyond α about 7.29 there are no crossings,

but eigenvalue curves do approach each other asymptotically leading to 40 eigen-energies
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in the nearest-neighbor model (α = ∞). The largest eigen-energy of H̃N(α) is zero, it is

(N + 1)-fold degenerate for every α ≥ 0, and the corresponding spectral orthoprojector is

independent of α [19]. In fact an orthonormal basis of this eigen-space is easily described;

is consists of N + 1 vectors each of which is the normalized sum of the


 N

s


 vectors of

the form (1) where exactly s of the ǫn’s are +; and s = 0, 1, · · · , N .

III. ENTANGLEMENT

Denote the spectrum with spec; suppose

H =
∑

E∈spec(H)

EPE , PEPE′ = δE,E′PE ,
∑

E∈spec(H)

PE = 1 ,

is the spectral decomposition of the Hamiltonian H. Then tr(PE) is the multiplicity

(degeneracy) of the eigen-energy E.

At this point, we must recall Theorem 2 of [20] which says that any subspace of dimension

at least 2 of the four-dimensional Hilbert space of two q-bits contains at least one product

vector. Thus if the eigen-energy E of a two spin 1/2 system is degenerate, then there

is a separable eigenvector to E. Extensions of this result to sufficiently high dimensional

subspaces of N (> 2) q-bits are possible but this is not the point of this paper. To analyze

entanglement in the case of degenerate eigenvalues, we must consider the (uniform) eigen-

state

ρ(E) := PE/tr(PE) , E ∈ spec(H) .

Notice that this state is obtained by mixing with equal weights (namely 1/tr(PE)) any

(pairwise orthogonal) pure eigen-states whose corresponding vectors constitute an orthonor-

mal basis of the eigenspace of the eigenvalue E of H. This is the very same eigen-state

notion as that used in [11].

For the Haldane-Shastry model (α = 2), we use the known eigenvalues and degeneracies

[17], and determine the orthoprojectors by: PE =
∏

E′ 6=E
H−E′

E−E′
. For α 6= 2 we determine the

6



eigen-energies and corresponding spectral projections numerically.

Due to the particular symmetry of H or H̃ which commutes with
∑N

j=1 σz
j and with

∏
j σz

j

([11, 19, 21]) the reduced density operators (in the basis (1) of product eigenvectors of σz
j ,

j = 1, 2, · · · , N) for any pair (j, k) of spins have the same structure namely




a 0 0 0

0 b c 0

0 c b 0

0 0 0 a




,

where a, b ≥ 0, with a + b = 1/2; and c is real with |c| ≤ b. The concurrence of this 2-spin

state is max{0, 2 max{a, b + |c|} − 1} = max{2(|c| − a), 0}. But the isotropic nature of H

(SU(2) invariance), implies (as observed in [11] for the n-n model)

2c = tr(ρj,k(E)σx
j σx

k) = tr(ρj,k(E)σy
j σ

y

k) = tr(ρj,k(E)σz
j σ

z
k) = 2(a − b) . (2)

From this we conclude that b = (1 − 2c)/4, a = (1 + 2c)/4, and −1/2 ≤ c ≤ 1/6. The

concurrence is 



0 , if −1/6 ≤ c ≤ 1/6

−3c − 1/2 , if −1/2 ≤ c < −1/6
. (3)

Thus, for a given pair (j, k), there will be entanglement for this pair in the state ρ(E) if

and only if the correlation function tr(ρ(E)σω
j σω

k ) (ω = x, y, z) which is independent of ω,

is in the interval [−1,−1/3).

The above structure of ρj,k also implies that the reduced density matrix for the j-th

site is simply and always just (1/2)I which is the maximally mixed state for a spin

1/2, and the expectation value of σj is the zero vector. This remarkable feature of the

model is independent of N , α > 0 and the eigen-energy considered. As a consequence,

the Meyer-Wallach measure [25] (which, when the state is pure, is a true measure of

entanglement and not just a measure of degree of mixture) given by 2 − (2/N)
∑N

j=1 tr(ρ2
j)

and often misused as an indicator of multipartite entanglement, is identically equal to 1

(and thus of no use whatsoever) for every eigen-state ρ(E) independently of N , α > 0 and

the eigen-energy considered, even for the maximal energy where the eigenstate is separable.
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This is not surprising at all, since the N -qubit trace 2−N1 = (1/2) ⊗ (1/2) ⊗ · · · ⊗ (1/2)

which is a product-state and hence separable has maximal Meyer-Wallach measure 1. But

the model does provide a rather blatant example of a whole zoo of eigenstates with very

different entanglement properties which goes alltogether undetected by the Meyer-Wallach

measure. Meyer and Wallach of course proved that their measure is an entanglement

measure for pure states; they never claimed anything about mixed states.

Another remarkable feature is that ρj,k(0), the reduced density matrix for sites (j, k) for

the eigen-state of maximal energy which was described above and seen to be independent

of α, is also independent of the pair (j, k), [19]. It turns out that this maximal energy

eigen-state (ground-state of the ferromagnetic model) does not show entanglement at all

site distances.

Our calculations were performed for N = 2, 3, 4, 5, 6, 7, 8. Up to the degeneracies in

the lowest eigen-energy, the qualitative features are independent of N in that range. The

graphs shown corrrespond to N = 8.

Here is a list of some of our observations for the mentioned values of N (others will

follow). Some of these extend or complement results of [11] which correspond to the nearest

neighbor XXX model (α = ∞):

• The isotropic model HN(0) shows no two-site entanglement for all distances at every

eigen-energy.

• In the ground-state there is exclusively nearest neighbor two-site entanglement for

every α > 0 (α > 0 was sampled rather completely only for N = 8); the corresponding

concurrence is a slowly varying increasing function of α > 0 which is discontinuous at

0 (see figure 6).

• For every α > 0 nearest neighbor entanglement appears only in the first few energy

levels (i.e., for N = 8, the first four or five energy levels). If an excited state presents

nearest neighbor entanglement for some α > 0 then the corresponding concurrence

is below that of the ground-state nearest neighbor concurrence for that value of α.
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However, nearest neighbor concurrence is not generally a decreasing function of the

energy for fixed α > 0 (see figure 2).

• The distinctive feature of the case α = 2 with respect to the cases α 6= 2 is simple: For

α = 2 there is no two-site entanglement beyond nearest neighbors at all eigen-energies.

For 0 < α 6= 2 two-site entanglement for other possible distances appear at some

excited eigen-energy level. In fact, two-site entanglement for all possible distances is

present for every α at some excited energy-level except for α in a certain bounded

interval which depends on N .

• Except for exceptional values of α one finds excited states where the concurrence for

sites further apart than nearest neighbors have greater concurrence than the ground-

state nearest neighbor concurrence. For example, for N = 8 and almost all α > 0

(α = 1 is exceptional) one finds some excited state where the concurrence for sites

at maximal distance is always above the nearest neighbor concurrence for the ground

state.

• In the ferromagnetic model −H, the ground-state does not show pair-entanglement at

all distances and the same is true for the low energy eigenstates, but the number of

the states with this property decreases with α. The first excited states which exhibit

two-site entanglement do so for the largest distances. Only high energy eigen-states

show nearest-neighbor entanglement. All this is seen in figures 2-5.

The series of four figures 2-5 show the concurrence of ρj,k(E) for the possible eigen-

energies E for N = 8 and distinct values of α. In all these figures the dot corresponds to

nearest neighbor distance (|j − k| = 1), the cross × to the next-nearest neighbor distance

(|j − k| = 2), the star ∗ to |j − k| = 3 and the empty square � to the maximal distance

|j − k| = 4.

We mention a feature of the nearest neighbor model which is apparent in figure 5

and was observed in [11]. In this model, the eigen-energies are proportional to the spin

correlation function of the corresponding eigen-state (Eq. (8) of Ref. [11]). Nearest

neighbor concurrence where it is positive, is a linear decreasing function of the energy:

Concurrence ( ρ1,2(E)) = max{−AE − B, 0}, where A,B > 0. This extends the
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observation of [3] to the whole spectrum. Moreover, this linear regime is reached very

rapidly as α grows to infinity; e.g. for N = 8 and α > 6 one is practically in the linear regime.

For N = 8 we have also analyzed if energy is distance selective for two-site entanglement.

We find that if at some eigen-energy there is two-site entanglement at nearest or next-

nearest neighbor distance then there is no entanglement at all the other possible distances.

However, two-site entanglement at maximal and next to maximal distances can be present

for the same energy level in certain intervals of α values.

Another way of presenting our results would consist in graphing the concurrence of

ρj,k(E) for fixed N and distance |j − k| as a function of α while keeping the number of the

(excited) level E fixed. The level crossings will produce complicated graphs with a number

of qualitatively distinct and generally discontinuous behaviors of the concurrence. It is

more appropiate to adopt a perturbation theoretic point of view. For fixed N , the operator

families HN(α) and H̃N(α) are holomorphic in α ∈ C in the sense of [26]. Thus, for example

for N = 8, and away from the exceptional points where crossings occur (see figure 1), there

are fourty five pairwise orthogonal projectors which depend real analytically on α. The

two-site concurrence for any pair of sites obtained by normalizing these orthoprojectors to

states will be real analytic functions of α away from the crossings. This alternative way

of analyzing two-site entanglement, shows that only very few of the orthoprojectors carry

two-site entanglement as is illustrated in the following figure pairs. Figure 6 shows all the

non-zero concurrences for nearest neighbors (namely five) for N = 8 as functions of α in

the top graph, while the lower graph shows which five of the energy curves of figure 1 give

rise to these nearest neighbor concurrences. In the concurrence graph of figure 6, only the

curve corresponding to maximal nearest-neighbor concurrence (≈ 0.41) is associated to

only one level, in this case the ground-state. All other concurrence curves in this graph mix

(due to crossings) energy levels of different excitation number. The discontinuities occur

at crossings and not all of them are visible in the figure. The following pair of graphs 7

deals with next-nearest neighbors. The energy curves (lower graph) are only drawn where

two-site entanglement (at the corresponding distance) is present and they are not drawn

through the whole range of values of α (this is repeated for the other distances to be shown

below). Observe that the entanglement at next-nearest neighbor distance |j − k| = 2 has
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a gap: for α betweeen about 2.54 and 3.71 there is no next-nearest neighbor entanglement

at all eigen-energies; this is the only distance which shows this feature. The graph pairs of

figures 8 and 9, repeat this for the distances |j−k| = 3, and 4 respectively. Close inspection

of figures 8 and 9 show that the maximal concurrence (labeled a in figure 9) at maximal

distance |j − k| = 4 and the monotone increasing concurrence curve (labeled a in figure

8) for the distance |j − k| = 3 originate in the same energy curve (i.e. its corresponding

orthoprojector) namely a in the lower graphs of figures 8 and 9. This feature appears

also for nearest neighbor and maximal distance entanglement: the energy vs. α curves

labeled c in figures 6 and 9 coincide; however entanglement at maximal distance appears

only above α ≈ 3.88 A careful count shows that of the 45 orthoprojectors only 12 carry

two site entanglement, of these 10 do so for one distance only, only one carries two-site

entanglement at two distances simultaneously for all values of α > 0, and only one carries

two-site entanglement at two distance simultaneously albeit above some threshold value of

α (as just described).

The following table gives the dimension of the fourty five orthoprojectors appearing for

N = 8 and the number of times each dimension appears.

dimension of orthoprojector 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥ 15

number of orthoprojectors 6 4 6 0 6 11 1 0 1 7 0 0 0 3 0

All six one-dimensional orthoprojectors carry two-site entanglement and two of these do

so for two distinct distances (|j − k| = 3, 4 for all α > 0 and |j − k| = 1, 4 for α > 3.88).

Moreover, their Meyer-Wallach measure being maximal, they are maximally entangled pure

states except at crossings.

IV. CONCLUDING REMARKS

We present a study of pair (or two-site) entanglement for the eigenstates of an N spin

1/2 model where the spins (sites) are equidistant in a circular ring and the pair-interaction

is inversely proportional to an arbitrary positive power α of the site distance, and propor-

tional to the scalar product of the magnetic moments of the spins. The model interpolates

between a nearest neighbor interaction model (of type XXX) and a model where every spin

11



interacts equally with all the others. The model is solvable for α = 2 (Haldane-Shastry

model, loc. cit.) where the spectrum is extremely degenerate, for every N , relatively to

α 6= 2 and same N . We do not include an external magnetic field in the Hamiltonian, and

thus exclude a quantum phase transition, i.e. non-analytic behavior of the ground-state

energy as a function of the magnetic field strength. Although we have no proposal regarding

the experimental realization of the model, we consider it as a simple yet typical example

of a Hamiltonian with long-ranged antiferromagnetic spin 1/2 pair interactions decaying

smoothly with distance; the features we observe are probably common to such models.

We do not concentrate on ground-state entanglement (the ground-state energy is degenerate

for uneven N) but analyze all eigen-energies. The qualitative features reported are inde-

pendent of N up to N = 8, and we have no doubts that they are independent of N for all

N .

A key feature is the observed insensitivity to the range of the interaction of two-site

entanglement for the ground-state. Not only there is no two-site entanglement beyond

nearest neighbors independently of the range of the interaction controlled by α, but also,

e,.g. for N = 8, taking the limit α → 0+ and comparing this with the nearest-neighbor

concurrence in the nearest neighbor interaction model (α = ∞), the variation is only about

2.5% percent over the whole range of values of α > 0. Moreover the value is about 94%

of the upper bound claimed by [3]. We have no rationalization for the small variation

observed in the concurrence, beyond the connection made in section III that this means

that the nearest neighbor spin correlation is virtually independent of the range of the

interaction in the ground state. As regards the absence of two site entanglement beyond

some cut-off distance, we view this as a general feature of anti-ferromagnetic models with

pair interactions proportional to σω
j σω

k (ω = x, y or z) decaying with distance whose two-site

spin correlations are bounded in modulus by some positive inverse power of the distance. In

the model studied here, as in many others, the cut-off distance is that to the nearest neighbor.

An argument to sustain this goes as follows. Suppose that in some given state φ, the

two-site spin correlation functions tr(φσω
j σω

k ) (ω = x, y and z) are bounded in modulus by

some constant times a positive inverse power of the distance between sites j and k. The

reduced density matrix for spins j and k can be expressed in terms of these spin correlations

and so can its concurrence. If φ is the ground-state, the antiferromagnetic nature of the pair
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interactions will give negative spin-pair correlations, and pair-entanglement will appear only

for sufficently negative values of these spin correlations. The power law will then produce

a certain distance beyond which entanglement is impossible because the correlations are

not sufficiently negative. This power law behaviour of the two-site spin correlations has

been calculated (in the macroscopic limit N → ∞) for the ground-state of some solvable

one-dimensional spin 1/2 chains [22–24].

¿From our data for N = 8, we obtain (recall Eq. (2)):

|tr(ρ0(α)σω
1 σω

k )| ≤
|tr(ρ0(∞)σω

1 σω
2 )|

r1,k

, k = 2, 3, 4, 5 ,

for every α > 0 including α = ∞, where ρ0(α) is the ground-state of H8(α). The associated

cut-off distance dc determined from Eq. (3), |tr(ρ0(∞)σω
1 σω

2 )|/dc = 1/3, is dc = 1.8255

which is below r1,3 (> 1.8477) so there is indeed no entanglement beyond nearest neighbors

(r1,2 = 1) in the ground-state of H8(α).

Our second observation is that a simple glance at a figure of the type of figures 2-5

allows the onlooker to decide whether α = 2 or not. Two-site entanglement of eigenstates

is extremely sensitive to a spectral “collapse”. If one is able to control the parameter α,

one can drastically reduce entanglement by selecting α = 2. In order to be useful, this

property should be present for some small interval and not just for a point; but the feature

is potentially interesting for applications.

Thirdly, one can produce selective two-site entanglement at any required distance by

appropiately choosing α and/or the energy-level; a feature which is again of some interest,

and is stable under small variations of α.

Finally, we point out that for N = 8 and every 2 6= α > 0, including the nearest neighbor

model (see figure 5), there is an excited eigen-state which is pure (except for special values

of α where a crossing occurs; see figure 9) which presents entanglement at maximal distance

and at next to maximal distance simultaneously. This state corresponds to the energy vs.

α curve labeled a in figures 8 and 9. The concurrence for maximal distance in this state

is the maximal concurrence for all possible distances. It would be interesting to give an
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experimental procedure to prepare this state.
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FIG. 1: Spectrum of H̃8(α). 0 is the largest eigen-energy and has degeneracy 9 (= N + 1) for

all α ≥ 0. Beyond α ≈ 7.29 there are no further crossings. The monotone increase of the

(differentiable) energy vs. α curves is a consequence of the Hellman-Feynman formula. Here and

in all figures the energies are dimensionless.
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FIG. 2: Concurrence of ρj,k(E) for N = 8 and α = 1. ◦ corresponds to |j−k| = 1; × to |j−k| = 2;

∗ to |j − k| = 3; and � to |j − k| = 4.
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FIG. 3: Concurrence of ρj,k(E) for N = 8 and α = 2. |j − k| = 1(◦), 2(×), 3(∗), 4(�).
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FIG. 4: Concurrence of ρj,k(E) for N = 8 and α = 3. |j − k| = 1(◦), 2(×), 3(∗), 4(�).
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FIG. 5: Concurrence of ρj,k(E) for N = 8 in the nearest-neighbor model. |j − k| =

1(◦), 2(×), 3(∗), 4(�).
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FIG. 6: Top graph: Nearest neighbor concurrence vs α for N = 8. The top curve labeled a corre-

sponds to the ground-state. Not all discontinuities are visible in the figure.

Lower graph: The corresponding five energies vs α curves which carry nearest neighbor entangle-

ment for N = 8. The curve labels a-e correspond to the concurrence curves of the same label in

the top graph. The dimension of the associated orthoprojectors are: 1 (a), 3 (b), 1 (c), 6 (d) and

6 (e).
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FIG. 7: Top graph: Next-nearest neighbor concurrence vs α for N = 8.

Lower graph: The three energies vs α curves which carry next-nearest neighbor entanglement for

N = 8. The labels on the curves correspond to those on the concurrence curves of the top graph.

The dimensions of the associated orthoprojectors are: 1 (a), 1 (b), and 6 (c).
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FIG. 8: Top graph: Concurrence vs α for N = 8 and |j − k| = 3.

Lower graph: The three energies vs α curves which carry entanglement for N = 8 at distance

|j − k| = 3. The curve labels correspond to those of the top graph. Curves a and c cross at

α ≈ 2.35. The dimensions of the associated orthoprojectors are: 1 (a), 1 (b), and 3 (c).
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FIG. 9: Top graph: Concurrence vs α for N = 8 and maximal distance |j − k| = 4.

Lower graph: The three energies vs α curves which carry entanglement for N = 8 at maximal

distance. The curve labels correspond to those of the top graph. Curves a and b cross at α ≈ 4.63

where the concurrence curves a and b have a discontinuity. The dimensions of the associated

orthoprojectors are: 1 (a), 6 (b), and 1 (c).
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FIG. 10: Detail of the crossing of the energy curves a and b in the lower graph of the previous

figure 9. The curves do not coincide to the right of the crossing, a feature which is not resolved at

the scale of figure 9.
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