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Abstract. In this paper we show how permutation of literals can be
used to define symmetries for modal formulas in clausal form. We show
that the symmetries of a modal formula ¢ preserve inference: if o is a
symmetry of ¢ then ¢ = ¢ if and only if ¢ &= o(¢). Hence, a modal
theorem prover that has access to the symmetries of the input formula,
can use them during search to cheaply derive symmetric inferences (e.g.,
as is done during clause learning in propositional SAT). We also present
in a mechanism to efficiently compute symmetries using graphs auto-
morphisms, and preliminary empirical results showing that symmetries
appear in many cases in both randomly generated and hand-tailored
modal formulas.

1 Introduction

Many concrete, real life problems present symmetries. For instance, if we want
to known whether trying to place three pigeons in two pigeonholes results in
two occupying the same nest, it does not really matter which of all pigeons gets
in each pigeonhole. Starting by putting the first pigeon to the first pigeonhole
is the same as if we put the second one in it. In mathematical and common-
sense reasoning these kinds of symmetries are often used to reduce the difficulty
of reasoning — one can analyze in detail only one of the symmetric cases and
generalize the result to the others.

The exact same is done in propositional theorem proving. Many problem
classes and, in particular, those arising from real world applications, displays a
large number of symmetries; and current SAT solvers take into account these
symmetries to avoid exploring duplicate branches of the search space. In the last
years there has been extensive research in this area, focusing on how to define
symmetries, how to detect them efficiently, and how can SAT solvers better profit
from them [21].

Informally, we can define a symmetry of a discrete object as the permutation
of its components that leaves the object (or some aspect of it) intact. Think in the
rotations of a spatial solid. In the context of SAT solving we can formally define
a symmetry as a permutations of the variables (or literals) of the problem that
preserves its structure and, in particular, its set of solutions. Depending on which
aspect of the problem is kept invariant, symmetries are classified in the literature
into semantic or syntactic [8]. Semantic symmetries are intrinsic properties of
the Boolean function that are independent of any particular representation, i.e.,
a permutation of variables that does not change the value of the function under



any variable assignment. Syntactic symmetries, on the other hand, correspond
to the specific algebraic representations of the function, i.e., a permutation of
variables that does not change the representation. A syntactic symmetry is also
a semantic symmetry, but the other implication does not always hold.

The first work to deal with syntactic symmetries in the context of SAT solving
was [18]. In this article, Krishnamurthy introduces the notions of global and local
symmetries as inference rules to strengthen resolution-based proof systems for
propositional logic, and showed that these rules can be used to shorten the proofs
of certain difficult propositional problems such as the pigeon-hole principle. Since
then, many articles investigating how to detect and exploit symmetries have
appeared. Most of them can be grouped into two different approaches: static
symmetry breaking and dynamic symmetry breaking.

In the static symmetry breaking approach [12, 13, 1], symmetries are detected
and eliminated from the problem statement before the SAT solver is used. They
work as a preprocessing step. In contrast, the dynamic symmetry breaking ap-
proach [11,8,9] detects and breaks symmetries during the search space explo-
ration. The first approach has the advantage that the theorem provers do not
suffer any modifications while the second approach can take advantage of sym-
metries that emerge during the process of SAT solving.

The first articles discussing the static approach are those of Crawford et
al. [12, 13], which laid the theoretical foundation for reasoning by symmetry. [12]
shows that the symmetry group of a formula induces an equivalence relation on
the set of truth assignments, i.e., it partitions the space of possible assignments
into equivalence classes. In principle, only one truth assignment of each equiv-
alence class should be considered by a SAT solver while working on a problem
with symmetries. [12] also proves that symmetry detection can be polynomially
reduced to the colored graph automorphism problem and explicitly describes
how to create a colored graph from a propositional formula in conjunctive nor-
mal form whose automorphism group coincides with the symmetry group of the
original formula. Some years later, in [13], Crawford et al. introduce a method
for symmetry breaking. The method uses symmetry-breaking predicates which
are added on a per-symmetry basis and are chosen such that they are true of
exactly one element in each of the equivalence classes induced by the symmetry
group. The main drawback of this approach is that the resulting formula can be
exponentially larger than the original one. Later, Aloul [1] developes these ideas
presenting new graph constructions together with the notion of partial symme-
try breaking, in which symmetry-breaking predicates are introduced only for the
irredundant set of generators of the symmetry group of the formula [23].

Despite their differences both the static and the dynamic approach, share the
same goal: to identify symmetric branches of the search space and guide the SAT
solver away from symmetric branches already explored. A third alternative was
introduced in [7], which combines symmetry reasoning with clause learning [22]
in Conflict-Driven Clause Learning (CDCL) SAT solvers [15]. The idea is to
augment the clause learning process by using the symmetries of the problem as an
inference rule to learn the symmetric equivalents of conflict-induced clauses. This



approach is particularly appealing because it does not imply major modifications
to the search procedure and the required modification to the clause learning
process is minor.

Summing up then, symmetries have been extensively investigated for propo-
sitional SAT solving as the discussion about shows. And some of these ideas
have been explored also for other logics [4, 5]. But to the best of our knowledge
they have not been investigated in the field of automated theorem proving for
modal logics. In this paper, after a brief introduction to the basic notions about
basic modal logics and symmetries in Section 2, we show how permutation of
literals can also be used to define symmetries for modal formulas in clausal form.
In Section 3 and 4 we provide the theoretical foundations that enables the ex-
ploitation of symmetries. In particular, we show that the symmetries of a modal
formula ¢ preserve inference: if o is a symmetry of ¢ then ¢ |= ¢ if and only
if ¢ = o (). Hence, a modal theorem prover that has access to the symmetries
of the input formula, can use them during search to cheaply derive symmet-
ric inferences (e.g., as is done during clause learning in propositional SAT). We
also present in Section 5 a mechanism to efficiently compute symmetries using
graphs automorphisms, and preliminary empirical results showing that symme-
tries appear in many cases in both randomly generated and hand-tailored modal
formulas. Finally, in Section 6 we sum up the contributions of the paper, and
briefly discuss how the results could be used by a tableaux based theorem prover
for modal logics. At the moment of writing this article, the ideas discussed here
have not been implemented into a theorem prover, but work is on the way to
include symmetry learning into the hTab prover [16].

2 DModal logic and modal symmetry

For completeness, we will start with a short review to modal logic that will
introduce the basic notions (see [10] for a complete introduction).

Definition 1 (Syntax). Let PROP = {p1,p2,...} be a countable infinite set of
propositional variables. The set of (basic) modal formulas FORM is defined as

FORM :=p|—p|oVy | oA | -Op | Op,

where p € PROP, p,v € FORM. For simplicity, we will only consider the ba-
sic mono-modal logic K. Given a formula ¢ we represent as Var(yp) the set of
propositional variables appearing in .

The set of propositional literals over PROP is defined as PLIT = PROP U
{=p | p € PROP}. If l is a literal, then we will represent as |l| the propositional
symbol appearing in 1. If 1 is a literal, then —l is defined as follows

- p ifl=-p,pe PLIT
T Y =pifl=p,pe PLIT



Given a formula ¢, we write PLIT(p) as the set of literals appearing in ¢ defined
recursively as:

PLIT(p) = {p} for p € PROP
PLIT(—p) = {—p} for p € PROP
PLIT(o Ap) = PLIT(p V ) = PLIT(p) U PLIT(¢)
PLIT(-O¢p) = PLIT(Oy) = PLIT(p).

We say that a set of propositional literals L is complete if for each p € PROP
either p € L or -p € L. We say that L is consistent if for each p € PROP either
pé& L or—p¢ L. Any complete and consistent set of literals L defines a unique
propositional valuation v : PROP— {T, 1} asv(p) =T ifp € L and v(p) = L
if pe L.

Let S C PROP be a set of propositional variables. The consistent and com-
plete set of literals generated by S (notation Lg) is defined as Lg = S U {-p |
p € PROP\S}. Let L be a set of literals and ¢ a modal formula, the restriction
of L to ¢ is defined as: Lj, = {l € L | |l| € Var(y)}.

We say that a formula is in KCNF (or that it is a KCNF form) if it is a
conjunction of KCNF clauses. A KCNF clause is a disjunction of propositional
and modal literals. A modal literal is a formula of the form OC or -OC where
C is a KCNF clause. Every modal formula can be transformed into an equivalent
KCNF formula (see [20] for details).

A formula in KCNF can be represented as a set of KNCF clauses (which are
to be interpreted conjunctively), and each clause can be represented as a set of
propositional and modal literals (wich are to be interpreted disjunctively). The
advantage of using sets is that we can disregard the order in which clauses and
litterals appear and their multiplicity. This will be important when we define
symmetries below. From now on we will always assume that modal formulas are
in KCNF. Modal formulas are interpreted on labeled transition graphs:

Definition 2 (Semantics). A modal model M is a structure (W, R, V'), where
W, the domain, is a non-empty set; R is the accessibility relation, a binary
relation on W; and V : W +— P(PROP) is the valuation function that assigns
to each element w of the domain, a subset V(w) of PROP, that correspond to
the propositional variables that are true in that state. Given a model M and a
state w in M the pair (M, w) is called a pointed model. We will usually drop
the parenthesis and call M,w a pointed model.

Given a formula p, an a pointed model M, w the satisfiability relation M, w
@ is defined inductively as:

M,wlE=p iff peV(w) for pe PROP
MywE-p iff pgV(w) for pe PROP
M, w =0C iff Yv such that wRv we have M,v |=C
M,w E-0C iff M,wlpDOC
M,w = C iff 3o € C such that M,v |= ¢ for C a KCNF clause
Mow E S iff Vo € S we have M,v = ¢ for S a KCNF formula.



As is clear from the definition, KCNF' clauses are interpreted disjunctively
(one of the members should be satisfied) while KCNF formulas are interpreted
conjunctively (all members should be satisfied). We will lift |= to set of pointed
models in the usual way: for M a set of pointed models, M = v, if and only if
M, w = ¢ for every M,w € M. We say that a formula ¢ is satisfiable if there
is a pointed model M,w such that M,w = . Given a formula ¢, Mod(yp) is
the set of pointed models of ¢, i.e., Mod(y) = {M,w | M,w = ¢}.

Given formulas @ and v we say that ¢ can be inferred from ¢ and write
© = ¢ if for any pointed model M, w we have that M,w |= ¢ implies M, w = 1.
In other words, ¢ | v if and only if Mod(p) C Mod(v)).

We extend the use of |= to propositional formulas. For L a consistent and
complete set of literals and ¢ a propositional formula we write L = ¢ when ¢ is
true under the propositional valuation defined by L.

A crucial tool in modal model theory is the notion of bisimulation: if two
models are bisimilar, they satisfy the same modal formulas.

Definition 3 (Bisimulation). Given two models M = (W,R,V) and M’ =
(W', R, V'), a bisimulation between M and M’ is a non-empty relation S C
W x W' that satisfies

— Atomic Harmony: if wSw' then p € V(w) if and only if p € V(w').
— Zig: if wSw' and wRv then there is v’ such that wR'v' and vSv'.
— Zag: if wSw' and w'R'v’ then there is v such that wRv and vSv'.

We say that two pointed models M,w and M’,w' are bisimilar (notation
M,w e M’ w) if there is a bisimulation S between M and M’ such that wSw'.

The following is a classical property of bisimulations. The proof is by induc-
tion on formulas (details can be found in [10]).

Proposition 1. If M,w e M’ w' then M,w = ¢ if and only if M',w' = ¢.

With this we complete the basic classical notions about modal logic we need
in the rest of the paper. We need now to introduce the basic notions concerning
symmetries:

Definition 4. [Permutation and symmetry] A permutation is bijective function
o : PLIT — PLIT. Permutations are lifted to sets of literals in the usual way:
if L is a set of literals then o(L) = {c(l) | | € L}. Given a modal formula ¢
and a permutation o we define o(p) as the formula obtained by simultaneously
replacing all literals | in PLIT(p) by o(l).

When used in applications we will be mostly interested in permutations that
only involve only a finite number of elements (i.e., o(l) = I except for a finite
number of literals). In these cases we can succinctly define a permutation by
listing the cycles that generate it.

We say that a permutation o is consistent if for every literal I, o(—l) = —o(1).
We say that a permutation o is a symmetry for ¢ if ¢ = o(p), when conjunctions
and disjunctions in @ are represented as sets.



Ezample 1. Trivially, the identity permutation o(l) = [ is a consistent symmetry
of any formula . More interestingly, consider the formula ¢ = {{-p,r}, {q,r},
{O{=p,q}}}, then the permutation o = (p, —q) is a consistent symmetry of ¢.

In the next section we will show that consistent symmetries preserve infer-
ences: i.e., if o is a consistent symmetry of ¢ and ¢ = 9 then ¢ = o ().

3 Symmetry preserves modal inference

In this section we show that consistent symmetries for modal formulas behave
similarly as in the propositional case and, hence, could assist in modal theorem
proving if they can be computed efficiently. In particular, we will prove the
following theorem.

Theorem 1. Let ¢ and ¥ be modal formulas and let o be a consistent symmetry
of p. Then ¢ =1 if and only if ¢ E o(¥).

The main ingredient in the proof of Theorem 1 will be the notion of o-
simulations.

Definition 5 (o-simulation). Let o be a permutation. A o-simulation between
models M = (W,R,V) and M' = (W' R, V') is a non-empty relation S C
W x W' that satisfies:

— Atomic Harmony: if wSw’ then | € Ly () if and only if o(1) € Ly ().
— Zig: if wSw' and wRv then there is v’ such that w'R'v' and vSv'.
— Zag: if wSw' and w'R'v' then there is v such that wRv and vSv'.

We say that two pointed models M,w and M',w' are o-similar (notation
Myw=, M w' if there is a o-simulation S such that wSw'.

Notice that —_ is not a symmetric relation: we can have M,w =, M’ v’

but not M’ w’ = _ M’ w’. From the definition of o-simulations intuitively follows
that while they don’t preserve validity of modal formulas (as is the case with
bisimulation) they do preserve validity of permutations of formulas.

Proposition 2. Let o be a consistent permutation and M, M’ models such that

M, w—=, M w'. Then M,w = ¢ iff M',w' |=o(p).

Proof. The proof is by induction on . The only interesting case is the base case,
as all the other cases are taken care by they inductive hypothesis and the Zig
and Zag conditions as with bisimulations (see [10]).

Suppose ¢ = p then, M,w = piff p € V(w) iff p € Ly () iff, by definition of
o-simulation, o (p) € Ly iff M',w" = o(p).

Suppose ¢ = —p then, M,w | —p iff p ¢ V(w) iff -p € Ly () iff, by
definition of g-simulation, o(—p) € Ly (y).

Given a model M and a permutation o we can apply o to the model and
obtain o(M). As we will show next, M and o(M) are always o-similar.



Definition 6. Let o be a permutation and M = (W, R, V) a modal model. Then
o(M) = (W, R, V"), where,V'(w) = 0(Ly () \{~l : =l € 0(Ly(w))}. We will lift
this construction to sets of models in the usual way: for M a set of models,

o(M) = {o(M) | M € M}.

Proposition 3. Let o be a consistent permutation and M = (W, R, V) a model.
Then M =, o(M).

Proof. We show that the identity is a o-simulation between M, w and o(M), w.
Atomic Harmony: We have to check that [ € Ly, iff o(I) € Ly (). But
from the definition of o(M), Ly () = 0(Lv (), hence if I € Ly () then o(l) €
U(LV(w))'

Moreover, O'(Lv(w)> is a complete set of literals because Ly (., is a complete
set of literals and o is a consistent permutation, and hence the converse also
follows.

The Zig and Zag conditions are trivial as the relation in both models is the
same.

Interestingly if o is a symmetry of ¢ then for any model M, M is a model
of ¢ if and only if o(M) is. This will be a direct corollary of the following
proposition in the particular case when o is a symmetry and hence o(¢) = ¢.

Proposition 4. Let o be a consistent permutation, ¢ a modal formula and M
a modal model. Then M,w = ¢ iff c(M),w = o(p).

Proof. This lemma follows directly from the fact that M —_ o(M) (Proposi-
tion 3) and Proposition 2.

Corollary 1. If o is a symmetry of ¢ then M € Mod(p) iff c(M) € Mod(y).
We are now ready for the proof of Theorem 1.

Proof (of Theorem 1). We first show that under the hypothesis of the theorem
the following property holds

Claim: Mod(y) = o(Mod(p)).

D] Let X € o(Mod(p)) and let M € Mod(p) be such that X = o(M). Then
M, w = ¢ and by Corollary 1 o(M),w £ ¢ and o(M) € Mod(yp).

[C] Let M € Mod(yp), then M,w = ¢. By Corollary 1 o(M),w |E ¢
therefore, 0(M) € Mod(y). Because o is a permutation there is n € N, n
such that ¢™(M) = M and hence M € o(Mod(p)).

and,
1

7

Now, we have to prove that ¢ |= ¢ if and only if ¢ = o(¢)). By definition,
¢ | ¢ iff and only if Mod(y) = 1. By Proposition 4, this is the case if and only
if o(Mod(p)) |= o().

Given that o is a symmetry of ¢, by the Claim above o(Mod(p)) = o(¢) if
and only if Mod(¢) | o(¢), which by definition means ¢ = o ().



4 Permutations and layering.

Propositional variables appearing at different modal depths in modal formulas of
the basic modal logic (where no particular property is assumed of the accessibility
relation in models) are independent of each other. This property actually relies
on the tree model property that many modal logics share: every pointed model
M, w in the logic is bisimilar to a tree model 7,w (i.e., a model where each
not has at most one predecesor and w has zero predecesors). Given M a class of
pointed models, let us write Tree(M) for the subclass of tree models of M. Then
the tree model propery ensures that ¢ = ¢ if and only if Tree(Mod(y)) = .

This was used in [2], for example, to introduce the idea of layering and define
a new translation of modal formulas into first order logic. It is easy to see that
the same ideas can be applied to symmetries: a different permutation could be
used at each modal depth without changing the results we have proved in the
previous Section.

Definition 7 (Permutation sequences). Let ¢ = (01,...,0,) be a finite
(possibly empty) sequence of permutations. |G| = n will denote the lenght of
the sequence, and for & such that |G| > 1, head(G) = o1 will denote the first
element of the sequence, and tail(G) = (02,...,0n) will denote the sequence of

permutations obtained after removing the first.

Ezample 2. Consider the modal formula ¢ = (p v O(pV =) A (—g V O(—-p V
r)). Without layering, this formula has no symmetries. But the sequence of
permutations (o1, 03) generated by o1 = (p—q) and o3 = (p—r) is a symmetry.

We can now extend the notion of simulation over permutation to o-sequences.

Definition 8 (g-simulation). Let & be a permutation sequence such that |G| =
n. A g-simulation between tree pointed models T,w = (W, R, V),w and T',w' =
(W' R, V"), w’ is a family of relations S5, C W x W' that satisfies the following
conditions for |6;| > 1:

Root: wSsw'.

Atomic Harmony: if wSs,w' then | € Ly () iff head(5;)(l) € Ly (-
Zig: if wSz,w' and wRv then there is v such that w'R'v" and v S 5,)v".
Zag: if wSs,w' and w' R'v' then there is v such that wRv and vSq5,)v"-

We say that two tree pointed models T,w and T',w’ are -similar (notation
T,w=5;T"), w if there is a &-simulation between them.

We can now repeat the work we did in the previous section to arrive to a
result similar to Theorem 1 but involving sequences of permutations. Formally,
for a modal formula of modal depth n we consider a sequence of permutation &



of length n + 1 and define 7(p) as

o(p) = head(c)(p)
a(—p) = head(7)(—p)
a(pNO)=a() Na(h)
a(ypVve)=a(p)Vva)
o(Oy) = Otail(a) ()
o (-0¢) = ~0Otail(a) (1)

Once more, we will say that a sequence of permutations & of size md(y) +
1 is a symmetry of ¢ if d(¢) = ¢ when conjunctions and disjunctions in ¢
are considered as sets. A sequence of permutations is consistent if each of the
permutations in the sequence is consistent. We can then prove:

Theorem 2. Let ¢ and ¥ be modal formulas and let G be a consistent sequence
of permutations of size md(p) + 1. If ¢ is symmetry of ¢ then for any ¢ with

md(v) < md(p) we have that ¢ = v if and only if ¢ = o ().

5 Detecting modal symmetries.

Different techniques have been proposed for detecting symmetries of proposi-
tional formulas in clausal form. Some of them, deal directly with the formula
(e.g., [9]), while others, reduce the problem to the problem of finding automor-
phism in colored graph [12,13,1].

The availability of efficient tools to detect graph automorphisms (e.g., [19,
14,17]) has made the later approach the most successful one because it is fast
and easy to integrate . The main idea behind it is to use the formula to construct
a colored graph whose symmetry group is isomorphic to the symmetry group of
the original formula. [1] defines different ways to map formulas to graphs, and
shows the existence of an isomorphism between the automorphism group of the
graph and the symmetry group of the original propositional formula.

As an example, we explain how one of these constructions, denominated
MIN3C, transforms a formula ¢ into a colored graph G:

1. Each clause of ¢ is represented in G, by a node of color 1.

2. Each propositional variable is represented by two nodes of color 2. One rep-
resents the positive literal and the other the negative literal.

3. An edge is created between a literal [ and —I to ensure Boolean consistency
(see [1]).

4. An edge is created between a clause C and a literal [ if and only if [ € C.

We will now extend this construction to modal formulas. When dealing with
modal formulas we must take into account modal operators and propositional
variables appearing at different modal depths.

In the following, a clause preceded by [J will be called a (-clause and, simi-
larly, one preceded by —[ is called a =[J-clause.



Definition 9. Let ¢ be a KCNF formula. The colored graph G, corresponding
to ¢ is constructed as follows:

1. Each clause C of ¢ is represented in G, by a clause node of color 1.
2. For each propositional variable p occurring in C':
(a) Add two literal nodes of color 2: one labelled p and one labelled —p.
(b) Add an edge between these two nodes to ensure Boolean consistency.
(c) Add an edge from C to nodes representing literals occurring in C.
3. For each modal literal OC" and each literal =0C" occurring in C':
(a) Add a O-clause node of color 3 to represent C', or an —O-clause node

of color 4 to represent C" as the case may be.
(b) Add an edge from C to this node.
(¢) Repeat the process from point 2 for each literal ocurring in C' and C".

This construction creates a graph with 4 colours and at most 2|V| x (md(y)+
1) + #Clauses + #OClauses + #—-0Clauses nodes.

Ezample 3. Let us consider the following KCNF formula ¢ = —0O(-p VvV Og V
O-¢) A—=0(—¢ Vv Op Vv O-p). Using sets for conjunctions and disjunctions we can
represent ¢ as:

¢ = { {=0{=p,0{q}, 0{~q}}}, {~0{~¢, O{p}, O{—p}}} }
This formula has eight clauses (2 at modal depth 0, 2 at modal depth 1 and 4
at modal depth 2) and six literals (2 at modal depth 1, and 4 at modal depth 2).

The associated G, 4 -colored graph is shown in Figure 1 (colors are represented
by shapes in the figure).

a A= {-0{-p,0{q}, Of{~q}}}
B = {-0{~q, O{p}, O{-p}}}
(c) (D) C = —-0{=p,0{q}, O{~q}}

D = =0{~q,0{p}, O{-p}}

O & © W @ W EB=04

F=0{~q}
(a)—(a) Cr—(») G =DO{p}
H =DO{-p}
o-generators :
a1 = ((p)(=p)(¢)(=q) (p —p)(q)(—q))
a2 = ((p)(=p)(¢)(=q), (p)(—=p)(q —q))
o3 = {(p ¢)(—p —q), (p ~q)(—p q))

Fig. 1. Graph representation of .

Notice the way literals are handled during the construction of G: the con-
struction duplicates literals nodes occurring at different modal depth. By doing
this we incorporate the notion of layering introduced in Section 4. Also, [J-clauses
and —[-clauses are colored different. This is to avoid spurious permutations that
maps [-clauses to =[J-clauses and the other way around.



5.1 Experimental results

In the previous seccions we have defined modal symmetries and show how to
compute them efficiently, but the question remains: do modal symmetries really
appear sufficiently often to care about them? There seems to be no easy way to
answer this question in a definitive way. The answer will surely depend on the
clase of problems we are targetting, and even then, on the particular way we are
encoding these problems as modal formulas.

With the aim of getting at least an empirical handle on the answer and, as
a byproduct, to test how hard it is to actually find modal symetries using the
construction described above, we carried out the following preliminary experi-
ment?.

We will work with a testbed that includes both random and hand-tailored
formulas:

— Random formulas: We generated 300000 formulas using hGen [3]. Formu-
las were divided into 600 classes of 500 instance formulas each according to
the parameters used to generate them. We used a wide spectrum of param-
eters within those available in hGen, with modal depth ranging from 1 to
5, number of propositional variables ranging from 3 to 15, and number of
clauses ranging from 3 to 92.

— Hand-tailored formulas: A set of formulas coming from the Logics Work-
bench Benchmark (LWB) [6]. For lack of time, we focused on four classes of
problem formulas for modal logic K, namely, k_branch, k_dumm, k_1lin and
k_path. All the problems were first translated to the KCNF format.

All tests were run on a Intel Core i7 2.93GHz with 16GB of RAM using
Bliss [17] as the graph automorphism engine. This tool receives as input the
graph specification and returns the set of generators of the formula’s symmetry
group. Figure 2 summarizes the results for both classes of problems. For each
formula category we report the number of instances analyzed (#Inst), the per-
centage of formulas with at least one symmetry (%wSymm), and the average
number of generators (AvgGens).

Category # Inst |% wSymm|AvgGens
Random 300000 55.4 1.567
Hand-tailored| 168 50.6 22.718

Fig. 2. Results on Random and Hand-tailored formulas

The empirical results shows then, than both in random and hand-tailores
formulas the chances of finding formulas with symmetries are good (intuitively,

! The results shown are those obtained at the time of submission, we plan to continue
the experiment and have more complete coverage for the final paper.

2 The probability of finding at least one symmetry should increase with the number
of clauses and for that reason this parameter was kept low.



you will run into them more than once every two formulas you consider). Of
course these results are far from conclusive and further testing is needed.

The case of hand-tailored formulas presents a behaviour that coincide with
our expectations. While the total percentage of formulas having at least one
symmetry is below the corresponding percentage for random formulas, their dis-
tribution is clearly driven by the codification used in each problem class, as can
be seen by looking in detail the results obtained for each problem class in this
category. Figure 3 summarizes the results for the four classes of problems in the
hand-tailored test set. In this table we can observe that from the four problem
classes, two (k_branch and k_path) of them exhibit a great amount of sym-
metries in its instances, while the others two (k_dum and k_1in), exhibit none.
Table 3 also includes the average generator search time (AvgTime), expressed
in seconds, for each problem class. Note that in all the cases it is negligible.

Problem Class |# Inst|% wSymm|AvgGens|AvgTime
K_BRANCH_N| 21 100 12 0.22
K_BRANCH.P| 21 100 11 0.19
K_DUM_N 21 0 0 0
K_DUM_P 21 0 0 0
K_LIN_N 21 0 0 0.01
K_LIN_P 21 0.050 1 0
K_PATH.N 21 100 35.952 0.07
K_PATH_P 21 100 32.952 0.06

Fig. 3. Hand-tailored formulas: Results by problem class

For the random formulas, we also estimated the probability that a random
formula will contain at least one symmetry.

To do so, we consider X, as a boolean random variable, that is equal to one if
a random formula has at least one symmetry and 0 otherwise. We estimate the
probability of X = 1 using a random formula generator which is controlled by
a vector © of parameters that we suppose uniformly distributed. We decompose
p(X =1) as follows,

p(X=1)=> p(X=1,0)=> p(X =10)p(O) = ¢ p(X =1/6)
e

[C] S]

where ¢ is the probability of a particular value for @. In our experiments ¢
is equal to ﬁ given that © can take one of 600 different values. In order to
estimate p(X|@), we randomly generated 500 formulas for each possible value of
©. Figure 4 summarizes all different values we got. The figure is an histogram
that shows the number of configurations that turn out to have a particular
p(X|©). For example, it shows that there are around 50 configurations that

produce formula without symmetries and that there are around 45 that will for
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Fig. 4. Histogram counting the number of parameters that produce each value of prob-
ability,

sure produce formulae with symmetries. Using these empirical estimations, it
turns out that p(X = 1) is equal to 0.554.

6 Conclusions and further work

In this work, we have shown that the notion of symmetry can be extended to
modal formulas in clausal form. We provided the theoretical foundations, defin-
ing the concept of o-simulation and showed that this is the key notion to establish
that the symmetries of a modal formula preserves inference. This property is the
key needed to incorporate symmetry learning in a theorem prover. We also pre-
sented an extension of o-simulation to layering, denominated g-simulation which
provides more flexibility at the moment of defining a symmetry of the formula,
and thus capture more symmetries than a o-simulation. Finally we provided a
detection algorithm that captures the notion of layering and presented experi-
mental results that shows the existence of symmetries in modal formulas.

Our ongoing research now focus on incorporating symmetry learning in the
hTab prover. To do so, we plan to enrich the semantic branching rule with
symmetry knowledge.

The semantic branching rule, an efficient alternative to the standard V-rule
of modal tableau is:

vV o

0
L



This branching rule ensures that the search space associated to each of the
branches is disjoint. Moreover, during the exploration of the # branch we can
assume that the 1 branch has closed (otherwise, the search for a satisfying model
would have stopped). Hence — is a consequence of the root formula in the
tableau. A tableaux based prover having access to symmetries could implement
the following, further enriched, branching formula:

YV

for o; any symmetry of the root formula.

0
v oi(—)

It remains to explore other forms of using symetries in automated theorem
proving for modal logics. One promising theme that we will investigate in the
future is the definition of permutation that can map modal literals modal literals,
in addition to propositional literals.
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