
UNIVERSIDAD NACIONAL DE CÓRDOBA

FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA
__

SERIE “A”

TRABAJOS DE INFORMÁTICA

Nº 2/09

Partial Order Reduction for Probabilistic
Systems Assuming Distributed Schedulers

Sergio Giro - Pedro R. D’Argenio

Editores: Pedro R. D’argenio – Gabriel Infante López
__

CIUDAD UNIVERSITARIA – 5000 CÓRDOBA

REPÚBLICA ARGENTINA

Partial Order Reduction for probabilistic
systems assuming distributed schedulers

Sergio Giro and Pedro R. D’Argenio

FaMAF, Universidad Nacional de Córdoba - CONICET
Ciudad Universitaria - 5000 Córdoba - Argentina

Abstract. In the verification of probabilistic systems, distributed sched-
ulers are used to obtain tight bounds on worst-case probabilities, these
bounds being more realistic than the ones obtained by considering un-
restricted full-history dependent schedulers. In this paper, we define two
classes of distributed schedulers. We present undecidability results re-
lated to the automatic verification under these classes of schedulers. In
previous literature, we have proven that the model checking problem is
undecidable for distributed schedulers. However, in this paper we show
that, by assuming that the schedulers are in a given class, the technique
of partial order reduction (POR) for LTL properties can be applied in
a more efficient way than usual, thus yielding a system with less states
and transitions than if reduced assuming unrestricted schedulers. The
reduced system can then be analysed using well-known algorithms for
full-history dependent schedulers. Our partial order reduction technique
may also obtain bounds strictly tighter than the ones obtained by con-
sidering unrestricted schedulers (of course, such bounds are safe with
respect to the class of schedulers under consideration). We explain that
the two variants we present are obtained from a general theorem, thus
raising the question of whether there are other “natural” classes of sched-
ulers for which POR variants can be developed.

1 Introduction

Markov decision processes (MDPs) are widely used in diverse fields ranging
from ecology to computer science. They are useful to model and analyse systems
in which both probabilistic and nondeterministic choices interact. Particularly,
composition oriented versions of MDPs like probabilistic automata [19] or prob-
abilistic modules [12] are specially suitable to model concurrent systems such
as distributed systems. MDPs can be automatically analysed using quantitative
model checkers such as PRISM [17] or LiQuor [8].

Since nondeterminism is involved, analysis techniques for MDPs require to
consider the resolution of all nondeterministic choices in order to obtain the
desired result. The resolution of such nondeterminism is given by the so called
schedulers (called also adversaries or policies, see e.g. [4, 19]). So, a quantita-
tive model checker can be used to find out the best/worst probability value of

email: {sgiro,dargenio}@famaf.unc.edu.ar

initT initG

1/21/2

headsT tailsT headsG tailsG

T G

Fig. 1. T tosses a coin and G has to guess

reaching a goal under any possible scheduler (a concrete instance being “the
probability of arrival of a package is above the bound 0.95”).

Partial order reduction (POR, [16, 9]) is a well-known technique to cope with
the state explosion problem. The works [1, 10] introduce partial order reduc-
tion for model checking of LTL properties on MDPs. In this paper, we explain
that POR for probabilistic systems can be improved in case the schedulers are
assumed to be distributed. Such assumption has been proven to be useful in pre-
vious literature, since it allows to calculate more realistic bounds on worst-case
probabilities and it allows some restricted forms of compositional reasoning [11,
12, 7]. Our variants of POR can be used to reduce the state space more ef-
ficiently than according to [1, 10]. In addition, for some systems, our variants
allow to calculate more realistic bounds on worst-case probabilities.

In the traditional MDP setting, in which the schedulers are not assumed
to be distributed, a scheduler is a function mapping paths to transitions (or,
in the more general case, paths to distributions on transitions). Given that the
execution up to some state s is known (namely, the history path), the scheduler
“chooses” to perform one transition out of all transitions enabled in state s.
Quantitative model checkers such as [17, 8] are based on the technique introduced
in [4], in which calculations are performed considering the set of all possible
schedulers. However, considering all the schedulers may yield unexpected results.

The following example illustrates distributed schedulers, and also shows why
it is convenient to consider only these schedulers when calculating worst-case
probabilities. A man tosses a coin and another one has to guess heads or tails.
Fig. 1 depicts the models of these men in terms of MDPs. Man T , who tosses
the coin, has only one transition which represents the toss of the coin: with
probability 1

2 he moves to state headsT and with probability 1
2 he moves to state

tailsT . Instead, man G has two possible transitions, each one representing his
choice: headsG or tailsG. An almighty scheduler for this system may let G guess
the correct answer with probability 1 according to the following sequence: first,
it lets T toss the coin, and then it chooses for G the transition leading to heads if
T tossed a head or the transition leading to tails if T tossed a tail. Therefore, the
maximum probability of guessing obtained by quantifying over these almighty
schedulers is 1, even if T is a smart player that always hides the outcome until
G reveals his choice. So, quantitative model checkers based on [4], though safe,
yield an overestimation of the correct value. In this example, in which T and G
do not share all information, we would like the maximum probability of guessing
(i.e., of reaching any of the states (headsT , headsG) or (tailsT , tailsG)) to be 1

2 .

This observation is fundamental in distributed systems in which components
share little information with each other, as well as in anonymity protocols, where

the possibility of information hiding is a fundamental assumption (a well-known
example of these systems being the dining cryptographers problem [6]). The
phenomenon we illustrated has been first observed in [19] from the point of
view of compositionality, and has been studied later in other settings [11, 12, 7].

In order to avoid considering the unrealistic behaviours we illustrated, dis-
tributed schedulers were proposed in previous literature. Local schedulers for each
component of the system are defined in the usual way (that is, the choices are
based on the complete history of the component) and the distributed schedulers
are defined to be the schedulers that can be obtained by composing these local
schedulers. Distributed schedulers have been studied in [12] in a synchronous
setting and in [7] in an asynchronous setting. In addition, distributed schedulers
are related to the partial-information policies of [11].

We remark that the “almighty” scheduler of the example would not be a valid
scheduler in this new setting since the choice for G depends only on information
which is external to (and not observable by) G. Then, a local scheduler for G
takes the decision having no information about the actual state of T , and so the
choice cannot be changed according to the outcome of T .

The first work to focus on model checking techniques when schedulers are
restricted to be distributed is [13]. Unfortunately, in [13] we showed that the
bounds for the probability of properties cannot be calculated nor even approxi-
mated if the schedulers are restricted to be distributed. Actually, the framework
in [13] is the same synchronous setting of [12].

Since we focus on distributed systems, in this paper we work on an asyn-
chronous setting based on [7] (however, the order in which the components ex-
ecute is not restricted by the token structure in [7], and so our interleaving
mechanism is more general). In Sec. 2 we present this setting and the first ver-
sion of schedulers, that we call distributed schedulers. These schedulers focus on
preserving the behaviour of a component hidden from other components (unless,
of course, the component reveals it), thus ruling out the “almighty” schedulers
as the one explained before. We will show later that this class of schedulers
may still peek at some hidden information producing an undesired global result.
Therefore, in Sec. 3 we go further restricting this set to what we call strongly
distributed schedulers. The undecidability of the model checking problem for
distributed schedulers is proven in [13]. Here, we show that the restriction we
impose to strongly distributed schedulers also leads to undecidability. In addi-
tion, we present new undecidability results related to qualitative properties for
both distributed and strongly distributed schedulers.

In Sec. 4 we present two variants of POR, corresponding to distributed and
strongly distributed schedulers, respectively. Although we use Probabilistic I/O
Automata as our underlying theoretical framework, one of the variants of POR
we present (the more powerful one, corresponding to strongly distributed sched-
ulers) can be applied directly to MDP models without input/output restrictions
as the PRISM language [17]. With respect to the other variant, we show how
can it be applied in case the model has no input/output distinctions. Finally,
in Sec. 5 we explain that the two variants we present are obtained from a general

A reactive structure with two transitionsA generative structure with two transitions

1/2
1/2

1/2
1/2

a?

2/3
1/3

a!

1/3
2/3

b!b!

b?a!

Fig. 2. Reactive and generative structures

theorem, thus leaving open the question of whether there are other “natural”
classes of schedulers for which POR variants can be developed.

2 Interleaved Probabilistic Input/Output Automata

We present a framework based on the Switched PIOA [7]. It uses reactive and
generative structures (see [15]). For a finite set S, we denote by DiscDist(S) the
set of all discrete probability distributions over the set S. Given a set ActLab

of action labels and a set S of states, the set of generative transitions TG on
(S,ActLab) is DiscDist(S×ActLab), and the set TR of reactive transitions is
DiscDist(S). A generative structure on (S,ActLab) is a function G : S → P(TG)
and a reactive structure on (S,ActLab) is a function R : S×ActLab → P(TR).
Figure 2 depicts an example of these structures. Generative transitions model
both communication and state change. The component executing a generative
transition chooses both a label a to output (the ! in the figure represents output)
and a new state s according to a given distribution. Reactive transitions specify
how a component reacts to a given input (the ? in the figure represents input).
Since the input is not chosen, reactive transitions are simply distributions on
states.

In our framework, a system is obtained by composing several probabilistic
I/O atoms. Each atom is a probabilistic automata having reactive and generative
transitions.

Definition 1. A probabilistic I/O atom is a 5-tuple (S,ActLab, G,R, init), where
S is a finite set of states, ActLab is a finite set of actions labels, and G (R, resp.)
is a generative (reactive, resp.) structure in (S,ActLab). init ∈ S is the initial
state. We require the atoms to be input-enabled, so R(s, a) 6= ∅ for every s ∈ S,
a ∈ ActLab. We often write Si to denote the set of states of an atom Ai and
similarly for the other elements of the 5-tuple. In addition, we write TGi

(TRi
,

resp.) for the set of generative (reactive, resp.) transitions on (Si,ActLabi).

An interleaved probabilistic I/O system P is a set Atoms(P) of probabilistic
I/O atoms A1, · · · , AN . The set of states of the system is

∏

i Si, and the initial
state of the system is init = (init1, · · · , initN).

In order to define how the system evolves, we define compound transitions,
which are the transitions performed by the system as a whole. In such compound
transitions, all the atoms having the same action label in their alphabet must
synchronize and exactly one of them must participate with an output (genera-
tive) transition (thus modelling multicasting). Formally, a compound transition
is a tuple (gi, a, rj1 , · · · , rjm

) (we require i 6= jk and jk 6= jk′ for all k 6= k′) where

gi is a generative transition in the atom Ai (the active atom), a ∈ ActLabi is
an action label, the rjk

are reactive transitions in the atoms Ajk
(the reactive

atoms) and {Ai, Aj1 , · · · , Ajm
} is the set of all the atoms such that a ∈ ActLabj .

We say that Ai, Aj1 , . . . , Ajm
are the atoms involved in the compound tran-

sition. A compound transition (gi, a, rj1 , · · · , rjm
) is enabled in a given state

(s1, · · · , sN) if gi ∈ Gi(si) and rjk
∈ Rjk

(sjk
, a). The action label a of a com-

pound transition c is indicated by label(c). The probability c(s, s′) of reaching a
state s′ = (s′1, · · · , s′N) from a state s = (s1, · · · , sN) using a compound transi-
tion c = (gi, a, rj1 , · · · , rjm

) is gi(s
′
i, a) ·

∏m
k=1 rjk

(s′jk
) if st = s′t for every atom

not involved in the transition. Otherwise, c(s, s′) = 0.

In order to ease some definitions, we introduce a fictitious “stutter” com-
pound transition ς. Intuitively, this transition is executed iff the system has
reached a state in which no atom is able to generate a transition. The probabil-
ity ς(s, s′) of reaching s′ from s using ς is 1, if s = s′, or 0, otherwise.

A path σ of P is a sequence of the form s1.c1.s2.c2 · · · cn−1.sn where each
si is a (compound) state and each ci is a compound transition. A path can be
finite or infinite. For a finite path σ as before, the set [σ] contains all the infinite
paths starting with σ. We define last(σ) = sn and len(σ) = n.

In the following, we suppose that input-enabled atoms A1, . . . , AN are given,
and we are considering the system P comprising all the atoms Ai. We call this
system “the compound system”. The states (paths, resp.) of the compound sys-
tem are called global states (global paths, resp.) and the states (paths, resp.) of
each atom are called local states (local paths, resp.).

The probability of a set of executions depends on how the nondeterminism is
resolved. A scheduler transforms a nondeterministic choice into a probabilistic
choice by assigning probabilities to the available transitions. Given a system and
a scheduler, the probability of a set of executions is completely determined.

Usually, schedulers assign probabilities to the available transitions taking into
account the complete history of the system. So, arbitrary schedulers are defined
as functions mapping paths to distributions on transitions. As we have seen, it
may be unrealistic to assume that the schedulers are able to see the full history
of all the components in the system. In the following, we define restricted classes
of schedulers in order to avoid considering unrealistic behaviours.

Distributed schedulers. In a distributed setting as the one we are introducing,
different kinds of nondeterministic choices need to be resolved. An atom needs
a corresponding output scheduler to choose the next generative transition. In
addition, it may be the case that many reactive transitions are enabled for a
single label in the same atom. So, for each atom we need an input scheduler in
order to choose a reactive transition for each previous history and for each label.
Output and input schedulers are able to make their decisions based only on the
local history of the atom. So, we need the notion of projection.

Given a path σ, the projection σ[i] of the path σ over an atom Ai is defined
inductively as follows: (1) (init1, · · · , initN)[i] = initi , (2) σ.c.s[i] = σ[i] if Ai

is not involved in c, and (3) σ.c.s[i] = σ[i] .label(c).πi(s) (where πi is the usual

projection on tuples), otherwise. The set of all the projections of paths over an
atom Ai is denoted by Proji(P).

An output scheduler for the atom Ai is a function Θi : Proji(P) → DiscDist(TGi
)

such that, if Gi(last(σ)) 6= ∅ then Θi(σ[i])(g) > 0 =⇒ g ∈ Gi(last(σ[i])).
An input scheduler for an atom Ai is a function Υi : Proji(P) × ActLabi →
DiscDist(TRi

) s.t. Υi(σ[i] , a)(r) > 0 =⇒ r ∈ Ri(last(σ[i]), a). Note that, if the
output scheduler Θi fixes a generative transition for a given local path σ[i], then
the actions in the generative transition can be executed in every global path σ′

s.t. σ′[i] = σ[i], since we require the atoms to be input-enabled.
An important modification with respect to the framework in [7] is the addi-

tion of an interleaving scheduler that chooses the next component to perform an
output. We compare previous approaches to interleaving in Sec. 5.

An interleaving scheduler is a map that, for a given (global) history, (prob-
abilistically) chooses an active atom that will be the next to execute an output
transition (according to its output scheduler). Formally, an interleaving sched-
uler is a function I : Paths(P) → DiscDist({1, · · · , N}) such that, if there exists
i such that Gi(last(σ[i])) > 0 (that is, if there is some atom being able to gen-
erate a transition) then I(σ)(i) > 0 =⇒ Gi(last(σ[i])) 6= ∅. Note that, even if
interleaving schedulers are unrestricted, compound schedulers for the compound
system are still restricted, since the local schedulers can only see the portion of
the history corresponding to the component.

A scheduler for the compound system results by the appropriate composition
of the interleaving scheduler and the output and input schedulers of each atom.

Given an interleaving scheduler I, input schedulers Υi and output schedulers
Θi for each atom i, the distributed scheduler η obtained by composing I, Θi and
Υi is defined as:

η(σ)(gi, a, rj1 , · · · , rjm
) = I(σ)(i) · Θi(σ[i])(gi) ·

∏m
k=1 Υjk

(σ[jk] , a)(rjk
) ,

where Ajk
are all the atoms such that a ∈ ActLabjk

. The set of distributed
schedulers of P is denoted by Dist(P).

Usually, schedulers are defined to map into distributions on transitions. How-
ever, it may be the case that

∑

c η(σ)(c) > 1 for a distributed scheduler η. This
is because action labels are not chosen by the scheduler (they are chosen by the
generative transition). However, for every label a,

∑

{c|label(c)=a} η(σ)(c) = 1.

The probability of the extension sets [σ] is inductively defined as follows:
the probability Prη([init]) of the extensions of the initial state is 1. If there is
i s.t. Gi(last(σ[i])) 6= ∅, then the probability Prη([σ.c.s]) is Prη(σ) · η(σ)(c) ·
c(last(σ), s). If there is no such i, then the system cannot generate any transition.
In this case, we let Prη([σ.c.s]) = Prη([σ]) if c = ς and s = last(σ), or 0 otherwise.

Note that, if c = (gi, a, rj1 , · · · , rjm
), then η(σ)(c) · c(s, s′) is

I(σ)(i) · Θi(σ[i])(gi) ·
∏m

k=1 Υjk
(σ[jk] , a)(rjk

) · gi(s
′
i, a) ·

∏m
k=1 rjk

(s′jk
) ,

which implies
∑

c,s′ η(σ)(c) · c(last(σ), s′) = 1. This probability can be extended
to the least σ-field containing all the extension sets in the standard way.

Undecidability for distributed schedulers. In [13] we have proven (in a
similar setting, but the proof strategy applies as well) that the maximum prob-
ability that some of the states in a given set are reached cannot be calculated

a! b!

initAB

b! a!

AB

initBinitA

BAT

initT

headsT tailsT

1/2 1/2

t!h!

Z

headsZ tailsZ

initZ

a?, b?

a! b!

Fig. 3. Motivating strongly distributed schedulers

nor even approximated. A new result in this direction is that it cannot be de-
cided whether or not there exists a scheduler reaching some of the states in a
given set with probability 1. Note that this is a result of a more “qualitative”
nature. The proof of this result differs from that of [13], and uses a reduction of
the Post correspondence problem. For a formal statement and the proof of the
qualitative result, see the Appendix.

3 Strongly distributed schedulers

Distributed schedulers model the fact that components can only look at their
local history to choose the next transition to perform. However, under distributed
schedulers, it is still possible that the hidden state of a component affects the
behaviour of an unrelated group of components.

We explain how this leak of information occurs using atoms depicted in Fig. 3.
Consider the system P having atoms T , Z, A, B. In this system, T is a process
that tosses a coin. For the labels h! and t! corresponding to heads and tails,
we have h!, t! 6∈ ActLabZ ∪ActLabA ∪ActLabB . So, according to this model, T
keeps the outcome as a secret (coins whose output are assumed to be secrets can
be found in probabilistic security protocols such as the solution to the dining
cryptographers problem, see [6]). Atom Z models an attacker trying to guess the
outcome of the coin. Atoms A and B are two process that Z is able to observe.

Consider the maximum probability that attacker Z guesses the outcome (i.e.
the probability that a state of the form (headsT , headsZ , · · ·) or (tailsT , tailsZ , · · ·)
is reached). Since the attacker is able to to see only the actions of A and B (and
these atoms cannot, in turn, see the outcome of T) the attacker has no informa-
tion about T , and so the maximum probability should be 1/2. Unfortunately,
there exists a distributed scheduler that yields probability 1: the interleaving
scheduler chooses T in the first place, and then it chooses either (A and then
B) or (B and then A), according to the outcome of the probabilistic transition.
Finally, the interleaving scheduler chooses A. The order in which a! and b! were
output is part of the local history of Z, so the output scheduler for Z can always
choose the transition agreeing with the outcome of the coin.

Note that the leak of information arises from the fact that the interleaving
scheduler can look at the complete history of the system. In the following we
derive restrictions on interleaving schedulers that prevent the leak presented
above. Then, strongly distributed schedulers are defined as distributed schedulers
whose interleaving scheduler complies with such condition.

In the example above, the state of T affects the execution of atoms A and
B. Distributed schedulers were defined in such a way that the state of an atom

cannot affect the execution of another atom. Note that, if we regard A and B as
a single component AB, we end up in a situation very similar to the one depicted
in Fig. 1: in the case in which the coin lands heads AB chooses to perform the
transition a!, while in the other case it chooses to perform the transition b!. In
fact, if we consider the system P ′ such that Atoms(P ′) = {T,Z,AB}, no output
scheduler for AB can be defined in such a way that the order of execution of a!
and b! depends on the outcome of T (since the outcome of T does not affect the
state of AB). Then, there is no distributed scheduler for P ′ that can simulate
the behaviour in P explained in the previous paragraph. Therefore, we would
like that the new scheduler works just like distributed schedulers would do when
A and B are considered as a single atom.

Let P be a compound system containing atoms A and B. Let AB be a single
atom representing the composition of A and B and P ′ another compound system
such that Atoms(P ′) =

(

Atoms(P) \ {A,B}
)

∪ {AB}. In general, we want to
restrict interleaving schedulers such that, for every distributed scheduler η on
P complying to such restriction, there is a distributed scheduler η′ on P ′ that
defines the same probabilistic behaviour.

To motivate the restriction, consider a scheduler for the system P with T , A
and B in Fig. 3. Consider a distributed scheduler η whose interleaving scheduler
complies I(init) = (1

2T + 2
6A + 1

6B). We seek for a restriction on I s.t. it is
possible to find a distributed scheduler for P ′ containing atoms T and AB in
Fig. 3. When AB is in state (initA, initB), the output scheduler ΘAB chooses
a distribution on {a!, b!}. To respect the choice of I in P , it must hold that
ΘAB(initAB)(a!) = 2 · ΘAB(initAB)(b!), since, according to I, the probability of
executing a! is twice the probability of executing b!. So,

ΘAB(initAB)(a!) = 2
3 and ΘAB(initAB)(b!) = 1

3 . (1)

Suppose (initT , initA, initB)
t!
→(headsT , initA, initB) in P . The corresponding path

in P ′ is (initT , initAB)
t!
→(headsT , initAB). Call both these paths σheads (ambigu-

ity is resolved according to whether it is used in the context of P or P ′).
Since σheads [AB] = initAB = (initT , initAB)[AB], we have that

ΘAB((initT , initAB)[AB])(a!) = ΘAB(σheads [AB])(a!) = ΘAB(initAB)(a!) = 2
3

and similarly for b!. Therefore ΘAB(σheads [AB])(a!) = 2ΘAB(σheads [AB])(b!).
This relation has to be maintained in P by I(σheads). That is, whichever is the
probabilistic choice in I(σheads) w.r.t. other atoms, the relation I(σheads)(a!) =
2 · I(σheads)(b!) has to be maintained.

This suggests that, in the general case, for two executions that cannot be
distinguished by any of two atoms A and B, the relative probabilities of choosing
A over B (or B over A) should be the same. Or better stated: conditioned to the
fact that the choice is between atoms A and B, the probability should be the
same in two executions that cannot be distinguished by any of the two atoms.

Formally, given any two atoms A, B of a system P , for all σ, σ′ s.t. σ[A] =
σ′[A] and σ[B] = σ′[B], it must hold that

I(σ)(A)

I(σ)(A) + I(σ)(B)
=

I(σ′)(A)

I(σ′)(A) + I(σ′)(B)
(2)

provided that I(σ)(A) + I(σ)(B) 6= 0 and I(σ′)(A) + I(σ′)(B) 6= 0.

Definition 2. A scheduler η is strongly distributed iff η is distributed and equa-
tion (2) holds on the interleaving scheduler I that defines η. The set of strongly
distributed schedulers of P is denoted by SDist(P).

We emphasize that strongly distributed schedulers are useful depending on
the particular model under consideration. In case we are analysing an agreement
protocol and each atom models an independent node in a network, then the
order in which nodes A and B execute cannot depend on information not avail-
able to none of them, and so strongly distributed schedulers give more realistic
worst-case probabilities. However, in case the interleaving scheduler represents
an entity that is able to look at the whole state of the atoms (for instance, if the
atoms represent processes running on the same computer, and the interleaving
scheduler plays the role of the kernel scheduler), then the restriction above may
rule out valid behaviours, and so distributed schedulers should be considered.

The following theorem is the generalization of the fact that, for every strongly
distributed scheduler η on P = {T,Z,A,B} as in Fig. 3 there is a distributed
scheduler η′ on P ′ = {T,Z,AB} that defines the same probabilistic behaviour.

Theorem 1. Let P be a system such that A,B ∈ Atoms(P). Consider the sys-
tem P ′ such that Atoms(P ′) =

(

Atoms(P) \ {A,B}
)

∪ {AB}, where AB is
the usual cross-product of A and B (as in, for instance, [7, p. 99]). Then, for
every strongly distributed scheduler η for P , there exists a strongly distributed
scheduler η′ for P ′ yielding the same probability distribution on paths as η.

One may wonder what happens if, instead of considering two atoms A and
B in (2), two disjoint sets A,B of atoms are considered. The (apparently more
general) condition on sets holds whenever condition (2) on atom holds (see the
Appendix for a formal statement and proofs).

Undecidability for strongly distributed schedulers. We obtained unde-
cidability results similar to the case of distributed schedulers. In addition, we
proved that neither quantitative nor qualitative model checking can be performed
in case there is no nondeterministic choices internal to the components. That is,
the condition on strongly distributed schedulers suffices to introduce undecid-
ability, regardless of the undecidability introduced by input/output schedulers.
Proofs for the case of distributed schedulers must be adapted to these schedulers
(see the Appendix).

4 Partial order reduction under distributed schedulers

In this section, we develop two variants of POR for probabilistic systems (each
variant corresponding to a class of schedulers) using the ample sets in [9]. Such
variants exploit the distributedness assumptions on schedulers in order to im-
prove the reduction.

Our variants allow to construct an MDP that can be analysed using the well-
known model checking algorithm in [4]. The results obtained in this analysis are
safe bounds on the probability of LTL¬ next properties under the corresponding
class. We also explain how our technique can be used in languages without
input/output restrictions such as the PRISM language.

4.1 From Interleaved PIOA to MDPs

Since probabilistic model checkers are based on MDPs we explain our technique
in this setting and formally interpret interleaved PIOAs in terms of MDPs.

Definition 3 (MDP). An MDP is tuple M = (S,Actions,P, init), where S is a
finite set of states, Actions is a finite set of actions identifiers, P : (S×Actions×
S) → [0, 1] is the (three-dimensional) probability matrix, init ∈ S is the initial
state. Actions(s) denotes the set of actions enabled in state s, i.e. the set of ac-
tions α such that P (s, α, t) > 0 for some t ∈ S. For every state s ∈ S, we require
that Actions(s) 6= ∅ and

∑

s′∈S
P(s, α, s′) = 1 for every action α ∈ Actions(s).

(In particular, we assume that M does not have terminal states.)

Given an Interleaved PIOA we can construct an equivalent MDP as follows.
Since MDPs have no concept of action labels, we encode the last action label as
part of the state. So, the set of states of the MDP is S = (ActLab∪{aInit})×

∏

i Si,
where aInit is a fictitious label introduced because the initial state has no pre-
vious label. Each action in the MDP specifies a generative transition and, in
addition, it specifies how the other atoms react to the generative transition. So,
each element in Actions is of the form (gi, f1, · · · , fi−1, fi+1, · · · , fN), where gi

is a generative transition of the atom i and fj : ActLabj → TRj
(recall Def. 1).

Each action of the form (gi, f1, · · · , fi−1, fi+1, · · · , fN) corresponds to several
compound transitions: namely, there is one compound transition for each label
in ActLabi. Given an action as before and a label a, we obtain the compound
transition (gi, a, fr1

(a), · · · , frk
(a)), where r1, · · · , rk are the atoms that react

to a. An action α in the MDP is enabled in s iff the corresponding compound
transitions are enabled in the Interleaved PIOA. The probability matrix is de-
fined as P((a, s), α, (a′, s′)) = c(s, s′), where α = (gi, f1, · · · , fi−1, fi+1, · · · , fN)
and c = (gi, a

′, fr1
(a′), · · · , frk

(a′)). The initial state is (aInit, init), where init is
the initial state of the Interleaved PIOA.

Schedulers for MDPs map paths to probability distributions on Actions. The
probability Prη(σ) of a path σ = s0

α1→ s1 · · ·
αn→ sn is defined inductively: the

probability of the initial state is 1. The probability of a path σ
αn→sn is Prη(σ) ·

η(αn) · P(last(σ), α, sn). The set of schedulers of M is denoted by Sched(M).

4.2 Partial order reduction for LTL
¬ next

Given a system under verification, the technique of partial order reduction yields
another system with less transitions. The reduced system must respect certain
restrictions so that it satisfies exactly the same set of properties as the original

system. When probabilities come into play, an extra restriction on the reduced
system is needed. For the example in Fig. 1, the extra restriction prevents the
reduction in which the probabilistic choice is eliminated from the initial state,
because this reduction does not preserve the behaviour in which the nondeter-
ministic choice is resolved according to the outcome of the probabilistic choice.
However, our technique allows this reduction: although the described behaviour
is not preserved, such behaviour corresponds to a scheduler that is not dis-
tributed. So, the variants of POR we present prevent more behaviours than the
POR in [1, 10] does. From our correctness proof, it is inferred that all the elimi-
nated behaviours are unrealistic behaviours corresponding to schedulers that do
not comply with the distributedness assumption. So, if the POR eliminates unre-
alistic behaviours that are significant to the bounds to be obtained, the analysis
of the reduced system yields more realistic results than the ones obtained by
analysing the original system.

A description of the temporal logic LTL can be found in [9]. Given a set AP

of atomic propositions and an LTL formula φ, the validity of φ depends on a
function L : S → 2AP, that indicates the set of atomic propositions that are valid
in each state. We use Satφ to denote the set of all paths satisfying φ.

The set of transitions enabled at some state s in the reduced system is called
the ample set of s and is denoted by ample(s). Restrictions to the ample sets are
based on the notion of independence. In the following, Inv(α) denotes the set of
all the atoms that may be involved in the execution of α. If gi is the generative
transition in α, Inv(α) = {A | ∃a, s : gi(s, a) > 0 ∧ a ∈ ActLabA}.

We say that two actions α, β are independent iff (∃s : {α, β} ∈ Actions(s)) =⇒
Inv(α) ∩ Inv(β) = ∅.

So, two actions are independent only if the execution of one of them does not
interfere with the execution of the other one. Note that the order of execution
is irrelevant and that neither of them can disable the other. This definition
of independence is widely used in practice, and, in fact, it is suggested as a
practical criterion in [16, p. 28]. However, using the general theorem upon
which Theorem 2 and Theorem 3 rely (see Sec. 5), we also obtain improvements
using the definition of independence in [1, 10] (see the Appendix).

We need some additional definitions before presenting the restrictions for
POR. A path s0

α0→ s1 · · · is possible iff P(si, αi, si+1) > 0 for all i. An action α
is stutter iff P(s, α, s′) = 0 for all s′ such that L(s) 6= L(s′). An end component
(EC) is a pair (T,A) where A : T → P(Actions) and T is a set of states such
that: (1) ∅ 6= A(s) ⊆ Actions(s) for all s ∈ T , (2) P(s, α, t) > 0 implies t ∈ T ,
for all s∈T , α∈A (3) for every s, t ∈ T there exists a possible path from s to t.

The restrictions for the ample sets to preserve LTL¬ next properties under
unrestricted full-history dependent schedulers are listed below. Ŝ denotes the set
of reachable states in the reduced system M̂ , which is constructed by taking
ample(s) to be the set of enabled actions in s ∈ Ŝ.

(A1) For all states s ∈ S, ∅ 6= ample(s) ⊆ ActLab(s),

(A2) If s ∈ Ŝ and ample(s) 6= Actions(s) each α ∈ ample(s) is a stutter action,

(A3) For each path σ = s
α1→ s1

α2→ · · ·
αn→ sn

γ
→ · · · in M where s ∈ Ŝ and γ is

dependent on ample(s) there exists an index 1 ≤ i ≤ n such that αi ∈ ample(s),

(A4) If (T,A) is an EC in M̂ and α ∈
⋂

t∈T A(t), then α ∈
⋃

t∈T ample(t)

(A5) If s
α1→ s1

α2→ s2 · · ·
αn→ sn

γ
→ sn+1 is a possible path in M where s ∈ Ŝ,

α1, · · · , αn, γ 6∈ ample(s) and γ is probabilistic (i.e. 0 < P(s′, γ, t′) < 1 for some
s′, t′) then |ample(s)| = 1.

In case we assume that the schedulers are distributed, we can replace A5

by (A5′) If s
α1→ s1

α2→ s2 · · ·
αn→ sn

γ
→ sn+1 is a possible path in M where s ∈ Ŝ,

α1,· · ·,αn,γ 6∈ample(s) and γ is probabilistic then all the outputs in ample(s) are
generated by the same atom A

as formalized in the following theorem.

Theorem 2. Let φ be an LTL¬ next formula, M be the MDP corresponding
to a given Interleaved PIOA P , and let M̂ be the system obtained by reduc-
ing M according to conditions A1–A4, A5′. Then, supη∈Dist(P) Prη(Satφ) ≤
supη∈Sched(M̂) Prη(Satφ).

In case we assume strongly distributed schedulers, A5 can be disregarded 1.

Theorem 3. Let φ, M and P be as in Theorem 2. Let M̂ be the system obtained
by reducing M according to conditions A1–A4. Then, supη∈SDist(P) Prη(Satφ) ≤
supη∈Sched(M̂) Prη(Satφ).

As an example, suppose that we are interested in finding the supremum
probability that a system fails under strongly distributed schedulers. Since the
restrictions on the ample set for strongly distributed schedulers do not consider
input/output distinctions, the model P can be written in a language without
such distinctions (such as the PRISM or LiQuor language). P can be seen as an
Interleaved PIOA P0 for which the I/O distinctions were eliminated, since the re-
duction algorithm do not consider them. In this case, the corresponding MDP M
is equivalent to P . Suppose that 0.1 is the highest probability of failure allowed
by the specification. Moreover, suppose that, by using the model checking algo-
rithm in [4], we calculate that the supremum probability of a failure quantifying
over all schedulers is 0.15. According to this analysis, the system would not meet
the specification. However, the schedulers yielding probabilities greater than 0.1
might be “unrealistic” schedulers as the ones explained in the introduction and
Sec. 3. Suppose that we construct M̂ as described above. Then, we can use the
algorithm in [4] to calculate S = supη∈Sched(M̂) Prη(SatTrue UFail). If S = 0.05,

then the theorem above ensures that supη∈Dist(P0) Prη(SatTrue UFail) ≤ 0.05, and
so the system meets the specification. In this sense, the bounds are safe with
respect to Dist(P0) (strictly speaking they are safe for every P0 such that, by

1 In the Appendix, we illustrate the need of A5′ under distributed schedulers, and the
impact of its elimination in favour of strongly distributed schedulers.

eliminating the I/O distinctions, P0 becomes P 2). Note that, in this case, the
reduction has prevented some schedulers that are not strongly distributed and
so the verification on M̂ is more accurate than the verification on P .

With respect to distributed schedulers, the restriction A5′ relies on the in-
put/output distinctions. In case the model is written in a language that does not
have such distinctions, one may think that every transition in the model can play
the role of an output and also the role of an input. Then, one can obtain restric-
tions that imply A5′. One of such restrictions being: if ample(s) 6= Actions(s),
then either the ample set has a single action, or all actions in the ample set
correspond to internal transitions (i.e., transitions without synchronization) in
the same atom.

Reduction of the state space and transitions. In order to compare our
approach to POR against the existing one, we reduced the model of the din-
ing philosophers problem in [3]. Our reduced model is generated by a program
written ad hoc for this problem. The program inserts additional conditions that
disallow transitions not present in the ample sets. Table (a) below compares
the ratio of reduction (that is, # in the reduced system / # in the original
system): (1) assuming strongly distributed schedulers, (2) reported in [1] (in
which the reduction is also not automated), and (3) reported in [3] (obtained
using LiQuor). N indicates the amount of philosophers. Our approach clearly
improves the results in [1]. With respect to the states, our results are similar to
the ones in [3]. However, with respect to the transitions, we obtain a significant
improvement. The amount of transitions is also important, since it heavily in-
fluences the time spent by the algorithms to analyse MDPs. So, our approach
improves not only the results in [1], but also the results obtained with a fully
functional tool in [3].

(1) (2) (3)
N States Transitions States States Transitions
3 0.42 0.24 0.76 0.70 0.40
4 0.36 0.20 0.68 0.36 0.36
5 0.36 0.21 0.66 0.33 0.31

(a)

m pm (1) pm (2)
9 0.11 1.00
13 0.01 0.78
17 0.00 0.05

(b)

Tables: Experimental results

The Appendix contains details on the experiments, as well as a description
of ample sets that are only possible using our approach.

Improving the bounds. For the example shown in the introduction, both
of our variants allow the reduction in which the ample set for the initial state
does not have the probabilistic transition. Using this reduction, the maximum
probability of guessing is 1/2, as expected.

Using this kind of “smart” reductions, one can obtain tighter bounds on
worst-case probabilities. We used ad hoc reductions in order to analyse a simple

2 In particular, the bounds are safe for the Interleaved PIOA that has both an output
and an input transition for each transition in P . Such Interleaved PIOA covers all
possibilities of input/output interaction.

protocol for anonymous fair service. The protocol is described in the Appendix,
and here we give a brief description. A server must serve two clients in a fair
fashion regardless of the rates at which they ask for service. In addition, the
clients cannot be identified, and so the server cannot simply count how much
times it has served each of the clients. The protocol tosses a coin in order to
choose the order in which incoming requests are served. If the clients were allowed
to see the outcome of the coin, they would be able to ask for service in such a
way that one of them is served more times than the other one.

Since we focus on reachability properties (and we are still not able to verify
long-run properties), we modelled the system so that it stops after one of the
clients is served 20 times. Then, we used PRISM to calculate the maximum
probability pm that, at any point of execution, the amount n1 of replies to client
1 is greater than or equal to n2 + m, where n2 is the amount of replies to client
2 and m is a parameter of the property.

Table (b) shows the values of pm for m = 9, 13, 17 both for (1) the reduced
system and (2) the original system under unrestricted schedulers.

5 Discussion and further work

Related work. In the existing frameworks which are similar to our, there is
no explicit nondeterminism as a consequence of interleaving. In [11], there is no
treatment of composition, so nondeterminism is treated abstractly without ex-
plicit relation to interleaving. In this work schedulers are restricted in a way they
are only allowed to partially observe a state along history (so different states may
be observed as equivalent), and are thus related to partially observable Markov
decision processes (POMDPs). A valuable source of information on POMDPs
is [5]. The framework in [12] is synchronous: a step of the whole system is ob-
tained by taking a step in every component, so, there is no interleaving at all.
Closest to our work is [7] in which a token is used to decide the next component
to execute. Since the behaviour of the token is specified by the components them-
selves, there is no explicit interleaving nondeterminism. Instead, we presented
a framework in which the interleaving nondeterminism is made explicit in the
usual way as a consequence of composition. This framework is the basis of the
study of distributed probabilistic systems in a more realistic setting than usual.
We restricted the set of valid schedulers to what we think is an adequate inter-
pretation of distributed behaviour so that bounds of the maximum/minimum
probabilities that a property holds are realistic.

Generality of our result. Theorems 2 and 3 are proven using a more general
theorem. For a formal statement and a proof of such theorem, see the Appendix.
Here, we present an overview. Given a class S of deterministic (also called non-
randomized) schedulers complying with certain conditions, the general theorem
states that A1–A4, A5∗ is a set of valid restrictions on ample sets, where A5∗

is defined as follows:

(A5∗) For every scheduler η ∈ S,

(

η(σs
α1→s1

α2→s2 · · ·
αn→sn) = β ∧ η(σs

α′

1→s′1
α′

2→s′2 · · ·
α′

n′

→ s′n′) = β′
)

=⇒ β = β′ ,

where σs is a path whose last state is s, αi, α
′
i 6∈ ample(s), β, β′ ∈ ample(s).

Theorem 2 is thus obtained by specializing A5∗ for the case in which S is
the set of deterministic distributed schedulers (deterministic distributed sched-
ulers are as powerful as general distributed schedulers). Theorem 3 is proven by
obtaining a superset Q of deterministic strongly distributed schedulers (consider-
ing this superset is necessary, since deterministic strongly distributed schedulers
are not sufficiently powerful). Then, the general theorem is specialized for Q,
yielding Theorem 3.

One important question is to which extent there exist other “natural” classes
of schedulers for which better bounds and/or smaller systems can be obtained
using POR.

Appendix (for reviewers only) 1

Appendix

1 Deterministic schedulers

In this section, we consider deterministic (also called nonrandomized) schedulers and prove some
results that will be used in later sections.

We defined schedulers so that they map into distributions on transitions. We say that a
scheduler (distributed or strongly distributed) is deterministic if all the choices in all the input
(output, interleaving, resp.) schedulers choose a reactive transition (generative transition, atom,
resp.) with probability 1.

Let DetDist(P) be the subset of all deterministic distributed schedulers of P . Similarly, let
DetSDist(P) be the set of all deterministic strongly distributed schedulers of a system P , respec-
tively.

Fortunately, for every system P , the class of deterministic distributed schedulers (denoted by
DetDist(P)) is equally expressive as the class of all distributed schedulers (denoted by Dist(P)) if
we aim to find the maximum (or minimum) probability of a given measurable set of infinite paths.

Theorem 4. For any set S of infinite traces, S being measurable, we have that

sup
η∈DetDist(P)

Prη(S) = sup
η∈Dist(P)

Prη(S)

The proof of this theorem is very long and so we split it in several lemmata.
First, we need some elements from probability theory. These definitions and the proofs not

given here can be found at [21].

Definition. Given a set Σ, a semi-ring is a set S ⊆ P(Σ) complying:
• ∅ ∈ S,
• A,B ∈ S =⇒ A ∩B ∈ S,
• A,B ∈ S =⇒ ∃n ≥ 0,∃Ai ∈ S : A \B =

⊎n
i=1 Ai.

A ring is a set R ⊆ P(Σ) complying:
• ∅ ∈ R,
• A,B ∈ R =⇒ A ∪B ∈ S,
• A,B ∈ S =⇒ A \B ∈ S.

The ring R(S) generated by a semi-ring S is the least ring containing S.

It can be proven that each element in the ring generated by a semi-ring S is of the form
⊎n

i=1 Ai

with Ai ∈ S. The set of whose elements are all the sets [σ] forms a semi-ring. In the following,
we denote this semi-ring by S.

The following lemma states that the probability of any measurable set can be approximated
as the probability of a countable disjoint union of sets of extensions.

Lemma 1. Let Cω be the set

{ {Ai}
∞
i=1 | ∀i, j, i 6= j • Ai ∈ S ∧Ai ∩Aj = ∅ } .

For every measurable set of infinite paths S, we have

Prη(S) = inf
{C∈Cω|S⊆

U

A∈C A}

∑

A∈C

Prη(A) .

Proof. An R-cover of a set S is a set {Bi}
∞
i=1 where Bi ∈ R and S ⊆

⋃∞
n=1 Bi. Let P(S) be the

set of all the R-covers of S. The probability of a measurable set S in the σ-algebra generated by
the semi-ring S can be defined as

inf
{Bi}∞i=1∈P(S)

∞
∑

i=1

Prη(Bi)

Appendix (for reviewers only) 2

(see [21]) Given an R-cover {Bi} for S where each Bi is of the form
⊎ni

k=0 Ai
k, we define an element

C in Cω as follows: A ∈ C iff A = Ai
k for some i,k and there is no Ai′

k′ such that Ai
k ⊂ Ai′

k′ . Since
our semi-ring is the set of extension sets, in the construction of C we dropped the extensions [σ′]
such that there exists [σ] with σ being a prefix of σ′.

Then, we have
∞
∑

n=1

Prη(Bn) =

∞
∑

i=1

ni
∑

k=0

Prη(Ai
k) ≥

∑

A∈C

Prη(A)

In addition, C is an R-cover of S, since in the construction of C we only dropped sets of extensions
included in other sets of extensions.

So, for each R-cover we found another R-cover in Cω yielding less or equal probability, thus
completing the proof.

The following lemma concerns the infimum probability of “finite-horizon” properties of the
form

⊎n
i=1[σi]. Note that the only choices affecting such probability are the choices for the paths

having length less than N = maxi{len(σi)}.

Lemma 2. For all sequences of finite paths {σi}
n
i=1 such that [σi] ∩ [σj] = ∅ for all i 6= j, there

exists a deterministic distributed scheduler ηd such that

Prηd

(
n
⊎

i=1

[σi]) = inf
η∈Dist(P)

Prη(
n
⊎

i=1

[σi]) .

Proof. Similarly as in Lemma 3 in [13], given any distributed scheduler η and any local path
σ∗ we obtain a deterministic distributed scheduler det(η, σ∗) such that η chooses deterministi-
cally for σ∗ and det(η, σ∗) yields less probability than η. In order to obtain the determinis-
tic scheduler ηd, we successively transform η to choose deterministically for all the local paths
whose length is less than N , where N = maxi{len(σi)}. That is, we consider the scheduler
ηN = det(det(· · · det(η, σ1), · · ·), σN), where σ1 · · ·σN are all the local paths whose length is less
than N . Given the scheduler ηN , we consider each local path of length greater than or equal to
N , and for these paths we define the new scheduler ηd to deterministically choose a transition (the
particular transition chosen is not relevant, since the choices for paths of length greater than or

equal to N do not affect the value of Prηd

(
⊎n

i=1[σi]).
The existence of such ηd ensures that the infimum quantifying over deterministic schedulers

is less than or equal to the infimum quantifying over possibly nondeterministic schedulers. In
addition, we conclude that there exists a scheduler yielding the infimum probability, since there
are only finitely many combinations of deterministic choices for the paths of length less than N .

With respect to the construction, the only difference with respect to the proof in [13] is that the
choices must be made deterministic for every local path and for every input and output scheduler.
In addition, the choices must be made deterministic for the interleaving scheduler, by considering
every global path.

In order to show that our input/output mechanism does not introduce any issue compromising
the construction, we illustrate how to transform the choices for the input schedulers, by mimicking
the proof in [13]. In the proof, we manipulate finite paths. In order to do this, for a path
σ = s1.c1. · · · .cn−1.sn we define σ(i) = si and σ〈i〉 = ci. In addition σ↓i= s1.c1 · · · ci−1.si,
last(σ) = sn and len(σ) = n.

Let σ∗ be a path of an atom Ai and let a ∈ ActLabi. We show how to make the choice
deterministic for the input scheduler of Ai when a occurs in σ∗. Let rσ∗ be the set of all the
paths in {σi}

n
i=1 such that “a occurs in σ∗”, that is, there exists kσ such that σ↓kσ

[Ai] = σ∗ and
label(σ〈kσ〉) = a. The probabilities of the paths in rσ∗ are the only ones to be changed, since we
are only changing Υi(σ

∗, a). So, we show only that, for this set, the scheduler in which the choice
is deterministic yields a probability less than or equal to the probability yielded by the original
scheduler.

Let Agσ
be the atom that generates the output a in σ↓kσ

and gσ be the corresponding generative
transition. Let rσ

j be the reactive transition executed by Aj when a occurs in σ in the kσ-th step.

Appendix (for reviewers only) 3

We will focus on Υi(σ
∗, a). The probability of a path σ in rσ∗ is Υi(σ

∗, a) · rσ
i (σ(kσ + 1)) · Qσ,

where

Qσ = Prη([σ↓kσ
]) · I(σ↓kσ

)(Agσ
) · Θgσ

(σ↓kσ
[gσ])(gσ) ·

∏

w∈{1,··· ,m}\{i}Υjw
(σ↓kσ

[jw] , a)(rσ
jw

)

· gσ(πgσ
(σ(kσ + 1)), a) ·

∏

w∈{1,··· ,m}\{i} rσ
jw

(πjw
(σ(kσ + 1)))

·
∏len(σ)−1

t=kσ+1 η(σ↓t)(σ〈t〉) · σ〈t〉(σ(t), σ(t + 1))

Now, we calculate,
∑

σ∈rσ∗
Prη([σ])

= {Definition of probabilities for extensions}
∑

σ∈rσ∗
rσ
i (πi(σ(kσ + 1))) Υi(σ

∗)(rσ
i) Qσ

= {Rearrange sums}
∑

ri

∑

s

∑

{σ∈rσ∗ |rσ
i =ri∧πi(σ(kσ+1))=s} rσ

i (πi(σ(kσ + 1))) Υi(σ
∗)(rσ

i) Qσ

= {Rearrange sums}
∑

ri

∑

s

∑

{σ∈rσ∗ |rσ
i =ri∧πi(σ(kσ+1))=s} ri(s) Υi(σ

∗)(ri) Qσ

=
∑

ri
Υi(σ

∗)(ri)
∑

s ri(s)
∑

{σ∈rσ∗ |rσ
i =ri∧πi(σ(kσ+1))=s}Qσ

Let
r∗ = arg min

ri

Υi(σ
∗)(ri)

∑

s

ri(s)
∑

{σ∈rσ∗ |rσ
i =ri∧πi(σ(kσ+1))=s}

Qσ .

Since
∑

ri
Υi(σ

∗)(ri) = 1, we have

∑

σ∈rσ∗

Prη([σ]) ≥ Υi(σ
∗)(r∗)

∑

s

r∗(s)
∑

{σ∈rσ∗ |rσ
i =r∗∧πi(σ(kσ+1))=s}

Qσ ,

which is the probability using the scheduler det(η) that mimics η excepting for Υi. Now, Υ′i(σ
∗, a)(r∗) =

1.
The choices for the output schedulers can be made deterministic in an easier way (since labels

need not to be considered).
With respect to the interleaving scheduler, let σ∗ be a path of the system of length less than

N . Let rσ∗ be the set of all the paths σi having σ∗ as suffix. Let k = len(σ∗). As before, for every
σ ∈ rσ∗ , let gσ be the atom that performs an output in the k-th step, and gσ be the corresponding
generative transition. Moreover, let aσ be the label after the k-th step in σ and let rj be the
reactive transition executed by Aj after the k-th step. Let

Qσ = Prη([σ↓k]) ·
∏

w∈{1,··· ,m}Υjw
(σ↓kσ

[jw] , a)(rjw
)

·
∏

w∈{1,··· ,m} rjw
(πjw

(σ(kσ + 1)))

·
∏len(σ)−1

t=k+1 η(σ↓t)(σ〈t〉) σ〈t〉(σ(t), σ(t + 1))

Then, we proceed similarly as before:
∑

σ∈rσ∗
Prη([σ])

=
∑

σ∈rσ∗
I(σ∗)(Agσ

) Θgσ
(σ↓k[gσ])(gσ) gσ(πAgσ

(σ(k + 1)), aσ) Qσ

=
∑

Ai

∑

σi,gi

∑

si,a
∑

{σ∈rσ∗ |Agσ =Ai∧σ↓k[i]=σi∧πAi
(σ(k+1))=si∧gσ=gi∧aσ=a}

I(σ∗)(Agσ
) Θgσ

(σ↓k[Agσ
])(gσ) gσ(πAgσ

(σ(k + 1)), aσ) Qσ

=
∑

Ai

∑

σi,gi

∑

si,a
∑

{σ∈rσ∗ |Agσ =Ai∧σ↓k[i]=σi∧πAi
(σ(k+1))=si∧gσ=gi∧aσ=a}

I(σ∗)(Ai) Θgi
(σ↓k[Ai])(gi) gi(πAi

(s), a) Qσ

=
∑

Ai
I(σ∗)(Ai)

∑

σi,gi
Θi(σi)(gi)

∑

si,a
gi(si, a)

∑

{σ∈rσ∗ |Agσ =Ai∧σ↓k[i]=σi∧πAgσ
(σ(k+1))=si∧gσ=gi∧aσ=a}Qσ

Appendix (for reviewers only) 4

As before, we take

Ai∗ = arg min
i
I(σ∗)(i)

∑

σi,gi

Θi(σi)(gi)
∑

si,a

gi(si, a)
∑

{σ∈rσ∗ |gσ=i∧σ↓k[i]=σi∧πgσ (σ(k+1))=si∧gσ=gi∧aσ=a}

Qσ

and we define I ′(σ) = Ai∗ .

Notation 1. According to our convenience, we may denote a deterministic scheduler η as a
function mapping global paths to n-tuples of the form (gi, f1, · · · , fN), where fj : ActLabj → TRj

(recall Def. 1). Each n-tuple of the form (gi, f1, · · · , fi−1, fi+1, · · · , fN) corresponds to several
compound transitions: namely, there is one compound transition for each label in ActLabi. Given
an n-tuple as before and a label a, we obtain the compound transition (gi, a, fr1

(a), · · · , frk
(a)),

where r1, · · · , rk are the atoms that react to a. So, if η is obtained by composing I,Θ1, · · · ,ΘN ,
Υ1, · · · ,ΥN we write η(σ) = (gi, f1, · · · , fi−1, fi+1, · · · , fN) iff I(σ) = i and Θi(σ[i]) = gi and
Υj(σ[j] , a) = fj(a) for all atom j, for all a ∈ ActLabi.

Note that a function η mapping histories to n-tuples is not necessarily a distributed scheduler.
In general, we call to these functions arbitrary schedulers. Given an arbitrary scheduler η, η is a
distributed scheduler iff for all i, σ, σ′ s.t. σ[i] = σ′[i], (1) η(σ) = (gi, f1, · · · , fN) implies that
η(σ′) is of the form (gi, f

′
1, · · · , f

′
N) and (2) η(σ) = (gj , · · · , fi, · · ·) implies that η(σ′) is of the

form (g′j′ , · · · , fi, · · ·). Since we focus on distributed schedulers, schedulers are supposed to be
distributed, except when stated otherwise.

The following lemma concerns “infinite-horizon” properties of the form
⊎∞

i=1[σi], and shows
how to construct an optimal scheduler for such properties using optimal schedulers for the “finite-
horizon” approximations of

⊎∞
i=1[σi]. This optimal scheduler will be used in the proof of Theo-

rem 4. Our construction resembles the “limit construction” in [7, Sec. 4.3].

Lemma 3. For all sequences of finite paths {σi}
∞
i=1 such that [σi] ∩ [σj] = ∅ let SN be the set

⊎

{[σi] | len(σi) ≤ N}. If there exists a sequence {ηN}
∞
N=1 of deterministic schedulers such that,

for all N ,
PrηN (SN) = inf

η
Prη(SN)

then there exists a deterministic arbitrary scheduler ηd such that (1) for all N exists N ′ > N such
that ηd(σ) = ηN ′(σ) for all path σ s.t. len(σ) ≤ N and (2) ηd = infη Prη(

⊎

i[σi]).

Proof. In order to construct ηd, we will construct a sequence of schedulers {ηN}∞N=0. Then, we
simply define ηd(σ) = ηlen(σ)(σ). The idea behind the construction of the schedulers ηN is that
ηN must comply the following property: there exists a sequence {ZN

i }
∞
i=1 such that

ηN (σ) = ηZN
i

(σ) (3)

for all σ having length less than or equal to N , for all i.
The scheduler η0 is simply η1. The sequence {Z0

i } is the sequence {i}∞i=1. It trivially complies
with (3), since there are no paths of length 0.

In order to construct the scheduler ηN from the scheduler ηN−1, we define schedulers ηN−1,Q,
where Q is a set of paths of length N . In addition, each scheduler ηN−1,Q has a corresponding
sequence {ZN−1,Q

i }∞i=1. Once this schedulers are defined, we define ηN = ηN−1,QN and ZN =
ZN−1,QN , where QN is the set of all paths of length N . We will construct the schedulers ηN−1,Q

in such a way that ηN,Q(σ) = η
Z

N,Q
i

(σ) for all σ such that σ ∈ Q or len(σ) ≤ N−1. The scheduler

ηN,{} is ηN−1. Now, we show how to construct ηN,Q∪{σ∗} from ηN,Q.
We consider the sequence {η

Z
N,Q
i

(σ∗)}∞i=1. In this sequence, at least one element a∗ is repeated

infinitely many times. We let ηN,Q∪{σ∗}(σ∗) = a∗, and let ZN,Q∪{σ∗} be the infinite subsequence
of ZN,Q complying ηZN,Q∪{σ∗}(σ∗) = a∗ (this infinite subsequence is ensured to exist since a∗

appears infinitely many times in {η
Z

N,Q
i

(σ∗)}∞i=1).

Now, we prove the properties for ηd enunciated in the theorem.

Appendix (for reviewers only) 5

1. Given any N , we take any N ′ in the sequence ZN such that N ′ > N . So, the property for
ηd is implied by the property (3) for ηN .

2. Suppose, towards a contradiction, that Prηd

(
⊎

i σi) > infη Prη(
⊎

i σi). Since Prηd

(
⊎

i σi) =
∑

i Prηd

(σi), there exists N such that

Prηd

(
⊎

i

{[σi] | len(σi) ≤ N}) > inf
η∈Dist(P)

Prη(
⊎

i

σi) (4)

Let N ′ > N such that ηd(σ) = ηN ′(σ) for all paths σ such that len(σ) ≤ N (its existence

is ensured by the previous property) and let ηinf be such that Prηinf

(
⊎

i σi) < Prηd

(
⊎

i{[σi] |
len(σi) ≤ N}) (its existence is ensured because of (4)). Now, we reason

Prηd

(
⊎

{[σi] | len(σi) ≤ N})
= PrηN′ (

⊎

{[σi] | len(σi) ≤ N})
≤ PrηN′ (

⊎

{[σi] | len(σi) ≤ N ′}) .

(5)

In addition,

Prηd

(
⊎

i{[σi] | len(σi) ≤ N})

> Prηinf

(
⊎

i σi)

≥ Prηinf

(
⊎

{[σi] | len(σi) ≤ N ′})
≥ {Optimality condition for ηN ′ (see theorem statement)}

PrηN′ (
⊎

{[σi] | len(σi) ≤ N ′}) .

This contradicts (5).

The following lemma simply combines Lemma 2 and Lemma 3 in order to show that determin-
istic schedulers are sufficient to obtain the infimum probability of an “infinite-horizon” property
as before.

Lemma 4. For all sequences of finite paths S = {σi}
∞
i=1 s.t. [σi]∩[σj] = ∅ for all i 6= j, there exists

a deterministic distributed scheduler η∗ such that Prη∗

(
⊎

{σ∈S}[σ]) = infη∈Dist(P) Prη(
⊎

{σ∈S}[σ]).

Proof. For each n, Lemma 2 ensures the existence of a deterministic distributed scheduler ηn such
that Prηn(

⊎

{σ∈S}[σ]) = infη∈Dist(P) Prη(
⊎

{σ∈S|len(σi)≤n}[σ]) . So, Lemma 3 ensures the existence

of an arbitrary scheduler ηd such that ηd = infη Prη(
⊎

{σ∈S|len(σi)≤n}[σ]).
Now, we prove that this arbitrary scheduler is indeed distributed. Suppose, towards a contra-

diction, that there exist two paths σ, σ′ and an atom Ai complying σ[i] = σ′[i] such that

• ηd(σ) = (gi, f1, · · · , fN) and ηd(σ′) = (g′i, f
′
1, · · · , f

′
N) with gi 6= g′i. Or

• ηd(σ) = (gj , · · · , fi, · · ·) and ηd(σ′) = (g′j , · · · , f
′
i , · · ·) with fi 6= f ′i .

Let M = max{len(σ), len(σ′)}. Then, by Lemma 3 there exists M ′ > M such that ηM ′(σ) = ηd(σ)
and ηM ′(σ′) = ηd(σ′). So, ηM ′ would not be distributed, contradicting the hypothesis for the
schedulers ηn.

Proof (of Theorem 4). Given ǫ > 0, we will find a deterministic distributed ηd such that supη∈Dist(P) Prη(S)−

Prηd

(S) < ǫ.

Let ηs be such that supη∈Dist(P) Prη(S)−Prηs

(S) < ǫ/2. By Lemma 1 (applied to the set ∁S),

there exists a sequence {[σi]}
∞
i=1 of disjoint extensions sets such that (∁S) ⊆

⊎

i[σi] and

Prηs

(
⊎

i

[σi])− Prηs

(∁S) < ǫ/2 . (6)

Appendix (for reviewers only) 6

By Lemma 4, there exists a deterministic distributed scheduler ηd such that Prηd

(
⊎

i[σi]) =

infη∈Dist(P) Prη(
⊎

i[σi]). In particular, Prηd

(
⊎

i[σi]) ≤ Prηs

(
⊎

i σi). So, from (6) we have

Prηd

(
⊎

i

[σi])− Prηs

(∁S) < ǫ/2 .

From which we obtain
1− Prηd

(∁
⊎

i

[σi])− (1− Prηs

(S)) < ǫ/2 ,

this inequation being equivalent to

Prηs

(S)− Prηd

(∁
⊎

i

[σi]) < ǫ/2 . (7)

Since ∁S ⊆
⊎

i[σi] we have that ∁
⊎

i[σi] ⊆ S. So, Prηd

(∁
⊎

i[σi]) ≤ Prηd

(S). From (7) we obtain

Prηs

(S)− Prηd

(S) < ǫ/2. Then,

sup
η

Prη(S)− Prηd

(S) = sup
η

Prη(S)− Prηs

(S) + Prηs

(S)− Prηd

(S) < ǫ/2 + ǫ/2 = ǫ .

Unfortunately the property in Theorem 4 is not valid for strongly distributed schedulers. In
the following, we define the set of reinforced strongly distributed schedulers, denoted by RSDist(P).
This set is a superset of SDist(P). The set DetRSDist(P), comprising the deterministic schedulers
in RSDist(P), is as powerful as RSDist(P).

The set RSDist(P) is defined using a notion similar to projections, the visible portions of paths.
The visible portions allow the schedulers to see more information than projections do. Intuitively,
you may think that, when two atoms synchronize, each one pass all the information it has to the
other atoms. The visible portion of σ is, then, the information an atom A has about σ when
information is passed in synchronizations. A visible portion is a sequence

(s1
i11

, · · · , s1
i1
N1

).(g1
j1
1
, a1, r

1
j1
2
, · · · , r1

j1
M1

). · · · .(gn−1

jn−1
1

, an−1, r
n−1

jn−1
2

, · · · , rn−1

jn−1

Mn−1

).(sn
in
1
, · · · , sn

in
Nn

) .

(Note that projections are visible portions.) We denote the set of visible portions by Visibles. In
order to define the portion [〈σ〉]A of a path σ = s1.c1. · · · .cn−1.sn visible to an atom A, we describe
an iterative procedure. In each step, we obtain a prefix of [〈σ〉]A. Let [〈σ〉]A↓k be the prefix of [〈σ〉]A
having length k. In the first step, we obtain [〈σ〉]A↓1= initA. In the k-th step, we consider the
set Kk,A comprising all atoms A′ such that there exist compound transitions ckA′

1
, · · · , ckA′

p
in σ

complying
(1) k− 1 ≤ kA′

1 < · · · < kA′

p (it may be the case that there exist a single compound transition. In

this case, p = 1 and hence it is possible that k − 1 = kA′

1 = kA′

p), and

(2) label(kA′

1) ∈ ActLabA′ , and
(3) label(kA′

p) ∈ ActLabA, and

(4) there exist atoms AA′

2 , · · · , AA′

p−1 such that for all 1 ≤ q < p, label(ckA′
q

) ∈ AA′

q ∩AA′

q+1, where

AA′

1 = A′ and AA′

p = A.
Note that it may be the case that A ∈ Kk,A. In particular, label(ck−1) = A =⇒ A ∈ Kk,A,
since we can take k − 1 = kA

1 = kA
p . If Kk,A = ∅, then we let [〈σ〉]A↓k= [〈σ〉]A↓k−1. Note

that, if Kk,A 6= ∅, then the atom Ag that generates the output in ck−1 is in Kk,A (we can take

k − 1 = k
Ag

1 = k
Ag
p). If Kk,A = {m1, · · · ,mNk}, w.l.o.g. we assume Ag = m1. Then, let

[〈σ〉]A↓k= [〈σ〉]A↓k−1 .(gm1
, a, rm2

, · · · , rm
Nk

).(sm1
, · · · , sNk).

We define RSDist(P) as the set of schedulers such that condition Eqn. (2) holds on the inter-
leaving schedulers, when projections are replaced by visible portions.

Appendix (for reviewers only) 7

The following lemma is useful to give an alternative characterisation of RSDist(P). Roughly
speaking, this lemma states that, if σA and σB are together in a global path σ (and the interleaving
scheduler assigns positive probability to A), and σB and σC are together in a global path σ′, then
σA, σB and σC are together in a path σ′′, in which all the other local paths are as in σ.

Lemma. If Prη([σ]) > 0, Prη([σ′]) > 0, [〈σ〉]B = [〈σ′〉]B, I(σ)(A) > 0, then there exists σ′′ such
that [〈σ′′〉]T = [〈σ〉]T for every T 6= C, [〈σ′′〉]C = [〈σ〉]C .

Proof. This lemma can be proven by induction on len(σ) = len(σ′).

Lemma. If η ∈ RSDist(P), then for every atom there exist a function rateA : Visibles→ R≥0 such
that rateA(σA) > 0 iff A has generative transitions enabled in last(σA[A]) and for every σ there

exists a set Sσ ⊆ Atoms(P) such that I(σ)(A) = rate([〈σ〉]A)
P

A∈Sσ
rate([〈σ〉]A) .

Then, the analogous to Lemma 2 can be proven as Lemma 2 in [14].

Lemma 5. For all sequences of finite paths {σi}
n
i=1 such that [σi] ∩ [σj] = ∅ for all i 6= j, there

exists ηd ∈ DetRSDist(P) such that

Prηd

(
n
⊎

i=1

[σi]) = inf
η∈RSDist(P)

Prη(
n
⊎

i=1

[σi]) .

The same argument as in the case of distributed schedulers allows to conclude the following
theorem from Lemma 5.

Theorem 5. For any set S of infinite traces, S being measurable, we have that

sup
η∈DetRSDist(P)

Prη(S) = sup
η∈RSDist(P)

Prη(S)

2 Undecidability results for distributed schedulers

Given a set of states U , we denote by Prη(reach(U)) the probability Prη({ρ | ∃n • ρ(n) ∈ U}) of
reaching any of the states in U .

Theorem 6. There are no algorithms that, given a set of states U and ǫ > 0, (1) calculate r such
that ‖ supη∈Dist(P) Prη(reach(U)) − r‖ < ǫ nor (2) whether or not supη∈Dist(P) Prη(reach(U)) = 1
nor (3) whether or not there exists η ∈ Dist(P) such that Prη(reach(U)) = 1.

Proof. With respect to (1), the proof is the same as in [13]. Indeed, in Sec. 5 in [13] it is explained
how the proof strategy can be used for the Switched PIOA in [7]. Since only one of the two atoms
in the reduction has generative transitions, the same strategy applies here as well.

With respect to (2) and (3), our proof strategy is similar to the ones in [20]: we reduce the
Post correspondence problem (PCP), which is known to be undecidable.

The PCP problem can be stated as follows: given words u1, . . . , un and v1, . . . , vn over an
alphabet S. Is there a finite non-empty sequence of indices k = k1 · · · km such that uk1

· · ·ukm
=

uk1
· · ·ukm

?
Intuitively, we can think that we are given n blocks with two words, as shown in the following

example:

ab
a

c
bc

1 2

Appendix (for reviewers only) 8

In this example, the sequence of indices 1 2 is a solution of the problem.
We say that (w, k) is an upper pair iff w = uk1

· · ·ukn
. We say that (w, k) is a lower pair iff

w = vk1
· · · vkn

. Note that a word w can appear in an upper pair (in this case, we say that the
word is an upper word) iff w is in the regular language (u1 + . . . + un)∗ (which we call the upper
language), and similarly for the words that can appear in a lower pair.

Then, an instance of the PCP problem has a solution iff there exists an upper pair (w, k) such
that (w, k) is also a lower pair.

Given a PCP instance u1, . . . , un, v1, . . . , vn, we construct three atoms W , S, I. Roughly
speaking, W chooses either “upper” or “lower”. If W chooses “upper”, then W probabilistically
chooses an upper word w , communicating the symbols in w to S and the indices ki to I (and
similarly if W chooses “lower”). Once w ends (the end of w is also decided probabilistically,
then W outputs stop. After stop, I is able to output any sequence of indices to S (some of the
behaviours we will be interested in are the behaviours in which I communicates the indices it has
received from W). Then, S has to guess whether W has chosen either “upper” or “lower”. The
set of states U is the set in which S has guessed correctly.

The set ActLabW is S ∪ {1, · · · , n} ∪ {stop, τW }. The behaviour of W is as follows: W has no

nondeterministic choices. In the initial state there is a probabilistic transition (1
2

τW !
−−→ initUp +

1
2

τW !
−−→ initLo). The states initUp and initLo represent the fact that W has chosen “upper” or

“lower” respectively. In initUp there is a probabilistic transition (1
n

1!
−→ startU1+· · ·+ 1

n

n!
−→ startUn).

The states startU i represent the fact that the word w will start with ui. Similarly, the states
startLi represent the fact that word w will start with vi. In each state startU i there is a transition

(1
ui1

!
−−→U i1), where ui1 is the first symbol in ui

1 and U i1 represents the fact that the first symbol in

Ui has been output. From each state U ij
with j < len(ui)−1 there is a transition (1

uij+1
!

−−−−→U ij+1
).

In the state U ilen(ui)−1
, there is a transition (1

2

uilen(w)
!

−−−−−→ initUp+ 1
2

stop!
−−−→endWU). The state endWU

indicates that the upper word has ended (similar definitions must be done in case W chooses
“lower”, where we have the state endLU). Since W must be input-enabled, each state has input
transitions for each l ∈ ActLabW . However, because of the definition of the atoms, the paths
in which the labels are output by other atoms have probability 0 for all schedulers, and so the
definitions of the input transitions are irrelevant.

The set ActLabI is S∪{1, · · · , n}∪{1′, · · · , n′}∪{stop, stop′}. The labels {1′, · · ·n′} are indices
to be communicated to S. However, such labels must be different from the labels {1, · · · , n} output
by W , since S is not allowed to see such labels. The label stop′ simplifies the construction for

similar reasons. In the initial state initI there are input transitions (1
i?
−→ initI) for each 1 ≤ i ≤ n

and also an input transition (1
stop?
−−−→outputI). Other input transitions are irrelevant. In the state

outputI there are transitions (1
i′!
−→outputI) for each 1 ≤ i ≤ n, and also a transition (1

stop
′!

−−−→endI).
The set ActLabS is S ∪{1′, · · · , n′}∪{stop′, τS}. In the initial state there are input transitions

(1
a?
−→ initS) for every l ∈ S ∪ {1′, · · · , n′} and transition (1

stop
′?

−−−−→guessS). In guessS there are two

transitions: (1
τS !
−−→ tryUp) and (1

τS !
−−→ tryLo).

So, the set U to be reached is {(endWU , endI , tryUp) , (endWL, endI , tryLo)}. We prove the
following: there exists a distributed scheduler such that Prη(reach(U)) = 1 iff the PCP problem
has not a solution. In addition, supη∈Dist(P) Prη(reach(U)) = 1 iff the PCP problem has not a
solution.

Suppose that the problem has no solution. Then every pair (w, k) can be an upper or a lower
pair, but it cannot be both. We can construct the following distributed scheduler for P : input and
output schedulers for W are uniquely defined (there are no nondeterministic choices). The output
scheduler for I chooses the transitions that output the indices in order as they were output by W .
The output scheduler for S has to decide only between going to tryUp or going tryLo. The only

1For simplicity, we omitted the case in which some of the words uk (vk, resp.) are empty. In this case, when
the index k is output in the state initUp, W returns to initUp instead of moving to startUk.

Appendix (for reviewers only) 9

paths with probability greater than 0 in which this choice is performed have a sequence of action
labels of the form a1 · · · aqk1 · · · krstop

′. If (a1 · · · aq , k1 · · · kr) is an upper pair, then the output
scheduler chooses tryUp, otherwise it chooses tryLo. If the path has positive probability, and
a1 · · · ark1 · · · kq is an upper pair, then, by construction of W , W is in state endWU . Conversely,
if a1 · · · ark1 · · · kq is a lower pair, then W is in state endWL, and so the scheduler we constructed
reaches U with probability 1.

Now assume that the PCP problem has a solution. Suppose (towards a contradiction) that
supη∈Dist(P) Prη(reach(U)) = 1 (to get (3), suppose that there exists η ∈ Dist(P) such that
Prη(reach(U)) = 1). Then, by Theorem 4 for every ǫ > 0 there exists a deterministic distributed
scheduler ηǫ such that Prηǫ(reach(U)) > 1− ǫ.

Since the PCP problem has a solution, let (w, k = k1 · · · kr) be an upper pair that is also a
lower pair. Let ǫ be 1

2 (1
n

1
2)r+1. Then, there exists a two paths σ, σ′ whose projection to I is of

the form k1 · · · krstop and, in one of them W has chosen “upper” while in the other one it has
chosen “lower”. For both σ and σ′, the output scheduler for I starts to choose transitions in such
a way that a sequence l1 · · · lr′ stop′ is output (if stop′ is never output, then a state in U cannot
be reached and so the scheduler yields a probability less than or equal than 1− ǫ). Then, in both
σ, σ′ the projection to S is wl1 · · · lr′ stop′. So, if the scheduler for W chooses “upper” in σ, then
it also chooses “upper” in σ′ (and so the scheduler reaches U with probability less than or equal
than 1− ǫ) and the same happens in case it chooses “lower”.

Therefore, every deterministic scheduler reaches U with probability less than or equal to 1− ǫ,
thus contradicting Theorem 4.

3 Strongly distributed schedulers

Theorem. Let P be a system such that A,B ∈ Atoms(P). Consider the system P ′ such that
Atoms(P ′) =

(

Atoms(P) \ {A,B}
)

∪{AB}, where AB is the usual cross-product of A and B (as
in, for instance, [7, p. 99]). Then, for every strongly distributed scheduler η for P , there exists a
strongly distributed scheduler η′ for P ′ yielding the same probability distribution on paths as η.

Proof. We show that the condition imposed to the interleaving scheduler is sufficient to define an
output scheduler for AB. Let σAB be a local path on AB, and let σ be a global path σ such that
σ[AB] = σAB . Define

ΘAB(σAB)(gA) =
I(σ)(A)

I(σ)(A) + I(σ)(B)
ΘA(σ[A]) .

Note that the condition imposed to I ensures that the particular σ chosen is not relevant. Let I ′

be the interleaving scheduler for PAB such that I ′(σ)(AB) = I(σ)(A) + I(σ)(B) and I ′(σ)(C) =
I(σ)(C) for any other atom C. We have to prove that the scheduler η′ for PAB obtained from
I ′ as interleaving scheduler and ΘAB as output scheduler for AB yields the same behaviour as
the original scheduler η for P . To see this, note that for a path σ, the probability assigned to
a generative transition gA of A is pσ,gA

= I(σ)(A) · ΘA(σ[A])(gA). Multiplying and dividing by
I(σ)(A) + I(σ)(B) yields

pσ,gA
=

(

I(σ)(A) + I(σ)(B)
)

(

I(σ)(A)

(I(σ)(A) + I(σ)(B))
ΘA(σ[A])(gA)

)

,

which equals to I ′(σ)(AB) · ΘAB(σ[AB])(gA), that is, the probability of pσ,gA
in η′. The same

reasoning allows to conclude a similar equality if atom B is considered instead of A. The input,
output, and interleaving schedulers do not change in all other cases.

Theorem 7. Let A = {A1, · · · , An}, B = {B1, · · · , Bm} be disjoint sets of atoms. Then, if

Eqn. (2) holds, then
P

i I(σ)(Ai)
P

i I(σ)(Ai)+
P

j I(σ)(Bj)
=

P

i I(σ
′)(Ai)

P

i I(σ
′)(Ai)+

P

j I(σ
′)(Bj)

holds whenever σ[A] =

σ′[A] for all A ∈ A ∪ B and
∑

i I(σ
′)(Ai) +

∑

j I(σ
′)(Bj) 6= 0.

Appendix (for reviewers only) 10

Proof. By induction on n. We prove the base case n = 1 by induction on m. If m = 1, the
statement becomes Eqn. (2). For the inductive step, we need a preliminary equality. Note that, if
I(σ)(A) 6= 0 and I(σ′)(A) 6= 0 in Eqn. (2), then simple arithmetic gives

I(σ)(B)

I(σ)(A)
=
I(σ′)(B)

I(σ′)(A)
. (8)

The inductive step is

I(σ)(A1)

I(σ)(A1) +
∑

j I(σ)(Bj)
=

I(σ′)(A1)

I(σ′)(A1) +
∑

j I(σ
′)(Bj)

.

First, we prove the case I(σ)(A1) = 0. In this case, either I(σ)(Bj) = 0 for all j (in this case
the condition I(σ)(A1) +

∑

j I(σ)(Bj) 6= 0 is false, then the equation is not required to hold)
or I(σ′)(A1) = 0. To see this, suppose towards the contradiction that I(σ′)(A1) 6= 0. Then, by
Eqn. (2) it must be

I(σ)(A1)

I(σ)(A1) + I(σ)(Bj∗)
=

I(σ′)(A1)

I(σ′)(A1) + I(σ′)(Bj∗)

where j∗ is an index such that I(σ)(Bj∗) > 0 (we don’t need I(σ′)(Bj∗) 6= 0, since I(σ′)(A1) 6= 0).
So, since I(σ)(A1) = 0 then it must be I(σ′)(A1) = 0, thus reaching a contradiction. So, the
inductive step holds in case I(σ)(Ai) = 0.

If I(σ)(A1) 6= 0, then either I(σ′)(A1) = 0 and I(σ′)(Bj) = 0 for all j (and so the condition
is not required to hold) or I(σ′)(A1) 6= 0, and so we can use Eqn. (8) in the following calculation.

I(σ)(A1)
I(σ)(A1)+

P

j I(σ)(Bj)

= {Arithmetics}
(

I(σ)(Bm)
I(σ)(A1)

+
I(σ)(A1)+

Pm−1
j=1 I(σ)(Bj)

I(σ)(A1)

)−1

= {Equation (8)}
(

I(σ′)(Bm)
I(σ′)(A1)

+
I(σ)(A1)+

Pm−1
j=1 I(σ)(Bj)

I(σ)(A1)

)−1

= {Inductive hypothesis}
(

I(σ′)(Bm)
I(σ′)(A1)

+
I(σ′)(A1)+

Pm−1
j=1 I(σ

′)(Bj)

I(σ′)(A1)

)−1

= {Arithmetics}
I(σ′)(A1)

I(σ′)(A1)+
P

j I(σ
′)(Bj)

Then, the statement holds for n = 1. For the remaining inductive step, we calculate:

P

i I(σ)(Ai)
P

i I(σ)(Ai)+
P

j I(σ)(Bj)

=
Pn−1

i=1 I(σ)(Ai)+I(σ)(An)
Pn−1

i=1 I(σ)(Ai)+I(σ)(An)+
P

j I(σ)(Bj)

=
Pn−1

i=1 I(σ)(Ai)
Pn−1

i=1 I(σ)(Ai)+I(σ)(An)+
P

j I(σ)(Bj)
+ I(σ)(An)

Pn−1
i=1 I(σ)(Ai)+I(σ)(An)+

P

j I(σ)(Bj)

= {Inductive hypothesis for {Ai}
n−1
i=1 , An ∪ {Bj}

m
j=1}

=
Pn−1

i=1 I(σ
′)(Ai)

Pn−1
i=1 I(σ

′)(Ai)+I(σ′)(An)+
P

j I(σ
′)(Bj)

+ I(σ)(An)
Pn−1

i=1 I(σ)(Ai)+I(σ)(An)+
P

j I(σ)(Bj)

= {Base case with {An}, {Bi}
m
i=1 ∪ {Ai}

n−1
i=1 }

=
Pn−1

i=1 I(σ
′)(Ai)

Pn−1
i=1 I(σ

′)(Ai)+I(σ′)(An)+
P

j I(σ
′)(Bj)

+ I(σ′)(An)
Pn−1

i=1 I(σ
′)(Ai)+I(σ′)(An)+

P

j I(σ
′)(Bj)

Appendix (for reviewers only) 11

4 Undecidability results for strongly distributed schedulers

4.1 Qualitative undecidability

In order to prove the qualitative result, we reduce the supremum acceptance problem for proba-
bilistic finite-state automata (PFA) to the supremum reachability problem for strongly distributed
schedulers. The supremum acceptance problem for PFA was proven undecidable in [18]. This re-
duction is used also in [13].

A PFA is a quintuple (Q,Σ, l, qi, qf) where Q is a finite set of states with qi, qf ∈ Q being the
initial and accepting state respectively, Σ is the input alphabet, and l : Σ×Q→ (Q→ [0, 1]) is the
transition function s.t. l(α, q) is a distribution for all α ∈ Σ and q ∈ Q. A word w is an infinite
sequence of symbols from Σ. The probability Pr(accept(w)) of accepting a word is the probability
of reaching qf by starting from qi and succesively choosing the next state according to l and the
next symbol in w.

Given a PFA F , we can construct an atom AF having only reactive transitions. Such atom
AF is defined as follows: SF = Q, ActLabF = Σ, GF (s) = ∅ for all s, RF (s, a) = {l(a, s)} and
initF = qi.

In our reduction, in addition to AF we consider atoms Aα, one for each α ∈ Σ. The atom
Aα is defined as follows: SAα

= {initα}, ActLabF = {α}, GF (initα) = {gα} where gα(init, α) = 1
and Rα(init, α) = {rα} where rα(init) = 1 (although rα is not used, it is required by the input-
enabledness condition).

As in [14] (Proof of Theorem 1), it can be proven that, for the system having atoms AF ,
{Aα | α ∈ Σ}, deterministic strongly distributed schedulers have the same power as strongly
distributed schedulers.

Each deterministic strongly distributed scheduler defines a word for w. Then, since there is no
algorithm to calculate not approximate supw Pr(accept(w)), there is no algorithm to calculate nor
approximate supη∈DetSDist(P) Prη(reach(U)), where U is the set of global states in which the local
state of AF corresponds to an accepting state in F .

4.2 Quantitative undecidability

We use the same idea as in the case of distributed schedulers. When proving such result, we
defined three atoms W , S and I. Here, we reuse the atom W , excepting for a little modification
explained later. The atom S is replaced by two atoms SUp, SLo , each one of them behaves as
S, until the point in which S decides, i.e. at the state guessS. In this state, SUp has enabled the

transition (1
u!
−→ tryUp), and SLo has enabled the transition (1

l!
−→ tryLo). In W , the state endWU

has the following input transitions: (1
u?
−→good) and (1

l?
−→bad). The state endLU has the following

transitions (1
u?
−→bad) and (1

l?
−→good). Then, the state good is reached in the cases in which “the

set of atoms {SUp, SLo}” guesses correctly “upper” or “lower”.
The atom I is replaced by a set of atoms {Ii}

n
i=1∪{Istop}. Each Ii has all the input transitions

in I. In addition, in the initial state there is an input transition (1
stop

′?
−−−−→ endI i). The atom Istop

has all the input transitions in I, and only one output transition (1
stop

′!
−−−→endIstop). So, once Istop

decides to stop, all the Ii reach the state endI i. Each atom Ii has enabled the output transition

(1
i′

−→! initI).
Note that the set of atoms in this new reduction can be partitioned into the subsets {W},

{Ii}
n
i=1 ∪ {Istop} and {SUp, SLo}. At every point of the execution, all the atoms in exactly one

of these sets have an output transition enabled. This property can be used to prove that, for
this particular system, deterministic strongly distributed schedulers are as powerful as strongly
distributed schedulers.

Then, we can repeat the argument in the proof for distributed schedulers in order to prove
that the supremum probability of reaching good is 1 iff the PCP problem has no solution.

Appendix (for reviewers only) 12

• • •
ℓn,··· ,ℓ2

αn,··· ,α2

•
ℓ3,··· ,ℓn−1

α2,··· ,αn−1 αn
•••• •

β
xxxxxxxxx

.
.
.
.
.
.
.
.
.

xx
xx

xx
xx

x ℓn

ℓ2 ℓn • • • •

α1x
x
x
x
x
x
x

.

.

.

.

.

.

.

.

ooooooo
........

+
+
+
+
+
+
+

.

.

.

.

.

.

.

.

• 































• •
ℓ′

n′ ,··· ,ℓ
′
2

α′
n′ ,··· ,α

′
2

ℓ1
•

σ∗

•

α1

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

oooooooo

+
+
+
+
+
+
+
+
+
+
+

• ooooooo •

β
ooooooooo

.
.
.
.
.
.
.
.
.

oo
oo

oo
oo

o •

β.

.

.

.

.

.

.

.

•
σ∗

ℓ1 • • • ℓ1

• • •

α1x
x
x
x
x
x
x

ooooooo

+
+
+
+
+
+
+

•
ℓ′3,··· ,ℓ′

n′−1

α′
2,··· ,α′

n′

• ℓ1

ℓ′2 ℓ′n′ • •
ℓ′

n′ ,··· ,ℓ
′
2

α′
n′ ,··· ,α

′
2

Figure 4: Correspondence between paths in η and η[σ∗ ← β]

5 The POR technique

5.1 Condition on the classes S for the general theorem

In the nonprobabilistic case, the correctness of POR is proven by showing that each execution
in the original system can be simulated by an equivalent execution in the reduced system. The
execution in the reduced system is obtained by exchanging the order of independent actions.

In the probabilistic case, each execution is a probabilistic tree (corresponding to a scheduler),
and so it not obvious what it means to exchange the order of independent actions. The condition
we impose to S in our general theorem is related to the way in which independent actions are
moved in a probabilistic tree.

In the following we consider MDPs obtained from Interleaved PIOAs. The “actions” we con-
sider are the actions identifiers in Def. 3. Given a deterministic scheduler η, a path σ∗ ending in
the state s and β ∈ ample(s) such that for all αi 6∈ ample(s),

(

η(σ∗
α1−→s1

α2−→s2 · · ·
αn−−→sn) = β′ =⇒ β′ = β (9)

we define the scheduler η[σ∗ ← β] in which β is moved right after σ∗ (that is η(σ‘∗) = β). Note

that Eqn. (9) does not ensure that a path such that η(σ∗
α1−→ s1

α2−→ s2 · · ·
αn−−→ sn) = β exists. In

this case, β can also be inserted after σ∗.
Figure 4 illustrates the transformation from η to η[σ∗ ← β]. Note that, because of the POR

restrictions, the atoms Inv(β) whose state may be changed by β are disjoint of the atoms changed
by the αi. Dashed and dotted lines represent the projections of paths over Inv(β). Lines made
up of x, o and + represent the projections of paths over Atoms(P) \ Inv(β). An arrow relating a
path in η to path(s) in η[σ∗ ← β] indicate that the (sets of) path(s) in η[σ∗ ← β] has the same
probability as the path in η.

Next, we define η[σ∗ ← β]. We let η[σ∗ ← β](σs) = β. For every σ such that σ is not a prefix
of σ∗ (and σ 6= σ∗), we let η[σ∗ ← β](σ) = η(σ∗). We need several definitions before presenting
the case in which σ∗ is a prefix of σ.

In the following, we write a state s′ as product (s′β , s′¬β), where s′β ∈
∏

i∈Inv(β) Si and s′¬β ∈
∏

i6∈Inv(β) Si. In particular, last(σ∗) = s = (sβ , s¬β).
First, we need to relate the paths in the original system to the paths in the reduced system as

shown in Fig. 4. For each finite path σ such that σ∗ is a prefix of σ and Prηi,S (σ) > 0, we define a
set of corresponding paths C(σ). This correspondence will be used to define η[σ∗ ← β], as well as
to prove that the probabilities of any stuttering invariant language coincide both for the original
and the reduced system.

The correspondence is defined according to the actions in σ.

Appendix (for reviewers only) 13

1. If σ is of the form

σ∗
α1−→(sβ

1 , s¬β
1) · · ·

αn−−→(sβ
n, s¬β

n) ⊳α⊲

and αk 6∈ ample(s) for all k, then sβ
k = sβ for all k, since the actions αk are independent

from β and β is enabled in all the states sk. So, σ is of the form

σ∗
α1−→(sβ , s¬β

1) · · ·
αn−−→(sβ , s¬β

n) .

For such a σ, we define

C(σ) = {σ∗
β
−→(s′β , s¬β)

α1−→(s′β , s¬β
1) · · ·

αn−−→(s′β , s¬β
n) | P(s, β, (s′β , s¬β)) > 0} .

We consider the case in which σ = σ∗ as a corner case of this one. So,

C(σ∗) = {σ∗
β
−→(s′β , s¬β) | P(s, β, (s′β , s¬β)) > 0 .

In the following, we write σ ∼ ⊳α⊲ to denote that σ has the form of the path marked with
⊳α⊲ above.

2. If σ is of the form

σ∗
α1−→(sβ

1 , s¬β
1) · · ·

αn−−→(sβ
n, s¬β

n)
β
−→(s′β , s′¬β) ⊳α β⊲

and αk 6∈ ample(s) for all k, then we have sβ
k = sβ for all k as before. In addition, s′¬β = s¬β

n .
So, σ is of the form

σ∗
α1−→(sβ , s¬β

1) · · ·
αn−−→(sβ , s¬β

n)
β
−→(s′β , s¬β

n) .

For such a σ, we define

C(σ) = {σ∗
β
−→(s′β , s¬β)

α1−→(s′β , s¬β
1) · · ·

αn−−→(s′β , s¬β
n)} .

(Note that, in this case, C(σ) is a singleton set.)

In the following, we write σ ∼ ⊳α β⊲ to denote that σ has the form of the path marked with
⊳α β⊲ above.

3. If σ is of the form

σ∗
α1−→(sβ

1 , s¬β
1) · · ·

αn−−→(sβ
n, s¬β

n)
β
−→(s′β , s′¬β)

γ1
−→(s′β1 , s′¬β

1) · · ·
γn′

−−→(s′βn′ , s
′¬β
n′) ⊳α β γ⊲

and αk 6∈ ample(s) for all k, we have that σ is of the form

σ∗
α1−→(sβ , s¬β

1) · · ·
αn−−→(sβ , s¬β

n)
β
−→(s′β , s¬β

n)
γ1
−→(s′β1 , s′¬β

1) · · ·
γn′

−−→(s′βn′ , s
′¬β
n′) .

For such a σ, we define

C(σ) = {σ∗
β
−→(s′β , s¬β)

α1−→(s′β , s¬β
1) · · ·

αn−−→(s′β , s¬β
n)

γ1
−→(s′β1 , s′¬β

1) · · ·
γn′

−−→(s′βn′ , s
′¬β
n′)} .

(Again, C(σ) is a singleton set.)

In the following, we write σ ∼ ⊳α β γ⊲ to denote that σ has the form of the path marked
with ⊳α β γ⊲ above.

Appendix (for reviewers only) 14

4. If σ∗ is not a prefix of σ (and σ 6= σ∗), we define C(σ) = {σ}.

In the following, we write σ ∼ ⊳¬σ∗⊲ to denote that σ∗ is not a prefix of σ.

Prior to the definition of η[σ∗ ← β] in terms of C, we need to discuss some properties of C. Note
that, if σ′ is not of the form ⊳α β⊲ , we have C(σ′) ∩ C(σ′′) = ∅ whenever σ′ 6= σ′′. In fact, the
following lemma holds by definition of C.

Lemma 6. C(σ′)∩C(σ′′) 6= ∅ implies σ′ ∼ ⊳α⊲ and σ′′ = σ
β
−→(s′β , s¬β

n) for some s′β. (Note that
σ′′ ∼ ⊳α β⊲ .) For such σ′, σ′′, we have C(σ′) ∩ C(σ′′) = C(σ′′).

So far, we have defined η[σ∗ ← β](σ∗) = β (note that in Fig. 4, the rightmost tree has the
action β after σ∗) and η[σ∗ ← β](σ) = η(σ) for all σ such that σ∗ is not a prefix of σ. We define

η[σ∗ ← β](σ∗
β
−→s′) = η(σ∗) (note that, in Fig. 4, the rightmost tree has the action α1 after β in

all the states). For the other paths σ having σ∗ as a prefix, we define η[σ∗ ← β](σ) depending
on the amount of σ′ such that σ ∈ C(σ′). According to Lemma 6, we have three possible cases:
(1) We have just one such a σ′. In this case, η[σ∗ ← β](σ) = η(σ′). (2) We have two such σ′.
Let σ′′ be the path of the form ⊳α β⊲ such that σ ∈ C(σ′′). We let η[σ∗ ← β](σ) = η(σ′′). As an
example, let σ be the path in Fig. 4 whose actions are β, α1, · · · , αn. For this σ, σ′′ is the path
whose actions are α1, · · · , αn, β (note that the path σ′ whose actions are α1, · · · , αn also maps to
σ, but η(σ′) = β, and β was already executed in σ). (3) We have no such σ′. In this case, because
of the previous cases, η[σ∗ ← β](σ) = 0. Since we will use this property later, we state is as a
lemma.

Lemma 7. If Prη[σ∗←β]([σ]) > 0 then there exists σ′ such that σ ∈ C(σ′) and Prη([σ′]) > 0. 2

Proof. If σ∗ is not a prefix of σ or σ∗ = σ, we have Prη([σ]) = Prη[σ∗←β]([σ]). So, in this case, we
take σ′ = σ.

If σ∗ is a prefix of σ, we proceed by induction on len(σ)− len(σ∗).

If len(σ) − len(σ∗) = 1, we have σ = σ∗
β
−→ s for some s (because Prη[σ∗←β](σ) > 0 and

η[σ∗ ← β](σ∗) = β). In this case, we can take σ′ = σ∗.
If len(σ) − len(σ∗) = n + 1, let’s drop the last state (and the last action) from σ to obtain

the path σ↓−1. Let γ and s′ be the last action and the last state in σ (resp.). So, σ↓−1
γ
−→ s′ = σ.

Since Prη[σ∗←β](σ) > 0, we have that Prη[σ∗←β](σ↓−1) > 0. By inductive hypothesis, there exists
at least one σ′−1 such that σ↓−1∈ C(σ

′
−1) and Prη([σ′−1]) > 0.

If case σ′−1 is of the form ⊳α β γ⊲ , by definition of η[σ∗ ← β] we have η[σ∗ ← β](σ↓−1) = η(σ′−1)
(note that Lemma 6 ensures that σ′−1 is uniquely determined, since σ′−1 ∼ ⊳α β γ⊲). We know

that η[σ∗ ← β](σ↓−1) = γ. So, η(σ′−1) = γ and the path σ′−1
γ
−→ s′ has probability greater than 0

in η∼ ⊳ α β γ⊲ . Taking into account the definition of C for the paths of the form ⊳α β γ⊲ and the

fact that σ↓−1∈ C(σ
′
−1), we have σ = σ↓−1

γ
−→s′ ∈ C(σ′−1

γ
−→s′). So, we can take σ′ = σ′−1

γ
−→s.

In case σ′−1 is of the form ⊳α β⊲ , we have η[σ∗ ← β](σ↓−1) = η(σ′−1) (even if there are another
path such σp such that σ↓−1∈ C(σp), the definition of η[σ∗ ← β] uses σ′−1). Again, η(σ′−1) = γ

and the path σ′−1
γ
−→s′ has probability greater than 0 in η. Note that σ′−1

γ
−→s′ ∼ ⊳α β γ⊲ . So, we

are in the same case as before and we can take σ′ = σ′−1
γ
−→s′.

In the remaining case, σ′−1 is uniquely determined and is of the form ⊳α⊲ . Again, we have

η[σ∗ ← β](σ↓−1) = η(σ′−1). So, η(σ′−1) = γ and the path σ′−1
γ
−→s′ has probability greater than 0

in η. If γ 6∈ ample(s), then σ′−1
γ
−→s′ is of the form ⊳α⊲ and so σ ∈ C(σ′−1

γ
−→s′), since C(σ′−1

γ
−→s′)

is obtained by appending
γ
−→ s′ to all the paths in C(σ′−1). So, if γ 6∈ ample(s), we can take

2Note that we use η[σ∗
← β] as a scheduler without having proven that it is indeed a valid scheduler. We do

so in order to avoid new definitions for probabilities, etc. However, in our proof we use only the “valid” inputs for
the schedulers. An alternative construction could be done by defining the set of all the schedulers complying with
the cases above. In this construction, our proof implies that all the schedulers in the set are equivalent, since they
differ only in the paths having probability 0. So, any scheduler in the set can be taken to be η[σ∗

← β].

Appendix (for reviewers only) 15

σ′ = σ′−1
γ
−→s′. If γ ∈ ample(s), then γ = β and σ is of the form ⊳α β⊲ . In this case, σ ∈ C(σ′−1).

So, we can take σ′ = σ′−1.
Note that, during the proof, we only evaluate the scheduler η[σ∗ ← β] in the path σ↓−1. The

scheduler is well-defined for σ↓−1 because of the existence of σ′−1 (which, in turn, is ensured by
the inductive hypothesis).

Before we present the condition on the class S, we need an auxiliar definition. Given a scheduler
η and a path σ, we define post(η, σ) as the scheduler such that post(η, σ)(σ′) = η(σ ·σ′), for every
σ′ such that last(σ) = first(σ′), where σ · σ′ denotes the concatenation of σ and σ′. Note that
post(η, σ) is a scheduler for the system M ′ that coincides for M excepting for the initial state (the
initial state of P ′ being last(σ)).

Definition 4. A class S of deterministic schedulers is valid for POR iff for all η ∈ S, σ∗, β such

that η[σ∗ ← β] is defined, we have post(η[σ∗ ← β], σ∗
β
−→s) ∈ S for all s.

The following lemma can be proven using the definition of η[σ∗ ← β].

Lemma 8. The classes DetDist(P) and DetRSDist(P) are valid for POR.

5.2 Proof of correctness

Theorem 8. Let S be a class of schedulers valid for POR. Given M , let M̂ be a system such that
For every LTL¬ next formula φ and for every scheduler η ∈ S there exists a scheduler η̂ for M̂ such
that Prη(Satφ) = Prη̂(Satφ).

For the proof, we will use the following result.

Lemma 9. Let {Si}
∞
i=0 be a sequence of measurable sets such that Si+1 ⊆ Si for all i. Then,

Prη(
∞
⋂

i=0

Si) = lim
n→∞

Prη(Sn) .

Proof. Since S0 =
⊎∞

i=0(Si \ Si+1)
⊎ ⋂∞

i=0 Si, we have

Prη(S0) =

∞
∑

i=0

Prη(Si \ Si+1) + Prη(

∞
⋂

i=0

Si) . (10)

Then, for every ǫ there exists Nǫ such that
∑∞

i=Nǫ
Prη(Si \ Si+1) < ǫ.

Equation (10), can be generalized to Sn =
⊎

i=n(Si \ Si+1)
⊎ ⋂∞

i=0 Si for all n. Then, for
every n > Nǫ we have

Prη(Sn)− Prη(
∞
⋂

i=0

Si) =
∞
∑

i=n

Prη(Si \ Si+1) < ǫ .

To prove the theorem, we use the same argument as in [1]. The proof in [1] relies on the
concept of cylinder. Given n labels ℓi ∈ 2AP such that ℓi 6= ℓi+1, Cyl(ℓ+1 , · · · , ℓ+n) is defined as the
set of infinite paths ρ such that ρ has a finite prefix σ such that trace(σ) = ℓ1 . . . ℓ1 · · · ℓn . . . ℓn

(each label must occur at least once in σ).
As in [1], we show how to construct schedulers ηi such that ηi(σ) ∈ ample(last(σ)) for all σ

such that len(σ) ≤ i. In addition, Prη(Cyl(ℓ+1 , · · · , ℓ+n)) = Prηi(Cyl(ℓ+1 , · · · , ℓ+n)), for any cylinder
Cyl(ℓ+1 , · · · , ℓ+n). We also require post(ηi, σ) ∈ S for every σ s.t. len(σ) ≤ i + 1. Once we
have constructed these schedulers, we define a scheduler η∗(σ) = ηlen(σ)(σ). Note that η∗(σ) ∈
ample(last(σ)) for all σ, because of the corresponding property for the schedulers ηi. Using the same
argument as in [1], we show that Prη(Cyl(ℓ+1 , · · · , ℓ+n)) = Pr∗(Cyl(ℓ+1 , · · · , ℓ+n)) for any cylinder

Appendix (for reviewers only) 16

Cyl(ℓ+1 , · · · , ℓ+n). Then, by fundamental results of measure theory, we have that Prη(Satφ) =

Prη∗

(Satφ), since Prη(L) = Prη∗

(L) for any stuttering insentitive language L.
So, the only difference with respect to the proof in [1] is the construction of the schedulers ηi.
The scheduler η0 is simply η. The scheduler ηi+1 is constructed using ηi. In order to construct

ηi+1, we will construct schedulers ηi,S , where S is a set of paths of length i+1. We let ηi+1,{} = ηi.
Given a set S of paths of length i + 1, a scheduler ηi,S and a path σ∗ 6∈ S s.t. len(σ∗) = i + 1 we
will show how to construct ηi,S∪{σ∗} from ηi,S . Then, we take ηi+1 = ηi,Si

, where Si is the set of
all paths of length i + 1.

In the following, we define ηi,S∪{σ∗} and prove that

Prηi,S (Cyl(ℓ+1 , · · · , ℓ+n)) = Prηi,S∪{σ∗}(Cyl(ℓ+1 , · · · , ℓ+n)) . (11)

If ηi,S(σ∗) ∈ ample(last(σ∗)), we define ηi,S∪{σ∗} = ηi,S . In this case, Eqn. (11) holds trivially.

Let s = last(σ∗). First, assume that there exists a path σ′ = σ∗
α1−→ s1

α2−→ s2 · · ·
αn−−→ sn such

that Prηi,S (σ′) > 0, αk 6∈ ample(s) for all k and η(σ′) = β for some β ∈ ample(s). Note that,
since it holds that post(η, σ∗) ∈ S and we require A5∗, if such a β exists, then it is unique no
matter the particular σ′ choosen. If no such σ′ exists, we take any β ∈ ample(s). We define
ηi,S∪{σ∗}(σ

∗) = η[σ∗ ← β].

Lemma 10.
Prηi,S ([σ]) =

∑

σ′∈C(σ)

Prηi,S∪{σ∗}([σ′])

Proof. For brevity, we write α(s, s′) for P(s, α, s′).
First, we consider the case in which σ is of the form ⊳α β γ⊲ . We have

Prηi,S ([σ])
= {σ is of the form ⊳α β γ⊲ }

Prηi,S ([σ∗
α1−→(sβ , s¬β

1) · · ·
αn−−→(sβ , s¬β

n)
β
−→(s′β , s¬β

n)
γ1
−→(s′β1 , s′¬β

1) · · ·
γn
−→(s′βn , s′¬β

n)])

= {Prηi,S ([σ]) > 0, ηi,S is deterministic, let s¬β
0 = s¬β , s′β0 = s′β , and s′¬β

0 = s¬β
n }

Prηi,S (σ∗) ·
∏n

k=1 αk((sβ , s¬β
k−1) , (sβ , s¬β

k)) · β((sβ , s¬β
n) , (s′β , s¬β

n))

·
∏n′

k=1 γk((s′βk−1, s
¬β
k−1) , (s′βk , s′¬β

k))
= {Rearrange product}

Prηi,S (σ∗) · β((sβ , s¬β
n) , (s′β , s¬β

n)) ·
∏n

k=1 αk((sβ , s¬β
k−1) , (sβ , s¬β

k))

·
∏n′

k=1 γk((s′βk−1, s
¬β
k−1) , (s′βk , s′¬β

k))

= {αk((tβ , t¬β) , (tβ , t′¬β)) = αk((uβ , t¬β) , (uβ , t′¬β)) and similarly for β. Let s¬β
0 = s¬β}

Prηi,S (σ∗) · β((sβ , s¬β) , (s′β , s¬β)) ·
∏n

k=1 αk((s′β , s¬β
k−1) , (s′β , s¬β

k))

·
∏n′

k=1 γk((s′βk−1, s
¬β
k−1) , (s′βk , s′¬β

k))
= {Definition of C (recall that, in this case, C(σ) is a singleton set)}

∑

σ′∈C(σ) Prηi,S∪{σ∗}([σ′])

The case in which σ is of the form ⊳α β⊲ is a particular case of the one above, with n′ = 0.

Appendix (for reviewers only) 17

Below, we study the case in which σ is of the form ⊳α⊲ .

Prηi,S ([σ])

= Prηi,S ([σ∗
α1−→(sβ , s¬β

1) · · ·
αn−−→(sβ , s¬β

n)])

= Prηi,S ([σ∗]) ·
∏n

k=1 αk((sβ , s¬β
k−1) , (sβ , s¬β

k))

= {
∑

{s′β |β((sβ ,s¬β) , (s′β ,s¬β))>0} β((sβ , s¬β) , (s′β , s¬β)) = 1}

∑

{s′β |β((sβ ,s¬β) , (s′β ,s¬β))>0} β((sβ , s¬β) , (s′β , s¬β)) · Prηi,S ([σ∗])

·
∏n

k=1 αk((sβ , s¬β
k−1) , (sβ , s¬β

k))
=

∑

{s′β |β((sβ ,s¬β) , (s′β ,s¬β))>0} β((sβ , s¬β) , (s′β , s¬β)) · Prηi,S ([σ∗])

·
∏n

k=1 αk((s′β , s¬β
k−1) , (s′β , s¬β

k))

=
∑

{s′β |β((sβ ,s¬β) , (s′β ,s¬β))>0} Prηi,S ([σ∗
β
−→(s′β , s¬β)

α1−→(s′β , s¬β
1) · · ·

αn−−→(s′β , s¬β
n)])

=
∑

σ′∈C(σ) Prηi,S∪{σ∗}(σ′)

In the following, we prove that Prηi,S∪{σ∗}(Cyl(ℓ+1 , · · · , ℓ+n)) = Prηi,S (Cyl(ℓ+1 , · · · , ℓ+n)) for
any cylinder Cyl(ℓ+1 , · · · , ℓ+n). In the following, we write trace(σ) ∼ ℓ+1 , · · · , ℓ+n to denote that
trace(σ) = ℓ1 . . . ℓ1 · · · ℓn . . . ℓn. Given a cylinder Cyl(ℓ+1 , · · · , ℓ+n), for any σ such that trace(σ) ∼

ℓ+1 , · · · , ℓ+n−1, we define Z(σ) = {σ
α1−→ s1

α2−→ s2
α3−→ · · · | ∀kL(sk) = ℓn}. Now, we note that

Cyl(ℓ+1 , · · · , ℓ+n) can be written as a disjoint union

Cyl(ℓ+1 , · · · , ℓ+n) =
⊎

{σ|trace(σ)∼ℓ
+
1 ,··· ,ℓ+n ℓ′ ∧ ℓn 6=ℓ′}[σ]

⊎ ⊎

{σ|trace(σ)∼ℓ
+
1 ,··· ,ℓ+n−1}

Z(σ)

We denote the set of all the sets in the disjoint union by U . So, Cyl(ℓ+1 , · · · , ℓ+n) =
⊎

U∈U U . We
have,

Prη(Cyl(ℓ+1 , · · · , ℓ+n)) =
∑

{σ|trace(σ)∼ℓ+1 ,··· ,ℓ+n ℓ′ ∧ ℓn 6=ℓ′} Prη([σ])

+
∑

{σ|trace(σ)∼ℓ+1 ,··· ,ℓ+n−1}
Prη(Z(σ)) .

(12)

We prove that Prηi,S (Cyl(ℓ+1 , · · · , ℓ+n)) = Prηi,S∪{σ∗}(Cyl(ℓ+1 , · · · , ℓ+n)) by showing that the sum-
mands in Eqn. (12) when η = Prηi,S (Cyl(ℓ+1 , · · · , ℓ+n)) can be rearranged and grouped as to coincide
with the summands in Eqn. (12). To this end, we define a mapping M : (U ∪ {[σ] | Prηi,S ([σ]) >
0}) ⇀ P(U ∪ {[σ]}) such that:

(1) M is defined for all U ∈ U such that Prηi,S (U) > 0 and for every [σ] such that Prηi,S ([σ]) > 0
and

(2) Prηi,S (U) 6= 0 ∧ Prηi,S (U ′) 6= 0 ∧ U ′ ∈ U ∧ U ′ ∈ U ∧ ∧M(U) ∩M(U ′) 6= ∅ =⇒ U = U ′ and

(3) Prηi,S (U) =
∑

U ′∈M(U) Prηi,S∪{σ∗}(U ′) and

(4) for all U ′ such that Prηi,S∪{σ∗}(U ′) > 0 there exists U such that Prηi,S (U) > 0 and U ′ ∈
M(U).

These properties for M ensure that the probabilities for ηi,S and ηi,S∪{σ∗} agree, since the sum
in Eqn. (12) converges absolutely and, because of the properties for M above, we can rearrange
the nonzero terms of Eqn. (12) with η = ηi,S∪{σ∗} to make them coincide with the nonzero terms
of Eqn. (12) with η = ηi,S . With respect to the rearrangement, we only evaluate M in elements
in U . However, the definition ofM([σ]) for every [σ] will be useful in other parts of the proof.

The mapping M is defined as follows:

• M([σ]) = {[σ′] | σ′ ∈ C(σ)} for all σ such that Prηi,S (U) > 0 and trace(σ) is of the form
ℓ+1 , · · · , ℓ+n ℓ′ and ℓn 6= ℓ′ (Note that σ cannot be of the form ⊳α β⊲)

Appendix (for reviewers only) 18

• M(Z(σ)) = {Z(σ′) | σ′ ∈ C(σ)} for all σ such that Prηi,S (U) > 0 and trace(σ) is of the form
ℓ+1 , · · · , ℓ+n−1.

We prove the properties forM enounced above.
(1) M is defined for all U ∈ U such that Prηi,S (U) > 0, since every U ∈ U is either of the

form [σ] or of the form Z(σ). If Prηi,S (Z(σ)) > 0, then Prηi,S ([σ]) > 0. So, the second case in the
definition ofM covers all the elements in U of the form Z(σ).

(2) Suppose, towards a contradiction, thatM(U)∩M(U ′) 6= ∅, Prηi,S (U) 6= 0, Prηi,S (U ′) 6= 0,
and U 6= U ′. Then, by definition of M, it must be either (U = [σ] and U ′ = [σ′]) or (U = Z(σ)
and U ′ = Z(σ′)). In the first case, σ = σ′ by Lemma 6, since neither σ nor σ′ can be of the
form ⊳α β⊲ (because trace(σ) ∼ ℓ+1 , · · · , ℓ+n ℓ′ with ℓn 6= ℓ′). In the second case, it must be

C(σ) ∩ C(σ′) 6= ∅. By definition of C, it is possible only if σ = σ∗
α1−→(sβ

1 , s¬β
1) · · ·

αn−−→(sβ
n, s¬β

n) and

σ′ = σ
β
−→(s′β , s′¬β) for some αk, sk (Of course, it may be the case that σ is the path that finishes

with β). However, since Prηi,S (σ′) > 0, we have that ηi,S(σ∗
α1−→ (sβ

1 , s¬β
1) · · ·

αn−−→ (sβ
n, s¬β

n)) = β.
However, L((sβ

n, s¬β
n)) = ℓn−1 (see the definition of U above) and, since β is stutter, the paths

of the form σ∗
α1−→ (sβ

1 , s¬β
1) · · ·

αn−−→ (sβ
n, s¬β

n)
β
−→ s′ with L(s′) = ℓn have probability 0. Then,

Prηi,S (U) = 0.
(3) Next, we prove that Prηi,S (U) =

∑

U ′∈M(U) Prηi,S∪{σ∗}(U ′).

If U = [σ], the claim becomes Lemma 10. So, we need to prove the claim when U = Z(σ).

For all m > len(σ), let Zm = {σ
α1−→s1 · · ·

αm−len(σ)
−−−−−−→sm−len(σ)

αm−len(σ)+1
−−−−−−−−→· · · | ∀

m−len(σ)
k=1 L(sk) =

ℓn}. Then, U =
⋂∞

m=len(σ)+1 Zm, which implies Prη(U) = limm→∞ Prη(Zm) for all η (by virtue

of Lemma 9). Let Em = {σZ | σZ ∼ σ
α1
−−→ s1 · · ·

αm−len(σ)
−−−−−−→ sm−len(σ) ∧ ∀

m−len(σ)
k=1 L(sk) = ℓn ∧

Prηi,S ([σZ]) 6= 0}. Then,

Prηi,S (Zm) =
∑

σZ∈Em

Prηi,S ([σZ]) . (13)

Similarly, for M(U) we define Z ′m =
⊎

σ′∈C(σ){σ
′ α1−→ s1 · · ·

αm−len(σ′)
−−−−−−−→ sm−len(σ′)

αm−len(σ′)+1
−−−−−−−−→

· · · | ∀
m−len(σ′)
k=1 L(sk) = ℓn} for all m > len(σ)+1. As again, Prη(

⊎

U ′∈M(U)[U
′]) = limn→∞ Prη(Z ′m)

for all η, E′m = {σZ′ | σZ′ ∼ σ′
α1
−−→ s1 · · ·

αm−len(σ′)
−−−−−−−→ sm−len(σ′) ∧ σ′ ∈ C(σZ) ∧ ∀

m−len(σ′)
k=1 L(sk) =

ℓn ∧ Prηi,S∪{σ∗}([σZ′]) 6= 0} (note that all the paths in E′m have length m) and

Prηi,S∪{σ∗}(Z ′m) =
∑

σZ′∈E′
m

Prηi,S∪{σ∗}([σZ′]) . (14)

Next, we show that

∑

σZ′∈E′
m+1

Prηi,S∪{σ∗}([σZ′]) ≤
∑

σZ∈Em

Prηi,S ([σZ′]) ≤
∑

σZ′∈E′
m

Prηi,S∪{σ∗}([σZ′]) . (15)

By Eqn. (13) and Eqn. (14), this inequality implies Prηi,S∪{σ∗}(Z ′m+1) ≤ Prηi,S (Zm) ≤ Prηi,S∪{σ∗}(Z ′m).
Since U =

⋂∞
m=len(σ)+1 Zm and

⊎

U ′∈M(U) U ′ =
⋂∞

m=len(σ)+2 Z ′m, Lemma 9 implies

Prηi,S (U) =
∑

U ′∈M(U)

Prηi,S∪{σ∗}(U ′) ,

which is what we want to prove.
First, we consider the inequality

∑

σZ∈Em
Prηi,S ([σZ′]) ≤

∑

σZ∈E′
m

Prηi,S∪{σ∗}([σZ′]). To this

end, we explore how Em relates to E′m. Let’s take σZ ∈ Em. If σZ is of the form ⊳α β⊲ or of the
form ⊳α β γ⊲ , then C(σZ) ⊆ E′m (recall that, in these cases, C(σZ) is a singleton set). If σZ is of
the form ⊳α⊲ , then C(σZ) ⊆ E′m+1 (since, in this case, C inserts β in σZ) and, in addition, if we
drop the last state (and the last action) of a path in C(σZ), we obtain a path in E′m. By dropping
the last state of every path in

⋃

σZ∈Em∧σZ∼ ⊳α⊲ C(σZ) we obtain a set of paths I ⊆ E′m such that

Appendix (for reviewers only) 19

⊎

σZ∈Em∧σZ∼ ⊳α⊲

⊎

σZ′∈C(σZ)[σZ′] ⊆
⊎

σZ′∈I [σZ′]. In addition I ∩C(σZ) = ∅ for all σZ of the form

⊳α β⊲ or ⊳α β γ⊲ . To see this, suppose that C(σZ) = {σZ′} and σZ′ ∈ I. Since σZ′ ∈ I, we know
that σZ′ is obtained by dropping the last state of a path σ′α such that σ′α ∈ C(σα) for some σα of
the form ⊳α⊲ . Let σα↓−1 be σα without the last state. Since σ′α ∈ C(σα), σα is of the form ⊳α⊲
and σZ′ = σ′α↓−1, we have σZ′ ∈ C(σα↓−1). In addition, since C(σZ) ∩ C(σα↓−1) = {σZ′}, it must

be σZ = σα↓−1
β
−→ s′ for some s′. However, η(σα↓−1) 6∈ ample(s) (because σα is of the form ⊳α⊲).

So Prηi,S (σZ) = 0, which implies σZ 6∈ Em.

Note that, since in Em we cannot have two paths σZ and σZ
β
−→s, Lemma 6 ensures that C maps

distinct paths in Em to disjoint set of paths. These observations allow the following calculation:

∑

σZ∈Em
Prηi,S ([σZ])

= {Split sum}
∑

σZ∈Em∧σZ∼ ⊳¬σ∗⊲ Prηi,S ([σZ])
+

∑

σZ∈Em∧(σZ∼ ⊳α β⊲∨σZ∼ ⊳α β γ⊲) Prηi,S ([σZ]) +
∑

σZ∈Em∧σZ∼ ⊳α⊲ Prηi,S ([σZ])

= {Lemma 10}
∑

σZ∈Em∧σZ∼ ⊳¬σ∗⊲ Prηi,S∪{σ∗}(C(σZ))
+

∑

σZ∈Em∧(σZ∼ ⊳α β⊲∨σZ∼ ⊳α β γ⊲) Prηi,S∪{σ∗}([C(σZ)])

+
∑

σZ∈Em∧σZ∼ ⊳α⊲

∑

σZ′∈C(σZ) Prηi,S∪{σ∗}([σZ′])

≤ {Existence of the set I (see above)}
∑

σZ∈Em∧σZ∼ ⊳¬σ∗⊲ Prηi,S∪{σ∗}(C(σZ))
+

∑

σZ′∈E′
m ∧ ∃σZ • {σZ′}=C(σZ) Prηi,S∪{σ∗}([σZ′]) +

∑

σZ′∈I Prηi,S∪{σ∗}([σZ′])

≤ {Since I ∩ C(σZ) = ∅ for all σZ of the form ⊳α β⊲ or ⊳α β γ⊲ (see above)}
∑

σZ′∈E′
m

Prηi,S∪{σ∗}([σZ′])

Next, we consider the inequation
∑

σZ∈Em
Prηi,S ([σZ]) ≥

∑

σZ′∈Em+1
Prηi,S∪{σ∗}([σZ′]). For

the proof, we need to show that for all σZ′ ∈ E′m+1 either (a) there exists σZ ∈ Em+1 such
that {σZ′} = C(σZ) and (σZ ∼ ⊳α β⊲ or σZ ∼ ⊳α β γ⊲) or (b) there exists σZ ∈ Em such that
σZ′ ∈ C(σZ), σZ ∼ ⊳α⊲ and ηi,S(σZ). In order to prove this claim, note that Prηi,S∪σ∗ (σZ′) 6= 0
(since σZ′ ∈ E′m). So, Lemma 7 ensures the existence of some σZ with nonzero probability such
that σZ′ ∈ C(σZ). Since the changes introduced by C yield a stuttering equivalent labelling, and
C can insert one action, we have that σZ ∈ Em ∪ Em+1.

If σZ ∈ Em+1, and σZ′ ∈ C(σZ), we conclude that σZ′ ∼ ⊳α β⊲ or σZ ∼ ⊳α β γ⊲ , and the case
(a) above holds.

If σZ ∈ Em, then σZ ∼ ⊳α⊲ . If ηi,S(σZ) = β, we have a path σ′′ ∈ Em+1 of the form σZ
β
−→s′

such that σZ′ ∈ C(σ′′). So, if ηi,S(σZ) = β, the case (a) above holds. If ηi,S(σZ) 6= β, the case
(b) above holds.

Appendix (for reviewers only) 20

Now, we are able to prove the inequality.

∑

σZ∈Em
Prηi,S ([σZ])

≥ {Split sum}
∑

σZ∈Em∧σZ∼ ⊳¬σ∗⊲ Prηi,S ([σZ])
+

∑

σZ∈Em∧(σZ∼ ⊳α β⊲∨σZ∼ ⊳α β γ⊲) Prηi,S ([σZ])

+
∑

σZ∈Em∧σZ∼ ⊳α⊲∧ηi,S(σZ)=β Prηi,S ([σZ])

+
∑

σZ∈Em∧σZ∼ ⊳α⊲∧ηi,S(σZ) 6=β Prηi,S ([σZ])

≥ {Set inclusion}
∑

σZ∈Em∧σZ∼ ⊳¬σ∗⊲ Prηi,S∪{σ∗}(C(σZ))
+

∑

σZ∈Em+1∧σZ∼ ⊳α β γ⊲ Prηi,S ([σZ])

+
∑

σZ∈Em+1∧σZ∼ ⊳α β⊲ Prηi,S ([σZ])

+
∑

σZ∈Em∧σZ∼ ⊳α⊲∧ηi,S(σZ) 6=β Prηi,S ([σZ])

= {Lemma 10}
∑

σZ∈Em∧σZ∼ ⊳¬σ∗⊲ Prηi,S∪{σ∗}(C(σZ))
+

∑

σZ∈Em+1∧(σZ∼ ⊳α β⊲∨σZ∼ ⊳α β γ⊲) Prηi,S∪{σ∗}([C(σZ)])

+
∑

σZ∈Em∧σZ∼ ⊳α⊲∧ηi,S(σZ) 6=β

∑

σZ′∈C(σZ) Prηi,S∪{σ∗}([σZ′])

≥ {Rewrite}
∑

σZ∈Em∧σZ∼ ⊳¬σ∗⊲ Prηi,S∪{σ∗}(C(σZ))
+

∑

σZ′∈E′
m+1∧∃σZ • {σZ′}=C(σZ)∧(σZ∼ ⊳α β⊲∨σZ∼ ⊳α β γ⊲) Prηi,S∪{σ∗}([σZ′])

+
∑

σZ′∈E′
m+1∧∃σZ •σZ∼ ⊳α⊲∧ηi,S(σZ) 6=β Prηi,S∪{σ∗}([σZ′])

= {See explanation above}
∑

σZ′∈E′
m+1

Prηi,S∪{σ∗}([σZ′])

So, we have proven Eqn. (15). Above, we explained that Eqn. (15) implies

Prηi,S (U) =
∑

U ′∈M(U)

Prηi,S∪{σ∗}(U ′) .

It remains to prove the property (4) forM.
(4) If U ′ = [σ′], the claim becomes Lemma 7.
With respect to the case in which U ′ = Z(σ′), since Prηi,S∪{σ∗}(σ′) > 0, there exists σ such

that σ′ ∈ C(σ) and Prηi,S ([σ]) > 0. Then, U ′ ∈ M(Z(σ)). Because of the property (3) for M
proven above, we have the inequality

0 < Prηi,S∪{σ∗}(U ′) ≤
∑

U ′′∈C(Z(σ))

Prηi,S∪{σ∗}(U ′′) = Prηi,S (Z(σ)) .

So, we can take U = Z(σ).
We have proven that Prηi,S (Cyl(ℓ+1 , · · · , ℓ+n)) = Prηi,S∪{σ∗} This is the inductive step that

allows to conclude that, for all i, there exists a scheduler ηi such that (1) Prηi(Cyl(ℓ+1 , · · · , ℓ+n)) =
Prη(Cyl(ℓ+1 , · · · , ℓ+n)) and (2) ηi(σ) ∈ ample(last(σ)) for all σ such that len(σ) ≤ i.

As pointed out in [1], the properties for ηi we proved are not sufficient to conclude that

Prη∗

(Cyl(ℓ+1 , · · · , ℓ+n)) = Prη(Cyl(ℓ+1 , · · · , ℓ+n)). Here, we simply recall the arguments in [1]. Con-
sider the atoms in Fig. 5 and the formula φ = trueU smile, where the atomic proposition smile

holds iff the atom A is in the “smiling” state. If η(sinit) = α (recall that init is the initial state)
and ample(sInit) = {β}, then the scheduler η∗ chooses β for all the paths, and so Prη(Satφ) = 1,

while Prη∗

(Satφ) = 0. However, the ample set {β} violates condition (A4), since init and α form

an end component and β is enabled in init. Note that, in this case, the path init
β
−→ init

β
−→· · · has

positive probability in η∗.
We explain the case in which (A4) holds using Fig. 6. For the atoms in the figure, {β} is a

valid ample set for init. Suppose that α ∈ ample(s′), where s′ is the state reached when β does
not lead to init. Again, consider a scheduler such that η(init) = α. So, for the path σ such that

Appendix (for reviewers only) 21

β

α

A B

Figure 5: Example showing the need for (A4).

1/2

β 1/2

A B

α

Figure 6: Another example showing the need for (A4)

Prη(σ) = 1 we have the paths σ∗1 = init
β
−→ s′

α
−→ smile, σ∗2 = init

β
−→ init

β
−→ s′

α
−→ smile, · · · and

∑∞
i=1 Prη∗

([σ∗i]) = Prη(σ). In addition, Prη∗

(init
β
−→ init

β
−→· · ·) = 0.

In general, (A4) ensures that all the infinite paths in η∗ “ending” in an end component have
corresponding paths in η. It is a well-known result that the set of paths that do not “end”
in an end component has probability 0 (see [1]). This ensures that, if (A4) holds, we have

Prη(Cyl(ℓ+1 , · · · , ℓ+n)) = Prη∗

(Cyl(ℓ+1 , · · · , ℓ+n)) for any cylinder Cyl(ℓ+1 , · · · , ℓ+n), which in turn
implies

Prη(Satφ) = Prη∗

(Satφ)

for any LTL¬ next formula φ.

5.3 Theorem 2: Distributed schedulers

Let Gen(A) be the set of all actions generated by atom A, that is, all actions of the form (gA, · · ·).
For every atom A such that β, β′ ∈ ample(s) and β, β′ ∈ Gen(A), all the actions αi, α′i as in
A5∗, we know that the atoms involved in β, β′ are neither involved in αi nor in α′i (otherwise,

αi –or α′i– should be dependent on ample(s) for some i). So, σs
α1−→s1

α2−→s2 · · ·
αn−−→sn[B] =

σs
α′

1−→s′1
α′

2−→s′2 · · ·
α′

n′

−−→s′n′ [B] for all B ∈ Inv(δ).

So, if η ∈ DetDist(P) we have η(σs
α1−→ s1

α2−→ s2 · · ·
αn−−→ sn) = β implies η(σs

α′
1−→ s′1

α′
2−→

s′2 · · ·
α′

n′

−−→s′n′) = β.
Then, in case S = DetDist(P), A5′ implies A5∗.
So, Theorem 4, Lemma 8 and Theorem 8 imply Theorem 2.

5.4 Theorem 3: Strongly distributed schedulers

Let A (A′, resp.) be the atom that generates β (β′, resp.) in A5∗. Suppose that the scheduler η
in A5∗ is reinforced strongly distributed. Then A and A′ are not involved in actions αi or α′i. So,
the portions visible to A and A′ of the path in which β is chosen agree with the portions of the
path in which β′ is chosen. Since the scheduler is reinforced strongly distributed and deterministic,
A = A′. In addition, since the input/output schedulers in η are evaluated in the same projection
in both paths, the same argument as in the case of distributed schedulers allows to conclude that
β = β′.

Since SDist(P) ⊆ RSDist(P), Theorem 3 is implied by Theorem 5, Lemma 8 and Theorem 8.

Appendix (for reviewers only) 22

5.5 The notion of independence in previous works

We presented our results using a structural notion of independence. In [1], independence is defined
as follows:

Two actions α, β are independent iff for all states s ∈ S with {α, β} ⊆ Actions(s) we have:
(1) P(s, α, t) > 0 implies β ∈ Actions(t), (2) P(s, β, u) > 0 implies α ∈ Actions(u), (3) for all
states w ∈ S:

∑

t∈S P(s, α, t) · P(t, β, w) =
∑

u∈S P(s, β, u) · P(u, α,w).
Here, to avoid confusion, we say that actions α and β complying such condition are weakly

independent.
Intuitively, if β ∈ ample(s), suppose that an action α occurs before β in some path σ. Then,

if α and β are weakly independent, it means that the probabilistic behaviour is not modified if
we exchange the order of α and β. However, if these actions are weakly independent but not
independent, α may give information to the atom B that outputs β, and so it may be the case
that B does not execute β in another path starting from s. In this case, β cannot be moved right
after s. So, we must prevent B to choose another action β. This is the fact that motivates A5 in
in [1, 10].

Let A3′ be the restriction A3 substituting “weakly dependent” for “dependent” (so, A1,A2,A3′,A4

are the same restrictions as in [1, 10]). For a given s, if there exists a path s
α1−→· · ·

αn−−→sn
γ
−→sn+1,

where some of the αi is not independent of ample(s) and γ is probabilistic (note that, by A3′,
they are required to be weakly independent), in this case we must require the same restrictions as
in [1, 10]. Otherwise, we can require the restrictions in Theorem 2 or Theorem 3 (according, of
course, to the class of schedulers under consideration).

So, this criterion allows more reductions than the ones in [1, 10].

5.6 The need for A5′ under distributed schedulers

The introductory example of Fig. 1 clearly shows that A5 is unnecesarily strong if we only want to
preserve the probabilities of properties under the class of distributed schedulers. In the following,
we discuss the need of A5′ for POR under distributed schedulers.

initT

1/2 1/2

c!c!

t!h!

initA

a!

initB

b!

a! b!

h! t!
a?

c!

c!

d!

d!

c!

c!

d!

d!

a?

c!

c!

d!

d!

c!

c!

d!

d!

t!h!

M̂

T A B R

a?

b? b?
a? a?

b?
a?

b? b?

b?b?

b?b?
a? a?

b?b?
a? a?

b?
a?

initAB

a? b?

a? a?

d!d!
b? b?

a?

b?
a?

b?

a?

Figure 7: Distributed schedulers vs strongly distributed schedulers.

Consider atoms T , A, B and R in Fig. 7. Intuitively, atom R “remembers”, the order in which
a! and b! were executed. We aim to maximize the probability to reach a state in which either T
and R are both in a circle, or T and R are both in a square (in the following, we say that they
reach “an agreement”). That is, we would like to know the maximum probability that R guesses
the outcome in T by only inspecting atoms A and B.

Notice that it is possible to find a distributed scheduler such that the composed system reaches
an agreement with probability 1. Such scheduler lets T execute first and then selects atom A or

Appendix (for reviewers only) 23

B according the outcome of T . This is the same situation that motivated the introduction of
strongly distributed schedulers (see explanation of Fig. 3) since atom T is completely independent
of all other components.

Condition A5′ only admits two possible ample sets at the initial state: (1) the set of all actions

enabled at initial state, and (2) the singleton containing action (1
2

h!
−→+ 1

2

t!
−→) of T . Both of them

yield maximum probability of 1 in the reduced system since they contain the scheduler described
above.

Of course, this maximum probability value is still unrealistic if we we consider strongly dis-
tributed schedulers. Notice that the proposed scheduler, though distributed, it is not strongly
distributed. So a POR under the class of strongly distributed schedulers may allow to cut away
such beheviour. Therefore, it drops A5′ and allows also the ample set {a, b} at the initial state.
Notice that this choice is not possible under A5′ since a and b are generated by two different
atoms (and besides they are not independent). A possible reduction with the choice of this ample
set is depicted in Fig. 7. Precisely this reduction yields a maximum probability of 1

2 of reaching
an agreement.

6 Experimental results

6.1 Dining philosophers

We translated the dining philosophers model in [3] to the PRISM language. We used a program in
order to obtain a model for N philosophers given a single philosopher. Another program generates
a reduced version. The reduced version is obtained by adding extra conditions to the guards. Such
conditions allow only the actions in the ample set. The calculation of the ample sets is not done
by the program, since the program simply add the conditions according to ample sets we deduced.

An example of the deductions we used to discover ample sets is the following: suppose that the
philosophers are A1 · · ·AN , and suppose this is the order in which they are arranged (that is: A1 is
at the left of A2, A2 is at left of A3 and AN is at the left of A1). Suppose that philosopher Ai has
its left fork and philosopher Aj has its right fork, with i < j. The only actions of the philosophers
in the set {A1 · · ·Ai−1Aj+1AN} that are dependent on the actions of the philosophers in the set
{Ai · · ·Aj} are the actions in which Ai−1 or Aj+1 takes or leaves its right fork (in the case of
Ai−1) or its left fork (in the case of Aj+1). However, since these forks are being held by Ai and
Aj , these actions cannot be executed, and so the set {Ai · · ·Aj} complies with restriction A3.

The ample described above can be used in several states. Note that this ample set is not
possible using the current techniques, since, given that A5 is hard to calculate, the ample sets
have either a single action or all the actions when reduced according to [1, 10] (see [2]).

In cs.famaf.unc.edu.ar/~sgiro/diningPhil.tar.gz the following files are available:

• preprocBaier: program to generate the full model. It takes as arguments the name of the
model for a single philosopher and the amount of philosophers

• preprocRedBaier: program to generate the reduced model. It takes the same arguments as
preprocBaier

• philModelBaier.nm: model for a single philosopher

• stopGenEnsure.ml: program used by preprocBaier and preprocRedBaier. It must be
compiled using ocamlc

6.2 Anonymous fair service

A server must serve two clients in a fair fashion regardless of the rates at which they ask for service.
In addition, the clients cannot be identified, so the server cannot simply count how much times
it has served each of the clients. The protocol to solve the problem is the following: the server
keeps track of the order in which requests were received. At most two requests may be pending,

Appendix (for reviewers only) 24

since we assume that clients cannot perform requests while waiting 3. So, once two requests were
received, a coin is tossed in order to decide which of the requests is replied: in case the coin lands
heads, the first request is replied. Otherwise, the server replies the second request. Then, the coin
is tossed again.

A model is available at cs.famaf.unc.edu.ar/~sgiro/fair_server.tar.gz. The file also
contains a reduced model fair server red.nm. The command prism filename fair server.pctl

can be used to check the probabilities pm.

References

[1] C. Baier, M. Größer, and F. Ciesinski. Partial order reduction for probabilistic systems. In
QEST ’04, pages 230–239, Washington, DC, USA, 2004. IEEE CS.

[2] C. Baier, M. Größer, and F. Ciesinski. Quantitative analysis of distributed randomized
protocols. In Proc. of FMICS’05, pages 2–7. ACM, 2005.

[3] Christel Baier, Frank Ciesinski, and Marcus Größer. Probmela and verification of markov
decision processes. SIGMETRICS Perform. Eval. Rev., 32(4):22–27, 2005.

[4] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.
In Proc. of FSTTCS 95, LNCS 1026, pages 288–299. Springer, 1995.

[5] A. Cassandra. The POMDP page. www.pomdp.org.

[6] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. J. Cryptology, 1(1):65–75, 1988.

[7] L. Cheung. Reconciling Nondeterministic and Probabilistic Choices. PhD thesis, Radboud
Universiteit Nijmegen, 2006.

[8] F. Ciesinski and C. Baier. LiQuor: A tool for qualitative and quantitative linear time analysis
of reactive systems. In QEST’06, pages 131–132. IEEE CS, 2006.

[9] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[10] P. R. D’Argenio and P. Niebert. Partial order reduction on concurrent probabilistic programs.
In QEST ’04, pages 240–249, Washington, DC, USA, 2004. IEEE CS.

[11] L. de Alfaro. The verification of probabilistic systems under memoryless partial-information
policies is hard. In PROBMIV’99. TR CSR-99-8, pages 19–32. University of Birmingham,
1999.

[12] L. de Alfaro, T. A. Henzinger, and R. Jhala. Compositional methods for probabilistic systems.
In CONCUR’01, LNCS 2154, pages 351–365. Springer, 2001.

[13] S. Giro and P. R. D’Argenio. Quantitative model checking revisited: neither decidable nor
approximable. In FORMATS’07, LNCS 4763, pages 179–194. Springer, 2007.

[14] S. Giro and Pedro R. D’Argenio. On the verification of probabilistic i/o automata with
unspecified rates. To appear. Available at cs.famaf.unc.edu.ar/~sgiro/GD09-sac.pdf.

[15] R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative, and stratified models
of probabilistic processes. Information and Computation, 121:59–80, 1995.

[16] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An Ap-
proach to the State-Explosion Problem. LNCS 1032. Springer, 1996.

3Otherwise, it is impossible to guarantee fairness, since one of the entities may perform requests at an arbitrarily
high rate.

Appendix (for reviewers only) 25

[17] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic
verification of probabilistic systems. In Proc. of TACAS’06, LNCS 3920, pages 441–444.
Springer, 2006.

[18] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic plan-
ning and related stochastic optimization problems. Artif. Intell., 147(1-2):5–34, 2003.

[19] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, Laboratory for Computer Science, MIT, 1995.

[20] Stavros Tripakis. Undecidable problems of decentralized observation and control. In Proc. of
the 40th IEEE Conference on Decision and Control, volume 5, pages 4104–4109, 2001.

[21] Noel Vaillant. probability.net. Probability tutorials on line. Tutorial 2.

