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Robust BMM estimator in two-dimensional autoregressive models

Grisel Maribel Britos Silvia Maŕıa Ojeda

Abstract

In this paper, we present a new estimator for two-dimensional autoregressive models of first order
with three parameters. We compared the performance of our method, called BMM-2D, in cases of
non-contaminated and contaminated processes with the classic Least Square estimator and three well
known robust estimators. We considered different levels of replacement contamination and varied the
observation window sizes. The comparative study was carried out through Monte Carlo simulations.
The results show that the new estimator presents a better behavior than the other estimators, both in
accuracy and precision, and has a low computational cost. An application to the representation and
segmentation of real images is shown.

Keywords— AR-2D models, robust estimators, image processing

1 Introduction

Robust inference techniques appear in a diversity of contexts and applications, though the terms “ro-
bust” and “robustness” are quite freely used in the image processing and computer vision literature, not
necessarily with the usual statistical meaning. The median and similar order-based filters are basic tools
in image processing (Aysal and Barner [5]; Huang and Lee [38]; Palenichka et al. [57], [56]), and in
some cases particular attention has been devoted to obtain the distribution of those estimators (Steland
[64]). Other resistant approaches have proved to be successful in image restoration (see, for instance, Ben
Hamza and Krim [8]; Chu et al. [24]; Koivunen [43]; Marroquin et al. [47]; Rabie [60]; Tarel et al. [66];
Voloshynovskiy et al. [74]; Zervakis and Kwon [81]). A common challenge in these applications is that
the number of observations is reduced to a few, typically less than a hundred points. When it comes to
image analysis, many robust techniques have been proposed. In this case, the sample size is usually larger
than the one available in filters and, frequently, structure and topology do not impose heavy requirements
or constraints. In some cases, strong hypotheses are made on the laws governing the observed process
(Allende and Pizarro [4]; Brunelli and Messelodi [14]; Bustos et al. [17]; Butler [21]; Dryden et al. [28];
Van de Weijer and Van den Boomgaard [73]); other approaches can be seen in the works by Bouzouba
and Radouane [12], Brandle et al. [13], Nirel et al. [51], Sim et al. [62], Tohka et al. [68], Xu [79] and
Zervakis et al. [82].

High-level image analysis, or vision, also benefits from the use of robust estimation techniques, as
it can be seen in Black and Rangarajan [10], Black et al. [11], Chen et al. [22], Comport et al. [25],
Glendinning [30], Gottardo et al. [31], Hasler et al. [37], Kim and Han [42], Li et al. [44], Meer et al. [48],
Mirza and Boyer [49], Prastawa et al. [59], Roth [61], Singh et al. [63], Stewart [65], Torr and Zisserman
[69] and Wang and Suter [76], [77].

In a wide variety of different situations, such as image analysis, remote sensing and agricultural field
trials, observations are obtained on a rectangular 2D lattice or grid. A class of 2D autoregressive processes
has been suggested (Whittle [78]) as a source of reasonable models for the spatial correlation in such data
(Tjostheim [67]). These models are natural extensions of the autoregressive processes used in time series
analysis (Basu and Reinsel [7]).

Consequently, most of the robust techniques developed for parametric models in time series have been
implemented for spatial parametric models when the process has been contaminated with innovation or
additive outliers (Kashyap and Eom [41]). Since a single outlier can produce bias and large variance in
the estimators, most of the proposals are oriented to provide estimators that are more resistant to the
presence of contamination.
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In the literature, there are at least three classes of robust estimators that have been studied in this
context. They are the M, GM and RA estimators. Kashyap and Eom [41] introduced the M estimators
for 2D autoregressive models. A recursive image restoration algorithm was implemented by using the
robust M estimations to produce a restored image. Later, Allende et al. [1] studied the computational
implementation of the Generalized M (GM) estimators for the same class of models. The image restoration
algorithm previously developed by Kashyap and Eom [41] was generalized by Allende et al. [2]. The robust
Residual Autocovariance (RA) estimators were introduced by Bustos and Yohai [20] in the context of time
series, where in the recursive estimation procedure the residuals are cleaned through the application of
a robustifying function. An extension of the RA estimators for spatial unilateral autoregressive models
and its computational aspects were studied by Ojeda et al. [52]. Monte Carlo simulation studies show
that the performance of the RA estimator is better than the M estimator and slightly better than the
GM estimator when the model has been contaminated with additive outliers. Besides, Bustos et al.
[18] studied the asymptotic behavior of the RA estimator for unilateral autoregressive spatial processes,
generalizing the results for 1D time series asymptotic behavior established by Bustos and Fraiman [16].
Although the performance of the M and GM estimators is acceptable under innovation outliers, their
asymptotic properties are still open problems.

One of the reasons why the spatial autoregressive model (AR-2D) has been extensively used in image
analysis and processing is due to its remarkable ability to represent a variety of real scenarios without
the need to use a large number of parameters. However, the robust estimators developed so far for the
parameters of the AR-2D model have been constructed only under the assumption of innovative or additive
type random noise; there are no proposals for parameter estimation when the model is contaminated from
another more general pattern of noise. In this work we define a new class of robust estimators for the
AR-2D contaminated models. This class of estimators is robust under replacement contamination that
includes additive type contamination. Our proposal is the generalization to the bidimensional case of
the BMM estimators, developed by Muler, Peña and Yohai [50] for ARMA time series models. The
rest of the paper is organized as follows. In Section 2, the basic definitions are presented. First, some
background material on bidimensional autoregressive processes (AR-2D) and model parameter estimators
are presented. We also define procedures for generating replacement contamination in such models. In
Section 3, we present the new model BIP-AR-2D for spatial processes and the new estimator of the AR-2D
model parameters. In Section 4, several Monte Carlo studies are carried out to evaluate the performance
of the new estimator against different contamination schemes, compared to the LS, M, GM and RA
estimators. Section 5 presents two applications to real images that demonstrate the capabilities of the
BMM-estimator to represent, segment and restore contaminated images. Conclusions and future works
appear in Section 6. The results of the Monte Carlo studies (Section 4) are shown in the Appendix.

2 Preliminaries

2.1 The spatial ARMA models

In order to represent images using models that can be statistically worked on, three classes of models
have been proposed. Whittle [78] studied simultaneous autoregressive (AR) models; Besag [9] introduced
conditional autoregressive models. Moving average (MA) models were studied by Haining [36].

Spatial autoregressive moving average (ARMA) processes have also been studied in the context of
random fields indexed over Zd, d ≥ 2, where Zd is endowed with the usual partial order that is for
s = (s1, s2, . . . , sd), u = (u1, u2, . . . , ud) in Zd, s ≤ u if for i = 1, 2, . . . . , d, si ≤ ui. For a, b ∈ Zd, such that
a ≤ b and a 6= b, we define S[a, b] = {x ∈ Zd|a ≤ x ≤ b} and S〈a, b] = S[a, b]\{a}.

A random field (Ys)s∈Zd is said to be a spatial ARMA(p, q) with parameters p, q ∈ Zd if it is weakly
stationary and satisfies the equation

Ys −
∑

j∈S〈0,p]

φjYs−j = εs +
∑

k∈S〈0,q]

θkεs−k, (1)

where (φj)j∈S〈0,p] and (θk)k∈S〈0,q] denote, respectively the autoregressive and moving average parameters
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with φ0 = θ0 = 1, and (εs)s∈Zd denotes a sequence of independent and identically distributed centered
random variables with variance σ2. Notice that if p = 0, the sum over S〈0, p] is supposed to be zero and
the process is called spatial moving average MA(q) random field. Similarly if q = 0 the process is called
spatial autoregressive AR(p) random field. The ARMA random field is called causal if it has the following
unilateral representation:

Ys =
∑

j∈S[0,∞]

φjεs−j , (2)

with
∑

j |φj | < ∞. Similar to the time series case, there are conditions on the (AR or MA) polynomials

for them to be stationary and invertible respectively. Let Φ(z) = 1 −
∑

j∈S〈0,p] φjz
j and Θ(z) = 1 −∑

j∈S〈0,q] θjz
j , where z = (z1, z2, . . . , zd) and zj = zj11 z

j2
2 . . . zjdd . A sufficient condition for the random field

to be causal is that the AR polynomial Φ(z) has no zeros in the closure of the open unit disc Dd in Cd.
For example if d = 2, the process is causal if Φ(z1, z2) is not zero for any z1 and z2 which simultaneously
satisfy |z1| < 1 and |z2| < 1 [40].

Applications of spatial ARMA processes including the analysis of yield trials in the context of incom-
plete block designs [32, 26], and the study of spatial unilateral first-order ARMA models [7] have been
developed. Other extensions of the theory developed for time series to spatial ARMA models can be
found in [33, 23, 6, 71, 19].

As an example, consider a particular case of model (1) when d = 2 and p = (1, 1). This model is called
a first-order autoregressive process. Note that S = 〈(0, 0), (1, 1)] = {(1, 0), (0, 1), (1, 1)} and the model is
of the form

Yi,j = φ1Yi−1,j + φ2Yi,j−1 + φ3Yi−1,j−1 + εi,j (3)

where to simplify the notation it took φ1 = φ1,0, φ2 = φ0,1 and φ3 = φ1,1. In equivalent form, (3) can be
expressed as

Yi,j − φ1Yi−1,j − φ2Yi,j−1 − φ3Yi−1,j−1 = εi,j

or in a compact form as
Φ(B1, B2)Yi,j = εi,j (4)

where B1 and B2 are the backward operators given by B1Yi,j = Yi−1,j , B2Yi,j = Yi,j−1 and in (4),
Φ(B1, B2) = (1− φ1B1− φ2B2− φ3B1B2). In the case that Φ(B1, B2) has inverse, we can write equation
(2) as

Yi,j = Φ−1(B1, B2)εi,j

The correlation structure of a process like (3) was investigated by Basu and Reinsel [7]. They obtained
conditions to guarantee the existence of the stationary representation of the model (3) as in (2). In that
case, the use of a multinomial expansion for Φ−1(B1, B2) implies the convergent representation

Yi,j =
∞∑
k=0

∞∑
l=0

∞∑
r=0

λklrεi−k−r,j−l−r (5)

where λklr = (k+l+r)!
k!l!r! φk1φ

l
2φ

r
3 with k, l, r ∈ N ∪ {0} are the coefficients of this multinomial expansion.

In the literature there exist several prediction windows that can be considered in the definition of a
spatial ARMA process. For example Kashyap and Eom [41] used a finite subset N1 of the non-symmetrical
half plane Ω− given by

Ω− = {(i, j) : (i = 0 and j < 0) or (i < 0 and j is arbitrary)}.

A complete treatment of the prediction window for spatial ARMA models and examples can be found in
Guyon [35] and Bustos et al. [19].

A great variety of texture can be generated through the two-dimensional AR models. Figure (1)
shows textures generated with an AR-2D process; (a) and (b) with two parameters, (c) and (d) with
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three parameters. The increase in the number of parameters in the model also increases the diversity of
possible textures but in contrast, the calculations become more complex. In this paper we worked with
the AR 2D model with three parameters as in (3).

(a) (b) (c) (d)

Figure 1: Autoregressive Processes. (a) φ1 = 0.5, φ2 = 0.4999, φ3 = 0; (b) φ1 = 0.5, φ2 = 0.4, φ3 = 0; (c)
φ1 = 0.01, φ2 = 0.01, φ3 = 0.8; (d) φ1 = 0.15, φ2 = 0.17, φ3 = 0.2.

2.2 Types of contamination in AR-2D processes

Maronna et al. describe in [46] (Chapter 8) some probability models for time series outliers, including
additive outliers (AOs), replacement outliers (ROs) and innovation outliers (IOs). Let X be a wide-sense
stationary “core” unidimensional process of interest, and let V be a stationary outlier unidimensional
process, which is non-zero in a fraction α of the time, i.e., P (Vt = 0) = 1 − α. Under an AO model,
instead of Xt one observes

Yt = Xt + Vt

where the processes X and V are assumed to be independent of one another. The AO model was originally
introduced by Fox [29] in 1972 for time series, who called them Type I outliers. Fox attributed such outliers
to a “gross-error of observation or a recording error that affects a single observation”.
On the other hand, RO models have the form

Yt = (1− Zt)Xt + ZtWt

where Z is a zero-one unidimensional process with P (Zt = 0) = 1 − α, and W is a “replacement”
unidimensional process that is not necessarily independent of X. The RO models contain AO models as
a special case in which Wt = Xt + Vt, and Zt is a Bernoulli process.
The IOs are a highly specialized form of outlier that occur in linear processes such as AR, ARMA and
ARIMA models in time series. IO models were first introduced by [29], who termed them Type II outliers.
For simplicity, we illustrate IOs here in the special case of a first-order autoregression model. A stationary
first-order AR model is given by

Xt = φXt−1 + Ut

where the innovative unidimensional process U is i.i.d. with zero mean and finite variance, and |φ| < 1.
An IO is an outlier in the U process. IOs are obtained, for example, when the innovative process has a
zero-mean normal mixture distribution

(1− α)N(0, σ20) + αN(0, σ21) (6)

where σ21 � σ20. More generally, we can say that the process has IOs when the distribution of U has a
heavy tailed.
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In this section we generalized the notion of replacement outliers for spatial processes. Let Y be a
stationary process, for example an AR-2D process as (3) and let Z be the observed process. It is said
that Z process behaves like a two-dimensional Replacement Outlier model (RO) if it is given by

Zi,j = (1− ξαi,j)Yi,j + ξαi,jWi,j (7)

where ξα is a zero-one process such that P (ξαi,j = 1) = α and P (ξαi,j = 0) = 1 − α and W is a
replacement process that is not necessarily independent of Y . The fraction α is positive and small.
A particular case of the RO models is the two-dimensional Additive Outlier model (AO), in which

Wi,j = Yi,j + νi,j ,

ν is a stationary process independent of Y and ξα is a Bernoulli process. This type of contamination is
very important for satellite image processing; for example, it is present in optical images such as those
from Landsat satellites. When W does not follow the pattern of AO, we say that the contamination
process follows a Strictly Replacement Outlier model (SRO).
Similar to the case of time series, an innovative outlier is defined in an AR-2D process such as the one in
(3) as an outlier type that affects εi,j innovations. For example, let Y be a stationary first-order AR-2D
model given by

Yi,j = φYi−1,j + εi,j

where the innovations εi,j are i.i.d. with zero mean and finite variance, and |φ| < 1. An IO is an outlier
in the ε process. IOs are obtained when the process of innovations has a zero-mean normal mixture
distribution as in (6).

2.3 Robust Parametric Estimation

It is well known that the LS estimators are very sensitive to the outliers (Martin [45]). This fostered the
introduction of several alternative estimators to attenuate the impact of contaminated observations on
the estimators. Most of these proposals are natural extensions of robust estimators studied in time series.

Robust estimators have been defined for models containing a finite number of parameters. Here, we
use model (3) to describe the well-known robust estimators; however, a more general treatment for AR
and MA models can be found in Kashyap and Eom [41], Allende, Galbiati and Vallejos [2], Ojeda, Vallejos
and Lucini [55], Vallejos and Garcia-Donato [71], and Bustos, et al. [18].

Notice that model (3) can be rewritten in the linear model form:

Yi,j = φTZi,j + εi,j ,

where φT = (φ1, φ2, φ3) is a parameter vector and ZTi,j = (Yi−1,j ;Yi,j−1;Yi−1,j−1). To obtain the LS
estimator of φ, we need to minimize, with respect to φ, the function:∑

i,j

[εi,j(φ)]2 ,

where
εi,j(φ) = Yi,j − φTZi,j = Yi,j − φ1Yi−1,j − φ2Yi,j−1 − φ3Yi−1,j−1 (8)

Similarly, the class of M estimators for 2D autoregressive processes (Kashyap and Eom, 1988)[41] is
defined by the minimization of the function

Q(φ, σ) =
∑
i,j

[
ρ

(
Yi,j − φTZi,j

σ

)
+

1

2

]
σ, (9)

Likewise, if σ̂ is an estimate of σ, the M-estimators are defined by minimizing the function

Mnm(φ) =
1

(n− 1)(m− 1)

n∑
i=2

m∑
j=2

ρ

(
εi,j(φ)

σ̂

)
(10)
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This estimator is robust for innovation outliers, when the function ρ is a differentiable function, convex,
symmetric with respect to the origin, with bounded derivative, and such that ρ(0) = 0. However, the
M estimators are very sensitive when the process is contaminated with additive outliers. This suggested
the introduction of other robust estimators capable of lessening the effects of additive outliers. Allende,
Galbiati and Vallejos [2] developed the generalized M estimators (GM) for spatial AR processes. A GM
estimator of φ is the solution to the problem of minimizing the non-quadratic function defined by:

Q(φ, σ) =
∑
i,j

lijtij

[
ρ

(
Yi,j − φTZi,j

lijσ

)
+

1

2

]
σ,

where ρ is as in (9), tij and lij are weights corresponding to the respective Zi,j .
Alternatively, Ojeda, Vallejos and Lucini [55] introduced the robust autocovariance (RA) estimators

for spatial autoregressive processes. This estimator was first introduced by Bustos and Yohai [20] for
models used in time series.

Let Y be a zero mean AR-2D process described by the equation:

Ym,n −
∑

k,l∈S〈0,p]

φk,lYm−k,n−l = εm,n, (11)

where εm,n is a sequence of i.i.d. random variables with V ar(εm,n) = σ2. Let us assume that Y is observed
on a strongly causal squared window of order M, WM = {(k, l) ∈ S : 0 ≤ k, l ≤M}, where S is an infinite
strong causal prediction neighborhood. Let us define WM \S〈0, p] = {(m,n) ∈WM : [(m,n)− p] ∈WM}.
The residual of order (m,n) in φ of Y is

r(m,n) =

 −
∑

k,l∈T ′

φk,lYm−k,n−l, (m,n) ∈ (Wm \ S〈0, p])

0, otherwise,
(12)

where T ′ = S〈0, p] ∪ {(0, 0)} and φ0,0 = −1. In particular, for p = (1, 1) we define the coefficients

pφ(k, l, r) =
(k + l + r)!

k! l! r!
φk1φ

l
2φ

r
3,

then the RA estimator φ̂ of φ is defined by the following equations

∞∑
k,l,r=0

pφ(k, l, r)
∑

(m,n)∈(WM\S〈0,(1,1)])

η

(
r(m,n)

σ̂
,
r(m− i− k − r, n− j − l − r)

σ̂

)
= 0, (13)

∑
(m,n)∈(WM\S〈0,(1,1)])

ψ

(
r(m,n)

σ̂

)
= 0, (14)

where σ̂ is estimated independently by

σ̂ = Med(|r(m,n))| : (m,n) ∈ (WM \ S〈0, (1, 1)]))/0.6745, (15)

η is a continuous, bounded and odd function in two variables and 0.6745 = Med (|W |) , where W is
a standard normal random variable. Two possible choices for η have been suggested in the literature (see
Bustos et al. [19])

3 A new approach

3.1 BIP-AR 2D models

A new class of bounded nonlinear AR-2D models is presented in this work: the bounded innovation
propagation AR-2D model (BIP-AR 2D). This model arises from the need to estimate the best possible
parameters of a autoregressive central model when a contaminated process is observed. The BIP-AR 2D
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model is a two-dimension generalization of the model presented for time series by Muler et al. [50].

Given a stationary and invertible AR-2D model like in (3), it supports a stationary representation as
in (5). We define the BIP-AR 2D auxiliary model as:

Yi,j =
∑

(k,l,r)∈D

λklrση
(εi−k−r,j−l−r

σ

)
+ εi,j (16)

with D = {(k, l, r) ∈ N3
0}/{(0, 0, 0)}, εi,j ’s are i.i.d. random variables with symmetric distribution and

η(x) is an odd and bounded function. σ is a robust M-scale of εi,j , which coincides with the standard
deviation if εi,j are normal, and is defined as the solution of the equation E(ρ(εi,j/σ)) = b.

Note that (16) can also be written as

Yi,j =
∑

{k≥0,l≥0,r≥0}

λklrση
(εi−k−r,j−l−r

σ

)
− ση

(εi,j
σ

)
+ εi,j = σΦ−1(B1, B2)η

(εi,j
σ

)
− ση

(εi,j
σ

)
+ εi,j

and multiplying both members by Φ(B1, B2), we get

Φ(B1, B2)Yi,j = ση
(εi,j
σ

)
− σΦ(B1, B2)η

(εi,j
σ

)
+ Φ(B1, B2)εi,j

which is equivalent to

Yi,j = φ1Yi−1,j + φ2Yi,j−1 + φ3Yi−1,j−1 +

σφ1η
( εi−1,j

σ

)
+ σφ2η

( εi,j−1

σ

)
+ σφ3η

( εi−1,j−1

σ

)
+

εi,j − φ1εi−1,j − φ2εi,j−1 − φ3εi−1,j−1 (17)

3.2 BMM estimator for AR-2D processes

In time series, Muler et al. [50] introduce the MM-estimators for ARMA models based in the definition of
MM-estimate for regression proposed by Yohai ([80]) with the difference that the residuals are calculated
as in the BIP-ARMA model instead of just as in the pure ARMA model. The idea of MM-estimators in
regression is to compute a highly robust estimator of the error scale in a first stage, and this estimated
scale is used to calculate an M-estimator of the regression parameters in a second stage. However, in time
series this differs somewhat because an MM-estimate is not enough to guarantee robustness.
In the same way that residues of AR-2D model exist (8), there are residues obtained from BIP-AR 2D
model:

εbi,j(φ, σ) = Yi,j − φ1Yi−1,j − φ2Yi,j−1 − φ3Yi−1,j−1 −

σ

(
φ1η

(
εbi−1,j(φ,σ)

σ

)
+ φ2η

(
εbi,j−1(φ,σ)

σ

)
+ φ3η

(
εbi−1,j−1(φ,σ)

σ

))
+

φ1ε
b
i−1,j(φ, σ) + φ2ε

b
i,j−1(φ, σ) + φ3ε

b
i−1,j−1(φ, σ) (18)

for all i, j ≥ 2. With this residue the objective function that must be minimized to obtain the M-estimator
of the parameters under a model BIP-AR 2D is defined:

M b
nm(φ) =

1

(n− 1)(m− 1)

n∑
i=2

m∑
j=2

ρ

(
εbi,j(φ, σ̂)

σ̂

)
(19)

where σ̂ is a robust estimate of σ.
One way of robustly estimating the scale was introduced in 1964 by Huber ([39]) as follows: Let a sample
u = (u1, ..., un), with ui ∈ R, an M-estimate of scale Sn(u) is defined by any value s ∈ (0,∞) satisfying
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1

n

n∑
i=1

ρ
(ui
s

)
= b (20)

where ρ is a continuous and non-constant function, non-decreasing in |x| and symmetric around zero as
well. To make the M-scale estimate consistent with the standard deviation when the data are normal,
it requires that E(ρ(x)) = b under the standard normal distribution. Taking b = max(ρ)/2, we get a
maximum breakdown point of 0.5.

With all this, we can define the new BMM-2D estimator by following the two steps given below:

First Step: At this stage, an estimate of σ is obtained. For this purpose, two σ estimates are consid-
ered: one using an AR-2D model, another using a BIP-AR 2D model, and choosing the smallest of them.
Let ρ1 a continue, non-constant, non-decreasing in |x|, bounded and symmetric function and such that:
b = E(ρ1(u)) ⇒ b/max(ρ1) = 0.5. This guarantees that for a normal random sample, the M-scale esti-
mator s based on ρ1 converges to the standard deviation and the breakdown point of s is 0.5. Put

B0,ξ = {φ = (φ1, φ2, φ3) ∈ R3 : |z| ≥ 1 + ξ holds for all the roots z of Φ(B1, B2)}

Let us call B = B0,ξ for some small ξ > 0.
Then, we define an estimate of φ ∈ B:

φ̂S = argmin
φ∈B

Snm(εnm(φ))

and the corresponding estimate of σ:
snm = Snm(εnm(φ̂S)) (21)

where εnm(φ) = (ε22(φ), ε32(φ), ..., εn2(φ), ε23(φ), ..., ε2m(φ), ..., εnm(φ)) with εij(φ) as in (8) and
Snm is the M-estimate of scale based on ρ1 and b defined as in (20).

Let us describe now the estimate corresponding to the BIP-AR model. Define φ̂bS by the minimiza-
tion of Snm(εbnm(φ, σ̂(φ))) over B. The value σ̂(φ) is an estimate of σ computed as if φ were the true
parameters and the εi,j ’s were normal. Then, since in this case the M-scale σ coincides with the standard
deviation of εi,j , from (16) we have:

σ2 =
σ2Y

1 + κ2
∑

k,l,r≥0 λ
2
klr

where κ2 = V ar(η(
εi,j
σ )) and σ2Y = V ar(Yi,j). Let σ̂2Y a robust estimate of σ2Y and κ2 = V ar(η(Z)) where

Z ∼ N(0, 1). Then, we define

σ̂2 =
σ̂2Y

1 + κ2
∑

k,l,r≥0 λ
2
klr(φ)

The scale estimate sbnm corresponding to the BIP-AR-2D model is defined by

φ̂bS = argmin
φ∈B

Snm(εbnm(φ, σ̂(φ)))

and
sbnm = Snm(εbnm(φ̂bS , σ̂(φ̂bS)))

where εbnm(φ) = (εb22(φ, σ̂(φ)), εb32(φ, σ̂(φ)), ..., εbn2(φ, σ̂(φ)), εb23(φ, σ̂(φ)), ..., εb2m(φ, σ̂(φ)), ..., εbnm(φ, σ̂(φ)))
with εbij(φ, σ̂(φ)) defined as in (18).

Our estimate of σ is

s∗nm = min(snm, s
b
nm)
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Second Step: We consider a bounded function ρ2 that satisfies the same properties as ρ1 but also
ρ2 ≤ ρ1. This function is chosen such that the corresponding M-estimator is highly efficient under normal
errors. Given the objective functions defined in (10) and (19) with scale obtained in the first step (s∗nm):

Mnm(φ) =
1

(n− 1)(m− 1)

n∑
i=2

m∑
j=2

ρ2

(
εi,j(φ)

s∗nm

)
(22)

and

M b
nm(φ) =

1

(n− 1)(m− 1)

n∑
i=2

m∑
j=2

ρ2

(
εbi,j(φ, s

∗
nm)

s∗nm

)
(23)

The corresponding M-estimators of the parameters for each function are:

φ̂M = argmin
φ∈B

Mnm(φ)

and
φ̂bM = argmin

φ∈B
M b
nm(φ)

Then, we define the BMM-estimator 2D as:

φ̂∗M =

{
φ̂M , si Mnm(φ̂M ) ≤M b

nm(φ̂bM );

φ̂bM , si Mnm(φ̂M ) > M b
nm(φ̂bM )

4 Monte Carlo Results

The aim of this section is to analyze the performance of the new BMM estimator to estimate the parame-
ters in the model (3) compared to the LS, M, GM and RA estimators. We performed several experiments.
Each experiment is based on different Monte Carlo studies. We set the parameter values of (3) as:

Yi,j = 0.15Yi−1,j + 0.17Yi,j−1 + 0.2Yi−1,j−1 + εi,j (24)

We performed our study under five different conditions of the model (Cases); in Case I, the model was
non-contaminated, while in Cases II, III, IV and V, the model was contaminated according to (7):

• Case I) Non-contaminated model like in (24), where ε is a normal distribution process with V ar(εi,j) =
1 and E(εi,j) = 0 for all i, j.

• Case II) AO, where the ν process is independent of the Y process and follows a normal distribution
with zero mean and variance 50.

• Case III) SRO, where the replacement process W follows a t-student distribution with 2.3 f.d.

• Case IV) SRO, where the replacement process W is another autoregressive process, independent of
the Y process, with parameters φ̃1 = 0.1, φ̃2 = 0.2 and φ̃3 = 0.3.

• Case V) SRO, where the replacement process W is a white noise process with normal distribution
with zero mean and variance 50.

In each of the five variants of the model (24), the parameters φ1, φ2 and φ3 were estimated by the
five procedures presented in the previous sections. In each experiment, 500 simulations of the model were
generated, and the mean value, the mean square error (MSE) and the sample variance were computed. For
the contaminated models we considered four levels of contamination: 5%, 10%, 15% and 20%. Besides,
we performed our study considering different window sizes: 8 × 8, 16 × 16, 32 × 32, and 57 × 57. For
the calculation of the BMM estimator, a robust estimator of the scale was obtained as in (21). ρ1(x) =

9



ρ2(
x

0.405) was selected according to the same criteria that was taken for the definition of the BMM estimator
for time series present in [50], where the function ρ2 is given by:

ρ2(x) =


0.5 ∗ x2, si |x| ≤ 2;

0.002 ∗ x8 − 0.052 ∗ x6 + 0.432 ∗ x4 − 0.972 ∗ x2 + 1.792, si 2 < |x| ≤ 3;

3.25, si 3 < |x|
(25)

The same ρ2 function was used to calculate the M estimators. In addition, for the implementation of the
GM estimator the weights were set:

li,j = 1 ∀ i, j

ti,j =
ψH((Y 2

i−1,j + Y 2
i,j−1 + Y 2

i−1,j−1)/3

(Y 2
i−1,j + Y 2

i,j−1 + Y 2
i−1,j−1)/3

where ψH is the following version of the Huber function:

ψH(x) =


x, si |x| ≤ 1.5;

1.52, si 1.5 < x;

−1.5, si x < −1.5

(26)

Finally the RA estimators were implemented according to the details formulated in [52]. To facilitate
the paper reading, only the boxplots of the simulations have been included in the body of the work; the
numerical Monte Carlo results are shown in the Appendix.

4.1 Experiments

In a first experiment, we studied the performance of the BMM estimator for the non-contaminated model
(Case I). All the methods estimated the parameters quite well. Table 3 shows the results obtained for the
four different window sizes considered. In Figure 2, the corresponding boxplots are shown. In this case,
it is convenient to use the LS method due to its simplicity and calculation speed.

The second experiment was developed in the context of Case II. We analyzed the ability of the BMM
method to estimate the parameters of the model, considering a 10% of additive contamination, and for
window sizes 8× 8, 16× 16, 32× 32 and 57× 57, in comparison with the LS, M, GM and RA methods.
Table 4 shows the estimated values for φ1, φ2 and φ3, using the different five procedures analyzed. Figure
3 exhibits the corresponding boxplots. For window size 32 × 32 and 57 × 57, it can be seen that the
BMM estimator is the best because its values are closer to the parameter than the estimates produced
by the other methods mentioned. In addition, BMM estimator has the lowest variance and the lowest
MSE. When the window size was 8 × 8 or 16 × 16, the best performance corresponded to the GM and
RA estimators; however, the BMM estimation values were similar to the RA and GM estimations. An
analogue affirmation is valid to the sample variance and MSE of BMM. We also noted that for any window
size, the M estimator had a very small sample variance but their estimations were wrong when compared
to the ones in the other methods.
The third experiment also refers to Case II. We set the window size at 32 × 32 and varied the additive
contamination level, considering four levels: 5%, 10%, 15% and 20%. The BMM method was the best
in most of the cases studied, followed by the RA estimator. This behavior is deduced from the compar-
ison of the values estimated by the BMM method with the respective estimates obtained by the other
procedures. The values of the dispersion measures also point out that the BMM estimator is the most
accurate methodology. These results can be seen in Table 5. In addition, from Figure 4 we can note that
using any of the five estimators, the parameter φ3 was estimated with less precision than φ1 and φ2 as the
percentage of contamination increases. Besides, while φ3 was underestimated by all methods, for all levels
of contamination, the RA estimator was the only method that overestimated φ1 and φ2, independently
of the contamination level. The fourth experiment is related to Case III. The process of contamination
is a replacement contamination where the replacement process W follows a t-student distribution with
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Figure 2: LS, M, GM, RA and
BMM estimation boxplots for
φ1 = 0.15 (a), φ2 = 0.17 (b)
and φ3 = 0.2 (c); model (24)
without contamination, vary-
ing the window sizes.
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2.3 f.d.. The simulations were performed for a 57 × 57 window. Table 6 and plot 5 show the results.
Boxplots show that the BMM method is the best performing estimator, followed by the RA, GM, M and
LS methods, in that order. We also noted that in all methods the estimates deteriorate as the level of
contamination increases. Additionally, the classic LS estimator presented greater dispersion of the data.
The fifth experiment was performed in the context of Case IV, where the replacement process W was a
autoregressive process. We set the window size at 32× 32, varying the level of contamination (5%, 10%,
15% and 20%). Table 7 shows these results. Besides, Figure 6 displays the boxplots corresponding to
these tables. We can see a pattern similar to the fourth experiment; except that in this case, the variances
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seem very much alike. Finally, the sixth experiment was carried out according to Case V. The replacement
process of the contamination was a white noise with variance 50. As in the fifth experiment, we set the
window size at 32 × 32, varying the level of contamination (5%, 10%, 15% and 20%). Table 8 presents
the estimated values obtained. The corresponding boxplots are shown in Figure 7. The parameter values
φ1, φ2 and φ3 were underestimated for all methods, excluding the RA estimator that overestimated the
values of φ1 and φ2 parameters. The BMM estimator was less affected by the contamination process.
The LS and M estimators are less accurate than the GM, RA and BMM estimators. Comparatively,
the RA estimator presented the highest variance, whereas the GM estimator, although quite accurate,
deteriorates more than the BMM estimator as the level of contamination increases.
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Figure 3: LS, M, GM, RA and
BMM estimation boxplots for
φ1 = 0.15 (a), φ2 = 0.17
(b) and φ3 = 0.2 (c), vary-
ing the window sizes. Model
(24) with additive contamina-
tion 10% level, with a normal
noise. −1.7
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Figure 4: LS, M, GM, RA and
BMM estimation boxplots, for
φ1 = 0.15 (a), φ2 = 0.17 (b)
and φ3 = 0.2 (c) in model
24, with additive contamina-
tion, varying the contamina-
tion level, with a 32× 32 win-
dow size. The contamination
process is a normal noise, with
σ2 = 50.

−0.30

−0.14

0.02

0.18

0.34

0.50

LS M GM RA

BM
M LS M GM RA

BM
M LS M GM RA

BM
M LS M GM RA

BM
M

5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %

(a)

−0.22

−0.04

0.14

0.32

0.50

LS M GM RA

BM
M LS M GM RA

BM
M LS M GM RA

BM
M LS M GM RA

BM
M

5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %

(b)

0.0

0.1

0.2

0.3

0.4

LS M GM RA

BM
M LS M GM RA

BM
M LS M GM RA

BM
M LS M GM RA

BM
M

5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %5 % 10 % 15 % 20 %

(c)

14



Figure 5: LS, M, GM, RA and
BMM estimation boxplots, for
φ1 = 0.15 (a), φ2 = 0.17 (b)
and φ3 = 0.2 (c) in model
24, with contamination of re-
placement, varying the con-
tamination level, with a 57 ×
57 window size. The process
of contamination follows a t-
Student distribution with 2.3
d.f.
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Figure 6: LS, M, GM, RA and
BMM estimation boxplots, for
φ1 = 0.15 (a), φ2 = 0.17 (b)
and φ3 = 0.2 (c) in model
24, varying the contamination
level, with a 32 × 32 window
size. The contamination pro-
cess is of replacement type, by
an AR process with φ̃1 = 0.1,
φ̃2 = 0.2 and φ̃3 = 0.3 param-
eters.
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Figure 7: LS, M, GM, RA and
BMM estimation boxplots, for
φ1 = 0.15 (a), φ2 = 0.17 (b)
and φ3 = 0.2 (c) in model
24, varying the contamination
level, with a 32 × 32 window
size. The contamination pro-
cess is of replacement type,
with a white noise, of variance
50.
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4.2 Computational Time Evaluation

All the computational routines were developed in R and were carried out on the server JupiterAce of
FaMAF-UNC. It has 12-cores 2.40GHz Intel Xeon E5-2620v3 processor, with 128 GiB 2133MHz of avail-
able DDR4 RAM. Running time as time logarithm of a single simulation to each estimator vs the window
size in Case I is presented in Figure 8. Time was expressed in seconds. The graph shows that the computa-
tional cost of the RA estimator is the highest; for example, in a 32×32 window size, the RA running time
was 43.812 seconds, while BMM, GM, M and LS computational costs were 2.936, 0.552, 0.516 and 0.436
seconds, respectively. This results show that, although RA estimator is one of the major competitors of
BMM estimator, due to its accuracy and good asymptotic properties, it exhibits its computational cost
as a disadvantage. This makes RA an unattractive estimator for the processing of big size images.
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Figure 8: Logarithm of the estimation time (in seconds) when the process has additive contamination of
σ2 = 50 according to the window size.

5 Application to real images

The analysis of contaminated images is of great interest in several areas of research. For example, the
reconstruction of contaminated images is relevant in modeling of images (Allende and Galbiati, [3], Vallejos
and Mardesic, [72]), and, in general, the reduction of the noise produced by interferences taking place in
the processes of obtaining the physical image and transmitting it electronically plays an important role
in the literature (Bustos, [15]).
In Ojeda et al. ([53]), two algorithms for image processing based on the unilateral AR-2D model with two
parameters were presented. The foundations of the algorithms are random field theory and robustness
for spatial autoregressive processes. The first one produces a local approximation of images, and the
second one, is a segmentation algorithm. In this work, we proposed to use a variant of these algorithms
using a unilateral AR-2D process with three parameters (model (3)), instead of two parameters as it was
originally proposed. We called the modified algorithms as Algorithm 1 and Algorithm 2. We applied them
to reconstruction and segmentation of images using the LS, GM and BMM estimators of the parameters
in the model (3). Later, we inspected and compared the performance of these estimators in Algorithms 1
and 2 on contaminated images. To compare the images generated by the algorithms and, therefore, the
performance of the different estimators, we calculated three indexes used in the literature; the SSIM index
[75], the CQ index ([54]), and CQmax index [58]. Next, we present two numerical experiments using the
image “Lenna”, which was taken from the USC-SIPI image database http://sipi.usc.edu/database/. In
Figure 9-(I), the original 512× 512 image is shown.
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Now, we describe Algorithms 1 and 2: Let Z = [Zm,n]0≤m≤M−1,0≤n≤N−1 be the original image, and let
X = [Xm,n]0≤m≤M−1,0≤n≤N−1 where, for all 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1, Xn,m = Zn,m − Z and
Z is the mean of Z . Consider the approximate image Y of Z based on a AR-2D process as in (3). Let
4 ≤ k ≤ min(M,N). To simplify, from now on we shall consider that the images to be processed (Z and
X) are arranged in such a way that the number of columns minus one and the number of rows minus
one are multiples of k− 1; i.e., Z = [Zm,n]0≤m≤M ′−1,0≤n≤N ′−1 and X = [Xm,n]0≤m≤M ′−1,0≤n≤N ′−1 where
M ′ = M−1

k−1 (k−1)+1, N ′ = N−1
k−1 (k−1)+1. For all ib = 1, ..., M−1k−1 , and for all jb = 1, ..., N−1k−1 , we defined the

(k−1)×(k−1) block (ib, jb) of the image X by BX(ib, jb) = [Xr,s](k−1)(ib−1)≤r≤(k−1)ib,(k−1)(jb−1)≤s≤(k−1)jb
The M ′ ×N ′ approximated image X̂ of X is provided by the following algorithm:

Algorithm 1 Local approximation of images by using AR-2D processes

Require: Original image Z.
Ensure: Approximated image Ẑ of the original image Z
1: Define X as X = Z − Z
2: Generate block BX(ib, jb)
3: Compute the estimations φ̂1(ib, jb), φ̂2(ib, jb), φ̂3(ib, jb) of φ1, φ2 and φ3 corresponding to the block
BX(ib, jb) extended to B′X(ib, jb) = [Xr,s](k−1)(ib−1)≤r≤(k−1)ib,(k−1)(jb−1)≤s≤(k−1)jb

4: Define X̂ on the block BX(ib, jb) by

X̂r,s = φ̂1(ib, jb)Xr−1,s + φ̂2(ib, jb)Xr,s−1 + φ̂3(ib, jb)Xr−1,s−1

where (k − 1)(ib − 1) + 1 ≤ r ≤ (k − 1)ib and (k − 1)(jb − 1) + 1 ≤ s ≤ (k − 1)jb
5: Define Ẑ as Ẑ = X̂ − Z

Algorithm 2 Segmentation

Require: Original image Z
Ensure: Segmentated image W
1: Generate an approximated image Ẑ of Z with the Algorithm 1.
2: Compute the residual image W defined as W = Z − Ẑ.

In the first experiment, Algorithm 1 was applied to image representation. We locally adjusted an AR-
2D process to the original image for different window sizes, and estimated the parameters of the model
with the BMM estimator. Fig. 9, (a), (b), (c) and (d) exhibits the BMM reconstructed images obtained
respectively using the window sizes 8× 8, 16× 16, 32× 32 and 57× 57. For all window sizes, the BMM
recostructed images are visually good; although a quantitative analysis of the similarity between each
BMM reconstructed image and the original image showed differences. We calculated the SSIM, CQ (1,1)
and CQmax index, between each reconstructed image and the original image. The three indexes revealed
that the similarity decreases as the size of the window increases (Table 1); so the best fits were obtained
with small window sizes. This result reflects the assumption that the two-dimensional autoregressive
model is a local adjustment model. Next, we applied Algorithm 2 and generated four difference images
(e), (f), (g) and (h) shown in Fig. 9. We observed that the difference image (h) highlights the edges more
than the others do. This shows that when we performed the reconstruction with a 57× 57 window size,
(Fig. 9 (d)), a lot of information got lost and this is reflected by the difference image (Fig. 9 (h)).
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(I)

Figure 9: Image (I) Lena original image. (Right) The first row has the
reconstructions done for BMM estimator adjusting window sizes 8 × 8,
16 × 16, 32 × 32 and 57 × 57 respectively ((a) to (d)). The second row
has the respective differences ((e) to (h)) with respect to the original
image (I).

(a) (b) (c) (d)

(e) (f) (g) (h)

Window size SSIM CQ(1,1) CQmax

8× 8 0.9948914 0.8582201 0.9706984
16× 16 0.9827996 0.8309626 0.9544317
32× 32 0.9779204 0.8151581 0.9462133
57× 57 0.9762065 0.8073910 0.9423786

Table 1: SSIM, CQ and CQmax index between the original image and each one of the BMM reconstructed
images (a), (b), (c) and (d) in Figure 9.

In the second experiment, the original image was 10% additively contaminated (Fig. 10 (II)), and we
used it as input in Algorithm 1. We obtained four reconstructed images using the LS, GM and the BMM
estimators. Next, the Algorithm 2 was performed. The studies were carry out considering 8 × 8, and
57× 57 window sizes. In the first two columns in Figure 10, we can observe the results obtained consid-
ering 8× 8 windows. Visually, there are not great differences between the different images reconstructed.
When analyzing Table 2, we verify this because the measured indexes are comparable to each other. On
the other hand, the third and fourth columns of Figure 10 show the results obtained by adjusting 57× 57
windows. It is observed that the image (l), corresponding to the difference between the image restored
with BMM (l) and the one contaminated with additive noise, highlights the edges slightly more.
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(I) (II)

Figure 10: Image (I) Lena original image; Image
(II) image with 10% additive contamination and
σ2 = 50. In the first row, adjustments made with
LS; in the second row, with GM; and in the third
row, with BMM. Columns 1 and 2 correspond to
adjustments with 8 × 8 windows, and columns 3
and 4 to 57 × 57 windows. Columns 1 and 3 are
the reconstruction for Algorithm 1 and columns 2
and 4 are the segmented images for Algorithm 2.

(a) (d) (g) (j)

(b) (e) (h) (k)

(c) (f) (i) (l)

Estimate SSIM CQ(1,1) CQmax

LS 0.9836079 0.8416351 0.9588826
GM 0.9390820 0.7821954 0.9103257

BMM 0.9846007 0.8328356 0.9577393

Table 2: Similarity between the original image and the reconstructions of Lena with additive contamina-
tion (Figure 9 - II).
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6 Conclusions and discussions

The following comments give a brief summary of the results obtained in this paper.
A new estimator called BMM was proposed to estimate the parameters in first-order two-dimensional

autoregressive models with three parameters. The new estimator is a two-dimensional extension of the
BMM estimator proposed by Muler et al. [50] for autoregressive models of time series. We also extended
the definition of replacement contamination, given for one-dimensional models ([46]), to the case of AR-
2D models; this type of contamination includes additive-type contamination. The performance of the
proposed estimator for AR-2D models with replacement contamination and without contamination was
analyzed. Besides, the new estimator was compared with the classical least square estimator (LS) and
robust estimators M, GM and RA. The comparative analysis was performed from six experiments, each of
which involved several Monte Carlo studies, considering different replacement contamination patterns and
varying the level of contamination. The LS estimator produced estimates that are very sensitive to the
presence of atypical values, while the other estimators had better results. Using Monte Carlo simulation,
we observed that the GM, RA and BMM estimators are highly superior than the M and LS estimators.
However, the new estimator showed the best behavior, in both accuracy and precision, followed by the
RA estimator in accuracy and by the GM in precision. An analysis of the computational cost showed
that the RA estimator is the most expensive, followed by the BMM, GM, M and LS estimators, in that
order. Finally, in an application to real data, we introduced a variant of the algorithm developed by [53],
to perform image segmentation, using an AR-2D model with three parameters, and BMM estimators. In
the light of the examples shown in Section 5, we conclude that the adapted algorithm is able to highlight
the borders and contours in the images. The following proposals outline some directions for future work.

Under mild regularity conditions, in [52], the authors established the asymptotic normality and con-
sistency of the robust RA estimators for the parameter φ of a two-dimensional autoregressive unilateral
process. That work extended the asymptotic theory of the RA estimators, which was available only for
time series (see Bustos et al. [16]). Although the estimators M, GM and BMM are reasonable to estimate
parameter φ, their asymptotic behavior are still open problems. In this paper, the difference between a
real image and an BMM approximated image was computed. The resulting image could be used to detect
the borders and to classify the original image. It would be interesting to explore the limitations of a seg-
mentation method based on the difference image between a real and a fitted image. It is also important
to analyze the behavior of the BMM estimator in combination with image restoration techniques. The
same relevance has the study of properties of BMM estimator, in particular, and robust estimators, in
general, as alternatives to the least square estimators under non causal and semi causal AR-2D models.
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