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We consider a method to solve constrained system of nonlinear equations based on the Linear-
Programming-Newton method replacing the first order information with a quasi-Newton se-
cant update, providing a computationally simple method. The proposed strategy combines
good properties of two methods: the least change secant update for unconstrained system
of nonlinear equations with isolated solutions and the Linear-Programming-Newton for con-
strained nonlinear system of equations with possible nonisolated solutions. We analyze the
local convergence of the proposed method under a standard error bound condition proving its
linear convergence for nonisolated solutions. Numerical experiments show linear convergence
and superlinear convergence in some problems.
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1. Introduction

The aim of this work is to present a quasi-Newton type method for the solution of con-
strained system of equations and analyze its local convergence properties. The proposed
method will help us to solve the problem of finding z such that

F (z) = 0, z ∈ Ω (1)

where Ω ⊆ Rn is a nonempty and closed set and F : Rn → Rm is a continuously
differentiable function with F ′ locally Lipschitz continuous.

In order to solve the problem (1) we propose the following iterative procedure.

Algorithm 1
Step 0: choose κ > 0, z0 ∈ Ω, M0 ∈ Rm×n and set k = 0.
Step 1: define zk+1 = zk + dk where (dk, γk) is a solution of

minimize
d,γ

γ

subject to ‖F (zk) +Mkd‖ ≤ κγ,
‖d‖ ≤ γ,
zk + d ∈ Ω.

∗Corresponding author. Email: mmartinez@famaf.unc.edu.ar



Step 2: if F (zk+1) = 0, stop. Else, compute Mk+1 ∈ Rm×n.
Step 3: set k = k + 1 and go to Step 1.

This Algorithm is an adaptation of the Linear-Programming-Newton method proposed
in [7], where quadratic convergence was proved for nonisolated solutions and for a strongly
semismooth function F . In [7], Mk is an element of the Clarke’s generalized Jacobian of
F at zk. However, the calculation of this suitable substitute of the Jacobian (or the exact
one) may be error-prone and expensive. This kind of issue is well-known in the literature
of unconstrained nonlinear system of equations and can be managed by using quasi-
Newton methods [1, 4]. Thus we proposed an adaptation in the spirit of quasi-Newton
methods.

On the other hand, for unconstrained system of equations quasi-Newton methods are
used to link the advantage of the local behavior of the standard Newton method with a
consistent globalization strategy. In [11] it was shown that a globally convergent method
can be formulated for F continuously differentiable or F in certain class of piecewise con-
tinuously differentiable mappings. Also, subproblem [11, problem (5.9)] was introduced
to have a better scaled Linear-Programming subproblem. We shall stress that the sub-
problem in Step 1 of Algorithm 1 is an adaptation of [11, problem (5.9)]. This adaptation
consists in taking a fixed parameter κ instead of a variable parameter ‖F (zk)‖, change
that was made to obtain a suitable feasible point of the subproblem in order to guarantee
the fulfillment of a uniform error bound.

Another quasi-Newton strategy to solve problem (1) was proposed in [19]. This work
deals with a nonlinear least squares minimization reformulation of problem (1) and at-
tempt to solve it by using a trust-region method. Convergence of the proposed algorithm
was shown assuming that points in F−1(0) are isolated and that Fi are continuously dif-
ferentiable outside F−1i (0) and semismooth on F−1i (0). Also, we should mention methods
developed for particular nonlinear systems given by a reformulation of a Karush-Kuhn-
Tucker (KKT) system [8, 18] and a reformulation of a mixed complementarity problem
[16].

In order to simplify the convergence analysis, we consider a least change secant quasi-
Newton update matrix (see [6]). Also the lines of the convergence analysis follows [2]. We
stress that the Broyden’s update [3] and the Powell-symmetric-Broyden (PSB) update
[17] are particular cases of this general scheme. In those cases were the approximation
matrix must be symmetric positive definite, a slight modification can be done in order
to incorporate the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (see [9, 12, 13]).
In contrast to standard quasi-Newton results, where local superlinear convergence is
showed, we can prove only local linear convergence. This result is still meaningful since
we can solve problems with nonisolated solutions and without convexity/monotonicity
assumptions by solving simple subproblems.

Some words about our notation. We use ‖ · ‖ for a norm on Rn, Rm and for its induced
norm on Rm×n. We define Br(z) = {w | ‖z − w‖ ≤ r} and dist(w,Z) = infz∈Z ‖z − w‖.
In the sequel, we will use ‖ · ‖? for a norm on Rm×n associated to an inner product and
B?r(z) for the ball in this norm.
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2. Local convergence

For a given κ > 0, w ∈ Ω and M ∈ Rm×n we consider the following optimization problem,

minimize
d,γ

γ

subject to ‖F (w) +Md‖ ≤ κγ,
‖d‖ ≤ γ,
w + d ∈ Ω.

(2)

Some simple but useful properties of this problem can be summarized as follows.

Proposition 2.1 Let w ∈ Ω. Then,

(i) the pair
(
0, 1κ‖F (w)‖

)
is feasible for problem (2),

(ii) the optimization problem (2) has a solution with γ ≤ 1
κ‖F (w)‖, and

(iii) the optimal value of problem (2) is zero if and only if w is a solution of (1).

Proof. If d = 0 then ‖F (w) + Md‖ = ‖F (w)‖ = κ 1
κ‖F (w)‖, ‖d‖ = 0 ≤ 1

κ‖F (w)‖ and
w + d = w ∈ Ω. So, (i) follows.

Now, if we add to problem (2) the restriction γ ≤ 1
κ‖F (w)‖, the solution set does not

change. Since this new problem has a nonempty and compact feasible set with continuous
objective function, we can guarantee the existence of solution. Thus (ii) is valid.

The proof of (iii) is trivial. If γ = 0, then ‖F (w)+Md‖ = 0, ‖d‖ = 0 and w+d ∈ Ω, so
‖F (w)‖ = 0 and w ∈ Ω, i.e., w is a solution for (1). On the other hand, if w is a solution
of (1) then (d, γ) = (0, 0) is a solution of (2).

�

In order to define a quasi-Newton algorithm, we shall provide a rule to generate a
suitable matrix M . So, let us consider a closed convex set X ⊆ Rm×n such that

F ′(w) ∈ X , ∀w ∈ Ω.

Then for z, w ∈ Rn and M ∈ Rm×n consider the following problem

minimize
N

‖N −M‖2?
subject to N(z − w) = F (z)− F (w),

N ∈ X .
(3)

Since this is a (strongly) convex optimization problem, we have that M+ is the (unique)
solution if and only if

〈M+ −M,N −M+〉 ≥ 0, ∀N s.t. N(z − w) = F (z)− F (w), N ∈ X ,

where 〈·, ·〉 is the inner product associated to ‖ · ‖?. Hence, it can be seen that

‖M −M+‖2? ≤ ‖M −N‖2? − ‖M+ −N‖2?, (4)

for all N such that N(z − w) = F (z) − F (w) and N ∈ X . Note that if ‖ · ‖? is the
Frobenius norm we recover the Boyden’s update when X = Rm×n and the PSB update
when X is the space of symmetric matrices.
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In order to analyze local convergence properties of Algorithm (1), first we state some
assumptions. We assume that problem (1) has a nonempty solution set

Z = {z ∈ Ω | F (z) = 0} .

Let z∗ ∈ Z denote an arbitrary but fixed solution of (1). We will assume the existence
of a local error bound around z∗.

Assumption 1 There exist ε0 > 0, ` > 0 such that

dist(w,Z) ≤ `‖F (w)‖, ∀w ∈ Bε0(z∗) ∩ Ω.

We shall stress that this error bound condition can be obtained with suitable assump-
tions depending on the structure of F , see for example [10] for complementarity systems
and [15] for generalized Nash equilibrium problems.

By the smoothness assumptions on F , there exist L0 > 0, L1 > 0 such that

‖F (z)− F (w)‖ ≤ L0‖z − w‖, ‖F ′(z)− F ′(w)‖? ≤ L1‖z − w‖,

for all z, w ∈ Bε0(z∗). Thus, shrinking ε0 if necessary, it holds that

‖F (w)‖ ≤ L0 dist(w,Z), ∀w ∈ Bε0(z∗). (5)

Also, let β > 0 satisfies ‖M‖ ≤ β‖M‖? for all M ∈ Rm×n.

Proposition 2.2 Given κ > 0, there exist ε1 > 0 and η1 > 0 such that for any
w ∈ Bε1(z∗) and M ∈ B?η1(F

′(z∗)), if (d̄, γ̄) is a solution of problem (2) then

‖F (w) +Md̄‖ ≤ κdist(w,Z), (6)

‖d̄‖ ≤ dist(w,Z). (7)

Proof. If w ∈ Z, by Proposition 2.1(iii) and the second inequality constraint in (2), we
have (d̄, γ̄) = (0, 0). Then (6) and (7) hold.

Define

ε1 = min

{
ε0
2
,

κ

3βL1

}
, η1 =

κ

2β
.

For w ∈ Bε1(z∗) \ Z let ŵ ∈ Z be so that ‖w − ŵ‖ = dist(w,Z). Then, for d = ŵ − w
we have

‖d‖ = dist(w,Z) ≤ ‖w − z∗‖ ≤ ε1.
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On the other hand, since ‖ŵ − z∗‖ ≤ 2‖w − z∗‖ ≤ ε0 and M ∈ Bη1(F ′(z∗)),

‖F (w) +Md‖ ≤ ‖F (w) + F ′(w)d− F (ŵ)‖+ ‖(M − F ′(w))d‖

≤ βL1

2
‖d‖2 + β

(
‖F ′(z∗)− F ′(w)‖? + ‖M − F ′(z∗)‖?

)
‖d‖

≤
(
βL1

2
ε1 + βL1ε1 + βη1

)
‖d‖

≤ κ‖d‖ = κdist(w,Z).

Since (d,dist(w,Z)) is feasible for problem (2), then γ̄ ≤ dist(w,Z). Hence d̄ satisfies
(6) and (7).

�

Lemma 2.3 Suppose that Assumption 1 holds. Then for κ > 0 there exist ε2 > 0 and
η2 > 0 such that if w ∈ Bε2(z∗), M ∈ B?η2(F

′(z∗)) and (d̄, γ̄) is a solution of problem (2)
then

dist(w + d̄, Z) ≤ 2κ`dist(w,Z). (8)

Proof. If w ∈ Z then (d̄, γ̄) = (0, 0), as previously shown. Then (8) holds.
Since F is continuously differentiable, there exists r > 0 such that if w,w+ d ∈ Br(z∗)

the following holds

‖F (w + d)− F (w)− F ′(z∗)d‖ ≤ κ

2
‖d‖.

Define

ε2 = min
{ε0

4
, ε1,

r

2

}
, η2 = min

{
η1,

κ

2β

}
, (9)

where ε1, η1 are given by Proposition 2.2.
Let w ∈ Bε2(z∗) \ Z and M ∈ B?η2(F

′(z∗)). By (7) we have

‖w + d̄− z∗‖ ≤ ‖w − z∗‖+ dist(w,Z) ≤ 2‖w − z∗‖ ≤ min
{ε0

2
, r
}
.

Then,

‖F (w + d̄)‖ ≤ ‖F (w + d̄)− F (w)− F ′(z∗)d̄‖+ β‖F ′(z∗)−M‖?‖d̄‖
+‖F (w) +Md̄‖

≤ κ
2‖d̄‖+ βη2‖d̄‖+ κdist(w,Z)

≤ 2κdist(w,Z).

Hence, by Assumption 1,

dist(w + d̄, Z) ≤ `‖F (w + d̄)‖ ≤ 2κ`dist(w,Z).

�
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Proposition 2.4 Suppose that Assumption 1 holds and let ε2 > 0, η2 > 0 be given
by Lemma 2.3 for some κ > 0. If w ∈ Bε2(z∗), M ∈ B?η2(F

′(z∗)), (d̄, γ̄) is a solution

of problem (2) and M+ is the solution of problem (3) for z = w + d̄, then for c =
2L1

(
1
2 + max{1, 2κ`}

)
it holds that

‖M+ − F ′(ẑ)‖? ≤ ‖M − F ′(ŵ)‖? + cdist(w,Z),

where ẑ, ŵ ∈ Z satisfy ‖ẑ − z‖ = dist(z, Z) and ‖ŵ − w‖ = dist(w,Z).

Proof. Let us define N ∈ Rm×n such that

N =

∫ 1

0
F ′(w + td̄)dt.

It can be seen that N is feasible for problem (3). Then, by (4) we obtain

‖M+ −N‖? ≤ ‖M −N‖?. (10)

On the other hand, using (7) and (9) we have

‖ŵ − z∗‖ ≤ ‖ŵ − w‖+ ‖w − z∗‖ ≤ 2‖w − z∗‖ ≤ 1
2ε0,

‖ẑ − z∗‖ ≤ ‖ẑ − z‖+ ‖z − z∗‖ ≤ 2‖z − z∗‖ ≤ 4‖w − z∗‖ ≤ ε0.

Hence w, z, ŵ, ẑ ∈ Bε0(z∗). Then

‖N − F ′(ẑ)‖? ≤
∫ 1

0

∥∥F ′(w + td̄)− F ′(ẑ)
∥∥
?
dt

≤ L1

∫ 1

0
‖w + td̄− ẑ‖dt

≤ L1

∫ 1

0

(
‖w + td̄− z‖+ ‖z − ẑ‖

)
dt

≤ L1

∫ 1

0
(1− t)‖d̄‖dt+ L12κ`dist(w,Z)

≤ L1

(
1
2 + 2κ`

)
dist(w,Z),

where we use that z = w + d̄, (7) and (8). In a similar form, we obtain

‖N − F ′(ŵ)‖? ≤ L1

(
1
2 + 1

)
dist(w,Z).

Then, using (10) and the inequalities above, we conclude that

‖M+ − F ′(ẑ)‖? ≤ ‖M+ −N‖? + ‖N − F ′(ẑ)‖?
≤ ‖M − F ′(ŵ)‖? + ‖F ′(ŵ)−N‖? + ‖N − F ′(ẑ)‖?
≤ ‖M − F ′(ŵ)‖? + cdist(w,Z),

where c = 2L1

(
1
2 + max{1, 2κ`}

)
.

�
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Theorem 2.5 Suppose that Assumption 1 is satisfied. Let {zk}, {dk} and {Mk} be
generated by Algorithm 1 choosing Mk+1 in step 2 as the solution of problem (3) with
z = zk+1, w = zk and M = Mk. If κ ≤ 1

4` , there exist ε > 0 and η > 0 such that if

z0 ∈ Bε(z∗), M0 ∈ B?η(F ′(z∗)),

then

(i) the sequence {zk} converges to some z̄ ∈ Z, and {dist(zk, Z)} converges to zero,
(ii) the sequence {‖Mk − F ′(z̄)‖?} converges.

Proof. Let ε2, η2 be given by Lemma 2.3. We will show by induction that for all j ≥ 0

‖zj − z∗‖ ≤ ε2, (11)

‖Mj − F ′(z∗)‖? ≤ η2. (12)

Define

ε = min

{
ε2
3
,
η2

28L1

}
, η =

η2
2
. (13)

Let z0 ∈ Bε(z∗) and M0 ∈ B?η(F ′(z∗)). Then (11) and (12) hold for j = 0.
Now, suppose that (11) and (12) hold for all j ≤ k. Then, by Proposition 2.2 we have

that

‖F (zj) +Mjd
j‖ ≤ κdist(zj , Z), (14)

‖dj‖ ≤ dist(zj , Z), (15)

for all j ≤ k. Hence,

‖zk+1 − z∗‖ ≤ ‖zk+1 − z0‖+ ‖z0 − z∗‖

≤
k∑
j=0

‖zj+1 − zj‖+ ‖z0 − z∗‖

≤
k∑
j=0

dist(zj , Z) + ‖z0 − z∗‖

≤
k∑
j=0

(2κ`)jdist(z0, Z) + ‖z0 − z∗‖

≤

 k∑
j=0

1

2j
+ 1

 ‖z0 − z∗‖
≤ 3‖z0 − z∗‖ ≤ 3ε ≤ ε2,

where we use (15), (8), the fact that 2κ` ≤ 1
2 and (13). On the other hand, by Proposition
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2.4 and the fact that 2κ` < 1, we obtain

‖Mk+1 − F ′(ẑk+1)‖? ≤ ‖Mk − F ′(ẑk)‖? + 3L1 dist(zk, Z)

≤ ‖M0 − F ′(ẑ0)‖? + 3L1

k∑
j=0

dist(zj , Z)

≤ ‖M0 − F ′(ẑ0)‖? + 3L1

k∑
j=0

1

2j
dist(z0, Z)

≤ ‖M0 − F ′(ẑ0)‖? + 6L1 dist(z0, Z).

Thus,

‖Mk+1 − F ′(z∗)‖? ≤ ‖Mk+1 − F ′(ẑk+1)‖? + ‖F ′(ẑk+1)− F ′(z∗)‖?
≤ ‖M0 − F ′(ẑ0)‖? + 6L1‖z0 − z∗‖+ 2L1‖zk+1 − z∗‖
≤ ‖M0 − F ′(z∗)‖? + ‖F ′(z∗)− F ′(ẑ0)‖? + 12L1‖z0 − z∗‖
≤ ‖M0 − F ′(z∗)‖? + 2L1‖z0 − z∗‖+ 12L1ε

≤ η + 14L1ε ≤ η2,

where we use that ‖ẑ − z∗‖ ≤ ‖ẑ − z‖+ ‖z − z∗‖ ≤ 2‖z − z∗‖. Hence (11) and (12) hold
for j = k + 1.

Now, since (11) and (12) hold for all k ≥ 0, by (7) and Lemma 2.3 we have

‖zk+j − zj‖ ≤
k+j−1∑
i=j

‖zi+1 − zi‖

≤
k+j−1∑
i=j

dist(zi, Z)

≤
k+j−1∑
i=j

1

2i−j
dist(zj , Z)

≤ 2dist(zj , Z)

≤ 2
1

2j
dist(z0, Z).

So the sequence {zk} is a Cauchy sequence and thus, by the closedness of Z, it converges
to some z̄ ∈ Z. Since dist(zk, Z) ≤ ‖zk− z̄‖, then (i) holds. Also, taking limit for k →∞
we obtain

‖zj − z̄‖ ≤ 2dist(zj , Z), (16)

for all j ≥ 0.
In order to show the convergence of {‖Mk − F ′(z̄)‖?}, note that by Proposition 2.4,

8



for k > j

‖Mk − F ′(ẑk)‖? ≤ ‖Mj − F ′(ẑj)‖? + 3L1

k−1∑
i=j

dist(zi, Z)

≤ ‖Mj − F ′(ẑj)‖? + 3L1

k−1∑
i=j

1

2i−j
dist(zj , Z)

≤ ‖Mj − F ′(ẑj)‖? + 6L1dist(zj , Z).

Since ẑk → z̄ and F ′ is continuous, then we have

lim sup
k→∞

‖Mk − F ′(z̄)‖? ≤ ‖Mj − F ′(ẑj)‖? + 6L1dist(zj , Z).

Now, taking limit for j →∞ in the right-hand side we obtain

lim sup
k→∞

‖Mk − F ′(z̄)‖? ≤ lim inf
j→∞

‖Mj − F ′(z̄)‖?.

Hence (ii) holds. �

Corollary 2.6 Under the hypotheses of Theorem 2.5, it holds that {dist(zk, Z)} con-
verges linearly to 0 and {zk} converges linearly to z̄.

Proof. Let us define for any k

Nk =

∫ 1

0
F ′(zk + tdk)dt.

Then, by (4) for w = zk, z = zk+1, M = Mk and using that Nk is feasible for this
problem, we obtain

‖Mk −Mk+1‖2? ≤ ‖Mk −Nk‖2? − ‖Mk+1 −Nk‖2?

By definition of Nk and continuity of F ′ we have that Nk → F ′(z̄), concluding by
Theorem 2.5(ii) that

Mk+1 −Mk → 0.

Also, since Mk+1d
k = F (zk+1)− F (zk), by Proposition 2.2 we have

‖F (zk+1)‖ = ‖F (zk) +Mk+1d
k‖

≤ κdist(zk, Z) + ‖(Mk+1 −Mk)d
k‖

≤ (κ+ ‖Mk+1 −Mk‖)dist(zk, Z).

9



Then,

dist(zk+1, Z)

dist(zk, Z)
≤ `‖F (zk+1)‖

dist(zk, Z)

≤ `(κ+ ‖Mk+1 −Mk‖)→ `κ ≤ 1

4
.

Thus, by (16) and the fact that dist(zk, Z) ≤ ‖zk − z̄‖,

‖zk+1 − z̄‖
‖zk − z̄‖

≤ 2dist(zk+1, Z)

dist(zk, Z)
→ 2`κ ≤ 1

2
.

�

3. Computational results

In the previous section we analyzed the convergence of our algorithm under certain
hypotheses, in this section we are going to show the performance of the algorithm not
only for problems which satisfy the hypotheses mentioned above but also for others which
do not satisfy them.

The first example that we present satisfies all the required hypotheses, the second one
is given by a nonlinear complementarity problem that does not satisfy Assumption 1,
and they both were taken from [7]. Since problem (1) includes a broad range of problems
and not only KKT reformulations, the rest of the examples are feasible point problems
taken from the Hock-Schittkowski Collection [14] where we reformulated the feasible sets
by considering it as in (1), despite possible violation of Assumption 1.

We wrote an Octave implementation of Algorithm 1, using the Simplex method im-
plemented in the built-in function glpk for solving subproblem (2) and taking matrices
defined by the Broyden’s update with M0 = F ′(z0). The stopping criteria used were

(1) ‖F (zk)‖∞ < 1e-10 (residual error),
(2) ‖zk+1 − zk‖ < 1e-16 and,
(3) itmax = 1500 (maximum number of iterations).

Most of times Algorithm 1 stopped for the first criterion. We marked with an asterisk
those cases where it stopped for the second one. We present below tables where final
residuals and numbers of iterations for different values of κ are shown.

Example 3.1 Consider the following system of two inequalities

z21 + z22 − 1 ≤ 0,
(z1 − 1)2 + z22 − 1 ≤ 0.

Taking Ω = R2 × R2
+, this can be written as

F (z) =

(
z21 + z22 − 1 + z3

(z1 − 1)2 + z22 − 1 + z4

)
= 0, z ∈ Ω,

with slack variables z3 and z4.

10



Since the system of inequalities satisfies the Mangasarian-Fromovitz constraint quali-
fication at any feasible point, then it can be shown that F satisfies Assumption 1 at any
z∗ ∈ Z. Furthermore, F is differentiable and its derivate is locally Lipschitz continuous,
so all the previous conditions are satisfied. Then, we illustrate our convergence result
with this example.

In Table 1 numerical results are shown.

Table 1. Numerical results taking

z0 = (2, 0, 0, 1).

κ ] Iterations residual

0.1 14 2.7756e-17
1e-2 11 2.2204e-16
1e-3 10 4.1453e-11
1e-4 9 8.4163e-12
1e-5 8 3.0211e-11
1e-6 8 8.6729e-12

In the following graphics, we show the quotient between ‖zk+1− z̄‖ and ‖zk− z̄‖ (left)
and, log(‖zk+1 − zk‖) (right) for each iteration k and some values of κ, where z̄ is the
last iterate. Note that the convergence of the sequence was superlinear for small values
of κ. This fact can be observed in Figures 1, 2 and 3.
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Figure 1.
‖zk+1−z̄‖
‖zk−z̄‖ and log(‖zk+1 − zk‖) for κ = 10−4.
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Figure 2.
‖zk+1−z̄‖
‖zk−z̄‖ and log(‖zk+1 − zk‖) for κ = 10−5.
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Figure 3.
‖zk+1−z̄‖
‖zk−z̄‖ and log(‖zk+1 − zk‖) for κ = 10−6.

Example 3.2 As we mentioned at the beginning of the section, this problem was taken
from [7]. Our intention is to show that although this problem does not satisfy Assumption
1, our algorithm can solved it generating a convergent sequence {zk}.

We consider complementarity problem of the form

z ≥ 0, T (z) ≥ 0, zTT (z) = 0,

where T is assumed to be differentiable with a locally Lipschitz continuous derivate.
For

T (z) =

(
z1z2

z21 + z2 − 1

)
the problem can be formulated as

F (z) =


z1z2 − z3

z21 + z2 − 1− z4
z1z3
z2z4

 , z ∈ Ω,

with slack variables z3 and z4 and Ω = R2
+ × R2

+.
Numerical results are shown in Table 2.

Table 2. Numerical results taking z0 = (1, 1, 1, 1) and z0 = (2, 1, 1, 0).

κ ] Iterations residual

0.1 1101 3.6278e-10 *
1e-2 119 3.9433e-12
1e-3 28 9.9180e-11
1e-4 41 2.9165e-11
1e-5 44 1.6547e-11
1e-6 19 0

κ ] Iterations residual

0.1 18 2.2204e-16
1e-2 16 2.3921e-11
1e-3 16 7.4402e-12
1e-4 15 2.9631e-11
1e-5 14 2.4669e-11
1e-6 15 3.2511e-12

Next examples were taken from the Hock-Schittkowski Collection.

Example 3.3 The feasible set of the problem HS19 can be written as (1) taking

F (z) =

(
−(z1 − 5)2 − (z2 − 5)2 + 100 + z3
(z1 − 6)2 + (z2 − 5)2 − 82.81 + z4

)
,
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with Ω = [13, 100]× [0, 100]× R2
+.

Numerical results are shown in Table 3.

Table 3. Numerical results taking

z0 = (20, 5, 0, 0).

κ ] Iterations residual

0.1 15 2.6512e-13
1e-2 13 8.6597e-15
1e-3 10 2.8451e-15
1e-4 9 1.4140e-11
1e-5 8 4.5191e-12
1e-6 7 4.8402e-11

Example 3.4 The feasible set of the problem HS23 can be written as (1) taking

F (z) =


−z1 − z2 + 1 + z3
−z21 − z22 + 1 + z4
−9z21 − z22 + 9 + z5
−z21 + z2 + z6
−z22 + z1 + z7

 ,

with Ω = [−50, 50]× [−50, 50]× R5
+.

Numerical results are shown in Table 4.

Table 4. Numerical results taking
z0 = (2, 2, 0, 0).

κ ] Iterations residual

0.1 48 6.1963e-11
1e-2 14 2.8282e-11
1e-3 13 5.7998e-13
1e-4 11 1.5838e-11
1e-5 12 6.5103e-13
1e-6 10 1.1697e-11

Example 3.5 The feasible set of the problem HS24 can be written as (1) taking

F (z) =

 −z1/
√

3 + z2 + z3
−z1 −

√
3z2 + z4

z1 +
√

3z2 − 6 + z5

 ,

with Ω = R5
+.

Numerical results are shown in Table 5.

Example 3.6 The feasible set of the problem HS34 can be written as (1) taking

F (z) =

(
−z2 + exp(z1) + z4
−z3 + exp(z2) + z5

)
,

with Ω = [0, 100]× [0, 100]× [0, 10]× R2
+.

Numerical results are shown in Table 6.
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Table 5. Numerical results taking

z0 = (2, 1, 0, 0).

κ ] Iterations residual

0.1 15 5.7732e-15
1e-2 8 1.3323e-15
1e-3 6 8.8818e-16
1e-4 4 3.1264e-13
1e-5 3 4.9195e-11
1e-6 2 1.3234e-12

Table 6. Numerical results taking

z0 = (0, 0, 0, 0).

κ ] Iterations residual

0.1 13 4.8242e-12
1e-2 10 3.4037e-11
1e-3 11 7.5634e-16
1e-4 11 5.5511e-17
1e-5 10 7.5562e-11
1e-6 10 2.0197e-13

Example 3.7 The feasible set of the problem HS56 can be written as (1) taking

F (z) =


z1 − 8 sin2(z4)
z2 − 8 sin2(z5)
z3 − 8 sin2(z6)

z1 + 2z2 + 2z3 − 14 sin2(z7)

 ,

with Ω = R7.
Numerical results are shown in Table 7.

Table 7. Numerical results taking
z0 = (1, 0, 0, 0, 0, 0, 0).

κ ] Iterations residual

0.1 7 9.4079e-08 *
1e-2 4 9.6098e-09 *
1e-3 3 0
1e-4 2 9.9980e-09 *
1e-5 2 0
1e-6 2 2.1176e-22

Example 3.8 The feasible set of the problem HS60 can be written as (1) taking

F (z) = z1(1 + z22) + x43 − 4− 3
√

2,

with Ω = [−10, 10]× [−10, 10]× [−10, 10].
Numerical results are shown in Table 8.

14



Table 8. Numerical results taking

z0 = (1, 1, 1).

κ ] Iterations residual

0.1 11 3.5527e-15
1e-2 10 1.9540e-14
1e-3 8 4.4409e-14
1e-4 8 2.8422e-14
1e-5 8 6.5725e-14
1e-6 9 2.6645e-14

Example 3.9 The feasible set of the problem HS74 can be written as (1) taking

F (z) =


−z4 + z3 − 0.55 + x5
−z3 + z4 − 0.55 + x6

1000 sin(−z3 − 0.25) + 1000 sin(−z4 − 0.25) + 894.8− z1
1000 sin(z3 − 0.25) + 1000 sin(z3 − z4 − 0.25) + 894.8− z2

1000 sin(z4 − 0.25) + 1000 sin(z4 − z3 − 0.25) + 1294.8

 ,

with Ω = [0, 1200]× [0, 1200]× [−0.55, 0.55]× [−0.55, 0.55]× R2
+.

Numerical results are shown in Table 9.

Table 9. Numerical results taking

z0 = (800, 900, 0, 0, 0, 0).

κ ] Iterations residual

0.1 342 5.9799e-11
1e-2 29 5.9711e-11
1e-3 16 1.7280e-11
1e-4 15 6.1164e-11
1e-5 13 2.6603e-11
1e-6 11 1.7963e-11

4. Conclusions and future work

In this paper we have developed a quasi-Newton method for solving constrained systems
of equations, based on the previous works [7, 11]. The proposed algorithm does not need
any first order information, providing a computationally simple method that converges
at least linearly. The rate of convergence is guaranteed even for nonisolated solutions.

Numerical examples show that the algorithm works well when all required hypothe-
ses are satisfied, converging linearly as we expected. For some problems the sequence
generated by Algorithm 1 converges to a solution superlinearly. Nevertheless, if the hy-
potheses are not satisfied, our algorithm can still find a solution, as it is reflected in the
second example. In general, for all the numerical experiments we found that the result
improved notably as κ decreased. After a brief analysis of the results showed in Section
3, we conclude that a suitable value for the parameter κ may be less than 10−4. Also, we
observe that subproblem (2) is numerically stable (as suggested in [11]).

It remains to investigate if a superlinear rate of convergence could be obtained driv-
ing the parameter κ to zero. This can be obtained by using a convenient update rule
that ensures the existence of a uniform neighborhood of z∗ such that for any w in the
neighborhood there exists at least one feasible point (d, γ) of subproblem (2) satisfying
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γ ≤ dist(w,Z). In such case (6) and (7) will hold uniformly. Perhaps the rules for trun-
cated Newton methods presented in the literature can be key to measure the inexactness
of the linear approximation. About the smoothness assumptions on the function F , a
recent work [5] studies the Dennis-Moré condition for nonsmooth generalized equations
providing tools that can be used to obtain a nonsmooth version of Algorithm 1. An-
other future work will be to adapt the globalization strategy developed in [11] for this
quasi-Newton approach.
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[4] C.G. Broyden, J.E. Dennis, and J.J. Moré, On the local and superlinear convergence of quasi-Newton
methods, IMA Journal of Applied Mathematics 12 (1973), pp. 223–245.

[5] R. Cibulka, A. Dontchev, and M.H. Geoffroy, Inexact newton methods and dennis–moré theorems
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