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Abstract

We studied a one dimensional free boundary problem arising in the polymer industry.

Imposing a convective boundary condition, the solution has an interesting asymptotic

behavior. It is found that the free boundary is bounded by a constant which does not de-

pend on the conductivity coefficient, which holds even if the diffusion process is nonlinear.

Numerical methods are presented to compute the solutions and compare the results.

1 Introduction.

In this paper we consider a free boundary problem arising from a model for sorption of solvents
into glassy polymers.

This model was proposed in [1] by Astarita and Sarti. They assumed that the sorption
process can be described using a free boundary model to simulate a sharp morphological dis-
continuity observed in the material between a penetrated zone, with a relatively high solvent
content, and a glassy region, where the solvent concentration is negligibly small (and actually
taken to be zero in the model).

Here we present a generalized version of the problem assuming that the conductivity co-
efficient K is a non-constant positive function which could depend on several quantities (x-
coordinate, concentration, gradient, time, etc.). The solvent is supposed to diffuse in the
penetrated zone according to Fick’s law. Moreover, the penetrating zone moves into the glassy
zone driven by chemical and mechanical effects that are taken into account by an empirical law,
relating the speed of penetration with the solvent concentration at the front. This law must
account for two main facts observed in the penetration experiences: (a) there exists a threshold
value for the solvent concentration under which no penetration occurs; (b) above such value,
the speed of the front increases with the concentration at the front. A typical form for this law
could be:

v = α|u − q|m (1.1)
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where v is the front speed, u is the concentration at the front, q is a positive number representing
the threshold value and α and m are positive constants (see [1]).

An additional condition on the free boundary is obtained imposing mass conservation, that
is, equating the mass density current to the product of solvent concentration and the velocity
of the free boundary.

This model has been studied for K equal to a constant. In [2], Fasano, Meyer and Primicerio
studied the problem with constant concentration at the boundary. In [3], Comparini and Ricci
assumed that the polymer is in perfect contact with a well-stirred bath. In [4], the authors
were interested in the case of a slab of a non-homogeneous polymer. In [5], a flux condition at
the fixed boundary is assumed and existence and uniqueness of the solution is proved. In [9]
we studied the asymptotic behavior of the free boundary for convective boundary condition of
constant thermal conductivity.

In this work, we are interested in the convective case. We suppose that there is a flux
of solvent through the left side of a slab, proportional to the difference between the solvent
concentration at x = 0 and a given function of time, which represents an external solvent
concentration.

The mathematical problem can be stated as follows:
Problem PS : Find a triple (T, s, c) such that: T > 0, s ∈ C1[0, T ], c ∈ C2,1(DT ) ∩ C(D̄T ),
where DT = {(x, t) : 0 < t < T, 0 < x < s(t)}, and satisfying:

(Kcx)x − ct = 0 in DT , (1.2)

Kcx(0, t) = h [c(0, t) − g(t)] , g(0) = 1, 0 ≤ t ≤ T, (1.3)

ṡ(t) = f(c(s(t), t)), 0 ≤ t ≤ T, (1.4)

Kcx(s(t), t) = −ṡ(t) [c(s(t), t) + q] , 0 ≤ t ≤ T, (1.5)

s(0) = 0. (1.6)

where

• K is the conductivity coefficient, K = K[c] is a positive operator acting on c, that is,
K[c](x, t) > 0 for all (x, t) ∈ D̄T with K[c] ∈ C1,0(D̄T ).

• q > 0 is the threshold value for the solvent concentration.

• g is a positive function defined by g(t) = G(t)−q, where G(t) is the external concentration
at the left side of the slab. In order to assure a stable process we suppose that g ∈ C1[0, T ]
for all T > 0, g′ ≤ 0 and G =

∫

∞

0
g(t) dt < ∞.

• c(x, t) = u(x, t)− q, where u(x, t) represents the concentration. The variable c is normal-
ized such that g(0) = 1.

• h > 0 is a proportionality convective constant that relates the flux at the left side of the
slab and the difference between the concentration u(0, t) and G(t) (notice that u(0, t) −
G(t) = c(0, t) − g(t)).

• s(t) is the location of the front in the slab at time t,

• f determines the evolution of the free boundary or front. Throughout this paper the
function f will satisfy that f ∈ C1(0, 1], f ′(c) > 0 for c ∈ (0, 1] and f(0) = 0 (empirically,
the function f will be a power law, like in formula (1.1)).
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If c(x, t) is a solution for problem PS, then comparing equations (1.3) and (1.5) at t = 0,
and using (1.4) and (1.6), we get the following equation:

h (c∗ − 1) = −f(c∗)(q + c∗), (1.7)

where

c∗ = c(0, 0). (1.8)

Notice that equation (1.7) has only one solution in (0, 1). This can be seen because the
function F(c) = h(c−1)+f(c)(q+c) is an increasing function of c that satisfies F(0) = −h < 0
and F(1) = f(1)(q + 1) > 0.

For the existence and uniqueness of the problem PS in the particular cases K = K(c) or
K = K(x) we can follow the ideas developed in [2] and [8].

The rest of the paper is structured as follows. In section 2 we develop numerical methods
for different conductivity coefficients, namely, when the conductivity coefficient depends on x
and when it depends on c.

In section 3, we study the asymptotic behavior of the free boundary. In particular, a bound
can be found for s∞: s∞ = limt→∞ s(t) ≤ hG/q. We can give a physical interpretation to this
result, thinking that the slab [0, s∞] with concentration c different from zero is bounded by
the amount of solvent that has penetrated the polymer, which is bounded above by G times
h, divided the minimal possible concentration within the slab, given by q. We emphasize that
this bound is independent of K and f .

In section 4 we present the simulations obtained by the numerical methods for the different
cases of K, showing also that this bound is optimal.

2 Numerical methods.

We will present two numerical schemes for two special types of diffusion coefficients. In both of
these methods, the continuous problem is time discretized and solved at successive time levels
as a sequence of free boundary problems for ordinary differential equations. For the case of
constant diffusion coefficient, see [7].

Let us choose a positive number ∆t, an initial time t0 = 0, and define:

tn = t0 + n∆t, n ≥ 0 (2.9)

From now on, any function A evaluated at time tn will be called with a subscript An, for
example,

cn(x) = c(x, tn), (2.10)

sn = s(tn), (2.11)

gn = g(tn), (2.12)

Each function cn (n ≥ 0) is defined in [0, sn], but it can be extended (continuously up to
the first derivative) to [0,∞) using a linear function, namely, ln(x) = c′n(sn)(x − sn) + cn(sn).
If we take limit as t goes to zero, then from formula (1.3) we get:
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K[c](0, 0)cx(0, 0) = h[c(0, 0) − g(0)] =⇒ cx(0, 0) =
h

K[c](0, 0)
(c∗ − 1), (2.13)

therefore the function c0 can be defined in [0,∞) as:

c0(x) = cx(0, 0)x + c∗. (2.14)

2.1 Non-homogeneous slab (K = K(x)).

Discretizing the system (1.2)-(1.6) with respect to time, we obtain:

cn − cn−1(x)

∆t
= K(x)c′′n + K ′(x)c′n, 0 < x < sn, n ≥ 1, (2.15)

K(0)c′n(0) = h (cn(0) − gn) , n ≥ 1, (2.16)
sn − sn−1

∆t
= f(cn(sn)), n ≥ 1, (2.17)

K(sn)c′n(sn) = −
(

sn − sn−1

∆t

)

[q + cn(sn)] , n ≥ 1, (2.18)

s0 = 0. (2.19)

In system (2.15)-(2.19) the function cn−1(x) is supposed to be defined over [0,∞), and sn−1

is supposed to be known as well. In the following lemmas we will explain how to prove existence
and uniqueness of cn and sn for all n.

Definition 2.1 Let us assume that cn−1 and sn−1 are known. We define R and wn as the
solutions of the following system:

R′ = 1 +

(

K ′(x) − R

∆t

)

R

K(x)
, R(0) = K(0)/h, (2.20)

w′

n =
R(x)

K(x)∆t
(cn−1(x) − wn) , wn(0) = gn. (2.21)

Lemma 2.1 If R and wn are the solutions of the equations (2.20) and (2.21), then

(a)
R(x)

K(x)
≥ 1

h + x/∆t
, ∀ x ≥ 0. (2.22)

(b) R > 0 for all x ≥ 0.

Proof. Defining a new variable r = R/K and using (2.20), we obtain that r satisfies the
equation:

r′ =
1

K(x)
− 1

∆t
r2, r(0) =

1

h
, (2.23)

From the fact that K is a positive function we deduce that r′/r2 ≥ −1/∆t. Then (a) is
proved integrating the inequality between 0 y x.
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To prove (b), notice that from equation (2.22) we deduce that R > 0 for all x ≥ 0.
�

The functions R and wn will be used later in order to define a Riccati transformation in
order to find the solution cn.

Lemma 2.2 Let us assume that n ≥ 1, sn−1 and cn−1 are known, 0 < cn−1 ≤ 1 in [0, sn−1] and
c′n−1 < 0 in [sn−1,∞). Then

(a) wn > 0 in [0, sn−1].

(b) wn ≤ 1 for all x ≥ 0.

(c) If

ϕ(x) =
K(x)wn(x) − qR(x)(x − sn−1)/∆t

K(x) + R(x)(x − sn−1)/∆t
, (2.24)

then ϕ(x) ≤ wn(x) ≤ 1 for all x ≥ sn−1, and ϕ(sn−1) > 0.

(d) limx→∞ wn(x) = −∞.

(e) limx→∞ ϕ(x) = −∞.

(f) There exists x0 > sn−1 such that x0 is the minimum root of ϕ in (sn−1,∞).

Proof. (a) As (2.21) is a linear ordinary differential equation, we can compute the expression
for wn, namely,

wn(x) = exp

(

−
∫ x

0

R

K∆t

)[

gn +

∫ x

0

R(y)cn−1(y)

K(y)∆t
exp

(
∫ y

0

R

K∆t

)

dy

]

, (2.25)

As g, R and cn−1 are positive functions on [0, sn−1], then wn(x) is positive on [0, sn−1].
(b) Due to the fact that cn−1 ≤ 1 in [0, sn−1] and c′n−1 < 0 in [sn−1,∞), we have that

cn−1 ≤ 1 for all x ∈ [0,∞). Replacing in equation (2.25) we obtain:

wn(x) ≤ exp

(

−
∫ x

0

R

K∆t

)[

gn +

∫ x

0

R(y)

K(y)∆t
exp

(
∫ y

0

R

K∆t

)

dy

]

≤

≤ exp

(

−
∫ x

0

R

K∆t

)[

gn + exp

(
∫ x

0

R

K∆t

)

− 1

]

≤ 1, ∀ x. (2.26)

The last inequality holds because g′ ≤ 0 and g(0) = 1.
(c) Clearly, if x ≥ sn−1 we can see that ϕ(x) ≤ wn(x) ≤ 1 (the last inequality comes from

(b)). Now, evaluating ϕ(sn−1) = wn(sn−1) > 0 because of (a).
(d) From (2.22) and using that cn−1 is a decreasing linear function in [sn−1,∞) we have

that Rcn−1/(K∆t) is less than a negative constant as x goes to infinity. As exp
(∫ x

0
R/(K∆t)

)

is greater than 1 for all x, then the function wn(x) −→ −∞ as x −→ ∞.
(e) It is a consequence of (c).
(f) Notice that from the fact that ϕ(sn−1) > 0 and (e), we deduce that there exists a number

x0 where ϕ vanishes. In addition, x0 is chosen as the minimum root of ϕ in (sn−1,∞), therefore
sn−1 < x0.

�

We are in conditions now to define the free boundary as the root of a certain function.
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Lemma 2.3 If hypotheses of Lemma (2.2) hold, the function

σn(x) =
(x − sn−1)

∆t
− f(ϕ(x)). (2.27)

has a root in (sn−1,∞).

Proof. Evaluating the function σn in x0 and sn−1 we obtain:

σn(sn−1) = −f(wn(sn−1)) < 0. (2.28)

σn(x0) =
x0 − sn−1

∆t
− f(0) =

x0 − sn−1

∆t
> 0, (2.29)

By continuity of σn the lemma is proved.
�

Let us define the number sn as the smallest root of the function σn in the interval (sn−1,∞).
Notice that sn can not be equal to sn−1 because of (2.28). Besides that, sn−1 < sn < x0.

From Lemma (2.2) we know that wn is positive in [0, sn−1]. If there exists y ∈ (sn−1, sn]
such that wn(y) < 0, then ϕ(y) < 0 by (c) of Lemma (2.2). Then, there exists z ∈ (sn−1, y)
such that ϕ(z) = 0. This is a contradiction since x0 was the minimum root of ϕ in (sn−1,∞).
Therefore the function wn in [0, sn]. We summarize this reasoning in the following remark:

Remark 2.1 wn(x) > 0 in the interval [0, sn].

We are on the way to define a function cn that will be the solution of our system (2.15)-(2.19).

Definition 2.2 Assuming that cn−1 is known, we define the function vn as the solution of the
following ordinary differential equation:















v′

n =
1

K

(

R

∆t
− K ′

)

vn +
wn − cn−1

K∆t
,

vn(sn) = −s′n

(

q + wn(sn)

K(sn) + R(sn)s′n

)

, s′n =
sn − sn−1

∆t
.

(2.30)

Also, we define the function cn as:

cn(x) = R(x)vn(x) + wn(x) (2.31)

Lemma 2.4 Assuming that the hypotheses of Lemma (2.2) hold, the function cn has the fol-
lowing properties:

(a) c′n = vn,

(b) cn(sn) = ϕ(sn) ≤ 1,

(c) v′

n =
(1 − R′) vn − w′

n

R
,

(d) cn and sn satisfy equations (2.15)-(2.18).

(e) 0 < cn ≤ 1 in [0, sn].
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(f) c′n < 0 in [sn,∞).

(g) sn − sn−1 ≤ f(1)∆t.

Proof. (a) Derive the function cn, that is,

c′n = R′vn + Rv′

n + w′

n. (2.32)

Replacing R′ using (2.20), v′

n using (2.30) and w′

n using (2.21), we get the result.
(b) Evaluate cn(sn) = R(sn)vn(sn) + wn(sn) and replace vn(sn) by its value, expressed in

equation (2.30). The inequality is deduced from (c) of Lemma (2.2).
(c) Using (a) and equation (2.32) we get an expression for vn. To find the value of v′

n we
simply operate algebraically in the same equation.

(d) Follow these steps:

• Starting from the right-hand side of (2.15) and (a) we obtain:

Kc′′n + K ′c′n = Kv′

n + K ′vn, (2.33)

Replacing v′

n using (c), and then replacing w′

n using (2.21), we obtain formula (2.15)
through simple calculations.

• To get (2.16) we substitute c′n(0) by vn(0), and replace vn(0) using equation (2.31). Then,
replace the value of wn at zero by gn (equation (2.21)). Finally, simple calculations allow
us to demonstrate this item.

• Formula (2.17) is deduced from the definition of sn and (b).

• If we begin with the boundary condition of (2.30), one can get K(sn)vn(sn). The condition
(2.18) is then achieved.

(e) From (2.31) and (a), we can compute the expression of cn, namely,

cn(x) = exp

(

−
∫ sn

x

1

R

)

cn(sn) + exp

(

−
∫ sn

x

1

R

)
∫ sn

x

wn(y)

R(y)
exp

(
∫ sn

y

1

R

)

dy. (2.34)

Since cn(sn) = ϕ(sn) > 0, R and wn positive functions in [0, sn], we get that cn is strictly
positive in [0, sn].

In the other hand, using (b) from Lemma (2.2), we have:

cn(x) ≤ exp

(

−
∫ sn

x

1

R

)

cn(sn) + exp

(

−
∫ sn

x

1

R

)
∫ sn

x

1

R(y)
exp

(
∫ sn

y

1

R

)

dy,

≤ 1 + exp

(

−
∫ sn

x

1

R

)

[cn(sn) − 1] ≤ 1, x ∈ [0, sn]. (2.35)

The last inequality holds because of (b).
(f) If x ≥ sn, and using (2.18), we have:
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c′n(x) = c′n(sn) = − 1

K(sn)

(

sn − sn−1

∆t

)

[q + cn(sn)] < 0. (2.36)

(g) As the function f is increasing, and cn(sn) ≤ 1, then sn−sn−1 ≤ ∆tf(cn(sn)) ≤ ∆tf(1).
�

Now we are in conditions to formulate the following theorem of existence of the numerical
solution.

Theorem 2.3 For all n ≥ 1 there exists a solution of the system (2.15)-(2.19) where the
sequence {sn}∞n=1 is strictly increasing.

Proof. Starting with n = 0 we define s0 = 0 and

c0(x) =
h

K(0)
(c∗ − 1)x + c∗. (2.37)

Notice that 0 < c0 ≤ 1 in [0, s0] and c′0 < 0 in [s0,∞). Using Lemma (2.3) there exists a
root sn of the function (2.27) in (sn−1,∞) (i.e. sn is an increasing function). The function cn is
defined by formula (2.31) and holds the hypotheses of Lemma (2.2) using (e) and (f) of Lemma
(2.4), then it follows the inductive step.

�

2.2 Nonlinear diffusion: (K = K(c)).

The second type of diffusion coefficient to be considered, is related to nonlinear diffusion pro-
cesses, namely K = K(c), a function of the solvent concentration. We assume that K ∈ C1[0, 1].
We present a method to compute the solution based on the same scheme that the previous
section. If the system (1.2)-(1.6) is discretized in time and consider the names expressed in
(2.10)-(2.12), we obtain:

cn − cn−1(x)

∆t
= K(cn)c′′n + K ′(cn)c′ 2n , 0 ≤ x ≤ sn, (2.38)

K(cn(0))c′n(0) = h (cn(0) − gn) , n ≥ 1, (2.39)
sn − sn−1

∆t
= f(cn(sn)), n ≥ 1, (2.40)

K(cn(sn))c′n(sn) = −
(

sn − sn−1

∆t

)

[q + cn(sn)] , n ≥ 1, (2.41)

s0 = 0. (2.42)

Starting with s0 = 0 (equation (2.42)) and from (2.13) and (2.14):

c0(x) =
h

K(c∗)
(c∗ − 1) x + c∗, (2.43)

the idea is to compute (s1, c1), (s2, c2), . . . and so on.
For n ≥ 1 and z ∈ [sn−1, sn−1 +f(1)∆t], we define the function F (z) as follows: (a) we solve

the system
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u − cn−1(x)

∆t
= K(u)u′′ + K ′(u)u′ 2, 0 ≤ x ≤ z, (2.44)

u(z) = f−1

(

z − sn−1

∆t

)

, (2.45)

u′(z) = − 1

K(u(z))

(

z − sn−1

∆t

)

[q + u(z)] , (2.46)

and (b) we compute:

F (z) = K(u(0))u′(0) − h [u(0) − gn)] , (2.47)

Notice that the requirement z ∈ [sn−1, sn−1 + f(1)∆t] is necessary because (z − sn−1)/∆t
must be in Dom(f−1).

We expect that the function F has a root in [sn−1, sn−1 + f(1)∆t], and we choose sn as
the first root in that interval. The function cn should be defined as the solution of the system
(2.44)-(2.46) taking z = sn for 0 ≤ x ≤ sn, and cn linear for x > sn.

If this procedure can be carried out for all n, then the system (2.38)-(2.41) would have
solution for all n. This can be seen in some examples shown in the next sections.

3 Asymptotic behavior.

In this section we show some results about the behavior of the free boundary s(t) when t goes
to infinity.

Let us s(t) and c(x, t) be the solution of the problem PS. Using Green’s identity:

∫ ∫

(Qx − Pt) dxdt =

∮

Pdx + Qdt, (3.48)

and taking P = c and Q = Kcx we have:

0 =

∮

∂Dt

c(x, t) dx + Kcx(x, t) dt, t > 0, (3.49)

which gives

0 =

∫ t

0

c(s(τ), τ)ṡ(τ) dτ −
∫ t

0

ṡ(τ) (c(s(τ), τ) + q) dτ −
∫ s(t)

0

c(x, t) dx

−
∫ t

0

Kcx(0, τ) dτ (3.50)

and then

qs(t) = −
∫ s(t)

0

c(x, t) dx −
∫ t

0

Kcx(0, τ) dτ

= −
∫ s(t)

0

c(x, t) dx − h

∫ t

0

c(0, τ) dτ + h

∫ t

0

g(τ) dτ (3.51)
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so

s(t) ≤ h

q

∫ t

0

g(τ) dτ ≤ h

q
G. (3.52)

because the function c is non-negative (this fact is deduced using the Maximum Principle).

Remark 3.1 Notice that the inequality (3.52) is valid for all t if we define G(t) =
∫ t

0
g(τ) dτ :

s(t) ≤ hG(t)

q
, ∀t. (3.53)

Since ṡ(t) = f(c(s(t), t)) > 0, the function s is increasing and there exists s∞ such that:

s∞
.
= lim

t→∞

s(t). (3.54)

We notice that (3.52) holds for every f and K. This fact is explained as follows.

Theorem 3.1 We can prove that:

sup
f,K

s∞ =
h

q
G. (3.55)

where the supremum is taken on the set of the functions f and operators K such that PS has
a non-negative solution.

Proof. We will show that (3.52) is really an optimal bound. Let k > 0 be a positive real
number. Let us set in the problem PS: h by h/

√
k, f(c) by αc/

√
k, where α > 0 and K

constant equal to 1. In [6] it is proved that there exists a unique solution {w(x, t), z(t)} for this
problem PS. Moreover, it is found that

lim
t→∞

z(t) =

√

k

(

1

h
+

1

αq

)2

+
2G

q
−
√

k

(

1

h
+

1

αq

)

. (3.56)

We observe that if we define s(t) =
√

kz(t) and c(x, t) = w(x/
√

k, t), then {c(x, t), s(t)} is
the solution of PS with K = k, and f(c) = αc. Thus, the above equation can be rewritten as:

s∞ =

√

k2

(

1

h
+

1

αq

)2

+
2Gk

q
− k

(

1

h
+

1

αq

)

, (3.57)

Taking α = k2 we have:

s∞ =
k

h

(

√

1 +
2Gh2

qk
+

2h

k2q
+

h2

k4q2
− 1

)

+
1

k2q
(3.58)

Using the fact that
√

1 + x = 1 + x/2 + o(x2), and taking:

x =
2Gh2

qk
+

2h

k2q
+

h2

k4q2
, (3.59)

we have that:
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s∞ =
k

h

[

Gh2

qk
+

h

k2q
+

h2

2k4q2
+ o

(

2Gh2

qk
+

2h

k2q
+

h2

k4q2

)]

+
1

qk2
, (3.60)

and taking k → ∞ we get that

s∞ =
hG

q
. (3.61)

�

Given a diffusion coefficient K = K(x), we will show a bound of the stationary solution
s∞ over all functions f . In order to do this, we need to find three useful equations (see (3.51),
(3.65) and (3.68) below).

Similarly to the equation (3.49) and using the Green’s identity (3.48) for P = cv and
Q = K(x) (cxv − cvx) we get that:

∮

∂Dt

cv dx + K(x) (cxv − cvx) dτ = 0, (3.62)

where v(x, t) is any solution of the following equation:

(K(x)vx)x + vt = 0, in DT (3.63)

Taking v(x, t) =

∫ x

0

dy

K(y)
, the equation (3.62) would look like:

0 =

∫ t

0

{

c(s(τ), τ)

∫ s(τ)

0

dx

K(x)
s′(τ)+

+ K(s(τ))

[

− s′(τ)

K(s(τ))
(c(s(τ), τ) + q)

∫ s(τ)

0

dy

K(y)
− c(s(τ), τ)

1

K(s(τ))

]}

dτ +

+

∫ 0

s(t)

c(x, t)

∫ x

0

dy

K(y)
dx −

∫ 0

t

c(0, τ) dτ. (3.64)

Thus we have the second equation:

0 = −q

∫ t

0

s′(τ)

∫ s(τ)

0

dy

K(y)
dτ −

∫ t

0

c(s(τ), τ) dτ −

−
∫ s(t)

0

c(x, t)

∫ x

0

dy

K(y)
dx +

∫ t

0

c(0, τ) dτ. (3.65)

Finally, we take v(x, t) = t −
∫ x

0

y dy

K(y)
. The equation (3.62) becomes:

0 =

∫ t

0

[

c(s(τ), τ)

(

τ −
∫ s(τ)

0

y dy

K(y)

)

s′(τ)−

− s′(τ) (c(s(τ), τ) + q)

(

τ −
∫ s(τ)

0

y dy

K(y)

)

+ c(s(τ), τ)s(τ)

]

dτ +

+

∫ 0

s(t)

c(x, t)

(

t −
∫ x

0

y dy

K(y)

)

dx + K(0)

∫ 0

t

τcx(0, τ) dτ. (3.66)
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Operating algebraically in order to simplify the above expression, we get the third equation:

0 = −K(0)

∫ t

0

τcx(0, τ) dτ − q

∫ t

0

τs′(τ) dτ + q

∫ t

0

s′(τ)

∫ s(τ)

0

y dy

K(y)
dτ +

+

∫ t

0

c(s(τ), τ)s(τ) dτ +

∫ s(t)

0

c(x, t)

∫ x

0

y dy

K(y)
dx − (3.67)

− t

∫ s(t)

0

c(x, t) dx. (3.68)

The following lemma shows that, asymptotically, the solvent concentration tends to zero
(in an integral form) when t goes to infinity for non-negative bounded functions c(x, t).

Remark 3.2 Using the Maximum Principle as in [2] and [8] it follows that the function c(x, t)
satisfies 0 ≤ c(x, t) ≤ 1.

Lemma 3.1 The following equation holds:

lim
t→∞

∫ s(t)

0

c(x, t) dx = 0. (3.69)

Proof. From expression (3.68) we have:

∫ s(t)

0

c(x, t) dx = −K(0)

t

∫ t

0

τcx(0, τ) dτ − q

t

∫ t

0

τs′(τ) dτ +

+
q

t

∫ t

0

s′(τ)

∫ s(τ)

0

y dy

K(y)
dτ +

1

t

∫ t

0

c(s(τ), τ)s(τ) dτ

+
1

t

∫ s(t)

0

c(x, t)

∫ x

0

y dy

K(y)
dx

≤ −K(0)

t

∫ t

0

τcx(0, τ) dτ +
qs3

∞

6tK0

+

+
1

t

∫ t

0

c(s(τ), τ)s(τ) dτ +
s3
∞

6tK0

. (3.70)

where K0 = min
x∈[0,hG/q]

K(x) > 0. In order to prove the Lemma, it is enough that all the terms

in expression (3.70) tend to zero when t goes to infinity.
From the equation (3.51) we have that:

∫ t

0

c(0, τ) dτ ≤
∫ t

0

g(τ) dτ ≤ G. (3.71)

Then, using the second expression (3.65) and the fact that the free boundary increases to
s∞, we can see:

∫ t

0

c(s(τ), τ)s(τ) dτ ≤ s∞

∫ t

0

c(s(τ), τ) dτ ≤

≤ s∞

∫ t

0

c(0, τ) dτ ≤ s∞G (3.72)
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then the third term of (3.70) tends to zero when t goes to infinity.
On the other hand, from equation (3.51):

−K(0)

∫ t

0

cx(0, τ) dτ =

∫ s(t)

0

(q + c(x, t)) dx > 0, (3.73)

and

−K(0)

∫

∞

0

cx(0, τ) dτ = h

(

G −
∫

∞

0

c(0, τ) dτ

)

< ∞ (3.74)

Then using (3.73), (3.74) and the L’Hôpital’s rule:

lim
t→∞

1

t

∫ t

0

τcx(0, τ) dτ = lim
t→∞

[
∫ t

0

cx(0, τ) dτ − 1

t

∫ t

0

(
∫ τ

0

cx(0, η) dη

)

dτ

]

= 0. (3.75)

Then the first term of (3.70) tends to zero when t goes to infinity. The proof is finished.
�

The following Lemma is a result for a particular function f .

Lemma 3.2 Let us suppose that f(c) = αc where α is a positive number. Then the following
equation holds:

h

∫ s∞

0

∫ x

0

dy

K(y)
dx +

(

h

qα
+ 1

)

s∞ =
h

q
G. (3.76)

Proof. Canceling

∫ t

0

c(0, τ) dτ from equations (3.51) and (3.65) we obtain:

q

h
s(t) + q

∫ t

0

∫ z

0

dy

K(y)
dz = −1

h

∫ t

0

c(x, t) dx +

∫ t

0

g(τ) dτ −

− 1

α
s(t) −

∫ s(t)

0

c(x, t)

∫ x

0

dy

K(y)
dx (3.77)

Taking the limit when t goes to infinity we get:

q

h
s∞ + q

∫ s∞

0

∫ x

0

dy

K(y)
dx = − 1

α
s∞ + G. (3.78)

This concludes the proof.
�

The next result shows a bound for s∞.

Lemma 3.3 The number

z = sup
f

s∞ (3.79)

satisfies

h

∫ z

0

∫ x

0

dy

K(y)
dx + z =

h

q
G. (3.80)
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Proof. As in (3.77)

q

h
s(t) + q

∫ t

0

∫ z

0

dy

K(y)
dz = −1

h

∫ t

0

c(x, t) dx +

∫ t

0

g(τ) dτ −

−
∫ t

0

c(s(τ), τ) dτ −
∫ s(t)

0

c(x, t)

∫ x

0

dy

K(y)
dx ≤

≤
∫ t

0

g(τ) dτ (3.81)

So

s∞ + h

∫ s∞

0

∫ x

0

dy

K(y)
dx ≤ h

q
G. (3.82)

Then, the equation (3.80) is deduced from equation (3.76) taking limit when α tends to
infinity. The proof is concluded.

�

4 Numerical results.

In this section we will show numerical results comparing with the theoretical results. For all
the simulations we use g(t) = e−2t, the threshold value q for the solvent concentration is set to
0.3 and the proportionality convective constant h is set to 10. For these particular cases the
global bound over all functions f and K expressed in Theorem (3.1) assumes the value:

s∞ = h
G

q
≈ 16.667. (4.83)

First, we will take K = K(x).

0 0.5 1 1.5 2 2.5 3 3.5
0
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2

3

4
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6
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n=4
n=3
n=2
n=1

s(t) 

K(x)=3.0 10n x+1     f(c)=200c 2   g(t)=e−2t   q=0.3

t 
0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

7

n=6
n=5
n=4
n=3
n=2

K(x)=30x+1    f(c)=2.0 10 nc2     g(t)=e−2t     q=0.3 

t 

s(t) 

Figure 1: Case K = K(x), for many functions K and many f . Left: f is fixed, K is varied.
Right: K is fixed, f is varied

As we can see from the figures above, it is not possible to reach the supremum over all the
functions f and K individually.
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From equation (3.80) we can solve z and obtain z ≈ 6.807. This bound is checked numeri-
cally from the picture on the right of figure (4).

If we set a function K = K(x) big enough and let f go to infinity, we can reach the bound
s∞ = hG/q ≈ 16.667 as shown in picture 2.

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

16

18

n=2
n=3
n=4
n=5
n=6

s(t) 

t 

K(x)=3.0 104x+1    f(c)=2.0 10 nc2  g(t)=e−2t   q=0.3

Figure 2: Case K = K(x).

Clearly the numerical results agree with the theorem.
We will consider the nonlinear conductivity taking the particular case K(c) = A/c with

A > 0.

0 1 2 3 4 5
0

2

4

6

8

10

12

K(c)=640/c
K(c)=320/c
K(c)=160/c
K(c)=80/c
K(c)=40/c
K(c)=20/c
K(c)=10/c
K(c)=5/c

f(c)=100c  g(t)=e −2t   q=0.3    
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s(t) 

0 1 2 3 4 5 6
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2

4

6

8

10

12

14

16

18

f(c)=10000c
f(c)=2500c
f(c)=624 c
f(c)=156c
f(c)=40c
 

K(c)=100/c   g(t)=e −2t    q=0.3

s(t) 

t 

Figure 3: Case K = K(c), for many functions K and many f .

As we can see in figure (3) the supremum will change if we take the supremum over all f
or over all K.

In the next picture we can numerically show again that the bound expressed in equation
(3.61) holds taking supremum over all K and over all f (it is enough to take a function f with
a big slope).
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t

s(
t)

f(c) = 104c  g(t)=e −2t  q=0.3

K(c)=1.0/c 5

K(c)=5.0/c
K(c)=2.5/c

Figure 4: Case K = K(c).

5 Conclusions and final comment.

In this paper we have presented a free boundary problem from the polymer industry. It has been
possible to bound the free boundary with a constant which does not depend on some parameters
of the problem. The most important aspect of this bound is that is independent of the diffusion
processes inside the material represented by the conductivity coefficient K[c] and the dynamical
law of penetration f , which are often the most difficult things to describe physically. For the
case K = K(x) a best bound can be computed independently of f . The numerical method
implemented was the straight lines method adapted to free boundary problems obtaining an
ordinary differential equation system which its solution method depends strongly on the type
of the operator K[c]. In particular, for the case of K[c] depending on x, the Riccati equations
are used. In both cases all the numerical experiments obey the theoretical bounds.
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