
UNIVERSIDAD NACIONAL DE CÓRDOBA 
 

FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA 
______________________________________________________________________ 
 
 

 

SERIE “A” 
 
 

TRABAJOS DE MATEMÁTICA 
 
 
 

Nº 96/09 
 

Active-set strategy in NEWUOA for optimization 
without derivatives 

 
 

María B. Arouxet - Nélida Echebest  - Elvio A. Pilotta  
 
 
 

 
 
 
 

 
 
 

Editores: Jorge R. Lauret – Jorge G. Adrover 
CIUDAD UNIVERSITARIA – 5000 CÓRDOBA 

REPÚBLICA ARGENTINA 



Active-set strategy in NEWUOA

for optimization without derivatives
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Abstract

We present an algorithm for solving unconstrained optimization problems without
derivatives based on NEWUOA, the Powell’s algorithm, for derivative-free optimization.
At each iteration, a quadratic interpolation model of the objective function around the
current iterate is constructed and this model is minimized to obtain the new trial point.
The whole process is embedded within a trust-region framework. In our algorithm, we use
the infinity norm and we solve a box constrained quadratic problem by using an active
set strategy exploring the faces of the box. An spectral gradient approach is used to
abandon the face. Numerical experiments show that our algorithm requires less functional
evaluations than NEWUOA, thus it confirms the promising behavior of the algorithm.

Key words: derivative-free optimization, active-set method, spectral gradient

method.

1 Introduction

We consider the unconstrained optimization problem where the derivatives of the objective
function f are not available and the functional values f(x) are typically very expensive or
difficult to compute. That is, we consider the problem

min f(x) subject to x ∈ Rn

where we assume that the function f is smooth enough and that ∇f(x) cannot be computed
for any x.
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This situation use to occur frequently in problems where the functional values f(x) come
from physical, chemical or geophysical measure or are the results from very complex computer
simulations, which is common in problems from industry and engineering.

There are several, essentially, different methods for solving this kind of problems. See
[8]. A first class of them are the direct search or pattern search methods which are based
on the exploration of the variables space by using function evaluations in sample points given
by a predefined geometric pattern. That is the case of methods where sampling is guided by
desirable sets of directions [9, 28] and those based on simplices and operations over simplices like
the Nelder-Mead algorithm [18]. They do not exploit the inherit smoothness of the objective
function and require therefore a very large number of function evaluations. They can be useful
for non-smooth problems. A comprehensive survey of these methods can be found in [15]. A
second class includes those methods that use line-search strategies based on simplex derivatives,
connecting with the implicit-filtering method [14]. The last class of the methods are based on
modelling the objective function by multivariate interpolation in combination with the trust-
region techniques. These methods were introduced by Winfield [29, 30]. The main idea of these
methods is to build a polynomial model, interpolating the objective function at all points at
which its value is known. The model is then minimized over the trust region and a new point,
is computed. The objective function evaluated at this new point thus possibly enlarging the
interpolation set. This newly computed point is checked as to whether the objective function
is improved and the whole process repeated until convergence is achieved. So, the geometry of
the interpolation set points and the model minimization are the keys for a good performance
of the algorithms.

At the present time, there are several implementations of algorithms based on trust-region
interpolation approach, although the most tested and well established are DFO developed by
Conn, Scheinberg and Toint [5, 6, 7] and NEWUOA developed by Powell [20, 21, 22, 23,
24]. See also the Wedge method developed by Marazzi and Nocedal [16] and the CONDOR
implementation of Berghen and Bersini [2] that is parallel version based on the Powell method.

For our proposal we used the model-based trust region method NEWUOA because this code
performed very well in recent comparison benchmark articles by [19, 11, 17]. Moreover Moré
and Wild [17] report that NEWUOA is the most effective derivative free optimization method
for smooth function. These results and the recent developments by Powell [25] encourage us
for further development of model based methods.

In this paper we decided to intervene in the trust-region subproblem solved by a truncated
conjugate gradient method in NEWUOA. Instead of this solver, we used an active-set strategy
[3] together with the spectral projected gradient method (SPG) developed by Mart́ınez, Birgin
and Raydán [4]. SPG combines a nonmonotone line search [13] with the spectral gradient
method proposed by Barzilai and Borwein [1] and revisited by Raydán [26, 27].

The numerical results and the observations made in this paper are based on experiments
involving all the smooth problems suggested in [17] and also we tested with a set of medium-
scale problems (100 variables).

This article is organized as follows. The main interpolation-based methods ideas for deriva-
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tive free optimization are given in Section 2. In Section 3 we give a short description of the
NEWUOA solver for derivative free optimization. The active-set strategy and the spectral pro-
jected gradient method are described in Section 4. In Section 5 we show numerical experiments
using a set of test problems. Also, we report numerical experiments by using some medium-
scale problems and we make some comments related to numerical behavior. Conclusions are
given in Section 6.

2 Main interpolation-based methods ideas for optimiza-

tion without derivatives

The idea of locally approximate a function by using a cheaper model of the objective function
is an usual globalization strategy in nonlinear optimization called trust-region. Basically, the
main steps of the trust region method are the following:

1. Building interpolation step. Given a current iterate xk build a good local approximation
model (e.g., based on a second order Taylor approximation):

mk(xk + s) = ck + sT gk +
1

2
sT Gks,

where ck ∈ R, gk ∈ Rn and G ∈ Rn×n is a symmetric matrix, whose coefficients are
determined by using the interpolation conditions.

2. Subproblem minimization. Set a trust region radius ∆k that define the trust region

Bk = {xk + s : s ∈ Rn, ‖s‖ ≤ ∆k}

and minimize mk in Bk.

3. Accept or reject the step. If the ratio of the achieved reduction in the objective function
versus the predicted reduction in model

ρk =
f(xk) − f(xk + s)

mk(xk) − mk(xk + s)

is sufficiently positive, the iteration is successful: as the next iteration point, xk+1 = xk+s
will be taken and the trust-region region ∆k+1 could be enlarged. If ρk is not enough
positive, then the iteration was not successful: the current iteration xk will be kept and
the trust-region radius is reduced.
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2.1 Interpolation ideas

To define the model in Step 1 we need to obtain the vector gk and the symmetric matrix
Hk. They are determined by requiring that the model mk interpolates the function f at a set
Yk = {y1, y2, . . . , yq} of points containing the current iterate xk

f(yi) = mk(y
i) for all yi ∈ Yk.

The cardinality of Yk must be

q =
1

2
(n + 1)(n + 2)

to get a full quadratic model mk.

Since there are
1

2
(n+1)(n+2) coefficients to be determined in the model, the interpolation

conditions represent a square system of linear equations in the coefficients ck, gk, Gk. If the
interpolation points {y1, y2, . . . , yq} are adequately chosen the linear system is nonsingular
and the model could be uniquely determined. See [8]. However, in practice the interpolation
conditions are not sufficient to uniquely determine the solution and to guarantee the good
quality of the model. Geometric conditions (poisedness) on the interpolation set are required
to ensure the existence and uniqueness of the linear system solution.

3 The NEWUOA algorithm

NEWUOA is an algorithm proposed by Powell in (see [24]) based in previous articles [20, 21,
22, 23]. In fact, NEWUOA is the new version of UOBYQA [21]. The Powell’s method has a
complicated mechanism to manage the trust-region radius and the radius of the interpolation
set. The smaller of the two radii is also used to force the interpolation points to be sufficiently
far apart to avoid the influence of noise in the function values. The trust-region updating step
is more complicated that the classical steps in trust-region framework [8]. These additional
schemes are developed to improve the practical performance of the algorithms. They not affect
the main global convergence results but make the analysis quite complex.

The main distinguishing features of the NEWUOA are the following:

- It uses quadratic approximations to the objective function which are highly useful for
obtaining a fast rate of convergence in iterative algorithms for unconstrained optimiza-

tion. However, each quadratic model has
1

2
(n + 1)(n + 2) independent coefficients to be

determined, and this number could be prohibitively expensive in many applications with
large n. Therefore NEWUOA tries to construct suitable quadratic models from fewer
data. Each one interpolation sets has p points where n + 2 ≤ p ≤ 1

2
(n + 1)(n + 2). The

default value in NEWUOA is p = 2n + 1.
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- Since p could be less than 1
2
(n+1)(n+2), the interpolation set Y could not be complete.

The remaining degrees of freedom are calculated by minimizing the Frobenius norm of
the change in the model Hessian, with respect to the model used in the previous iteration.

- It uses Lagrangian polynomials to interpolate the function f by using the interpolation
set Y .

- It solves the trust-region quadratic minimization subproblem by using truncated conju-
gate gradient methods. To define the trust-region Bk is used the Euclidean norm.

- Updates of the interpolation set points are performed via the following steps:

- The set of minimum Frobenius norm Lagrange polynomials is maintained in every
iteration.

- If the trust-region minimization of the kth iteration produces a step sk which is
not too short compared to the maximum distance between the sample points and
the current iterate, then the function f is evaluated at xk + sk and the new point
becomes the next iterate, xk+1, if the reduction in f is sufficient. If the new point
xk + sk is accepted as the new iterate, it is included into Yk, by removing the point
yi such that the distance ‖xk −yi‖ and the value |li(xk +sk)| are as large as possible.
The trade off between these two objectives is reached by maximizing the weighted
absolute value ωi|li(xk + sk)|, where ωi reflects the distance ‖xk − yi‖.

- When the step sk is rejected, the new point xk + sk can be accepted into Yk, by
removing the point yi such that the value ωi|li(xk + sk)| is maximized, where ωi

reflects the distance ‖xk − yi‖, as long as either |li(xk + sk)| > 1 or ‖xk − yi‖ > r∆k,
for a given r ≥ 1.

- If the improvement in the objective function is not sufficient, and it is believed that
the model needs to be improved, then the algorithm chooses a point in Yk which is
the furthest from xk and attempts to replace it with a point which maximizes the
absolute value of the corresponding Lagrange polynomial in the trust region.

4 The active-set strategy with spectral projected gradi-

ent method

The quadratic minimization trust-region subproblem is one of the more expensive part of the
algorithm. Therefore, we adopted the ∞-norm and decided to use another strategy in order to
improve the numerical performance of NEWUOA. Our proposal is based on the box-constrained
decomposition proposed by Friedlander and Mart́ınez in [12].

The trust region subproblem is

Minimize m(x) subject to x ∈ Ω,
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where Ω = {x ∈ Rn|l ≤ x ≤ u}.
As in [12], we divide the feasible set Ω into disjoint open faces, as follows. For all I ⊂

{1, 2, . . . , n, n + 1, n + 2, . . . , 2n}, we define

FI = {x ∈ Ω |xi = li if i ∈ I, xi = ui if n + i ∈ I, li < xi < ui otherwise }.

We also define VI the smallest affine subspace that contains FI and SI , the parallel linear
subspace to VI . The (continuous) projected gradient at x ∈ Ω is defined as

gP (x) = PΩ(x − g(x)) − x.

For all x ∈ FI , we define the internal projected gradient

gI(x) = PSI
[gP (x)]

that is, the projection of gP into the parallel linear subspace SI .
Now, for solving the trust-region quadratic subproblem we used the algorithms GENCAN

and SPG. See [3].

Algorithm GENCAN.

Assume that x0 ∈ Ω is an arbitrary initial point, η ∈ (0, 1) and 0 < σmin < σmax < ∞. Let
FI be the face that contains the current iterate xk. Assume that gP (xk) 6= 0, otherwise the
algorithms terminates. At the main iteration of the algorithm we test

‖gI(xk)‖ ≥ η‖gP (xk)‖. (1)

If (1) is satisfied, we consider that is convenient that the new iterate belong to F I (the
closure of FI) and we compute xk+1 by using the gradient conjugated method with the set of
variables restricted to the free variables in FI .

If (1) does not hold, we decide that some constraints should be abandoned and, so, the new
iterate xk+1 is computed doing one iteration of the SPG Algorithm. In this case, before the
computation of xk+1 we compute the spectral gradient coefficient σk in the following way:

If k = 0 or (xk − xk−1)
t(g(xk) − g(xk−1)) ≤ 0 then

σk = max{1, ‖xk‖/‖gP (xk)‖}.

Otherwise, define

σ′

k =
(xk − xk−1)

t(g(xk) − g(xk−1))

‖xk − xk−1‖2

and
σk = min{σmax, max{σmin, 1/σ

′

k}}.
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Therefore, we use the following algorithm when it is necessary to leave the current face
according to test (1).

Algorithm SPG.

Compute xk+1 as the next iterate of a monotone SPG iteration [4] with the spectral step
σk. We define the search direction dk as

dk = PΩ(xk − σkg(xk)) − xk

and we compute xk+1 = xk + αkdk in such a way that

f(xk+1) ≤ f(xk) + γαkg(xk)
tdk,

trying first αk = 1 and, perhaps, reducing this coefficient by means of a safeguarded quadratic
interpolation procedure.

5 Numerical experiments

In order to asses the performance of our algorithm (AS-NEW) we tested our implementation
against NEWUOA using all the smooth problems from the test problems set in [17], where the
number of variables varies from 2 to 12. Also, we consider a set of medium scale problems from
[25]. NEWUOA was developed in Fortran 77, so the new algorithm too. We used Intel Fortran
Compiler 9.1.036. Both codes were compiled and executed in a PC running Linux OS, AMD
64 4200 Dual Core.

Initial points and initial trust-region radius were the same as in the cited references [17, 25].
However, for some problems we also tested with the initial point 10xs, where xs is the original
initial point. The stopping criterion that we used is the same that Powell used in NEWUOA,
that is, the iteration stopped when the trust-region radius is lower than a tolerance: ρend = 10−6.

As it is usual in derivative free optimization articles we were interested in the comparison of
the number of function evaluations for both codes. We also report the CPU time obtained for
both algorithms. To compare them we considered the performance profiles methods described
by Dolan and Moré in [10]. Formally, for each algorithm Ai there is distribution function ̺i.
The real value ̺i(α) represents the probability that the ratio between the performance of Ai and
the performance of the best algorithm is less than α. Then, ̺i(1) represents the probability of
algorithm Ai to perform as the best and limα→∞

+̺i(α) is a measure of the algorithm robustness.
The more efficient will be that it reaches this limit rapidly. For derivative free optimization
methods, as it is usual, the performance is measured by the number of functional evaluations
to reach the convergence. In our numerical experiments, the maximum number of function
evaluations allowed was:

- MAX_FE = 8000, for small size problems,

- MAX_FE = 80000, for medium size problems.
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Figure 1: (a) Function evals.: NEWUOA vs. AS-NEW (b) CPU time: NEWUOA vs. AS-NEW

Table 1 reports the name of the small size problems, the initial points (I.P.), the number of
function evaluations, the CPU time (in seconds) and the functional values obtained for both
codes.

The results are summarized in Figures 1 using the performance profiles described in [10].
They compare the number of function evaluations and the CPU times (in seconds) needed to
achieve the desired accuracy for both codes.

Remark that for α = 1, Figure 1 (a) seems to indicate that AS-NEW is the best solver
because the number of function evaluations was lower than NEWUOA on 71% of the problems.
NEWUOA was better on 30% of the problems. For the remaining problems the number of
function evaluations was identically for both codes. Also, it is worth to remark that AS-NEW
solved successfully the 98% of the test problems while NEWUOA solved the 90% of them.

The comparison of CPU times, in Figure 1 (b), shows that both algorithms perform simi-
larly in these tests, although NEWUOA run slightly faster than our implementation for some
problems.

For medium scale problems we tested seven problems used by Powell in [25], where the
dimension varies from 20 to 100. Table 2 reports the numerical results. We observe that for
most of the problems the number of function evaluations using AS-NEW are remarkably lower
than NEWUOA.

In general, the corresponding final functional values for both codes was similar in almost
all problems. However, they differ for problems Arwhead and Vardim. We think that more
investigation about the stopping criterion should be done.

We would like to mention that we run using different strategies (more or less conservative)
for searching in face of the trust-region box, although the numerical results were similar.

As it can be seen in the plots of Figures 2, the performance of AS-NEW is surprisingly better
than NEWUOA because AS-NEW solves successfully the 92% of the problems and perform less
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Problem function eval. CPU time f(x)
name n I.P. N A N A N A

Linear Full Rank 9 xs 42 42 0.001 0.000 3.600000D+01 3.599990D+01
9 10 xs 47 51 0.001 0.001 3.600000D+01 3.599990D+01

Linear Rank 1 7 xs 159 308 0.003 0.007 8.380200D+00 8.380282D+00
7 10 xs 166 246 0.003 0.006 8.380200D+00 8.380282D+00

Linear Rank 1 7 xs 151 242 0.003 0.005 9.880500D+00 9.880597D+00
(with zero columns and rows) 7 10 xs 158 247 0.002 0.006 9.880500D+00 9.880597D+00
Rosenbrock 2 xs 195 158 0.001 0.000 1.382200D-17 7.324709D-09

2 10 xs 321 368 0.002 0.002 8.106400D-16 3.569618D-11
Helical valley 3 xs 124 121 0.001 0.001 2.066500D-13 6.827992D-08

3 10 xs 170 157 0.002 0.001 9.369100D-15 1.561482D-07
Powell singular 4 xs 476 248 0.004 0.002 1.099100D-10 1.050267D-07

4 10 xs 571 398 0.005 0.003 9.633300D-11 1.843349D-07
Freudenstein and Roth 2 xs 76 72 0.000 0.000 4.898420D+01 4.898425D+01

2 10 xs 80 162 0.000 0.001 4.898420D+01 4.898425D+01
Bard 3 xs 113 121 0.001 0.001 8.214800D-03 8.214878D-03

3 10 xs 114 145 0.001 0.001 1.774900D+00 8.215013D-03
Kowalik and Osborne 4 xs 278 220 0.002 0.002 3.075000D-04 3.079336D-04
Meyer 3 xs 530 438 0.004 0.012 9.762986D+04 9.945488D+04
Watson 6 xs 937 923 0.014 0.018 2.287600D-03 2.289743D-03

6 10xs 1717 913 0.027 0.017 2.287600D-03 2.287685D-03
9 xs **8000 1792 0.205 0.083 1.413197D-06 9.782082D-05
9 10xs **8000 3566 0.209 0.176 1.420601D-06 5.397333D-06

12 xs **8000 3124 0.335 0.288 4.999653D-08 2.892165D-04
12 10xs **8000 **8000 0.322 0.800 5.934833D-09 2.044928D-04

Box 3-dimensional 3 xs 212 184 0.002 0.002 3.336000D-17 4.188451D-09
Jennrich and Sampson 2 xs 55 55 0.001 0.000 1.243621D+02 1.243622D+02
Brown and Dennis 4 xs 191 180 0.002 0.002 8.582220D+04 8.582220D+04

4 10 xs 601 602 0.007 0.009 8.582220D+04 8.582220D+04
CheByQuad 6 xs 177 151 0.002 0.003 4.763800D-13 9.210608D-09

7 xs 229 189 0.004 0.004 3.148000D-13 1.204186D-08
8 xs 390 202 0.008 0.005 3.516800D-03 3.517317D-03
9 xs 529 356 0.013 0.014 2.201700D-13 1.831953D-07

10 xs 666 643 0.020 0.032 4.772700D-03 4.772732D-03
11 xs 538 408 0.018 0.024 2.799700D-03 2.804779D-03

Brown almost-linear 10 xs 1255 349 0.039 0.017 1.553300D-12 3.921241D-07
Osborne 1 5 xs 1012 120 0.014 0.003 6.745600D-05 8.136841D-03
Osborne 2 11 xs 1709 1024 0.082 0.086 4.013700D-02 4.013847D-02

11 10 xs 321 1912 0.017 1.306 1.789000D+00 1.789814D+00
BDQRTIC 8 xs 432 507 0.009 0.014 1.023890D+01 1.023897D+01

10 xs 670 522 0.018 0.025 1.828100D+01 1.828118D+01
11 xs 758 614 0.024 0.034 2.226000D+01 2.226062D+01
12 xs 781 636 0.027 0.045 2.627200D+01 2.627277D+01

Cube 5 xs 2842 959 0.027 0.013 7.617000D-07 8.871802D-05
6 xs 4625 2123 0.057 0.044 4.772300D-06 1.241336D-05
8 xs 6825 2144 0.132 0.067 5.613800D-06 4.786514D-05

Mancino 5 xs 39 40 0.000 0.001 3.712400D-11 4.006352D-07
5 10xs 66 49 0.001 0.000 5.742400D-08 4.353584D-05
8 xs 52 50 0.002 0.001 1.013600D-08 1.116700D-05

10 xs 68 55 0.002 0.002 2.292100D-09 7.324810D-04
12 xs 83 66 0.003 0.004 1.216000D-08 3.825228D-04
12 10xs 131 91 0.006 0.006 1.216000D-08 2.381812D-04

Heart 8 8 xs 1118 920 0.025 0.031 1.516400D-11 2.043254D-08
8 10xs 826 616 0.018 0.040 4.906900D+00 4.663999D+00

Table 1: Small scale problems: NEWUOA (N) versus AS-NEW (A)
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Figure 2: (a) Function evals.: NEWUOA vs. AS-NEW (b) Log-scale

function evaluations in the 75% of the cases. On the other hand, NEWUOA solves successfully
the 75% of the problems and perform less function evaluations that AS-NEW only in the 25%
of them. Note that in Figure 2 (b) we used a logarithmic scale as it is suggested by Dolan and
Moré in [10].

Concerning to the the CPU times NEWUOA was better in most of the cases, but it is
well known that for derivative optimization algorithms the goal is reduce the number of func-
tion evaluations. Figure 3 shows the comparison profiles for CPU times using medium scale
problems.

6 Conclusions

We have presented a new algorithm for solving unconstrained derivative-free optimization prob-
lems based on the NEWUOA algorithm of Powell [24], which uses an active set strategy [12] for
solving the trust-region subproblems. Since we consider the infinity norm, a box constrained
quadratic optimization problem have to be solved in each iteration. Also we use the spectral
gradient method [4] to leave a face when an appropriate criterion seems to indicate that it is
not worth to continue exploring that face.

We implemented this algorithm and perform numerical experiments using a set of test
problem. We compared our algorithm against NEWUOA. The numerical results reported in
this paper suggest that our algorithm takes advantage of the active set strategy to explore
the trust-region box. The number of function evaluations was reduced in most of the cases.
These results and the developments reported by Powell [25] provide new impetus for further
development for optimization without derivatives with smooth functions.
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Problem function eval. CPU time f(x)

name n N A N A N A

Arwhead 20 409 409 0.024 0.044 6.827872D-12 4.355508D-07

40 1441 638 0.280 0.240 6.320278D-12 5.079198D-07

80 3226 1885 2.730 5.680 8.715428D-11 4.882386D-05

100 3859 3365 6.170 19.420 4.438583D-11 3.140931D-05

Penalty 1 20 7348 2320 0.520 0.270 1.577771D-04 1.666262D-04

40 14620 6217 3.180 3.260 3.392511D-04 3.403646D-04

80 31180 20837 27.330 62.030 7.130502D-04 7.133080D-04

100 39364 22341 65.950 79.540 9.024910D-04 9.027157D-04

Penalty 2 20 19060 12960 1.380 1.740 6.389751D-03 6.389946D-03

40 15301 19738 3.400 15.270 5.569125D-01 5.569240D-01

80 19357 29116 17.130 176.410 1.776315D+03 1.776315D+03

100 15388 66721 25.004 948.790 9.709608D+04 9.709608D+04

Penalty 3 20 4660 1760 0.057 0.100 3.636060D+02 3.641777D+02

40 80000 4587 0.410 0.810 1.045973D-03 1.552231D+03

80 80000 26563 3.520 11.220 6.285525D+03 6.398066D+03

100 80000 20104 7.720 22.170 9.886938D+03 1.004591D+04

VarDim 20 4791 8509 0.340 1.480 5.365843D-11 8.785758D-07

40 18725 35543 4.120 38.550 7.200291D-11 2.715300D-07

80 55635 80000 50.450 585.350 1.943923D-10 6.630367D-04

100 80000 80000 134.970 1030.730 1.091809D-08 1.281812D-02

Rosenbrock Ext. 20 8585 7774 0.790 1.670 1.491622D-10 1.206377D-03

40 36435 19054 10.840 18.510 7.109087D-09 3.454462D-03

80 80000 48315 94.120 202.580 4.092447D-07 2.600383D-04

100 80000 60547 165.800 438.350 1.960580D-07 4.672712D-04

CheByQuad 20 1817 858 0.140 0.100 4.572955D-03 4.580623D-03

40 26743 186 8.300 0.041 5.960843D-03 7.193065D-03

80 73006 727 88.230 1.130 4.931312D-03 5.009640D-03

100 46964 684 100.350 1.580 8.715769D-03 9.589309D-03

Table 2: Medium scale problems: NEWUOA (N) versus AS-NEW (A)
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