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Universidad Nacional de Ŕıo Cuarto
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Abstract

We present the assessment of two classification procedures using both a Monte Carlo
experiment and real data. Classification performance is hard to assess with generality due
to the huge number of variables involved. We consider the problem of classifying multispec-
tral optical imagery with pointwise Gaussian Maximum Likelihood (ML) and contextual
ICM (Iterated Conditional Modes), with and without errors in the training stage. Two ex-
perimental setups were considered in order to assess the influence of using partial and low
quality information and to make a quantitative comparison of ML and ICM in real situa-
tions. Using simulation the ground truth is known and, therefore, precise comparisons are
possible. The contextual approach proved being superior than the pointwise one, at the
expense of requiring more computational resources. Pseudolikelihood parameter estimation
for the context is used, and we provide the expression for estimating this parameter when
using the multiclass Potts model with eight neighbors. Quantitative and qualitative results
are discussed.

1 Introduction

The production of thematic cartography is one of the main goals of remote sensing image process-
ing and analysis. Thematic maps provide the overall inventory of classes in an image; they can
be obtained with classification techniques and are essential in many applications as, for instance,
crops statistics, mining and hydrological resources studies.

A general setup for image classification was provided by Geman and Geman (1984). They
consider separate models for the observed data and for unobserved relevant information. Using
the data and the underlying models, one seeks suitable estimators for the desired, but unobserved,
information.

The problem of assessing the classification techniques accuracy has been studied in the litera-
ture (see, for instance, the works by Belward and Dehoyos, 1987; Emerson et al., 2005; Emrahoglu
et al., 2003; Erbek et al., 2004; Frizzelle and Moody, 2001; Gao et al., 2006; Huang and Mausal,
1994; Ince, 1987; Wilson, 1992; Zhuang et al., 1995).

Regarding the explicit use of context by means of statistical models, Di Zenzo et al. (1987)
consider the impact of the number of bands, spectral and spatial resolutions and context (using
probabilistic relaxation) on the classification of crops. Flygare (1997) assesses the influence
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of context, by means of a model of spectral correlation, in classification accuracy. Hubert-Moy
et al. (2001) point out that using the ICM algorithm for improved classification under Markovian
models, though computationally more expensive than pointwise maximum likelihood, is “worth
the pain”. Magnussen et al. (2004) employ first-order autoregressive process on the reflectance
model for introducing spatial information. Our contribution consists of making a quantitative
assessment of the influence of (i) information content and number of bands, (ii) errors in the
training stage, and (iii) context, by means of the Potts model for the (unobserved) classes and
the ICM algorithm.

In order to draw the most possible general conclusions, it is desirable to use (a) automatic
procedures that do not depend on unknown parameters and (b) data representative of as many
as possible situations. We attain the first requisite by estimating all required parameters from
available information, and the second by modelling incomplete data and errors in the training
stage.

The multivariate Gaussian law is the most widely used distribution for modelling image data
acquired with optical remote sensing instruments (Matthews et al., 2001). This is mainly due to
the fact that the observed data result from the composition of a large number of non-deterministic
independent sources with bounded variability. This distribution will be employed in this work
for describing the observed data, since techniques based on this distribution are available in most
remote sensing image processing platforms.

The spatial correlation of the classes is an important source of information, and we incorporate
it by modelling the classes under estimation as a Markov Random Field.

Training is subjected to errors, since it depends on multiple sources of possibly vague and
contradictory information (visual analysis, previous experience, data acquired by other sensors
and in a different moment etc.). We assess the impact of training errors in the accuracy of the
products by introducing this factor in the Monte Carlo experiments. As explained in section 3,
wrong training samples are introduced in order to simulate the worst possible realistic scenario
in real applications.

The purpose of this paper is assessing the precision of products obtained by Maximum Like-
lihood (ML) and by ICM classifications under different situations: regarding training, with and
without errors and, regarding spectral, information, with complete and incomplete data. With
the exception of the work by Frery et al. (2006), where partial results are presented, a complete
assessment is not available in the literature.

The rest of the paper unfolds as follows. Section 2 recalls the basic definitions of statistical
classification. Section 3 presents the Monte Carlo experiments and the simulation results. Sec-
tion 4 shows the results of applying the techniques to real data: Landsat ETM+ (section 4.1) and
ASTER (section 4.2) images are analysed, the former under two different setups for assessing
the influence of spectral information content and the presence of errors in the training stage.
Finally, section 5 comments the results and their consequences.

2 Supervised Statistical Classification

From a mathematical standpoint, a multispectral optical image is a three-dimensional real matrix:

z = [z(i, j, k)]0≤i≤M−1,0≤j≤N−1,0≤k≤K−1 , z(i, j, k) ∈ R,

and a classification rule is a function that, using the available information, defines a set of M ×N
labels, say c = [c (i, j)]0≤i≤M−1,0≤j≤N−1 on a set of L possible labels C = {c1, . . . , cL}.

Supervised statistical classification procedures consist of providing such a rule by means of
decisions based on the statistical properties of the data, i.e., parameters to be estimated. These
procedures are based upon three steps, namely, training, production and testing.
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2.1 Multivariate Gaussian Model

This model assumes that the observations related to each of the L classes obey different proba-
bility laws characterized by the probability density function

fℓ(z) =
exp
{
− 1

2

[
(z − µℓ)

tM−1
ℓ (z − µℓ)

]}

(2π)K/2[det(Mℓ)]1/2
,

where K is the number of bands, µℓ is the vector of means and Mℓ is the covariance matrix and
1 ≤ ℓ ≤ L is the class index. This assumption is usually verified in practice when optical data is
used, if a careful choice of classes is made.

The classification rule that stems from this assumption and the hypothesis of independence
among different sites is assigning the site (i, j) to class cℓ∗ if

fℓ∗(z(i, j)) ≥ fℓ(z(i, j)), (1)

for every ℓ∗ 6= ℓ, i.e., if the likelihood of the observation z(i, j) is maximized by the model of
class ℓ∗. The rule formulated in equation (1) is equivalent to assigning the site (i, j) to class cℓ∗

if

ln(det(Mℓ∗)) − (z(i, j) − µℓ∗)
tM−1

ℓ∗ (z(i, j) − µℓ∗)

≤ ln(det(Mℓ)) − (z(i, j) − µℓ)
tM−1

ℓ (z(i, j) − µℓ),

for every 1 ≤ ℓ ≤ L.
In most practical situations one has to estimate the parameters µℓ and Mℓ using training

samples. As we will see, the quality of the training data is of paramount importance for the final
result.

2.2 Markov Random Fields and the ICM Algorithm

Real data exhibit a great deal of spatial correlation. Markov Random Fields, the spatial gen-
eralization of Markov chains, have deserved a great deal of attention in the computer vision
literature since they were successfully used in image restoration (Carnevalli et al., 1985; Geman
and Geman, 1984; Winkler, 2006); see Appendix A for a short review on these models, that will
be used here to describe spatial correlation.

The Potts model will be used in this work as the underlying law for the classes in remote
sensing imagery. It states that the log-probability of observing class c at coordinate (i, j), given
the observation of all the other classes, is proportional to β ∈ R times the number of neighboring
sites where class c occurred. Positive values of β assign more probability to maps with clusters
of same classes. Using this model as a prior distribution leads to a classification rule that takes
context into account. A sample of this model, which is detailed in Appendix A, is shown in
Figure 1(a).

The ICM algorithm is an iterative approach to finding better solutions than those provided
by a pointwise procedure, such as pixelwise Maximum Likelihood. It starts with an arbitrary
solution and improves it replacing the class in every coordinate by the one that maximizes an
objective function that, in turn, comprises two terms: the evidence provided by the data (the
information on which Gaussian Maximum Likelihood is based upon) and the evidence provided
by the context.

In our implementation, ICM starts with the pointwise Gaussian Maximum Likelihood clas-
sification. Then, a new classification is obtained using, for every (i, j) ∈ S, 1 ≤ ℓ ≤ L, z ∈ R

K ,
the following decision rule:
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gℓ((i, j), z, c, β) =

1

2

(
− log(det(Mℓ)) − (z − µℓ)

tM−1
ℓ (z − µℓ)

)
+ β#{(i′, j′) ∈ V ∗

(i,j) : c(i′, j′) = cℓ}, (2)

where V ∗
(i,j) = V(i,j) ∪ {(i, j)}. The first term of the second member in equation (2) is the same

as the pointwise Maximum Likelihood classification rule under the multivariate Gaussian model.
The second term is the contextual component that, provided β > 0, puts more weight on those
classes that surround site (i, j).

The contextual influence is quantified by the value of the parameter β. When β = 0 the
rule provided by equation (2) reduces to pointwise Maximum Likelihood classification under the
multivariate Gaussian model, i.e., context has no effect on the evidence provided by the observed
data; when β → ∞ the effect is reversed, i.e., the observed data have no influence on the rule,
which is solely the local mode. This parameter is unknown and, therefore, it has to be informed.

Besag (1989) provides a proof of the convergence of the ICM algorithm to a local maximum
of the function given in equation (2). Since this equation has the ML rule as a particular case,
namely when β = 0, and that the contextual term is positive, the inclusion of the latter provides
solutions with higher likelihood.

Jackson and Landgrebe (2002) use an ICM algorithm with fixed values of the context pa-
rameter, and they show that a contextual classification with small samples attains an accuracy
comparable with that obtained with pixelwise maximum likelihood. Arbia et al. (1999) also use
fixed values of this parameter, chosen by trial-and-error, in a two-class classification setup with
simulated data. Descombes et al. (1999) use a Monte Carlo Markov Chain procedure, while Tso
and Mather (1999) employ a genetic algorithm approach. Melgani and Serpico (2003) propose
the a minimum perturbation approach, but they maintain the estimated parameter along all the
iterations. Moser et al. (2005) propose the use of the ICM algorithm under Markov random
fields models, estimating its parameters as the solution of a set of linear inequalities, solved by
extending the Ho–Kashyap algorithm. Vaccaro et al. (2000) provide a comprehensive account of
the use of spatial information in synthetic aperture radar image analysis. All these approaches
are either costly or inaccurate.

Our approach consists of iteratively estimating the contextual parameter from the available
information by pseudolikelihood (Arnold and Strauss, 1991); see Appendix B for details. This
estimation is performed after each iteration, being the first classification the Gaussian Maximum
Likelihood rule or, equivalently, the rule provided by equation (2) setting β = 0. An iteration
consists of (i) estimating β from the previous classification and (ii) applying the rule provided
in equation (2).

It is observed that the sequence of estimated parameters is non decreasing, i.e, that β̂(0) ≤

β̂(1) ≤ · · · , so one will always end up with a classification with more homogeneous patches than
the first provided as starting solution. The algorithm proceeds until evidence of convergence is
achieved. In our implementation at least one of two criteria has to be satisfied in order to stop
the procedure: a certain maximum number of iterations (100 in our experiments) or a certain
minimum percentage of classes changed (set to 5%).

3 Precision Assessment by Simulation

A Monte Carlo experiment was devised in order to assess classification precision in the aforemen-
tioned scenarios. Images are simulated and they are automatically classified. In doing so, one has
the ground truth before which the results can be compared. After making this simulation-based
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assessment, the two classification techniques are applied to real data: more than fifty samples
from a Landsat ETM+ image with many thematic classes. All available bands were employed in
all but one situation, being this last one designed to evaluate the impact of using partial and low
quality information on the classification procedures; we conclude that contextual information
can successfully compensate the lack of quality data.

Three types of class images were used in this work in order to describe typical situations that
appear in practice: a hand-painted one (called “Cubism”, see Figure 1(a)) inspired in thematic
maps, random blocks, and outcomes of the Potts model.

Maps in the shape of random blocks with L classes are obtained dividing the support S,
which is a square of side 64 or 72 in squares of side 4 or 6, respectively, and drawing a class
independently from the other for every small square; if the same class is drawn in every small
square, the map is discarded and the procedure begins again. A typical outcome for a 64 × 64
support and L = 4 is shown in Figure 1(b).

Figure 1(c) shows a typical outcome of the Potts models, as defined in equation (3) with four
classes and β = 1/2.

(a) “Cubism” (b) Random blocks (c) Potts model

Figure 1: Images used in the assessment

In order to make the assessment in as many as possible representative situations, fourteen
situations were considered: the three types of class images of sizes 64× 64×K and 72× 72×K,
where K = 3 or 4 bands and 4 or 6 classes. Besides these models, two training situations were
modelled: perfect and imperfect training data. The quality of training data is of paramount
importance since, as will be seen, it is critical and this issue has not been fully addressed in the
literature.

The parameter values for each situation, i.e., (µℓ, Mℓ), were chosen with the following rules
(see details in Appendix C):

• P1: Values corresponding to the analysis of a real image with six classes, as described
by Richards and Jia (1999).

• P2: Three classes with comparable low mean values and three with comparable high mean
values; variances for the classes having comparable values are the same.

• P3: The same mean for all the classes; covariances are the same, and variances are increas-
ing.

• P4: All classes with the same mean values, with increasing variances and covariances.
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Table 1 presents the fourteen situations.

Table 1: Parameters for the observations
Situation Image Type Size Classes (µℓ, Mℓ) Error

1 Blocks 64 × 64 × 4 4 P1 N
2 Blocks 72 × 72 × 3 6 P2 N
3 Blocks 64 × 64 × 4 4 P3 N
4 Blocks 64 × 64 × 4 4 P3 Y
5 Potts 64 × 64 × 4 4 P1 N
6 Potts 64 × 64 × 4 4 P1 Y
7 Potts 72 × 72 × 3 6 P2 N
8 Potts 72 × 72 × 3 6 P2 Y
9 Potts 64 × 64 × 4 4 P3 Y
10 Potts 64 × 64 × 4 4 P3 Y
11 Cubism 64 × 64 × 3 6 P2 N
12 Cubism 64 × 64 × 3 6 P2 Y
13 Cubism 64 × 64 × 3 6 P4 N
14 Cubism 64 × 64 × 3 6 P4 Y

Two hundred replications were made in every situation in order to assess the performance of
the pointwise and contextual procedures. This number was found by exploratory analysis of the
results obtained in selected situations, and provides enough precision for the desired comparison.
Each replication consists of assuming a certain image class, sampling from its distribution if it
is of type random blocks or Potts model, transforming classes into observations following the
assumed models, obtaining samples for each class (with or without errors), producing the two
classifications and validating them.

The training stage consists of randomly sampling, for each class, 10% of the sites and using
the corresponding observations for parameter estimation. In the presence of training errors
(situations 4, 6, 8, 9, 10, 12 and 14), 1/10 of those sampled observations is replaced by data
from another class uniformly chosen among the others. This percentage of errors in the training
samples was specified by experienced users as a higher limit observed in real applications, so we
assess here the worst possible situation.

Since the true class image is known beforehand, it is possible to compute the actual er-
ror matrix and the coefficients of overall accuracy and Kappa with their respective confidence
intervals (Agresti, 1990; Congalton, 1991; Fitzgerald and Lees, 1994).

The two hundred replications for each situation allow us to draw the following conclusions:

• Most situations produce values of Kappa higher than 0.70, so most classifications can be
considered “good”.

• The lowest coefficients (overall accuracy and Kappa) were achieved in situations 13 and 14,
where there was a high level of confusion: same mean values for every class and increasing
variances and covariances.

• Situations 3 and 4 also produced low coefficients, but in this case ICM doubled the quality
of pixelwise classification.

• Coefficients computed on ICM classifications are higher than the others in those situations
where training was subjected to error.
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• All coefficients are significantly different, and in most cases the evidence provided is that
ICM is better than pixelwise classification.

Figure 2 summarizes some of these results, showing the 95% confidence intervals of the Kappa
coefficient in some of the simulated situations. Light lines correspond to the Maximum Likelihood
algorithm, while thick ones show the results obtained with ICM. It is clear that ICM significantly
and consistently outperforms ML.

Figure 2: Confidence intervals for Kappa 95%

4 Analysis of real data

4.1 Landsat ETM+

Two experimental setups were considered: one where a 400× 233 pixels image was analyzed and
other where the whole dataset (6920 × 5960 pixels) was treated. The first experience aims at
assessing the influence of using partial and low quality information; ML and ICM classifications
obtained with the three bands that provide the least separation are compared. In the second
setup, 50 subimages were generated from the complete data set in order to make a quantitative
comparison of ML and ICM in real situations.
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4.1.1 Setup 1

An area of 400× 233 pixels from the 229083 Landsat 7 ETM+ image (30m resolution) acquired
in 2000 over the city of Rı́o Cuarto, Argentina, was analyzed. The 453 RGB composition of
the image is shown in Figure 3(a). Six thematic classes were identified using prior knowledge,
exploratory data analysis and photointerpretation: River (predominantly Black in the RGB
composition, type # 1, Red in the classification), Urban (Light Blue, # 2, Green), Bare Soil
(Light Green, # 3, Blue), Natural Pasture (Dark Green, # 4, Yellow), Managed Pasture (Orange,
# 6, Cyan) and Trees (Red, # 6, Magenta).

In order to estimate the vectors of means and the covariance matrices, 5672 training sam-
ples were chosen (about 6% of all the pixels). These observations were subjected to a careful
exploratory analysis, since the quality of these samples is paramount for obtaining good results.
Test samples were also identified in order to assess classification accuracy; in this study 4041
pixels were labelled as test samples.

The reference classification was obtained with the seven available bands by ML; it is shown
in Figure 3(b) and its estimated accuracy is 0.86 (see Table 2 for details).

The three bands that provided the weakest separation between the classes of interest are 1, 3
and 5; the parameters were estimated using this information, and ML classification was obtained
(see Figure 3(c)). It was then used as the starting point of the ICM algorithm, that ended

with β̂(2) = 0.81 and the classification shown in Figure 3(d). Quantitative results are shown
in Table 2; all estimated accuracy values are high, showing that the classification procedure is
excellent (see Landis and Koch, 1977).

As a general conclusion, one sees that when there is complete and reliable information, the
accuracy improvement provided by ICM with respect to ML is small (from 0.84 to 0.86 when
seven bands are used), though statistically significant. The biggest contribution the contextual
classification provides arises when only incomplete data are available: if the worst three bands
are employed, the accuracy improves from 0.79 to 0.84. Even in the former situation, i.e., when
seven bands are used, the classification improvement is visually noticeable (see in figures 3(b)
and 3(e) how the trees spots in magenta are better resolved).

Table 2: Influence of partial information
Technique, data Accuracy Kappa 95% Confidence Interval

ML, 7 bands 0.86 0.8188 [0.8049, 0.8328]
ML, 3 bands 0.79 0.7141 [0.6976, 0.7306]
ICM, 3 bands 0.84 0.7872 [0.7722, 0.8021]
ICM, 7 bands 0.88 0.8447 [0.8317, 0.8579]

ML with all the available information provides an accuracy of 0.86 but using the three worst
bands this figures drops to 0.79. Using contextual information on the three worst bands improves
the result to 0.84, which is close to the accuracy obtained with seven bands. Confidence intervals
for the accuracy show that these values are significantly different. Incidentally, the accuracy
achieved by ICM and seven bands is of 0.88; this classification is shown in Figure 3(e). Figure 3
shows that classifications obtained by ICM are less grainy than those that employed only spectral
information.

4.1.2 Setup 2

From the complete data set (seven bands 6920 × 5960 image), 50 non-overlapping sub images
of size 200 × 160 with seven bands each were generated. Each was subjected to visual and
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(a) Color composite RGB 453 (b) ML 6 classes 7 bands

(c) ML 6 classes 3 bands (d) ICM 6 classes 3 bands

(e) ICM 6 classes 7 bands

Figure 3: Color composition and maps

9



descriptive analysis for the identification of classes, having found 4, 5, 6 and 7 land covers.
Training and test areas were then selected, with at least 100 sites for each class, and each

image was classified by ML and ICM. ICM required at most two iterations, ending with β̂(·) ∈
[0.60; 0.85] in all situations and within the upper half of the interval in 23 out of 50 situations.
After classification, the Kappa coefficient of agreement (along with its 90% confidence interval)
and accuracy were estimated.

In most situations the coefficient of agreement is close to 1 regardless the classification pro-
cedure, so we can conclude that both techniques are in good agreement with the ground truth.

Regarding Kappa, ICM produce equal or better classifications than ML, and in eight out of
fifty situations the improvement is statistically significant at the 90% level. Figure 4 shows the
estimated values of Kappa for both classification techniques (ML squares and dashed lines, ICM
circles and solid lines) in a few situations.

Figure 4: Kappa from ICM and ML maps

4.2 Analysis of ASTER Data

Figure 5 presents the original data and two classifications using a 560×360 pixels ASTER dataset
obtained in 2001 over the Comechingones area, Córdoba, Argentina. The nominal resolution is
of 15m, and the area consists mainly of agricultural fields. The classifications were obtained
using the bands 1, 2 and 3N presented in Figure 5(a).

In a first approach, three classes were defined and no significant difference between ML and
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ICM classifications was found. Then, by visual inspection and using field data, six classes were
defined and the two algorithms were applied obtaining the results presented in figures 5(b)
and 5(c).

This result is in agreement with Flygare (1997), i.e., that when well separated classes are
sought, simple classification procedures provide good results. As the number of classes grows,
the potential confusion also increases and, in such cases, more sophisticated techniques are better
suited.

ML classification (Figure 5(b)) has a Kappa coefficient of 0.959684, while ICM (Figure 5(c))
attains 0.978861. These results are statistically significant, so the latter classiffication is better
than the former beyond random fluctuations.

5 Conclusions

We presented the comparison of two classification procedures for remote sensing multispectral
imagery: pointwise maximum likelihood and contextual ICM. In both cases, observations were
described by the multivariate Gaussian distribution. The factors under assessment were (i) num-
ber of bands (ii) number of classes and (iii) errors in the training stage (iv) spectral situations
often encountered in real applications.

Using real data we conclude that (i) training and test samples were carefully chosen, leading
to good classification results; the influence of errors in the training stage was quantified, and
(ii) ICM is always better than ML, but performs the best when there is less than optimal available
quality information compensating the lack of dependable spectral information with contextual
evidence.

The evidence collected allows us to say that the ICM contextual classification technique is
the most adequate in every situation, even if the training data are collected in a non-dependable
manner, so if the computational effort required is not an issue it is always recommended.

Other results are expected with models for other sensors as, for instance, speckled data
from synthetic aperture radar; in this case, distributions from the Multiplicative Model (see, for
instance, Frery et al., 1997) a new assessment for the worst case training errors should be used.
The methodology, though, can be easily used to cover any situation that can be described in
terms of statistical modelling.
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A Markov Random Fields

Let C = {c1, . . . , cL} be the set of classes that describes the ground truth. Each element of the
support S = {(i, j) : 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1} is assigned one of these classes, CS is the
set of functions on S with value in C.

A family V = {V(i,j) : (i, j) ∈ S} of subsets of S is a neighborhood of S if

1. (i, j) /∈ V(i,j) for every (i, j),

2. (i, j) ∈ V(i′,j′) ⇔ (i′, j′) ∈ V(i,j), and

3. S = ∪(i,j)∈SV(i,j).

The pair G = (S, V ) is a graph.
In this work we will consider the so-called “eight-neighbors structure”: V 2

(i,j) = {(i′, j′) ∈

S : (i′ − i)2 + (j′ − j)2 ≤ 2, (i′, j′) 6= (i, j)}, and V
2 = {V 2

(i,j) : (i, j) ∈ S} for every (i, j) ∈ S.

A Random Field with space state CS is a random matrix

C = [C(i, j)], with 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1,

such that C(i, j) is a random variable with values in C. An outcome of C is an element of CS .
The probability distribution of C on CS will be denoted by PrC , i.e., for each c ∈ CS one has
that PrC(c) is the probability that C(i, j) = c(i, j) for every (i, j) ∈ S.

Given a graph G = (S, V ) and a Random Field C with space state CS , we say that C is a
G-Markov Random Field if for every c ∈ CS and every (i, j) ∈ S holds that

PrC(A | B) = PrC(A | V ),

where A = {c′ : c′(i, j) = c(i, j)}, B = {c′ : c′(i′, j′) = c(i′, j′), ∀(i′, j′) 6= (i, j)}, and V =
{c′ : c′(i′, j′) = c(i′, j′), ∀(i′, j′) ∈ V(i,j)}. In words, the conditional distribution of the random
variable at site (i, j) given the observation of all other sites depends only on the observed outcomes
at the neighboring sites V(i,j).

A particular Markov Random Field model, namely the Potts model, has been widely used
to describe the spatial distribution of classes in thematic maps (Bustos et al., 1998; Carnevalli
et al., 1985; Pickard, 1987). In order to define it, consider β ∈ R a real number. A Random Field
C with space state CS is a Potts model with parameter β with respect to the graph G = (S, V 2)
if

PrC(c) =
exp
(
β
∑

(i,j)∈S N(i,j)(c)
)

Zβ
, (3)

where
N(i,j)(c) = #{(i′, j′) ∈ V 2

(i,j) : c(i′, j′) = c(i, j)},

and the so-called partition function is given by

Zβ =
∑

c
′∈CS

exp

(
β
∑

(i,j)∈S

N(i,j)(c
′)

)
.
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B Pseudolikelihood estimation

Given c an outcome of the Potts model space state CS and eight-neighbors structure, any point
β̂ ∈ R that maximizes the product of all the conditional distributions

∏
(i,j)∈S Pr(C(i, j) | V(i,j))

is called “maximum pseudolikelihood estimator of β”. Finding such points is easier than finding
the maximum likelihood estimator, and it amounts to solving a nonlinear equation consisting of
sixty-seven terms. Each term involves the number of sites in S for which a certain configuration
has been observed. Next equation provides the expression that is used to compute β̂, where k8

denotes the number of sites where C(i, j) coincides with all its eight neighbors, k71 denotes the
number of sites where C(i, j) coincides with only seven of its eight neighbors, k233 denotes the
number of sites where C(i, j) coincides with only two of its eight neighbors and the remaining
six are divided in two sets of equal classes and so on; finally, k011111111 denotes the number of
sites where C(i, j) is different from all its eight neighbors, and they are different among them.
Note that the order in which the neighbors are arranged is irrelevant for this estimator.

k8
8L−1

e8 bβ+L−1
+ k71

6e
bβ+7L−14

e7 bβ+e bβ+L−2
+ k62

4e2 bβ+6L−12

e6 bβ+e2 bβ+L−2
+ k611

10e
bβ+6L−18

e6 bβ+2e bβ+L−3
+

+ k53
2e3 bβ+5L−10

e5 bβ+e3 bβ+L−2
+ k521

3e2 bβ+4e
bβ+5L−15

e5 bβ+e2 bβ+e bβ+L−3
+ k5111

12e
bβ+5L−20

e5 bβ+3e bβ+L−4
+

k44
4L−8

2e4 bβ+L−2
+ k431

e3 bβ+3e
bβ+4L−12

e4 bβ+e3 bβ+e bβ+L−3
+ k422

4e2 bβ+4L−12

e4 bβ+2e2 bβ+L−3
+

+ k4211
2e2 bβ+6e

bβ+4L−16

e4 bβ+e2 bβ+2e bβ+L−4
+ k41111

10e
bβ+4L−20

e4 bβ+4e bβ+L−5
+ k35

−2e5 bβ+3L−6

e3 bβ+e5 bβ+L−2
+

+ k341
−e4 bβ+2e

bβ+3L−9

e3 bβ+e4 bβ+e bβ+L−3
+ k332

e2 bβ+3L−9

2e3 bβ+e2 bβ+L−3
+ k3311

4e
bβ+3L−12

2e3 bβ+2e bβ+L−4
+

+ k3221
2e2 bβ+2e

bβ+3L−12

e3 bβ+2e2 bβ+e bβ+L−4
+ k32111

e2 bβ+6e
bβ+3L−15

e3 bβ+e2 bβ+3e bβ+L−5
+ k311111

10e
bβ+3L−18

e3 bβ+5e bβ+L−6
+

k26
−4e6 bβ+2L−4

e2 bβ+e6 bβ+L−2
+ k251

−3e5 bβ+e
bβ+2L−6

e2 bβ+e5 bβ+e bβ+L−3
+ + k242

−2e4 bβ+2L−6

2e2 bβ+e4 bβ+L−3
+

+ k2411
−2e4 bβ+2e

bβ+2L−8

e2 bβ+e4 bβ+2e bβ+L−4
+ k233

−2e3 bβ+2L−6

e2 bβ+2e3 bβ+L−3
+ + k2321

−e3 bβ+e
bβ+2L−8

2e2 bβ+e3 bβ+e bβ+L−4
+

k23111
−e3 bβ+3e

bβ+2L−10

e2 bβ+e3 bβ+3e bβ+L−5
+ k2222

2L−8

4e2 bβ+L−4
+ + k22211

2e
bβ+2L−10

3e2 bβ+2e bβ+L−5
+

k221111
4e

bβ+2L−12

2e2 bβ+4e bβ+L−6
+ + k2111111

6e
bβ+2L−14

e2 bβ+6e bβ+L−7
+ k17

−6e7 bβ+L−2

e bβ+e7 bβ+L−2
+ k161

−5e6 bβ+L−3

3e bβ+e6 bβ+L−3
+

+ k152
−4e5 bβ−e2 bβ+L−3

e bβ+e5 bβ+e2 bβ+L−3
+ k1511

−4e5 bβ+L−4

3e bβ+e5 bβ+L−4
+ k143

−3e4 bβ−2e3 bβ+L−3

e bβ+e4 bβ+e3 bβ+L−3
+

+ k1421
−3e4 bβ−e2 bβ+L−4

2e bβ+e4 bβ+e2 bβ+L−4
+ k14111

−3e4 bβ+L−5

4e bβ+e4 bβ+L−5
+ k1331

−4e3 bβ−L−4

2e bβ+2e3 bβ+L−4
+

+ k1322
−2e3 bβ−2e2 bβ+L−4

e bβ+e3 bβ+e2 bβ+e2 bβ+L−4
+ k13211

−2e3 bβ−e2 bβ+L−5

3e bβ+e3 bβ+e2 bβ+L−5
+ k131111

−2e3 bβ+L−6

5e bβ+e3 bβ+L−6
+

+ k12221
−3e2 bβ+L−5

2e bβ+3e2 bβ+L−5
+ k122111

−2e2 bβ+L−6

4e bβ+2e2 bβ+L−6
+ k1211111

−e2 bβ+L−7

6e bβ+e2 bβ+L−7
+

k11111111
L−8

8e bβ+L−8
+ k08

−8e8 bβ

1+e8 bβ+L−2
+ k071

−7e7 bβ−e
bβ

1+e7 bβ+e bβ+L−3
+ k062

−6e6 bβ−2e2 bβ

1+e6 bβ+e2 bβ+L−3
+

+ k0611
−6e6 bβ−2e

bβ

e6 bβ+e bβ+e bβ+L−3
+ k053

−5e5 bβ−3e3 bβ

e5 bβ+e3 bβ+L−2
+ k0521

−5e5 bβ−2e2 bβ−e
bβ

e5 bβ+e2 bβ+e bβ+L−3
+

+ k05111
−5e5 bβ−3e

bβ

e5 bβ+3e bβ+L−4
+ k044

−8e4 bβ

2e4 bβ+L−2
+ k0431

−4e4 bβ−3e3 bβ−e
bβ

e4 bβ+e3 bβ+e bβ+L−3
+

+ k0422
−4e4 bβ−4e2 bβ

e4 bβ+2e2 bβ+L−3
+ k04211

−4e4 bβ−2e2 bβ−2e
bβ

e4 bβ+e2 bβ+2e bβ+L−4
+ k041111

−4e4 bβ−4e
bβ

e4 bβ+4e bβ+L−5
+

+ k0332
−6e3 bβ−2e2 bβ

2e3 bβ+e2 bβ+L−3
+ k03311

−6e3 bβ−2e
bβ

2e3 bβ+2e bβ+L−4
+ k03221

−3e3 bβ−4e2 bβ−e
bβ

e3 bβ+2e2 bβ+e bβ+L−4
+

+ k032111
−3e3 bβ−2e2 bβ−3e

bβ

e3 bβ+e2 bβ+3e bβ+L−5
+ k0311111

−3e3 bβ−5e
bβ

e3 bβ+5e bβ+L−6
+ k02222

−8e2 bβ

4e2 bβ+L−4
+

+ k022211
−6e2 bβ−2e

bβ

3e2 bβ+2e bβ+L−5
+ k0221111

−4e2 bβ−4e
bβ

2e2 bβ4+e bβ+L−6
+

k02111111
−2e2 bβ−6e

bβ

e2 bβ+6e bβ+L−7
+ k011111111

−8e
bβ

8e bβ+L−8
= 0
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Though this is a lengthy function, it is easily implemented and, since it is smooth on β̂, most
available routines that compute the real roots of a univariate nonlinear function will provide a
result.

C Parameters for each simulation situation

C.1 Situation P1

The parameters are those reported in Richards and Jia (1999, p. 188), obtained from an image
with water, fire burn, vegetation and urban areas:

µ1 =





44.27
28.82
22.77
13.89



 , µ2 =





42.85
35.02
35.96
29.04



 , µ3 =





40.46
30.92
57.50
57.68



 , µ4 =





63.14
60.44
81.84
72.25



 ,

M1 =





14.36 9.55 4.49 1.19
9.55 10.51 3.71 1.11
4.49 3.71 6.95 4.05
1.19 1.11 4.05 7.65



 , M2 =





9.38 10.51 12.30 11.00
10.51 20.29 22.10 20.62
12.30 22.10 32.68 27.78
11.00 20.62 27.78 30.23



 ,

M3 =





5.56 3.91 2.04 1.43
3.91 7.46 1.96 0.56
2.04 1.96 19.75 19.71
1.43 0.56 19.71 29.27



 , M4 =





43.58 46.42 7.99 −14.86
46.42 60.57 17.38 −9.09
7.99 17.38 67.41 67.57

−14.86 −9.09 67.57 94.27



 .

C.2 Situation P2

Three bands and six classes; three of them with low mean values and the remaining three with
high mean values, same covariance matrices for classes with close mean values:

µ1 =




0
0
0



 , µ2 =




1
1
1



 , µ3 =




2
2
2



 , µ4 =




125
125
125



 , µ5 =




142
142
142



 , µ6 =




234
234
234



 ,

M1 = M2 = M3 =




0.0100 0.0030 0.0009
0.0030 0.0100 0.0030
0.0009 0.0030 0.0100



 , M4 = M5 = M6 =




25.00 7.50 2.25
7.50 25.00 7.50
2.25 7.50 25.00



 .

C.3 Situation P3

Four classes and four bands; the classes have equal mean vectors and covariances, being differ-
entiated by the variances only:
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µ1 = µ2 = µ3 = µ4 =





0
0
0
0



 ,

M1 =





1.0000 0.3000 0.0900 0.0081
0.3000 1.0000 0.3000 0.0900
0.0900 0.3000 1.0000 0.3000
0.0081 0.0900 0.3000 1.0000



 , M2 =





2.0000 0.3000 0.0900 0.0081
0.3000 2.0000 0.3000 0.0900
0.0900 0.3000 2.0000 0.3000
0.0081 0.0900 0.3000 2.0000



 ,

M3 =





4.0000 0.3000 0.0900 0.0081
0.3000 4.0000 0.3000 0.0900
0.0900 0.3000 4.0000 0.3000
0.0081 0.0900 0.3000 4.0000



 , M4 =





8.0000 0.3000 0.0900 0.0081
0.3000 8.0000 0.3000 0.0900
0.0900 0.3000 8.0000 0.3000
0.0081 0.0900 0.3000 8.0000



 .

C.4 Situation P4

Six classes and three bands; the classes have equal zero mean vectors and proportional covariance
matrices:

M1 =




1.00 0.30 0.09
0.30 1.00 0.30
0.09 0.30 1.00



 , Mj = j2M1, 2 ≤ j ≤ 6.

D Computational information

Developments were made in the IDL platform (www.rsinc.com) and incorporated into ENVI, an
image processing platform developed in IDL. Plots were produced in R (www.r-project.org).
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