
UNIVERSIDAD NACIONAL DE CÓRDOBA
FACULTAD DE MATEMáTICA, ASTRONOMÍA Y FÍSICA

technical report

Asymptotic Behavior of RA-estimates in Autoregressive 2D
Processes

by

Bustos, O., Ruiz, M., Ojeda, S.,
Vallejos, R. and Frery, A.

February 2007

1



Asymptotic Behavior of RA-estimates in Autoregressive 2D
Processes

Bustos,O.1, Ruiz, M.2, Ojeda, S.3, Vallejos, R.4, and Frery, A.5

Abstract

In this work we study the asymptotic behavior of a robust class of estimator of coe¢ cients of AR-2D process. We
established the consistency and asymptotic normality of the RA estimator under precise conditions. This class of
models has diverse applications in image modeling and statistical image processing.

Keywords and phrases: Image Processing, Bidimensional Processes, AR-2D Models, Polynomial Coe¢ cients, Ro-
bust Estimators, Residual Autocovariance, Asymptotic Normality and Consistency.

1;3 FaMAF-CIEM, UNC, Argentina.
2 Ciencias Exactas, UNRC, Argentina.
4 IMAFI,Universidad de Valparaíso, Chile.
5 Instituto de Computação, UFAL, Brasil.

2



1 INTRODUCTION

Robust inference techniques appear in a diversity of contexts and applications, though the terms �robust� and �ro-
bustness�are quite freely used in the image processing and computer vision literature, not necessarily with the usual
statistical meaning.
The median and similar order-based �lters are basic tools in image processing (Aysal and Barner (2006); Huang and

Lee (2006); Palenichka et al. (2000), (1998)), and in some cases particular attention has been devoted to obtain the
distribution of those estimators (Steland (2005)). Frery et al. (1997) derived a family of robust estimators for a class
of low signal-to-noise ratio images, while Vallejos and Mardesic (2004) proposed the robust estimation of structural
parameters for their restoration.
Other resistant approaches have proved being successfull in image restoration (see, for instance, Ben Hamza and

Krim (2001); Chu et al. (1998); Koivunen (1995); Marroquin et al. (1998); Rabie (2005); Tarel et al. (2002);
Voloshynovskiy et al. (2000); Zervakis and Kwon (1992)). A common challenge in these applications is that the
number of observations is reduced to a few, typically less than a hundred points.
When it comes to image analysis, many robust techniques have been proposed. In this case, the sample size is

usually larger than the one available in �lters and, frequently, structure and topology do not impose heavy requirements
or constraints. In some cases, strong hypothesis are made on the laws governing the observed process (Allende and
Pizarro (2003); Brunelli and Messelodi (1995); Bustos et al. (2002); Butler (1998); Dryden et al. (2002); Van de Weijer
and Van den Boomgaard (2005)); other approaches can be seen in the works by Bouzouba and Radouane (2000);
Brandle et al. (2003); Nirel et al. (1998); Sim et al. (2004); Tohka et al. (2004); Xu (2005) and Zervakis et al. (1995).
High-level image analysis, or vision, also bene�ts from the use of robust estimation techniques, as can be seen in

Black and Rangarajan (1996), Black et al. (1997), Chen et al. (2003), Comport et al. (2006), Glendinning (1999),
Gottardo et al. (2006), Hasler et al. (2003), Kim and Han (2006), Li et al. (1998), Meer et al. (1991), Mirza and
Boyer (1993), Prastawa et al. (2004), Roth (2006), Singh et al. (2004), Stewart (1999), Torr and Zisserman (2000)
and Wang and Suter (2004a,b).
In a wide variety of situations such as image analysis, remote sensing and agricultural �eld trials, observations are

obtained on two-dimensional lattices or grids. A class of two-dimensional autoregressive processes has been suggested
(Whittle (1954)) as a source of models for the spatial correlation in such data (Tjostheim (1978)). These models are
natural extensions of the autoregressive processes used in time series analysis (Basu and Reinsel (1993)).
Most robust techniques developed for parametric models in time series have been implemented for spatial parametric

models when the process has been contaminated with innovation or additive outliers (Kashyap and Eom (1988)). Since
a single outlier can produce bias and a large variance in the estimators, most of those proposals aim at providing
estimators that are more resistant to the presence of contamination.
There are at least three classes of robust estimators that have been studied in this context, namely, the M, GM and

RA estimators. Kashyap and Eom (1988) introduced M estimators for two-dimensional autoregressive models, and a
recursive image restoration algorithm was implemented using a robust M estimators. Allende et al. (1998) studied
the implementation of Generalized M (GM) estimators for the same class of models. The image restoration algorithm
previously developed by Kashyap and Eom (1988) was generalized by Allende et al. (2001).
Robust Residual Autocovariance (RA) estimators were introduced by Bustos and Yohai (1986) in the context of

time series. They are based on �cleaning�the residuals by the application of a robustifying  function in the recursive
estimation procedure. Ojeda (1999) studied the extension of the RA estimators for spatial unilateral autoregressive
models. The computational implications of that extension have been studied by Ojeda et al. (2002) and Vallejos et
al. (2006). Monte Carlo simulation studies show that the performance of the RA estimators is better than the M
estimators and slightly better than the GM estimators when the model has been contaminated with additive outliers.
Although the performance of the M and GM estimators is reasonable under innovation outliers, the asymptotic

properties are still open problems.
In this paper we study the asymptotic behavior of the RA estimators for unilateral autoregressive spatial processes,

generalizing the results for one-dimensional time series asymptotic behavior established by Bustos et al. (1984). We
give precise conditions for the consistency and asymptotic normality of the RA estimators.
The paper is organized as follows. In Section 2, the model and some preliminary notation are established. In

Section 3 the RA estimators of a two-dimensional autoregressive process is introduced. Section 4 establishes the
Strong Consistency of the RA estimators, while Section 5 proves its Asymptotic Normality. The proofs of the results
are organized in two subsections of the Appendix (Section 6). The paper concludes in Section 7 with some �nal remarks
and directions for future work.
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2 AR-2D MODELS

Throughout this paper we assume that the random variables are de�ned on the same probability space (
;F; P ).
If m = (m1;m2)

0 and k = (k1; k2)0 2 Z2; we write m � k if mi � ki for i = 1; 2: Let

I0 = fm 2 Z2 : 0 � m and m 6= 0 = (0; 0)0g;

and let
T = ft1; : : : ; tLg = f(t1;1; t1;2)0; : : : ; (tL;1; tL;2)0g � I0;

be a �nite and not empty set.
Consider �0 = (�01; : : : ; �0L)

0 2 RL such that

sup
1�p�L

����0p��	 < 1

L
; (1)

and let P�0 be a polynomial de�ned over C
2 as follows

P�0(z; w) = 1�
LX
p=1

�0pz
tp;1wtp;2 : (2)

For each m 2 Z2 let Xm : 
! R be a random variable such that eX =
�
Xm

�
m2Z2 is a AR(P�0 ;e") process; that is,

for each ! 2 
 and m 2 Z2, Xm satis�es

Xm(!) = �+
LX
p=1

�0pXm�tp(!) + "m(!); (3)

where e" = �"m�m2Z2 is a white noise, i.e., the components of e" are independent and identically distributed random
variables with common distribution function F" (not necessarily Gaussian), zero mean and �nite variance �2" > 0.
Whenever possible we will drop the argument !.
The following condition is required:

Assumption 1. The distribution function of the errors, F", is absolutely continuous with density f".

Our interest is the estimation of the coe¢ cients �0 from the observed values of eX; so we assume in this paper that
� and �" are known and without loss of generality we take � = 0: If the position � and the scale �" are unknown they
can be estimated using (possibly robust) estimators.

Example 1. In practice, typical values for L are 1, 2 or at most 3. The following case has been frequently found in
recent applications (see Ojeda et al. (2002)): consider T = f(1; 0)0; (1; 1)0; (0; 1)0g and set t1 = (1; 0)0, t2 = (1; 1)0 and
t3 = (0; 1)

0: So, the polynomial in (2) is given by

P�0(z; w) = 1� �01z � �02zw � �03w:

Hence, the model is described by

X(m1;m2)0 = �01X(m1�1;m2)0 + �02X(m1�1;m2�1)0 + �03X(m1;m2�1)0 + "(m1;m2)0 :

We will now show an important characterization of eX. Assuming that Xm 2 L2(
;F; P ) withXm

2
L2

= Variance of Xm = �2X ;

E(Xm) = 0;

(see Guyon (1993), Chapter 1) , we have that, for each m, Xm can be expressed as a series of terms of
�
"n
�
n2Z2 in the

L2(
;F; P ) space.
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Indeed, for each ! 2 
 and m 2 Z2, after one iteration in (3), Xm(!) can be written as

Xm(!) =
LX

k1=1

�0k1Xm�tk1
(!) + "m(!)

=
LX

k1=1

�0k1

"
LX

k2=1

�0k2Xm�tk1�tk2
(!) + "m�tk1

#
+ "m(!)

=
LX

k1;k2=1

�0k1�0k2Xm�tk1�tk2
(!) +

LX
k1=1

�0k1"m�tk1
+ "m(!);

now, if we iterate twice we have

Xm(!) =
LX

k1;k2;k3=1

�0k1�0k2�0k3Xm�tk1�tk2�tk3
(!) +

LX
k1;k2=1

�0k1�0k2"m�tk1�tk2
+

LX
k1=1

�0k1"m�tk1
+ "m(!):

So, after h� 1 � 2 iterations, we arrive to the following expression:

Xm(!) =
X
ek2Lh

Ih;ek(�0)Xm�s(h;ek)(!) +
h�1X
j=1

X
ek2Lj

Ij;ek(�0)"m�s(j;ek)(!) + "m(!);

where L = f1; 2; : : : ; Lg, for each j 2 N and ek = (k1; : : : ; kj)0 2 Lj
s(j; ek) = jX

i=1

tki ;

and Ih;ek : �! R is the function de�ned on

� =

�
� =(�1; : : : ; �L)

0 2 RL : sup
1�p�L

���p�� < 1

L

�
; (4)

such that
Ih;ek(�) = �k1 : : : �kh ;8� 2 �:

Considering that 
X
ek2Lh

Ih;ek(�0)Xm�s(h;ek)

L2

�
X
ek2Lh

���Ih;ek(�0)����X = �X

 
LX
p=1

���0p��
!h

;

and that, by (1), limh!1

�PL
p=1

���0p���h = 0; the following proposition is valid.
Proposition 1. For all m 2 Z2 holds that

Xm = "m +
1X
j=1

X
ek2Lj

Ij;ek(�0)"m�s(j;ek); (5)

where the series converges in the L2(
;F; P ) space.

3 ESTIMATORS OF POLYNOMIAL COEFFICIENTS �0
In order to de�ne the estimators of �0 we need to introduce some general notation. Let H : �! RL be a di¤erentiable
function and, for each 1 � p � L; let Hp : � ! R be its p-th component; that is, Hp(�) = (H(�))p. Denote the
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derivative of H by DH and, for each 1 � p; q � L; let Dq(Hp)(�) be the partial derivative with respect to the q-th
component of the function Hp evaluated at �. Similarly, if h : �! R is a di¤erentiable function, Dq(h)(�) and rh(�)
denote the partial derivative with respect to the q-th component and the gradient of h evaluated at �, respectively.
Let eX be the set of all possible realizations of the random variables Xm; m 2 I0. Since for all m 2 Z2, E(Xm) = 0,

and for convenience (it will be clear in the notation introduced below) we assume in this section that

Xm(!) = 0 if m =2 I0; for all ! 2 
: (6)

For each m 2 Z2, let rm : 
��! R be a function de�ned as follows:

rm(!;�) = Xm(!)�
LX
p=1

�pXm�tp(!):

Then, by (3) and (6), for every � 2�, the residual with respect to �, rm(�), is

rm(�0) � "m; if
�
m� tp

�
2 I0; 8 1 � p � L;

rm(�) � 0; if m =2 I0: (7)

For each positive integer M let us de�ne the square window of M order as

WM = fm 2 I0 : m � (M;M)g;

and eXM = (Xm)m2WM
;

denotes the observed process in WM .

Remark 1. We assume that M is large enough to have a well de�ned estimation problem; for example, consider
M �M0 = inffM 0 : T �WM 0g:

Now we introduce the classical de�nition of least squares estimator as follows:

De�nition 1. The least squares estimator of �0 based on eXM , with domain b
M � 
 is de�ned as the functionb�M : b
M ! � such that X
m2WM

�
rm(!; b�M (!))�2 � X

m2WM

�
rm (!;�)

�2
;

for all ! 2 b
M and � 2 �.

Considering that, for each ! 2 b
M and m 2 Z2 the function � 7!rm (!;�) is continuously di¤erentiable, then b�M
satis�es X

m2WM

�
rm(!; b�M (!))� � r�rm(!; b�M (!))� = 0;

for all ! 2 b
M . Equivalently, by (7), X
m2WM

�
rm(!; b�M (!))� �Xm�tp(!) = 0; (8)

for all 1 � p � L and ! 2 b
M . But, by Proposition 1, (6) and (7),
Xm�tp(!) = rm�tp(!;�0) +

M�1X
j=1

X
ek2Lj

Ij;ek(�0)rm�tp�s(j;ek)(!;�0);

for all ! 2 b
M . Replacing this expression in (8), the following equality holds:
X

m2WM

8<:rm �!;c�M (!)� rm�tp(!;�0) +
M�1X
j=1

X
ek2Lj

Ij;ek(�0)rm(!; b�M (!))rm�tp�s(j;ek)(!;�0)
9=; = 0; (9)
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for all 1 � p � L and ! 2 b
M . Now, replacing the parameter by its estimator in (9) we have the following de�nition:
De�nition 2. The least squares estimator of �0 based on the covariance of the residuals corresponding to the obser-
vations eXM , with domain 
MQ;M � 
 is de�ned as the function b�Q;M : 
MQ;M ! � such thatX

m2WM

�
�m;M

�
!; b�Q;M (!)��

p
= 0;

for all 1 � p � L and ! 2 
MQ;M; where �n;N : 
��! RL is given by�
�n;N (!;�)

�
p
= rn(!;�):rn�tp(!;�)+

N�1X
j=1

X
ek2Lj

Ij;ek(�)rn(!;�)�rn�tp�s(j;ek)(!;�);

1 � N , ! 2 
, n 2 Z2, � 2 � and 1 � p � L.

Remark 2. If we assume that eX =
�
Xm

�
m2Z2 is a AR(P�0 ;e") Gaussian process, then the asymptotic properties of

this estimator can be derived from more general results as in Guyon (1993), Chapter 3.

It is a well known fact that least squares estimator based on the covariances are not robust. Hence, the idea is to
make them robust using adequate continuous and bounded score functions.

De�nition 3. The RA estimator of �0 based on the observations eXM with domain 
RA;M � 
 is de�ned as the

function b�RAM : 
RA;M ! �, such that

0 =
X

m2WM

�
��m;M (!;

b�RAM (!))
�
p
;

for all 1 � p � L and ! 2 
RA;M ; where ��n;N : 
��! RL is given by�
��n;N (!;�)

�
p
= �

�
r�n(!;�);r

�
n�tp(!;�)

�
+

N�1X
j=1

X
ek2Lj

Ij;ek(�)�
�
r�n(!;�);r

�
n�tp�s(j;ek)(!;�)

�
;

and
r�n(!;�) = rn(!;�)=�";

1 � N , ! 2 
 ,n 2 Z2;� 2 �, 1 � p � L and � : R2 ! R is a score function.

Score functions can be chosen from several families or types (see Bustos and Yohai (1986)). The Mallows type score
functions are de�ned as �M (u; v) =  1(u) 2(v), while the Hampel type is �H(u; v) =  (uv), where the  functions are
continuous and odd, and they may be chosen, for example, from the Huber family:

 H;k(u) = sgn(u) �min(juj ; k);

where sgn(u) is the sign function and k is a constant; or in a redescending familiy, for example the bisquare family
de�ned by

 B;k(u) = k �  B
�u
k

�
;

where k is a constant and

 B(u) =

�
u
�
1� u2

�2
; 0 � juj � 1

0; juj > 1:

Note that if �(u; v) = uv then the RA estimator de�ned above coincides with the previously de�ned least squares
estimator of �0 based on the covariance of the residuals.
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Continuation of Example 1. Let � = f(�1; �2; �3)0 2 R3 : sup1�p�3
����p��	 < 1=3g: The RA estimator of �0

based on the observations eXM is the random vector b�RAM = (b�RAM;1;
b�RAM;2;

b�RAM;3)
0 2 �; such that

0 =
X

m2WM

�
�
r�m(

b�RAM );r�m�tp(
b�RAM )

�
+

X
m2WM

2MX
j=1

jX
u=0

uX
v=0

�b�RAM;1

�v �b�RAM;2

�j�u �b�RAM;3

�u�v
�
�
r�m

�b�RAM �
; r�m�tp�(v+j�u;u�v)0

�b�RAM ��
;

for all p = 1; 2; 3:

4 CONSISTENCY OF RA ESTIMATORS

In order to study the asymptotic behavior of RA estimator we will introduce some changes in the previous de�nitions.
First, we eliminate the condition (6) and we assume that the process eX is observed in Z2. Now we rede�ne the residuals
as follows

De�nition 4. For all m 2 Z2, the residual with respect to � is the function Rm : 
��! R de�ned as

Rm(!;�) =
1

�"

 
Xm(!)�

LX
p=1

�pXm�tp(!)

!
;

with ! 2 
 and � 2 �.

Note that Rm(�) is r�m(�) as given in De�nition 3 when
�
m� tp

�
2 I0 for all 1 � p � L. Also

Rm(�0) = "m=�", for all m. (10)

De�nition 5. The RA estimator of �0 based on the observations (Xm)m�(M;M)0 with domain 
0RA;M � 
 is de�ned
as the function b�RAM : 
0RA;M ! �, such that

1

#(WM )

X
m2WM

��m;M (!;
b�RAM (!)) = 0; (11)

for all ! 2 
0RA;M , and �
�
n;N : 
��! RL is given by

�
��n;N (!;�)

�
p
= �

�
Rn(!;�);Rn�tp(!;�)

�
+
N�1X
j=1

X
ek2Lj

Ij;ek(�) �
�
Rn(!;�);Rn�tp�s(j;ek)(!;�)

�
;

where � is a score function, 1 � N � 1, n 2 Z2, ! 2 
 ,� 2 � and 1 � p � L.

Remark 3.

(a) For N = 1 the convergence of the series involved in the de�nition of ��n;1 is granted because of the de�nition of � and
the assumptions about the � function that we describe below.

(b) As we mention before, when �" is unknown, the computation of Rm(�0) can be done by plugging in (10) a robust estimator
of the scale of F":

Let us consider the following assumptions about �:

Assumption 2.
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(i) � : R2 �! R is a continuously di¤erentiable function satisfying

�(0; v) = 0;

�(u; 0) = 0;

j�(u; v)j � K�;

for some constant K� <1 and for all (u; v) 2 R2:

(ii) Let �1 (u; v) = D1� (u; v) and �2 (u; v) = D2� (u; v) the partial derivatives of � with respect to the �rst and second
components respectively. One of the two following conditions is satis�ed:

(a) There are constants K1; K2 such that

j�1 (u; v)j � K1;

j�2 (u; v)j � K2;

for all (u; v) in R2.
(b) There exists a constant 0 < K3 <1; such that

j�1 (u; v)j � K3 jvj ;
j�2 (u; v)j � K3 juj :

(iii)

E

�
�

�
"m
�"
;
"m0

�"

��
= 0 if m 6= m0;

where "m and "m0 are independent random variables with distribution F".

(iv)

E

�
�1

�
"m
�"
;
"m0

�"

�
"m0

�
6= 0 if m 6= m0;

where "m and "m0 are independent random variables with distribution F".

Now, we state the main result of this section:

Theorem 1 (Existence and Consistency of the RA Estimator). Given M0 <1, there exists 
00 � 
 with P (
00) = 1
such that


00 � 
000 = f! 2 
: there exists N > M0 such that

M � N ) 9b�RAM (!) 2 � with
1

#(WM )

X
m2WM

��m;M (!;
b�RAM (!)) = 0; and lim

M!1
b�RAM (!) = �0g:

The proof of this Theorem is given in the Subsection 6.1 of the Appendix.

5 ASYMPTOTIC NORMALITY OF RA ESTIMATORS

We will prove in the appendix that the covariance matrix of X;say � (XT ) ; is a positive de�nite matrix. More precisely,
� (XT ) is given by � (XT ) = �2"I1(�0) (see Lemma 1 in Subsection 6.1) where I1(�0) is de�ned as follows.
Let

T � T = ft� s : t and s in Tg ; (12)

and, for each v 2 T � T , let

(T � T )1 (v) =
n
(j; ek) : j � 1,ek 2 Lj and s(j; ek) = v

o
;

(T � T )2 (v) =
n
(j; ek; l; eh) : j; l � 1; ek 2 Lj ; eh 2 Ll and s(j; ek)� s(l; eh) = v

o
:

9



Note that
v =2 I0 ) (T � T )1 (v) = ;: (13)

So, I1(�0) is the L� L matrix given by

I1(�0)p;p = 1 +
X

(j;ek;l;eh)2(T�T )2(0)
Ij;ek(�0)Il;eh(�0); (14)

for all 1 � p � L, and

I1(�0)p;q =
X

(j;ek)2(T�T )1(tp�tq)
Ij;ek(�0) + X

(j;ek)2(T�T )1(tq�tp)
Ij;ek(�0) + (15)

X
(j;ek;l;eh)2(T�T )2(tp�tq)

Ij;ek(�0)Il;eh(�0);

for all p 6= q; 1 � p; q � L:
Now, in addition to the conditions given in Assumption 2 we need to introduce the following restriction on the

score function.

Assumption 3.

E

�
�

�
"

�"
;
"0

�"

�
� �
�
"

�"
;
"00

�"

��
= E

�
�

�
"

�"
;
"0

�"

�
:�

�
"00

�"
;
"

�"

��
= 0;

where ", "0 and "00 are independent random variables with distribution function F".

We now state the asymptotic distribution of the RA estimator.

Theorem 2 (Asymptotic Normality of the RA Estimator). Let
�b�RAM �

M�M0
be a sequence of random variables in �

such that p
#(WM )

24 1

#(WM )

X
m2WM

��m;M

�b�RAM �35 P�! 0; as M !1; (16)

and b�RAM P�! �0; as M !1:

Then p
#(WM )

�b�RAM � �0
�
D�!N

�
0; �2A

�
; as M !1;

where the asymptotic variance is given by

�2A = �2"

E

��
�
�
"
�"
; "

0

�"

��2�
�
E
�
�1

�
"
�"
; "

0

�"

�
:"0
��2 (I1(�0))�1 ;

with ", "0 are independent random variables with distribution function F".

The proof of Theorem 2 is given in the Subsection 6.2 of the Appendix.

Remark 4. Theorem 2 gives the asymptotic distribution of the least squares estimator of �0 based on the covariance
of the residuals (LS estimator) when �(u; v) = uv. Hence, the e¢ ciency of the RA estimator with respect to the LS
estimator is given by

1

�2"
E
�
(�( "

�"
; "

0
�"
))

2
�

(E(�1( "
�"
; "

0
�"
):"0))

2

:

So, as discussed by in Bustos and Yohai (1986), the constants involved in the de�nition of the � function can be tuned.
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6 APPENDIX: PROOFS

In order to simplify the presentation we introduce some additional notation and considerations. Let

GM;N (!;�) =
1

#(WM )

X
m2WM

��m;N (!;�);

gN (�) = E
�
��0;N (�)

�
; (17)

FM (!;�) = GM;M (!;�);

f(�) = g1(�);

where 1 � N � 1, M0 �M <1; ! 2 
 and � 2 �. Note that from (10), and (i) and (iii) of Assumption 2, it follows
that

f(�0) = 0: (18)

Since � is continuously di¤erentiable, for each ! 2 
 the function � 7! FM (!;�) is continuously di¤erentiable on �,
for every M .
Let �0 > 0 such that � = f� 2�: j���0j < �0g � �; hence by (4), we have that

b = sup

�
L sup
1�p�L

���p�� : � 2 �� < 1: (19)

Remark 5. Let � 2 �. Then ������
1X
j=0

X
ek2Lj

Ij;ek(�)
������ �

1X
j=0

bj :

In fact,
���P1

j=0

Pek2Lj Ij;ek(�)
��� � P1

j=0

Pek2Lj
���Ij;ek(�)��� = P1

j=0

�PL
p=1

���p���j � P1
j=0 b

j . Consider also 0 < �1 <

�0, and let C = B0(�1) =
�
� 2 RL : j�� �0j � �1

	
.

6.1 Proof of the Consistency of the RA estimator

The following lemmas and propositions are necessary to prove Theorem 1. This proof is given at the end of this
subsection.

Lemma 1. Let I1(�0) be as in (14) and (15) and let � (XT ) be the covariance matrix of XT =
�
Xt1

; : : : ; XtL

�0
. Then

� (XT ) is positive de�nite and
� (XT ) = �2"I1(�0):

Let us prove that the covariance matrix is positive de�nite. Note �rst that, since E(Xtp
) = 0, for all 1 � p � L,

then
� (XT ) =

�
E(Xtp

Xtq
)
�
1�p;q�L:

As � (XT ) is non negative de�nite, by contradiction we suppose that � (XT ) is not positive de�nite. Then there exists
a vector a = (a1; : : : ; aL)

0 6= (0; : : : 0) such that

0 = a� (XT )a
0 =

LX
p=1

LX
q=1

apaqE(Xtp
Xtq

) =
LX
p=1

LX
q=1



apXtp

; aqXtq

�
L2
=

 LX
p=1

apXtp

2
L2
:

Hence
LX
p=1

apXtp
= 0; (20)

in L2. Without loss of generality we may assume that the set T = ft1; : : : ; tLg satis�es�
tp;1 � tq;1 1 � p < q � L
tp;2 > tq;2 if tp;1 = tq;1; 1 � p < q � L:

(21)

11



Considering that a is di¤erent from the null vector and (20) then there exists

1 � p1 < � � � < pr � L, 2 � r � L; (22)

such that
api 6= 0; for all i = 1; : : : ; r: (23)

For every U � L2(
; F; P ) we denote with H(U) the closed vector subspace of L2(
; F; P ) generated by U . So, using
Proposition 1, we have that

Xm 2 H
��
"m
	
[
n
"m�s(j;ek) : j � 1; ek 2 Ljo� ; for all m 2 Z2:

Then, by (20), (22) and (23) we conclude that

"tp1
2 H

�n
"tp2

; � � � ; "tpr
o
[
�
"
tpi

�s(j;ek) : 1 � i � r; j � 1; ek 2 Lj�� : (24)

Now, using (21), (22) and the de�nition of s(j; ek); j � 1; ek 2 Lj ; we establish that
"tp1

=2
�n

"tp2
; � � � ; "tpr

o
[
�
"
tpi

�s(j;ek) : 1 � i � r; j � 1; ek 2 Lj�� :
Since e" = �"m�m2Z2 is a white noise, (24) is impossible. By this contradiction we conclude that the covariance matrix
is positive de�nite.

The equality � (XT ) = �
2
"I1(�0) follows from a straightforward calculation.

Lemma 2. For each m 2 Z2; let Zm be the random vector with values in RL+1 given by

Zm =
�
Xm; Xm�t1 ; : : : ; Xm�tL

�0
:

Let c0 : � ! R be a continuous function. For each j � 1 and ek 2 Lj let cj;ek : � ! R be a continuous function.
Assume that

c0) There exists a sequence of positive real numbers, (bj)j�0 ; such that

1X
j=0

bj <1;

sup
�2�

jc0 (�)j � b0; and

sup
�2�

X
ek2Lj

���cj;ek (�)��� � bj ;8j � 1:

Let W : RL+1 � RL+1 � �! R be a function satisfying the following assumptions:

w1) There exists KW <1 such that for each (x;y) 2 RL+1 � RL+1

sup
�2�

jW (x;y;�)j � KW j� (x;y)j ;

where � is the function � : RL+1 � RL+1 �! R such that there exists a constant � satisfying

E
���� �Zm;Zn���� � �

X0


L2
; (25)

for all m; n 2 Z2.

w2) Given K � RL+1 a compact set and d > 0; there exists d0 > 0 such that

j�� ��j < d0;� and �� 2 � =) jW (x;y;�)�W (x;y;��)j < d; for all x;y 2 K:

12



Let n1 2 Z2. For each 1 � N integer and n 2 Z2 let 	n;N : 
� �! R be given by

	n;N (!;�) = c0 (�)W
�
Zn(!);Zn�n1(!);�

�
+
N�1X
j=1

X
ek2Lj

cj;ek (�)W
�
Zn(!);Zn�n1�s(j;ek)(!);�

�
:

Then

1)
�
	0;N (�)

�
N�1 converges uniformly on � 2 � in L

2(
;F; P ).

Let us denote the limit as

	0;1(!;�) = c0 (�)W
�
Z0(!);Z0�n1(!);�

�
+

1X
j=1

X
ek2Lj

cj;ek (�)W
�
Z0(!);Z0�n1�s(j;ek)(!);�

�
:

2) Writing

TM;N (!;�) =
1

#(WM )

X
m2WM

	m;N (!;�)

there exists a strictly increasing sequence (J(N))N such that for all N there exists 
N � 
 with P (
N ) = 1
satisfying

lim sup
M!1

sup
�2C

��TM;M (!;�)� E
�
	0;1(�)

��� � lim sup
M!1

sup
�2C

��TM;J(N)(!;�)� E
�
	0;J(N)(�)

���+ 1

N
;

if ! 2 
N .

3) For each N there exists 
0N with P (
0N ) = 1, satisfying limM!1 sup�2C
��TM;N (!;�)� E

�
	0;N (�)

��� = 0 if
! 2 
0N .

4) There exists a subset 
0 of 
 with P (
0) = 1; such that


0 �

8<:! 2 
 : lim
M!1

sup
�2C

������ 1

#(WM )

X
m2WM

	m;M (!;�)� E
�
	0;1(�)

������� = 0
9=; :

PROOF: The proof of 1) is an inmediate consequence of c0), w1) and (25). To prove 2), let J(N) be the minimum
positive integer such that for each N ,

KW :�:
X0


L2

1X
j=J(N)

bj <
1

2N
:

Then

E

0@sup
�2C

1X
j=J(N)

X
ek2Lj

���cj;ek (�)W �
Z0;Z0�n1�s(j;ek);�

����
1A

� KW : sup
�2C

1X
j=J(N)

X
ek2Lj

���cj;ek (�)���E ������Z0(!);Z0�n1�s(j;ek)(!)�����

� KW :�:
X0


L2
sup
�2C

1X
j=J(N)

X
ek2Lj

���cj;ek (�)���
� KW :�:

X0


L2

1X
j=J(N)

bj

<
1

2N
:

13



Hence, for each ! 2 
 and M > J(N),

sup
�2C

��TM;M (!;�)� E
�
	0;1(�)

���
� sup

�2C

��TM;J(N)(!;�)� E
�
	0;J(N)(�)

���
+

1

#(WM )

X
m2WM

0@sup
�2C

M�1X
j=J(N)

X
ek2Lj

���cj;ek (�)W �
Zm(!);Zm�n1�s(j;ek)(!);�

����
1A

+ E

0@sup
�2C

1X
j=J(N)

X
ek2Lj

���cj;ek (�)W �
Z0;Z0�n1�s(j;ek);�

����
1A :

By the ergodicity, there exists 
N � 
 with P (
N ) = 1; such that if ! 2 
N ; then

lim sup
M!1

1

#(WM )

X
m2WM

0@sup
�2C

1X
j=J(N)

X
ek2Lj

���cj;ek (�)W �
Zm(!);Zm�n1�s(j;ek)(!);�

����
1A

= E

0@sup
�2C

1X
j=J(N)

X
ek2Lj

���cj;ek (�)W �
Z0;Z0�n1�s(j;ek);�

����
1A :

Thus, for each ! 2 
N we have that

lim sup
M!1

sup
�2C

��TM;M (!;�)� E
�
	0;1(�)

��� � lim sup
M!1

sup
�2C

��TM;J(N)(!;�)� E
�
	0;J(N)(�)

���+ 2� 1

2N

�
:

Let us prove 3). Consider N � 1 and, for each � 2 C, let 
00N (�) with P (
00N (�)) = 1; such that


00N (�) �
n
! 2 
 : lim

M!1

��TM;N (!;�)� E
�
	0;N (�)

��� = 0o :
Let n � 1 . Since

�����Z0;Z0�n1�s(j;ek)���� is integrable for all ek 2 Lj ; 1 � j � N � 1; there exists 0 < KN;n < 1; such
that

supek2Lj ;1�j�N�1
�
E
�
1A(KN;n)c

��� �Z0;Z0�n1���� ; E �1A(KN;n)c

�����Z0;Z0�n1�s(j;ek)������ < 1

6nKW

�P1
j=0 bj

� ; (26)

where

A(KN;n) =

(
! 2 
 : sup

s2SN

��Zs(!)�� 6 KN;n

)
;

SN = f0; 0� n1g [
n
0� n1 � s(j; ek) : ek 2 Lj ; 1 � j � N � 1

o
:

Let � 2 C: Considering that the functions c0 and cj;ek; ek 2 Lj ; 1 � j � N � 1; are continuous and also c0), w1), w2),
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the de�nition of A(KN;n) and (26) we conclude that there exists a neighborhood, V�;n , of � contained in � such that:

E

 
sup

��2C\V�;n

��	0;N (��)�	0;N (�)��!

� E

 
sup

��2C\V�;n

��	0;N (��)1A(KN;n) �	0;N (�)1A(KN;n)

��!

+ E

 
sup

��2C\V�;n

��	0;N (��)1A(KN;n)c �	0;N (�)1A(KN;n)c
��!

� E

 
sup

��2C\V�;n

��	0;N (��)1A(KN;n) �	0;N (�)1A(KN;n)

��!

+ E

 
sup

��2C\V�;n

��	0;N (��)1A(KN;n)c
��!+ E ���	0;N (�)1A(KN;n)c

���
<
1

6n
+
1

6n
+
1

6n
=
1

2n
:

Now, for each ! 2 
,

sup
��2C\V�;n

��TM;N (!;�
�)� E

�
	0;N (�

�)
���

�
��TM;N (!;�)� E

�
	0;N (�)

���
+

1

#(WM )

X
m2WM

sup
��2C\V�;n

��	m;N (!;��)�	m;N (!;�)��
+ sup
��2C\V�;n

��E �	0;N (��)�� E �	0;N (�)��� : (27)

Also,

sup
��2C\V�;n

��E �	0;N (��)�� E �	0;N (�)��� � E

 
sup

��2C\V�;n

��	0;N (��)�	0;N (��)��! <
1

2n
: (28)

Because of the de�nition of 
00N (�); it follows that for all ! 2 
00N (�):

lim
M!1

��TM;N (!;�)� E
�
	0;N (�)

��� = 0: (29)

By ergodicity, there exists 
N (�; n) � 
00N (�) with P (
N (�; n)) = 1 such that, if ! 2 
N (�; n), then

lim
M!1

������ 1

#(WM )

X
m2WM

sup
��2C\V�;n

��	m;N (!;��)�	m;N (!;�)��
������ = E

 
sup

��2C\V�;n

��	0;N (��)�	0;N (�)��! <
1

2n
:

Hence, by (27), (28), (29) and (6.1),

lim sup
M!1

sup
��2C\V�;n

��TM;N (!;�
�)� E

�
	0;N (�

�)
��� < 1

n
; (30)

for all ! 2 
N (�; n).
Since C is a compact set, there exists a �nite set f�1; : : : ;�rg contained in C such that

C =

r[
i=1

�
C \ V�i;n

�
:
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Thus, if we de�ne 
0N (n) =
Tr
i=1 
N (�i; n); then P (


0
N (n)) = 1: By (30),

lim sup
M!1

sup
��2C

��TM;N (!;�
�)� E

�
	0;N (�

�)
��� 6 1

n
; (31)

for all ! 2 
0N (n): Setting 
0N =
T1
n=1 


0
N (n); then P (


0
N ) = 1; and because of (31) we have that

lim
M

sup
��2C

��TM;N (!;�
�)� E

�
	0;N (�

�)
��� = 0; (32)

for all ! 2 
0N : The proof of 3) is completed. To prove 4), it is enough to set 
0 =
T
N�1 (
N \ 
0N ) :�

Next lemma recalls a well known result and useful result in robustness.

Lemma 3 (The Zeros Lemma (Ruskin (1978)). Let U � Rk be an open set, �0 2 U , for each n = 1; 2; : : : let
qn : U ! Rk and q : U ! Rk be continuously di¤erentiable functions. Assume that

1) q(�0) = 0.

2) Dq(�0) is not zero.

3) There exists  > 0 such that (qn)n and (Dqn)n converge uniformly to q and Dq respectively on B(�0; ) =�
� 2 Rk : sup1�i�k j�i � �0ij < 

	
.

Then, there exist n0 � 1 and a sequence (�n)n�n0 in B(�0; ) such that (�n)n converges to �0 and qn(�n) = 0;
for all n � n0.

Proposition 2. Let f be as in (17). Then f is continuously di¤erentiable on � and satis�es

1) For each 1 � p; q � L and for each � 2 �:

Dq

�
(f(�))p

�
= A1p;q(�) +A2p;q(�) +

1X
j=1

X
ek2Lj

�
A3p;q(j; ek;�) +A4p;q(j; ek;�) +A5p;q(j; ek;�)� ;

where

A1p;q(�) = � 1

�"
E
�
�1

�
R0(�);R�tp(�)

�
X�tq

�
;

A2p;q(�) = � 1

�"
E
�
�2

�
R0(�);R�tp(�)

�
X�tp�tq

�
;

A3p;q(j; ek;�) = Dq

�
Ij;ek(�)

�
E
�
�
�
R0(�);R�tp�s(j;ek)(�)

��
;

A4p;q(j; ek;�) = � 1

�"
Ij;ek(�)E

�
�1

�
R0(�);R�tp�s(j;ek)(�)

�
X�tq

�
;

A5p;q(j; ek;�) = � 1

�"
Ij;ek(�)E

�
�2

�
R0(�);R�tp�s(j;ek)(�)

�
X�tp�tq�s(j;ek)

�
:

2) Df(�0) = � 1
�"
E
�
�1

�
"
�"
; "

0

�"

�
"0
�
I1(�0); where " and "

0 are independent random variables with distribution F",

and Df(�0) is not zero.

PROOF: First we will prove that

(gN )N converges uniformly to f on �: (33)

In fact, for any � 2 �; 1 � p � L and N we have���(f(�))p � (gN (�))p��� = 1X
j=N

X
ek2Lj

Ij;ek(�)E
����� �R0(�);R�tp�s(j;ek)(�)����� � K�

1X
j=N

bj ;

being b as in (19), this implies (33). Then, by a classical result in analysis, to prove 1) in Proposition 2, it is enough
to show that �

Dq

�
(gN (�))p

��
N
converges uniformly on �: (34)
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Notice that for each � 2 �

Dq

�
(gN (�))p

�
= A1p;q(�) +A2p;q(�) +

N�1X
j=1

X
ek2Lj

�
A3p;q(j; ek;�) +A4p;q(j; ek;�) +A5p;q(j; ek;�)� :

To prove (34), it is enough to show that for each d > 0; there exists a positive integer N such that for all positive
integer n

sup
�2�

���Dq

�
(gN+n(�))p

�
�Dq

�
(gN (�))p

���� < d: (35)

Now, ���A3p;q(j; ek;�)��� = K�

���Dq

�
Ij;ek(�)

���� :
Then X

ek2Lj
���A3p;q(j; ek;�)��� � K�

X
ek2Lj

���Dq

�
Ij;ek(�)

���� : (36)

Since X
ek2Lh

Ih;ek(�) =
 

LX
p=1

�p

!h
; (37)

we have that X
ek2Lj

Dq

�
Ij;ek(�)

�
= Dq

0B@
0@ LX
p0=1

�p0

1Aj
1CA = j

0@ LX
p0=1

�p0

1Aj�1

:

Then, by (36), it follows that

X
ek2Lj

���A3p;q(j; ek;�)��� � K�j

0@ LX
p0=1

���p0 ��
1Aj�1

� K�j (b)
j�1

: (38)

Assume that (a) of Assumption 2-(ii) holds. Then���A4p;q(j; ek;�)��� � 1

�"

���Ij;ek(�)���K1E
���X0

��� ;
X
ek2Lj

���A5p;q(j; ek;�)��� � 1

�"
K2E

���X0

���0@ LX
p0=1

���p0 ��
1Aj

;

for all j.
Thus, for each N;n positive integers and � 2 � we have���Dq

�
(gN+n(�))p

�
�Dq

�
(gN (�))p

����
�

N+nX
j=N

X
ek2Lj

����A3p;q(j; ek;�)���+ ���A4p;q(j; ek;�)���+ ���A5p;q(j; ek;�)����

�
N+nX
j=N

�
K�:j (b)

j�1
+
1

�"
K1E

���X0

��� bj + 1

�"
K2E

���X0

��� bj� :
Hence (35) is satis�ed. Now, let us consider (b) of Assumption 2-(ii) instead of (a). By the Cauchy- Schwartz inequality

���A4p;q(j; ek;�)��� � K3

�"

���Ij;ek(�)���
0@ LX
p0=1

���p0 ��
1AE

���X0

��2� :
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Hence
N+nX
j=N

X
ek2Lj

���A4p;q(j; ek;�)��� � K3

�"
E
���X0

��2�N+nX
j=N

0@ LX
p0=1

���p0 ��
1Aj+1

; (39)

for all N:
Similarly, considering (b) of Assumption 2-(ii) instead of (a) of that assumption:

N+nX
j=N

X
ek2Lj

���A5p;q(j; ek;�)��� � K3

�"
E
���X0

��2�N+nX
j=N

0@ LX
p0=1

���p0 ��
1Aj+1

; (40)

for all N . Thus, using (38), (39) and (40), we have that

���Dq

�
(gN+n(�))p

�
�Dq

�
(gN (�))p

���� � N+nX
j=N

�
K�j (b)

j�1
+ 2

K3

�"
E
���X0

��2� bj� :
Hence the proof of (35) is completed. This �nishes the proof of 1) in Proposition 2.
Now, let us prove 2) in Proposition 2.

A1p;q(�0) = � 1

�"
E
�
�1

�
R0(�0);R�tp(�0)

�
X�tq

�
= � 1

�"
E
�
�1

�
"0;"�tp

�
X�tq

�
= � 1

�"
E

0@�1 �"0;"�tp�
0@"�tq + 1X

j=1

X
ek2Lj

Ij;ek(�0)"�tq�s(j;ek)
1A1A :

Then

A1p;q(�0) =

8<: � 1
�"
E
�
�1

�
"
�"
; "

0

�"

�
"0
�

if p = q

� 1
�"
E
�
�1

�
"
�"
; "

0

�"

�
"0
�P

(j;ek)2(T�T )1(tp�tq) Ij;ek(�0) if p 6= q
; (41)

where " and "0 are independent random variables with distribution F":

A2p;q(�0) = � 1

�"
E
�
�2

�
R0(�0);R�tp(�0)

�
X�tp�tq

�
= � 1

�"
E

0@�2 �"0;"�tp�
0@"�tp�tq + 1X

j=1

X
ek2Lj

Ij;ek(�0)"�tp�tq�s(j;ek)
1A1A = 0: (42)

Now

A3p;q(j; ek;�0) = Dq

�
Ij;ek(�0)

�
E
�
�
�
R0(�0);R�tp�s(j;ek)(�0)

��
= Dq

�
Ij;ek(�0)

�
E

�
�

�
"0
�"
;
"�tp�s(j;ek)

�"

��
= 0; (43)

by Assumption 2-(iii). Consider now

A5p;q(j; ek;�0) = � 1

�"
Ij;ek(�0)E

�
�2

�
R0(�0);R�tp�s(j;ek)(�0)

�
X�tp�s(j;ek)�tq

�
= � 1

�"
Ij;ek(�0)E

�
�2

�
"0
�"
;
"�tp�s(j;ek)

�"

�
X�tp�s(j;ek)�tq

�
:

Now, since tq 6= 0 and (5) we have that "0; "�tp�s(j;ek) andX�tp�s(j;ek)�tq are independent. Then, since E
�
X�tp�s(j;ek)�tq

�
=

0, it follows that
A5p;q(j; ek;�0) = 0: (44)
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Finally,

A4p;q(j; ek;�0) = � 1

�"
Ij;ek(�0)E

�
�1

�
R0(�0);R�tp�s(j;ek)(�0)

�
X�tq

�
= � 1

�"
Ij;ek(�0)E

�
�1

�
"0
�"
;
"�tp�s(j;ek)

�"

�
"�tq

�
+

1X
l=1

X
eh2Ll

F (j; ek; l; eh);
where

F (j; ek; l; eh) = � 1

�"
Ij;ek(�0)Il;eh(�0)E

�
�1

�
"0
�"
;
"�tp�s(j;ek)

�"

�
"�tq�s(l;eh)

�
:

Now, if �tp � s(j; ek) 6= �tq � s(l; eh); then
E

�
�1

�
"0
�"
;
"�tp�s(j;ek)

�"

�
"�tq�s(l;eh)

�
= 0;

Therefore
1X
j=1

X
ek2Lj

A4p;q(j; ek;�) = � 1

�"
E

�
�1

�
"

�"
;
"0

�"

�
"0
�
A4�p;q; (45)

where " and "0 are independent random variables with distribution F" and

A4�p;q =

0B@ X
(j;ek)2(T�T )1(tq�tp)

Ij;ek(�0) + X
(j;ek;l;eh)2(T�T )2(tp�tq)

Ij;ek(�0)Il;eh(�0)
1CA :

By (41), (42), (43), (44), (45) and by the de�nition of I1(�0) it follows that

Df(�0) = �E
�
�1

�
"

�"
;
"0

�"

�
"0
�
I1(�0);

where " and "0 are independent random variables with distribution F".
Now, by the Lemmas 1 and Assumption 2-(iv), Df(�0), with the exception of a non zero constant, is equal to the

covariance matrix of (Xm)m2T and, hence, it is invertible. This �nishes the proof of the Proposition 2. �

Proposition 3. There exists a subset 
0 of 
 with P (
0) = 1; such that


0 �
(
! 2 
 : lim

M!1
sup
�2C

jFM (!;�)� f(�)j = 0 and lim
M!1

sup
�2C

jDFM (!;�)� Df(�)j = 0
)
:

PROOF: It is divided into two stages, a) and b).
a) There exists a subset 
01 of 
 with P (
01) = 1; such that


01 �
(
! 2 
 : lim

M!1
sup
�2C

jFM (!;�)� f(�)j = 0
)
:

For all 1 � p � L, it is enough to apply Lemma 2 under the following setup

c0 (�) = 1; cj;ek (�) = Ij;ek (�) ;
for all j � 1, ek 2 Lj and � 2 �.

W (x;y;�) = �

 
x1 �

PL
p0=1 �p0xp0+1

�"
;
y1 �

PL
p00=1 �p00yp00+1

�"

!
; (46)

� (x;y) = 1; (47)
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with x = (x1; : : : ; xL+1)
0, y = (y1; : : : ; yL+1)

0 and � = (�1; : : : ; �L)
0. Finally, set

n1 = tp: (48)

b) There exists a subset 
02 of 
 with P (
02) = 1; such that


02 �
(
! 2 
 : lim

M!1
sup
�2C

jDFM (!;�)� Df(�)j = 0
)
:

For all 1 � p; q � L; the following notation will be used�
a1n(!;�)

�
p;q

= � 1

�"
�1

�
Rn(!;�);Rn�tp(!;�)

�
Xn�tq (!);�

a2n(!;�)
�
p;q

= � 1

�"
�2

�
Rn(!;�);Rn�tp(!;�)

�
Xn�tp�tq (!);�

a3n;j;ek(!;�)
�
p;q

= Dq

�
Ij;ek(�)

�
�
�
Rn(!;�);Rn�tp�s(j;ek)(!;�)

�
;�

a4n;j;ek(!;�)
�
p;q

= � 1

�"
Ij;ek(�)�1

�
Rn(!;�);Rn�tp�s(j;ek)(!;�)

�
Xn�tq (!);�

a5n;j;ek(!;�)
�
p;q

= � 1

�"
Ij;ek(�)�2

�
Rn(!;�);Rn�tp�s(j;ek)(!;�)

�
Xn�tp�s(j;ek)�tq (!);

where ! 2 
; n 2 Z2; j is a positive integer ek 2 Lj , � 2 �: Then
Dq

�
(DFM (!;�))p

�
=

1

#(WM )

X
m2WM

�
a1m(!;�)

�
p;q
+

1

#(WM )

X
m2WM

�
a2m(!;�)

�
p;q

+
1

#(WM )

X
m2WM

M�1X
j=1

X
ek2Lj

�
a3m;j;ek(!;�)

�
p;q
+

1

#(WM )

X
m2WM

M�1X
j=1

X
ek2Lj

�
a4m;j;ek(!;�)

�
p;q

+
1

#(WM )

X
m2WM

M�1X
j=1

X
ek2Lj

�
a5m;j;ek(!;�)

�
p;q
:

Thus, to prove b) it is enough to show the following �ve statements:

b1) There exists a subset 
G of 
 with P (
G) = 1; such that for all 1 � p; q � L; 
G is contained in G, where

G =

8<:! 2 
 : lim
M!1

sup
�2C

������ 1

#(WM )

X
m2WM

�
a1m(!;�)

�
p;q
�A1p;q(�)

������ = 0
9=; :

b2) There exists a subset 
H of 
 with P (
H) = 1; such that for each s; t 2 T; 
H is contained in H, where

H =

8<:! 2 
 : lim
M!1

sup
�2C

������ 1

#(WM )

X
m2WM

�
a2m(!;�)

�
p;q
�A2p;q(�)

������ = 0
9=; :

b3) There exists a subset 
A of 
 with P (
A) = 1; such that for each s; t 2 T; 
A is included in A, where

A =

8<:! 2 
 : lim
M!1

sup
�2C

������ 1

#(WM )

X
m2WM

M�1X
j=1

X
ek2Lj

�
a3n;j;ek(!;�)

�
p;q
�

1X
j=1

X
ek2Lj

A3p;q(j; ek;�)
������ = 0

9=; :
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b4) There exists a subset 
B of 
 with P (
B) = 1; such that for each s; t 2 T; 
B is included in B, where

B =

8<:! 2 
 : lim
M!1

sup
�2C

������ 1

#(WM )

X
m2WM

M�1X
j=1

X
ek2Lj

�
a4n;j;ek(!;�)

�
p;q
�

1X
j=1

X
ek2Lj

A4p;q(j; ek;�)
������ = 0

9=; :

b5) There exists a subset 
D of 
 with P (
D) = 1; such that for each s; t 2 T; 
D is included in D, where

D =

8<:! 2 
 : lim
M!1

sup
�2C

������ 1

#(WM )

X
m2WM

M�1X
j=1

X
ek2Lj

�
a5n;j;ek(!;�)

�
p;q
�

1X
j=1

X
ek2Lj

A5p;q(j; ek;�)
������ = 0

9=; :

Proof of b1). If we suppose that (a) of Assumption 2-(ii) holds then we apply Lemma 2 under the following setup

c0 (�) = 1; cj;ek (�) = 0;8j � 1; ek 2 Lj ; � 2�; (49)

W (x;y;�) =�1

 
x1 �

PL
p0=1 �p0xp0+1

�"
;
y1 �

PL
p00=1 �p00yp00+1

�"

!
xq+1; (50)

� (x;y) = xq+1; (51)

with x = (x1; : : : ; xL+1)
0, y = (y1; : : : ; yL+1)

0 and � = (�1; : : : ; �L)
0. Finally, n1 is considered as in (48). Suppose now

that (b) of Assumption 2-(ii), then we replace (51) by

� (x;y) =

����xq+1 y1�"
����+ 1

L

LX
p0=1

����xq+1 yp0+1�"

���� : (52)

Proof of b2). Suppose that (a) of Assumption 2-(ii) holds. The proof consists of applying Lemma 2 under the
following setup: c0 and cj;ek as in (49),

W (x;y;�) =�2

 
x1 �

PL
p0=1 �p0xp0+1

�"
;
y1 �

PL
p00=1 �p00yp00+1

�"

!
yq+1; (53)

� (x;y) = yq+1; (54)

with x = (x1; : : : ; xL+1)
0, y = (y1; : : : ; yL+1)

0 and � = (�1; : : : ; �L)
0. Finally, n1 is considered as in (48).

The proof is complete if we suppose that (b) of Assumption 2-(ii) holds, and change (54) by

� (x;y) =

����yq+1 x1�"
����+ 1

L

LX
p0=1

����yq+1xp0+1�"

���� : (55)

Proof of b3). The proof consists in applying Lemma 2 under the following setup: c0 (�) = 0, cj;ek (�) = Dq(Ij;ek(�)),
j � 1, ek 2 Lj and � 2 �, W (x; y; �) as in (46), � as in (47) and n1 as in (48).
Proof of b4). Suppose that (a) of Assumption 2-(ii) holds. Then we apply Lemma 2 for

c0 (�) = 0; cj;ek (�) = �Ij;ek (�) ; (56)

for all j � 1, ek 2 Lj and � 2 �; W (x; y;�) as in (50), � as in (51) and n1 as in (48). Suppose that (b) of Assumption
2-(ii) holds then consider � as in (52).
Proof of b5). Suppose (a) of Assumption 2-(ii) holds. Similarly, we apply Lemma 2 under the following conditions:

c0 and cj;ek as in (56), W (x; y;�) as in (53), � as in (54). Consider n1 as in (48). To complete the proof, under (b) of
Assumption 2-(ii), consider � as in (55). This completes the proof of Proposition 3. �
PROOF OF THEOREM 1
Let 
0 be as in Proposition 3. Let ! 2 
0. We consider the Zeros Lemma (Lemma 3) under the following conditions:

U = Co (the interior of C), �0 = �0, for all M , qM is the function � 7! FM (!;�), q is the function f de�ned in (17).
Then, 1) in the Zeros Lemma follows from (18). 2) in the Zeros Lemma follows from 2) in Proposition 2. Finally, 3) in
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Zeros Lemma follows from Proposition 3. Hence ! 2 
000. Setting 
00 = 
0, the proof of the Theorem 1 is completed.
�

6.2 Proofs of the Asymptotic Normality of the RA Estimator

We will start introducing some additional notation.
Consider 1 �M;N � 1 integers, n;m 2 Z2, ! 2 
, � 2 � and 1 � p � L. Denoting�

��
n;N (!;�)

�
p
=

1X
j=N

X
ek2Lj

Ij;ek(�)�
�
Rn(!;�);Rn�tp�s(j;ek)(!;�)

�
;

YM;N (!;�) =
1

#(WM )

X
m2WM

��
m;N (!;�);

one has p
#(WM )GM;1 (�) =

p
#(WM )GM;N (�) +

p
#(WM )YM;N (�) : (57)

In particular, p
#(WM )GM;1

�b�RAM �
=
p
#(WM )FM

�b�RAM �
+
p
#(WM )YM;M (b�RAM ): (58)

For each N � 2 integer, let GN be the L� L matrix given by

GN = IN (�0) � E
 
�

�
"

�"
;
"0

�"

�2!
;

where IN (�0) is the L� L matrix given by

IN (�0)p;p = 1 +
X

(j;ek;l;eh)2(T�T )N2 (0)
Ij;ek(�0)Il;eh(�0);

for all 1 � p � L;

IN (�0)p;q =
X

(j;ek)2(T�T )N1 (tp�tq)
Ij;ek(�0) + X

(j;ek)2(T�T )N1 (tq�tp)
Ij;ek(�0)

+
X

(j;ek;l;eh)2(T�T )N2 (tp�tq)
Ij;ek(�0):Il;eh(�0);

for p 6= q with 1 � p; q � L; where

(T � T )N1 (v) =
n
(j; ek) : N � 1 � j � 1,ek 2 Lj and s(j; ek) = v

o
;

(T � T )N2 (v) =
n
(j; ek; l; eh) : N � 1 � j,l � 1,ek 2 Lj ; eh 2 Ll and s(j; ek)� s(l; eh) = v

o
;

with v 2 (T � T ) and (T � T ) as in (12).
Using the mean value theorem we have thatp

#(WM )GM;1

�b�RAM �
=
p
#(WM )GM;1 (�0) + DGM;1

�b��M� :p#(WM )
�b�RAM � �0

�
; (59)

where, for each M; b��M is a random vector belonging to the segment in RL that connects b�RAM and �0.
The following lemmas and propositions are necessary to prove Theorem 2, which is proved at the end of this

subsection.

Lemma 4. Let 1 �M;N integers. For all 1 � p � L we have that

lim
N!1

lim sup
M!1

�p
#(WM )YM;N (�0)

�
= 0;
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in probability.

PROOF: Let M � 1 be an integer and � > 0: By Chebyshev�s inequality

P

������p#(WM )YM;N (�0)
�
p

���� � �

�
= P

0@������
0@ 1p

#(WM )

X
m2WM

��
m;N (�0)

1A
p

������ � �

1A
� 1

�2#(WM )
V ar

0@ X
m2WM

�
��
m;N (�0)

�
p

1A :

Considering that, �
��
m;N (�0)

�
p
=

1X
j=N

X
ek2T j

Ij;ek(�0):�
�
Rm(�0);Rm�tp�s(j;ek)(�0)

�

=
1X
j=N

X
ek2Lj

Ij;ek(�0):�
�
"m
�"
;
"m�tp�s(j;ek)

�"

�
;

we have that

E

��
��
m;N (�0)

�
p

�
= 0:

and, therefore,

V ar

0@ X
m2WM

�
��
m;N (�0)

�
p

1A = E

0B@
0@ X
m2WM

�
��
m;N (�0)

�
p

1A2
1CA

=
X

m2WM

X
m02WM

E

��
��
m;N (�0)

�
p

�
��
m0;N (�0)

�
p

�
: (60)

If m 6= m0; by the Assumption 3, it follows that

E

��
��
m;N (�0)

�
p

�
��
m0;N (�0)

�
p

�
=

=

1X
j1=N

X
ek12Lj1

1X
j2=N

X
ek22Lj2

Ij1;ek1(�0)Ij2;ek2(�0)E
�
�

�
"m
�"
;
"m�tp�s(j1;ek1)

�"

�
�

�
"m0

�"
;
"m0�tp�s(j2;ek2)

�"

��
= 0:

Hence, for any m

E

 ��
��
m;N (�0)

�
p

�2!
=

=
1X

j1=N

X
ek12Lj1

1X
j2=N

X
ek22Lj2

Ij1;ek1(�0)Ij2;ek2(�0)E
�
�

�
"m
�"
;
"m�tp�s(j1;ek1)

�"

�
�

�
"m
�"
;
"m�tp�s(j2;ek2)

�"

��

=
X

(j1;ek1;j2;ek2)2(T�T )N;12 (0)

Ij1;ek1(�0)Ij2;ek2(�0)E
�
�

�
"m
�"
;
"m�tp�s(j1;ek1)

�"

�
�

�
"m
�"
;
"m�tp�s(j2;ek2)

�"

��
;

where
(T � T )N;12 (0) =

n
(j1; ek1; j2; ek2) : j1; j2 � N; ek1 2 Lj1 ; ek2 2 Lj2 ; s(j1; ek1) = s(j2; ek2)o :
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So,

V ar

0@ X
m2WM

�
��
m;N (�0)

�
p

1A
= #(WM )

X
(j1;ek1;j2;ek2)2(T�T )N;12 (0)

Ij1;ek1(�0)Ij2;ek2(�0)E
 
�

�
"

�"
;
"0

�"

�2!
;

where " and "0 are independent random variables with distribution F":
Using this expression for the variance and taking lim sup in the Chebyshev inequality, we have that

lim sup
M!1

P

0@������
0@ 1p

#(WM )

X
m2WM

��
m;N (�0)

1A
p

������ � �

1A
� 1

�2

X
(j1;ek1;j2;ek2)2(T�T )N;12 (0)

Ij1;ek1(�0)Ij2;ek2(�0)E
 
�

�
"

�"
;
"0

�"

�2!
:

Notice that (T � T )N;12 (0) � (T � T )2 (0), ((T � T )
N;1
2 (0))N is a decreasing sequence of subsets of (T � T )2 (0)

such that
T
N�1 (T � T )

N;1
2 (0) = ; and that j

P
(j;ek;l;eh)2(T�T )2(0) Ij;ek(�0):Il;eh(�0)j < 1. Then, one has thatP

(j1;ek1;j2;ek2)2(T�T )N;12 (0) Ij1;ek1(�0)Ij2;ek2(�0) �! 0
N!1

. Thus,

lim
N!1

lim sup
M!1

P

0@������
0@ 1p

#(WM )

X
m2WM

��
m;N (�0)

1A
p

������ � �

1A = 0:�

The following Central Limit Theorem for Random Fields is needed. The proof can be found in Guyon (1993), page
99.

Lemma 5 (Central Limit Theorem for Random Fields). Let X = fXi : i 2 Zdg be a real valued random �eld such that
E(Xi) = 0; for all i 2 Zd: For each S � Zd, let F (X;S) be the �-algebra generated by

�
X�1
i (C) : C is a Borel set ; i 2 S

	
;

for each k, l 2 N [ f1g and n 2 N let

�k;l(n) = sup fjP (A \B)� P (A)P (B)j : A;B 2 Ck;l(n)g

where

Ck;l(n) = fA 2 F (X;S1); B 2 F (X;S2) : #(S1) � k;#(S2) � l; dist (S1;S2) � ng :

Let (Dn)n�1 be a decreasing sequence of �nite subsets of Zd and Sn =
P

i2Dn
Xi with variance �2n. If the following

two conditions hold

(i)
P

m�1m
d�1�k;l(m) <1 if k + l � 4 and �1;1(m) = o(m�d);

(ii) there exists � > 0 such that supi kXik�+2 <1 and
P

m�1m
d�1 (�1;1(m))

�
�+2 <1, then

lim sup
n

1

#(Dn)

X
i;j2Dn

jCov(Xi; Xj)j <1:

If, further, we assume that

(iii)

lim inf
n!1

1

#(Dn)
�2n > 0;

then
��1n Sn

D�!N(0; 1):
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If, for each i 2 Zd, Xi takes values in Rp and if (iii) is replaced by

lim inf
n!1

1

#(Dn)
�n � I0 > 0;

with I0 a symmetric and positive de�nite matrix, then

��1=2n Sn
D�!N(0; Ip);

where �n is the covariance matrix of Sn and Ip is the identity matrix of order p.

Lemma 6. There exists N0 such that, for each N � N0,
p
#(WM )GM;N (�0)

D�! N (0;GN ), as M !1.

PROOF: Let N � 2: For each M � 1; let us de�ne

SM;N = #(WM )GM;N (�0) =
X

m2WM

��m;N (�0): (61)

For each m 2 Z2; let
��m;N (�0) =

��
��m;N (�0)

�
1
; : : : ;

�
��m;N (�0)

�
L

�0
;

with �
��m;N (�0)

�
p
= �

�
Rm(�0);Rm�tp(�0)

�
+
N�1X
j=1

X
ek2Lj

Ij;ek(�0):�
�
Rm(�0);Rm�tp�s(j;ek)(�0)

�

= �

�
"m
�"
;
"m�tp
�"

�
+
N�1X
j=1

X
ek2Lj

Ij;ek(�0):�
�
"m
�"
;
"m�tp�s(j;ek)

�"

�
:

We will apply Lemma 5 to the RL-valued random �eld
�
��m;N (�0)

�
m2Z2 . Since ("(m))m2Z2 is a white noise, it is

straightforward to verify that
�
��m;N (�0)

�
m2Z2 satis�es the conditions (i) and (ii) of this lemma.

Now, let us compute the covariance matrix of SM;N , � (SM;N ). Since E (SM;N ) = 0, then � (SM;N ) is the L � L
matrix given by 24 X

m2WM

X
m02WM

E

��
��m;N (�0)

�
p

�
��m0;N (�0)

�
q

�35
1�p;q�L

:

By the Assumption 3, if m 6= m0, then E
��
��m;N (�0)

�
p

�
��m0;N (�0)

�
q

�
= 0; for any p and q such that 1 � p; q � L:

Hence

� (SM;N ) =

24 X
m2WM

E

��
��m;N (�0)

�
p

�
��m;N (�0)

�
q

�35
1�p;q�L

: (62)

Using Assumption 3, a simple calculation shows that�
E

��
��m;N (�0)

�
p

�
��m;N (�0)

�
q

��
1�p;q�L

= GN ;

for all m 2WM : Therefore, by (62)
1

#(WM )
� (SM;N ) = GN : (63)

Now, IN (�0)!N!1 I1(�0) and I1(�0) is positive de�nite. Then, there exists N0 such that for each N � N0 IN (�0)
is positive de�nite. Hence, by (63), for each N � N0 (iii) of Lemma 5 is satis�ed with DM =WM ; hence

(� (SM;N ))
�1=2

SM;N
D!
M!1 N (0; IL) ; (64)

25



where IL is the L� L identity matrix. Therefore by (63) and (61),

(� (SM;N ))
�1=2

SM;N =
1p

#(WM )
(GN )

�1=2
#(WM )GM;N (�0) = (GN )

�1=2p
#(WM )GM;N (�0) ;

for all M and N � N0. Consequently, by (64) the proof is completed. �

Lemma 7.
DGM;1

�b��M� P�! Df(�0); as M !1;

where b��M is as in (59).

PROOF: Let � and �0 be any positive numbers. From the proof of Proposition 3, we see that

sup
�2C

jDGM;1 (�)� Df(�)j
P�! 0; as M !1:

Then, there exists M1 such that
M �M1 =) P (
M (�=2)) � 1� �0=2;

where


M (�=2) =

(
! 2 
 : sup

�2C
jDGM;1 (!;�)� Df(�)j < �=2

)
:

Hence, for each ! 2 
M (�=2) and M �M1;���DGM;1

�
!; b��M (!)�� Df(b��M (!))��� < �=2: (65)

Because of the continuity of the function � 7! Df(�); there exists �00 > 0; such that

j�� �0j < �00 =) jDf(�)� Df(�0)j < �=2: (66)

By (16) and (6.2), it follows that there exists M2 such that

M �M2 =) P
�

0M (�

00)
�
� 1� �0=2;

with

0M (�

00) =
n
! 2 
 :

���b��M (!)��0��� < �00
o
:

Consequently


0M (�
00) �

n
! 2 
 :

���Df �b��M (!)��Df(�0)��� < �=2
o
: (67)

Then, for M � max(M1;M2), using (65) and (67) we have that���DGM;1

�
!; b��M (!)�� Df(�0)��� < �; if ! 2 
M (�=2) \ 
0M (�00):

Thus
P
�n
! 2 
 :

���DGM;1

�
!; b��M (!)�� Df(�0)��� < �

o�
� 1� �0:�

Proposition 4. p
#(WM )GM;1

�b�RAM �
P�! 0; as M !1:

PROOF: Since (16) and (58) it is enough to show that for each 1 � p � L;�p
#(WM )YM;M (b�RAM )

�
p

P�! 0; as M !1:
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Now, for each ! 2 
 and � 2 ������p#(WM )YM;M (!;�)
�
p

����
� 1p

#(WM )

1X
j=M

X
ek2Lj

���Ij;ek(�)��� X
m2WM

���� �Rm(!;�);Rm�tp�s(j;ek)(!;�)����
� 1p

#(WM )

1X
j=M

bj#(WM )K�

= K�b
p
#(WM )

1X
j=M

bj�1 = K�b

p
#(WM )

M

1X
j=M

Mbj�1

� K�b

p
#(WM )

M

1X
j=M

jbj�1 ! 0; as M !1;

since
p
#(WM )

M =

p
(M+1)2�1

M =
q
1 + 2

M ; and
P1

j=1 jb
j�1 is the derivative of b 7! 1

1�b with 0 < b < 1:�

Lemma 8 (Theorem 3.2 in Billingsley (1999), page 27)). Suppose that for each N;M 2 N, (XN;M ; XM ) are random
elements of S � S where (S; �) is a metric space. If for all N

XN;M
D�!ZN ; as M !1

ZN
D�!X; as N !1

for all " > 0: lim
N!1

lim sup
M!1

P [� (XN;M ; XM ) � "] = 0;

then XM
D�!X as M !1.

Proposition 5. Let G be the L� L matrix given by

G = I1(�0) � E
 �

�

�
"

�"
;
"0

�"

��2!
; (68)

where " and "0 are independent random variables with distribution F". Then
p
#(WM )GM;1 (�0)

D�!N (0;G) ; asM !
1:

PROOF: Let N0 be as in Lemma 6 and for each N � N0; let

XN;M =
p
#(WM )GM;N (�0) ;

XM =
p
#(WM )GM;1 (�0) :

For each N � N0; let ZN be a random vector variable with distribution N (0;GN ) and X a random vector variable
with distribution N (0;G). By Lemma 6, for each N � N0;

XN;M
D�! ZN , as M !1:

Since GN �! G, as N !1; then
ZN

D! X; as N !1:

By (57), XM �XN;M =
p
#(WM )YM;N (�) and, by Lemma 4,

lim
N!1

lim sup
M!1

�p
#(WM )YM;N (�0)

�
= 0:

So, the assumptions of Lemma 8 are satis�ed; hence XM
D�!X as M !1, that is,p

#(WM )GM;1 (�0)
D�!N (0;G) ; as M !1:�
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PROOF OF THEOREM 2: By Lemma 7, (59), Proposition 4, Proposition 5, and Slutzky�s Theorem we have
that p

#(WM )
�b�RAM � �0

�
D�! N

�
0;Df(�0)�1GDf(�0)�1

�
; as M !1: (69)

Now, notice (see (68)) that Df(�0) = � 1
�"
E
�
�1

�
"
�"
; "

0

�"

�
:"0
�
:I1(�0), where " and "

0 are independent random variables

with distribution F". From the results proved in the previous Section and (69) the proof is completed. �

7 CONCLUDING REMARKS

The following comments give a brief summary of the results that we obtained in this paper.

X Under mild regularity conditions, we established the asymptotic normality and consistency of a class of robust
estimators (the RA estimators) for the parameter � of a two dimensional autoregressive unilateral process.

X The results we proved extend the asymptotic theory of the RA estimators, available only for one-dimensional
time series (see Bustos et al. (1984)).

X Although in the literature several reasonable classes of estimators for the parameter � have been proposed, such
as M and GM estimators, their asymptotic behavior are still open problems. Moreover, the advantage of the RA
estimator over the other classes is that they are less sensitive to the presence of additive outliers (see Ojeda et
al. (2002)).

The following proposals outline some directions for future work:

X The extension of the results proved in this paper to the model with colored noise (that is, with non null autocor-
relation), instead of white noise e" = �"m�m2Z2 , would be of importance in signal and image processing.

X In the case of causal AR-2D processes of order two or three, algorithms for the computation of the RA estimators
have been proposed (see Ojeda (1999), Ojeda et al. (2002) and Vallejos et al. (2006)). It would be important to
develop e¢ cient algorithms when the order of the process is greater than three.

X To analyze the behaviour of the RA estimator in combination with image restoration techniques.

X To study properties of RA estimator, in particular, and robust estimators, in general, as alternatives to the least
squares estimators under not causal and semi causal AR-2D.
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