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REPRESENTATIONS OF TENSOR CATEGORIES COMING
FROM QUANTUM LINEAR SPACES

MARTÍN MOMBELLI

Abstract. Exact indecomposable module categories over the tensor
category of representations of Hopf algebras that are liftings of quantum
linear spaces are classified.

1. Introduction

Given a tensor category C, a very natural object to consider is the family
of its representations, or module categories. A module category over a ten-
sor category C is an Abelian category M equipped with an exact functor
C ×M → M subject to natural associativity and unity axioms. In some
sense the notion of module category over a tensor category is the categorical
version of the notion of module over an algebra. In some works the concept
of module category over the tensor category of representations of a quantum
group is treated as an idea more closely related to the notion of quantum
subgroup [Oc], [KO].

The language of module categories has proven to be a useful tool in di-
fferent contexts, for example in the theory of fusion categories, see [ENO1],
[ENO2], in the theory of weak Hopf algebras [O1], in describing some prop-
erties of semisimple Hopf algebras [N] and in relation with dynamical twists
over Hopf algebras [M1] inspired by ideas of V. Ostrik.

Despite the fact that the notion of module category seems very general,
it is implicitly present in diverse areas of mathematics and mathematical
physics such as subfactor theory [BEK], affine Hecke algebras [BO], exten-
sions of vertex algebras [KO] and conformal field theory, see for example
[BFRS], [FS], [CS1], [CS2].

In [EO1] Etingof and Ostrik propose a class of module categories, called
exact, and as an interesting problem the classification of such module cat-
egories over a given finite tensor category. The first classification results
were obtained in [KO], [EO2], where the authors classify semisimple mod-
ule categories over the semisimple part of the category of representations
of Uq(sl(2)) for a root of unity q, over the category of corepresentations of
SLq(2) in the case q is not a root of unity and over the fusion category
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obtained as a semisimple subquotient of the same category in the case q is a
root of unity. The main result in those papers is the classification in terms
of ADE type Dynkin diagrams, which can be interpreted as a quantum ana-
logue of the McKay’s correspondence. The classification for the category
of corepresentations of SLq(2) in the case q is a root of unity was obtained
later in [O3] where the results were quite similar as in the semisimple case.

In the case when C = Rep(H) is the category of representations of a finite-
dimensional Hopf algebra H the first results obtained in the classification of
module categories were when the Hopf algebra H = kG is the group algebra
of a finite group G, see [O1], and in the case when H = D(G) is the Drinfeld’s
double of a finite-group G, see [O2]. Moreover, in loc. cit. the author classify
semisimple module categories over any group-theoretical fusion category. In
[EO1] module categories were classify in the case where H = Tq is the
Taft Hopf algebra, and also for tensor categories of representations of finite
supergroups.

In [AM], [M2] the authors give the first steps towards the understanding
of exact module categories over the representation categories of an arbitrary
finite-dimensional Hopf algebra. In [M2] the author present a technique
to classify module categories over Rep(H) when H is a finite-dimensional
pointed Hopf algebra inspired by the classification results obtained in [EO1].
In particular a classification is obtained when H = rq is the Radford Hopf
algebra and when H = uq(sl2) is the Frobenius-Lusztig kernel associated to
sl2.

The main goal of this paper is the application of the technique presented
in [M2] to classify exact indecomposable module categories over representa-
tion categories of finite-dimensional pointed Hopf algebras constructed from
quantum linear spaces.

Namely, let Γ be a finite Abelian group and V a quantum linear space
in kΓ

kΓYD, U = B(V )#kΓ the Hopf algebra obtained by bosonization of
the Nichols algebra B(V ) and kΓ. Then if M is an exact indecomposable
module category over Rep(U) there exists

• a subgroup F ⊆ Γ,
• a normalized 2-cocycle ψ ∈ H2(F,k×),
• a kΓ-subcomodule W ⊆ V invariant under the action of F ,
• scalars ξ = (ξi), α = (αij) compatible with V , ψ, and F ,

such that M ' A(W,F,ψ,ξ,α)M is the category of left modules over the left
U -comodule algebra A(W,F, ψ, ξ, α) associated to these data. We also
show that module categories A(W,F,ψ,ξ,α)M, A(W ′,F ′,ψ′,ξ′,α′)M are equiv-
alent as module categories over Rep(U) if and only if (W,F, ψ, ξ, α) =
(W ′, F ′, ψ′, ξ′, α′).

If H is a lifting of U , that is a Hopf algebra such that the associated graded
Hopf algebra grH is isomorphic to U , then H is a cocycle deformation of U ,
implying that the categories Rep(H∗) and Rep(U∗) are tensor equivalent.
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Thus exact indecomposable module categories over Rep(H) are described
by the same data as above.

The organization of the paper is as follows. In Section 2 we recall the
definitions of quantum linear spaces and the construction of Andruskiewitsch
and Schneider of liftings over quantum linear spaces. In Section 3 we recall
the definitions of exact module categories and the description of module
categories over finite-dimensional Hopf algebras.

In subsection 3.3 we explain the technique developed in [M2] to describe
exact indecomposable module categories over Rep(H) where H is a finite-
dimensional pointed Hopf algebra. The main result is stated as Theorem
3.3.

In section 4 we present a family of module categories constructed explic-
itly over the representation category of a Hopf algebra constructed from
bosonization of a quantum linear space and a group algebra. Then in The-
orem 4.6 we show that any module category is equivalent to one of this
family. Proposition 4.1 is a key result to the proof of the main result of this
section. In subsection 4.1 we prove that any two of those module categories
are nonequivalent.

Finally, in section 5 we show an explicit correspondence of comodule al-
gebras over cocycle equivalent Hopf algebras. Since any lifting of a quantum
linear space is a cocycle deformation to the Hopf algebra constructed from
this quantum linear space, this is Proposition 5.2, the results obtained in
Section 4 allows to describe also exact module categories over those liftings.

Acknowledgments. The author thanks César Galindo for pointing out
some errors in a previous version of this paper and for some enjoyable and
interesting conversations. He also thanks the referee for his constructive
comments.

1.1. Preliminaries and notation. We shall denote by k an algebraically
closed field of characteristic zero. All vector spaces, algebras and categories
will be considered over k. For any algebra A, AM will denote the category
of finite-dimensional left A-modules.

If Γ is a finite Abelian group and ψ ∈ Z2(Γ, k×) is a 2-cocycle, we shall
denote by ψg the map defined by

ψg(h) = ψ(h, g)ψ(g, h)−1,

for any g, h ∈ Γ. Hereafter we shall assume that any 2-cocycle ψ is normal-
ized and satisfies ψ(g−1, g) = 1 for all g ∈ Γ.

If A is an H-comodule algebra via λ : A → H⊗kA, we shall say that a
(right) ideal J is H-costable if λ(J) ⊆ H⊗kJ . We shall say that A is (right)
H-simple, if there is no nontrivial (right) ideal H-costable in A.

If H is a finite-dimensional Hopf algebra then H0 ⊆ H1 ⊆ · · · ⊆ Hm = H
will denote the coradical filtration. When H0 ⊆ H is a Hopf subalgebra then
the associated graded algebra grH is a coradically graded Hopf algebra. If
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(A, λ) is a left H-comodule algebra, the coradical filtration on H induces a
filtration on A, given by An = λ−1(Hn⊗kA). This filtration is called the
Loewy series on A.

Let U = ⊕m
i=0U(i) be a coradically graded Hopf algebra. We shall say

that a left U -comodule algebra G, with comodule structure given by λ : G →
U⊗kG, graded as an algebra G = ⊕m

i=0G(i) is a graded comodule algebra if
for each 0 ≤ n ≤ m

λ(G(n)) ⊆
m⊕

i=0

U(i)⊗kG(n− i).

A graded comodule algebra G = ⊕m
i=0G(i) is Loewy-graded if the Loewy

series is given by Gn = ⊕n
i=0G(i) for any 0 ≤ n ≤ m.

If A is a left H-comodule algebra the graded algebra grA obtained from
the Loewy series is a Loewy-graded left grH-comodule algebra. For more
details see [M2].

We shall need the following result. Let U = ⊕m
i=0U(i) be a coradically

graded Hopf algebra.

Lemma 1.1. Let (A, λ) be a left U -comodule algebra with an algebra filtra-
tion A0 ⊆ A1 ⊆ · · · ⊆ Am = A such that A0 is semisimple and

(1.1) λ(An) ⊆
n∑

i=0

U(i)⊗kAn−i,

and such that the graded algebra associated to this filtration gr ′A is Loewy-
graded. Then the Loewy filtration on A is equal to this given filtration, that
is An = An for all n = 0, . . . , m.

Proof. Straightforward. ¤

We shall need the following important theorem due to Skryabin. The
statement does not appear explicitly in [Sk] but is contained in the proof of
[Sk, Theorem 3.5]. Let H be a finite dimensional Hopf algebra.

Theorem 1.2. If A is a finite dimensional H-simple left H-comodule al-
gebra and M ∈ HMA, then there exists t ∈ N such that M t is a free A-
module. ¤

The following Lemma will be useful to distinguish equivalence classes of
module categories. Let σ : H ⊗H → k be a Hopf 2-cocycle and K be a left
H-comodule algebra.

Lemma 1.3. There is an equivalence of categories HMK ' HσMKσ . In
particular if K ⊆ H is a left coideal subalgebra, Q = H/HK+ and σ is
cocentral then the categories HMKσ , QM are equivalent.

Proof. See [M2, Lemma 2.1]. ¤
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2. Liftings of quantum linear spaces

In this section we recall some results from [AS1]. More precisely, we shall
recall the definition of a certain family of finite-dimensional Hopf algebras
such that the associated graded Hopf algebras are the bosonization of a
quantum linear space and a group algebra of an Abelian group.

2.1. Quantum linear spaces. We shall use the notation from [AS1], [AS2].
Let θ ∈ N and Γ be a finite Abelian group. A datum for a quantum linear
space consists of elements g1, . . . , gθ ∈ Γ, χ1, . . . , χθ ∈ Γ̂ such that

qi = χi(gi) 6= 1, for all i,(2.1)

χi(gj)χj(gi) = 1, for all i 6= j.(2.2)

Let us denote qij = χj(gi) and for any i let Ni > 1 denote the order of
qi. Denote V = V (g1, . . . , gθ, χ1, . . . , χθ) the Yetter-Drinfeld module over
kΓ generated as a vector space by x1, . . . , xθ with structure given by

δ(xi) = gi⊗xi, h · xi = χi(h) xi,(2.3)

for all i = 1, . . . , θ, h ∈ Γ. The associated Nichols algebra B(V ) is the
graded braided Hopf algebra generated by elements x1, . . . , xθ subject to
relations

xNi
i = 0, xixj = qij xjxi if i 6= j.(2.4)

This algebra is called the quantum linear space associated to V , or to
(g1, . . . , gθ, χ1, . . . , χθ) and it is denoted by R = R(g1, . . . , gθ, χ1, . . . , χθ).
The gradation on R = ⊕n R(n) is given as follows. If n ∈ N then

R(n) =< {xr1
1 . . . xrθ

θ : r1 + · · ·+ rθ = n} >k

Remark 2.1. The space V decomposes as V = ⊕θ
i=1Vgi , where Vgi = {v ∈

v : δ(v) = gi⊗v} is the isotypic component of type gi. Since it can happen
that for some k 6= l, gk = gl, then dimVgk

≥ 1. If dimVgk
> 2 for some k

then there are at least two g′is equal to gk. Using equation (2.2) this implies
that q2

k = 1, hence Nk = 2.

Remark 2.2. If g, h ∈ Γ and v ∈ Vg, w ∈ Vh then there exists a scalar qh,g ∈ k
that only depends on g and h such that wv = qh,g vw. Indeed it is enough
to prove that if xi, xk ∈ Vg and xj , xl ∈ Vh then qij = qkl. Since g = gi = gk

then qij = qkj , and since h = gj = gl then qjk = qlk. Using that qijqji = 1
we deduce that qij = qkl.

Let us denote U = R#kΓ the Hopf algebra obtained by bosonization. The
Hopf algebra U is coradically graded with gradation given by U = ⊕n U(n),
U(n) = R(n)#kΓ, see for example [AS1, Lemma 3.4]. Next we will describe
a family of Loewy-graded U -comodule algebras.

Definition 2.3. If W ⊆ V is a kΓ-subcomodule, we shall denote by K(W )
the subalgebra of R generated by elements {w : w ∈ W}. Clearly K(W ) is
a left coideal subalgebra of U .
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Let F ⊆ Γ be a subgroup, ψ ∈ Z2(F,k×) a 2-cocycle and W ⊆ V
a kΓ-subcomodule invariant under the action of F . Set K(W,ψ, F ) =
K(W )⊗kkψF with product and left U -comodule structure λ : K(W,ψ, F ) →
U⊗kK(W,ψ, F ) given as follows. If g ∈ G, w ∈ Wg, v, v′ ∈ W and f, f ′ ∈ F ,
then

(v⊗f)(v′⊗f ′) = vf · v′⊗ψ(f, f ′) ff ′,

λ(w⊗f) = (w#f)⊗1⊗f + (1#gf)⊗w⊗f.

There is a natural inclusion of vector spaces K(W,ψ, F ) ↪→ U . Using
this inclusion the coaction λ coincides with the coproduct of U . Clearly
K(W, 1, F ) is a coideal subalgebra of U . For any n ∈ N set K(W,ψ, F )(n) =
K(W,ψ, F ) ∩ U(n).

Lemma 2.4. With the above given gradation the algebra K(W,ψ, F ) is a
Loewy-graded U -comodule algebra.

Proof. Let be x ∈ K(W,ψ, F ), then x =
∑

i xi, where each xi ∈ U(i). Since
the coproduct of U coincides with the coaction λ and U is a graded Hopf
algebra, then

λ(xi) ∈
i⊕

j=0

U(j)⊗kU(i− j) ∩ U⊗kK(W,ψ, F ).

Applying ε to the first tensorand we obtain that

xi = (ε⊗id )λ(xi) ∈ U(i) ∩ K(W,ψ, F ),

thus for any i, xi ∈ K(W,ψ, F )(i), hence we conclude that K(W,ψ, F ) =
⊕iK(W,ψ, F )(i). It is straightforward to prove that this gradation is an
algebra gradation and since U is coradically graded then K(W,ψ, F ) is a
Loewy-graded U -comodule algebra. ¤

2.2. Liftings of quantum linear spaces. Given a datum for a quantum
linear space R = R(g1, . . . , gθ, χ1, . . . , χθ) for the group Γ, a compatible
datum for R and Γ is a pair D = (µ, λ) where µ = (µi), µi ∈ {0, 1} for
i = 1 . . . θ and λ = (λij) where λij ∈ k for 1 ≤ i < j ≤ θ, satisfying

(1) µi is arbitrary if gNi
i 6= 1 and χNi

i = 1, and µi = 0 otherwise.
(2) λij is arbitrary if gigj 6= 1 and χiχj = 1, and 0 otherwise.

The algebra A(Γ, R,D) is generated by Γ and elements ai, i = 1 . . . θ
subject to relations

(2.5) gai = χi(g) aig, aNi
i = µi(1− gNi

i ), i = 1 . . . θ,

(2.6) aiaj = χj(gi) ajai + λij(1− gigj), 1 ≤ i < j ≤ θ.

The following result is [AS1, Lemma 5.1, Thm. 5.5].
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Theorem 2.5. The algebra A(Γ,R,D) has a Hopf algebra structure with
coproduct determined by

∆(g) = g⊗g, ∆(ai) = ai⊗1 + gi⊗ai,

for any g ∈ Γ, i = 1, . . . , θ. It is a pointed Hopf algebra with coradical kΓ
and the associated graded Hopf algebra with respect to the coradical filtration
grA(Γ,R,D) is isomorphic to R#kΓ. ¤

3. Representations of tensor categories

We shall recall the basic definitions of exact module categories over a
tensor category and we shall describe the strategy to classify exact module
categories over the tensor category of representations of a finite-dimensional
pointed Hopf algebra.

3.1. Exact module categories. Given C = (C,⊗, a,1) a tensor category
a module category over C is an abelian category M equipped with an exact
bifunctor ⊗ : C ×M→M and natural associativity and unit isomorphisms
mX,Y,M : (X ⊗ Y ) ⊗ M → X ⊗ (Y ⊗ M), `M : 1 ⊗ M → M satisfying
natural associativity and unit axioms, see [EO1], [O1]. We shall assume, as
in [EO1], that all module categories have only finitely many isomorphism
classes of simple objects.

A module category is indecomposable if it is not equivalent to a direct
sum of two non trivial module categories. A module category M over a
finite tensor category C is exact ([EO1]) if for any projective P ∈ C and any
M ∈M, the object P⊗M is again projective in M.

3.2. Exact module categories over Hopf algebras. We shall give a
brief account of the results obtained in [AM] on exact module categories
over the category Rep(H), where H is a finite-dimensional Hopf algebra.

If λ : A → H⊗kA is a left H-comodule algebra the category AM is
a module category over Rep(H). When A is right H-simple then AM is
an indecomposable exact module category [AM, Prop 1.20]. Moreover any
module category is of this form.

Theorem 3.1. [AM, Theorem 3.3] If M is an exact idecomposable module
category over Rep(H) then M' AM for some right H-simple left comodule
algebra A with Aco H = k. ¤

The proof of this result uses in a significant way the results of [EO1], [O1].
The main ingredient here is the H-simplicity of the comodule algebra that
helps in the classification results.

Two left H-comodule algebras A and B are equivariantly Morita equiva-
lent, and we shall denote it by A ∼M B, if the module categories AM, BM
are equivalent as module categories over Rep(H).
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Proposition 3.2. [AM, Prop. 1.24] The algebras A and B are Morita
equivariant equivalent if and only if there exists P ∈ HMB such that A '
EndB(P ) as H-comodule algebras. ¤

The left H-comodule structure on EndB(P ) is given by λ : EndB(P ) →
H⊗k EndB(P ), λ(T ) = T (−1)⊗T (0) where

(3.1) 〈α, T (−1)〉T0(p) = 〈α, T (p(0))(−1)S−1(p(−1))〉T (p(0))(0),

for any α ∈ H∗, T ∈ EndB(P ), p ∈ P . It is easy to prove that EndB(P )co H =
EndH

B (P ).

3.3. Exact module categories over pointed Hopf algebras. We shall
explain the technique developed in [M2] to compute explicitly exact inde-
composable module categories over some families of pointed Hopf algebras.

Let H be a finite-dimensional Hopf algebra. Denote by H0 ⊆ H1 ⊆ · · · ⊆
Hm = H the coradical filtration. Let us assume that H0 = kΓ, where Γ is a
finite Abelian group, and that the associated graded Hopf algebra U = grH.
We shall further assume that U = B(V )#kΓ, where V is a Yetter-Drinfeld
module over kΓ with coaction given by δ : V → kΓ⊗kV , and B(V ) is the
Nichols algebra associated to V .

The technique presented in [M2] to find all right H-simple left H-comodule
algebras is the following. Let λ : A → H⊗kA be a right H-simple left H-
comodule algebra with trivial coinvariants. Consider the Loewy filtration
A0 ⊆ · · · ⊆ Am = A and the associated right U -simple left U -comodule
graded algebra grA.

There is an isomorphism grA ' BA#A0 of U -comodule algebras, where
BA ⊆ grA is a certain U -subcomodule algebra, and A0 happens to be a
right H0-simple left H0-comodule algebra.

Since H0 = kΓ then A0 = kψF where F ⊆ Γ is a subgroup and ψ ∈
Z2(F,k×) is a 2-cocycle. The algebra BA can be seen as a subalgebra in
⊆ B(V ) and under this identification BA is an homogeneous left U -coideal
subalgebra.

In conclusion, to determine all possible right H-simple left H-comodule
algebras we have to, first, find all homogeneous left U -coideal subalgebras
K inside the Nichols algebra B(V ), and then all liftings of K#kψF , that is
all left H-comodule algebras A such that grA ' K#kψF .

The problem of finding coideal subalgebras can be a very difficult one.
Some work has been done in this direction for the small quantum groups
uq(sln) [KL] and for U+

q (so2n+1) [K] also very beautiful results are obtained
for right coideal subalgebras inside Nichols algebras [HS] and for the Borel
part of a quantized enveloping algebra [HK].
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The following result summarizes what we have explained before.

Theorem 3.3. Under the above assumptions there exists a graded subal-
gebra BA = ⊕m

i=0BA(i) ⊆ B(V ), a subgroup F ⊆ Γ, and a 2-cocycle
ψ ∈ Z2(F,k×) such that

1. BA(0) = k, BA(i) ⊆ Bi(V ) for all i = 0, . . . , m,
2. BA(1) ⊆ V is a kΓ-subcomodule stable under the action of F ,
3. for any n = 1, . . . , m, ∆(BA(n)) ⊆ ⊕n

i=0 U(i)⊗kBA(n− i),
4. grA ' BA# kψF as left U -comodule algebras.

Proof. The proof of [M2, Proposition 7.3] extends mutatis mutandis to the
case when the group F is arbitrary. ¤

The algebra structure and the left U -comodule structure of BA# kψF is
given as follows. If x, y ∈ K, f, g ∈ F then

(x#g)(y#f) = x(g · y)#ψ(g, f) gf,

λ(x#g) = (x(1)g)⊗(x(2)#g),

where the action of F on BA is the restriction of the action of Γ on B(V ) as
an object in Γ

ΓYD. Observe that if BA = K(W ) for some kΓ-subcomodule
W of V invariant under the action of F , then BA# kψF = K(W,ψ, F ).

Lemma 3.4 below will be useful to find liftings of comodule algebras over
Hopf algebras coming from quantum linear spaces.

Let us further assume that there is a basis {x1, . . . , xθ} of V such that
there are elements gi ∈ Γ and characters χi ∈ Γ̂, i = 1, . . . , θ such that
g · xi = χi(g) xi, δ(xi) = gi⊗xi for all i = 1, . . . , θ.

Let (G,λ0) be a Loewy-graded U -comodule algebra with grading G =
⊕m

i=0G(i) such that G(1) ' V #kψF under the isomorphism in Theorem 3.3
(4) and there is a subgroup F ⊆ Γ such that G(0) ' kψF as U -comodules,
that is there is a basis {ef : f ∈ F} of G(0) such that

efeh = ψ(f, h) efh, λ0(ef ) = f⊗ef ,

for all f, h ∈ F , and there are elements yi ∈ G(1) such that λ0(yi) =
xi⊗1 + gi⊗yi for any i = 1, . . . , θ. Also let λ : A → H⊗kA be a left H-
comodule algebra such that grA = G.

Lemma 3.4. Under the above assumptions for any i = 1, . . . , θ there are
elements vi ∈ A1 such that the class of vi in A1/A0 = G(1) is vi = yi and

(3.2) λ(vi) = xi⊗1 + gi⊗vi, efvi = χi(f) vief ,

for any i = 1, . . . , θ and any f ∈ F .

Proof. The existence of elements vi such that λ(vi) = xi⊗1 + gi⊗vi is [M2,
Lemma 5.5]. For any i = 1, . . . , θ and any f ∈ F set

Pi,f = {y ∈ A1 : λ(y) = µ fxi⊗ef + gi⊗y, µ ∈ k}.
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The sets Pi,f are non-zero vector spaces since efvi ∈ Pi,f , thus dimPi,f ≥ 1.
It is evident that if (i, f) 6= (i′, f ′) then Pi,f ∩ Pi′,f ′ = {0}. Since dimA1 =
dimG(0) + dimG(1) =| F | (1 + θ) this forces to dimPi,f = 1. Hence, since
efvief−1 , vi ∈ Pi,1 there exists ν ∈ k such that efvief−1 = ν vi, but this
scalar must be equal to χi(f). ¤

4. Module categories over quantum linear spaces

In this section we shall apply the technique explained above to describe
exact module categories over Hopf algebras coming from quantum linear
spaces. Let θ ∈ N and Γ be a finite Abelian group, (g1, . . . , gθ, χ1, . . . , χθ)
be a datum of a quantum linear space, V = V (g1, . . . , gθ, χ1, . . . , χθ) the
Yetter-Drinfeld module over kΓ and R = B(V ) its Nichols algebra. Let
U = R#kΓ denote the bosonization. Elements in U will be denoted by v#g
instead of v⊗g to emphasize the presence of the semidirect product.

To describe all exact indecomposable module categories over Rep(U) we
will describe all possible right U -simple left U -comodule algebras. For this
description we shall need first the following crucial result which essentially
says that such comodule algebras are generated in degree 1.

Proposition 4.1. Let K = ⊕m
i=0K(i) ∈ R be a graded subalgebra such that

1. for all i = 0, . . . ,m, K(i) ⊆ R(i),
2. K(1) = W ⊆ V is a kΓ-subcomodule,
3. ∆(K(n)) ⊆ ⊕n

i=0 U(i)⊗kK(n− i).

Then K is generated as an algebra by K(1), in another words K ' K(W ).

Proof. Let n ∈ N, 0 < n ≤ m. Since W is a kΓ-subcomodule then W =
⊕θ

i=0Wgi . Let z ∈ K(n) be a nonzero element and let 1 ≤ d ≤ θ be the
number of x′is appearing in z with non-zero coefficient. We shall prove
by induction on n + d that z ∈ K(W ). If n + d = 2 there is nothing
to prove because in that case d = 1 and n = 1, so assume that every
time that y ∈ K(n) is an element with d different variables and n + d < l
then y ∈ K(W ). We shall use the following claim as the main tool for the
induction.

Claim 4.1. If 2 ≤ n and z ∈ K(n), z =
∑n−1

j=1 wjyj, where w ∈ Wh, for
some h ∈ Γ and for any j = 1, . . . , n − 1 the elements yj ∈ R(n − j) are
such that the x′is appearing in the decomposition of yj does not appear in w.
Then yj ∈ K(n− j) for any j = 1, . . . , n− 1.

Proof of Claim. Let z ∈ K(n) such that z =
∑n−1

j=1 wjyj , as above. Let
p : U → U(1) be the linear map defined by: p(wg) = wg for any g ∈ Γ and
p(x) = 0 if x /∈< wg : g ∈ Γ >k.
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Using (3) we obtain that (p⊗id )∆(z) ∈ U(1)⊗K(n − 1) and using that
∆(w) = w⊗1 + h⊗w, a simple computation shows that

(p⊗id )∆(z) =
n−1∑

j=1

wβj⊗wj−1yj ,

for some βj ∈ kΓ. The second equality follows because p(yj) = 0 for any
j = 1, . . . , n−1. Therefore the element

∑n−1
j=1 wj−1yj ∈ K(n−1). Repeating

this process we deduce that yn−1 ∈ K(n − 1) and arguing inductively we
conclude that each yj ∈ K(n− j) for any j = 1, . . . , n− 1. ¤

Let z ∈ K(n) be a nonzero element and let 1 ≤ d ≤ θ be the number
of x′is appearing in z with non-zero coefficient. Assume that n + d = l.
Since R(n) is generated by the monomials {xl1

1 . . . xlθ
θ : l1 + · · · + lθ = n},

and K(n) ⊆ R(n) we can write z =
∑

l1+···+lθ=n αl1,...,lθ xl1
1 . . . xlθ

θ where
αl1,...,lθ ∈ k and 0 ≤ li ≤ Ni. There is no harm to assume that the monomial
x1 appears, that is there exists l1, . . . , lθ with 0 < l1 such that αl1,...,lθ 6= 0,
since otherwise we can repeat the argument with x2 or x3 and so on.

Under this mild assumption the space Wg1 is not zero. Moreover there
is an element 0 6= w ∈ Wg1 where w =

∑θ
i=1 ai xi and a1 6= 0. Indeed,

if π : U → Vg1 denotes the canonical projection, the quantum binomial
formula implies that for any j = 1, . . . , θ

∆(xlj
j ) =

lj∑

kj=0

(
lj
kj

)

qj

x
lj−kj

j g
kj

j ⊗ x
kj

j ,(4.1)

where
(lj
ij

)
qj

denotes the quantum Gaussian coefficients. Using (3) we know

that (id⊗π)∆(z) ∈ H(n− 1)⊗kWg1 and equals to
∑

j=1,...,θ
l1+···+lθ=m

αl1,...,lθ

(
lj
1

)

qj

xl1
1 . . . x

lj−1
j gj . . . xlθ

θ ⊗xj .

Since there exists l1, . . . , lθ such that l1+ · · ·+ lθ = m and 0 < l1, αl1,...,lθ 6= 0
then (id⊗π)∆(z) =

∑
hj⊗wj where at least one wj 6= 0 written in the basis

{x1, . . . , xθ} has positive coefficient in x1.
Up to reordering the variables we can assume that g1 = g2 = · · · = gr1

and if r1 < j then gj 6= g1. In this case dimVg1 = r1. We shall treat
separately the following three cases: Case (A) r1 = 1, Case (B) r1 = 2, Case
(C) r1 > 2.

Since W ⊆ V is a kΓ-subcomodule, in case (A) Wg1 = {0} or Wg1 = Vg1 .
We have proven that Wg1 is not zero, hence Wg1 = Vg1 . Let us write
z =

∑N1
i=0 xi

1yi, where yi ∈ R(n − i), and x1 does not appear in any factor
of yi, that is, for any i = 0, . . . , N1

yi =
∑

γi
l2,...,lθ

xl2
2 . . . xlθ

θ ,
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for some γi
l2,...,lθ

∈ k. The projection V → V that maps Vg1 to zero, extends
to an algebra map q : R → R. Using (3) we get that (q⊗q)∆(z) = ∆(y0),
thus y0 ∈ K(n), and therefore z − y0 =

∑N1
i=1 xi

1yi ∈ K(n). Using Claim
4.1 we deduce that for any i = 1, . . . , N1 the element yi ∈ K(n− i) and by
inductive hypothesis each yi ∈ K(W ) for all i = 0, . . . , N1.

Now we proceed to the case (B). In this case Vg1 has basis {x1, x2}, and
Wg1 = 0, dimWg1 = 1 or Wg1 = Vg1 . The first case is impossible. If
Wg1 = Vg1 then x1 ∈ Wg1 and we proceed as in case (A). Let us assume that
dimWg1 = 1, that is Wg1 is generated by an element a x1 + b x2, for some
a, b ∈ k, where we can assume that b 6= 0 because otherwise x1 ∈ Wg1 .

Let p : K → Vg1 be the canonical projection. Follows from (4.1) that
(id⊗p)∆(z) equals to

∑

l1+···+lθ=n

αl1,...,lθ

(
l1
1

)

q1

xl1−1
1 g1x

l2
2 . . . xlθ

θ ⊗x1+

+
∑

l1+···+lθ=n

αl1,...,lθ

(
l2
1

)

q2

xl1
1 xl2−1

2 g2x
l3
3 . . . xlθ

θ ⊗x2.

Using (3) we obtain that (id⊗p)∆(z) ∈ H(n − 1)⊗Wg1 , hence there exists
an element v ∈ H(n− 1) such that (id⊗p)∆(z) = av⊗x1 + bv⊗x2, thus

av =
∑

l1+···+lθ=n

αl1,...,lθ

(
l1
1

)

q1

xl1−1
1 g1x

l2
2 . . . xlθ

θ ,

bv =
∑

l1+···+lθ=n

αl1,...,lθ

(
l2
1

)

q2

xl1
1 xl2−1

2 g2x
l3
3 . . . xlθ

θ .

Comparing coefficients from the above equations and using that g1 = g2,
x2x1 = q1 x1x2, g1x1 = q1 x1g1, g1x2 = q−1

1 x2g1 we obtain that

(4.2) αl1+1,l2,...,lθ =
a

b

ql2+1
1 − 1

ql1+1
1 − 1

αl1,l2+1,l3,...,lθ .

For any m ∈ N set γm
l3,...,lθ

= α0,m,l3,...,lθ , then if l1 + l2 = m we deduce from
equation (4.2) that

(4.3) αl1,l2,...,lθ =
(

m

l1

)

q1

al1bm−l1
γm

l3,...,lθ

bm
.

Then we can write the element z as∑

m≥0

∑

l3+···+lθ=n−m
l1+l2=m

αl1,...,lθ xl1
1 . . . xlθ

θ =

=
∑

m≥1

∑

l1+l2=m
l3+···+lθ=n−m

αl1,...,lθ xl1
1 . . . xlθ

θ +
∑

l3+···+lθ=n

α0,0,l3,...,lθ xl3
3 . . . xlθ

θ .
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Using the same argument as before and the inductive hypothesis we deduce
that the element y0 =

∑
l3+···+lθ=n α0,0,l3,...,lθ xl3

3 . . . xlθ
θ ∈ K(W ) and z−y0 ∈

K(n). From (4.3) we conclude that

z − y0 =
∑

m≥1

∑

l3+···+lθ=n−m

γm
l3,...,lθ

bm
(ax1 + bx2)mxl3

3 . . . xlθ
θ ,

hence by Claim (4.1) z − y0 ∈ K(W ) thus z ∈ K(W ). Case (C) can be
treated in a similar way as case (B). ¤
Remark 4.2. The above result uses in an essential way the structure of R
and it is no longer true for arbitrary Nichols algebras. It is worth to mention
that this is one of the main difficulties to classify module categories over,
for example, Rep(uq(sl3)), since there are homogeneous coideal subalgebras
that are not generated in degree 1.

Let us define now a family of right U -simple left U -comodule algebras.
Let F ⊆ Γ be a subgroup, ψ ∈ Z2(F,k×) a 2-cocycle and ξ = (ξi)i=1...θ,
α = (αij)1≤i<j≤θ be two families of elements in k satisfying

ξi = 0 if gNi
i /∈ F or χNi

i (f) 6= ψ
g

Ni
i

(f),(4.4)

αij = 0 if gigj /∈ F or χiχj(f) 6= ψgigj (f),(4.5)

for all f ∈ F . In this case we shall say that the pair (ξ, α) is compatible
comodule algebra datum with respect to the quantum linear space R, the
2-cocycle ψ and the group F .

Definition 4.3. The algebra A(V, F, ψ, ξ, α) is the algebra generated by
elements in {vi : i = 1 . . . θ}, {ef : f ∈ F} subject to relations

efeg = ψ(f, g) efg, efvi = χi(f) vief ,(4.6)

vivj − qij vjvi =

{
αij egigj if gigj ∈ F

0 otherwise,
(4.7)

vNi
i =

{
ξi e

g
Ni
i

if gNi
i ∈ F

0 otherwise,
(4.8)

for any 1 ≤ i < j ≤ θ. Observe that we are abusing of the notation since
we are changing the name of the variables xi by vi to emphasize that the
elements no longer belong to U . If W ⊆ V is a kΓ-subcomodule invari-
ant under the action of F , we define A(W,F, ψ, ξ, α) as the subalgebra of
A(V, F, ψ, ξ, α) generated by W and {ef : f ∈ F}.

The algebra A(V, F, ψ, ξ, α) is a left U -comodule algebra with structure
map λ : A(V, ψ, ξ, α) → U⊗kA(V, F, ψ, ξ, α) given by:

λ(vi) = xi⊗1 + gi⊗vi, λ(ef ) = f⊗ef ,
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It is clear that the map λ is well defined and is an algebra morphism and
that the subalgebra A(W,F, ψ, ξ, α) is a U -subcomodule.

Remark 4.4. 1. The algebra A(W,F, ψ, ξ, α) does not depend on the
class of the 2-cocycle ψ.

2. If W = 0 then A(W,F, ψ, ξ, α) = kψF.

Proposition 4.5. Under the above assumptions the following assertions
hold.

(1) For any 2-cocycle ψ of Γ and any compatible comodule algebra datum
(ξ, α) the algebra A(V,Γ, ψ, ξ, α) is a Hopf-Galois extension over the
field k.

(2) The Loewy filtration on A = A(V, F, ψ, ξ, α) is given as follows

An =< {efvr1
1 . . . vrθ

θ : r1 + · · ·+ rθ = m : m ≤ n, f ∈ F} >k .(4.9)

(3) The graded algebra grA(W,F, ψ, ξ, α) is isomorphic to K(W,ψ, F ).

Proof. The proof of (1) is standard. One must show that the canonical
map β : A(V, G, ψ, ξ, α)⊗kA(V, G, ψ, ξ, α) → U⊗kA(V, G, ψ, ξ, α), β(a⊗b) =
a(−1)⊗a(0)b is bijective. For this it is enough to show that the elements g⊗1
and xi⊗1 are in the image of β for all g ∈ G, i = 1, . . . , θ, and this follows
because β(eg⊗eg−1) = g⊗1, β(vi⊗1− ehi

⊗eh−1
i

vi) = xi⊗1.

The filtration on A = A(V, F, ψ, ξ, α) defined by (4.9) satisfies the hy-
pothesis in Lemma 1.1, hence it coincides with the Loewy filtration. This
proves (2).

The algebra grA(W,F, ψ, ξ, α) is a Loewy-graded U -comodule algebra
satisfying

grA(W,F, ψ, ξ, α)(0) = kψF, grA(W,F, ψ, ξ, α)(1) = W⊗kkF.

Thus (3) follows from Theorem 3.3 and Proposition 4.1. ¤
Now we can state the main result of this section.

Theorem 4.6. Let θ ∈ N, Γ be a finite Abelian group, g1, . . . , gθ ∈ Γ,
χ1, . . . , χθ ∈ Γ̂ be a datum for a quantum linear space, with associated Yetter-
Drinfeld module over kΓ V = V (g1, . . . , gθ, χ1, . . . , χθ) and U = B(V )#kΓ.

If M is an exact indecomposable module category over Rep(U) then there
exists a subgroup F ⊆ Γ, a 2-cocycle ψ ∈ Z2(F, k×), a compatible datum
(ξ, α) and W ⊆ V a subcomodule invariant under the action of F such that
M' A(W,F,ψ,ξ,α)M as module categories.

Proof. By Theorem 3.1 there exists a right U -simple left U -comodule algebra
λ : A → H⊗kA with trivial coinvariants such that M ' AM as module
categories over Rep(U). Since U0 = kΓ, and A0 is a right U0-simple left U0-
comodule algebra [M2, Proposition 4.4] then A0 = kψF for some subgroup
F ⊆ G and a 2-cocycle ψ ∈ Z2(F,k×). Thus we may assume that A 6= A0.
By Theorem 3.3 there exists an homogeneous coideal subalgebra BA ⊆ R
such that grA ' BA#kψF . Proposition 4.1 implies that BA = K(W )
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for some kΓ-subcomodule W ⊆ V invariant under the action of F , thus
grA ' K(W,ψ, F ). Since A 6= A0 the space W is not zero.

Let us assume first that grA ' K(V, ψ, F ). By Lemma 3.4, there are
elements {vi : i = 1 . . . θ} in A such that for all f ∈ F

λ(vi) = xi⊗1 + gi⊗vi, efvi = χi(f) vief .

Since grA is generated as an algebra by V and kψF then A is generated as
an algebra by the elements {vi : i = 1 . . . θ} and kψF . Since xi⊗1 and gi⊗vi

qi-commute then the quantum binomial formula implies that

λ(vNi
i ) = gNi

i ⊗vNi
i ,

thus vNi
i ∈ A0 and there exists ξi ∈ k such that vNi

i = ξi eg
Ni
i

if gNi
i ∈ F , oth-

erwise vNi
i = 0. If i 6= j then λ(vivj−qij vjvi) = gigj⊗(vivj−qij vjvi). Hence

vivj−qij vjvi ∈ A0, and therefore vivj−qij vjvi =
∑

f∈F ζf ef . Thus we con-
clude that if gigj ∈ F then there exists αij ∈ k such vivj−qij vjvi = αij egigj ,
and if gigj /∈ F then vivj − qij vjvi = 0. It is clear that (ξ, α) is compat-
ible with the quantum linear space and ψ, therefore there is a projection
A(V,G, ψ, ξ, α) ³ A of U -comodule algebras, but both algebras have the
same dimension, since by Proposition 4.5 (3) grA ' grA(V, G, ψ, ξ, α), thus
they are isomorphic.

If grA ' K(W,ψ, F ) for some kΓ-subcomodule W ⊆ V invariant under
the action of F we proceed as follows. We shall define an U -comodule algebra
D such that grD = K(V, ψ, F ) such that A is a U -subcomodule algebra of D,
and this will finish the proof of the theorem since D ' A(V, F, ψ, ξ, α) and
by definition A(W,F, ψ, ξ, α) is the subcomodule algebra of A(V, F, ψ, ξ, α)
generated by W and kF .

Using again Lemma 3.4 there is an injective map W ↪→ A1 such that for
any h ∈ Γ, w ∈ Wh

λ(w) = w#1⊗1 + 1#h⊗w.

Observe that here we are abusing of the notation since the element w also de-
notes the element in A1 under the above inclusion. Using this identification
A is generated as an algebra by W and kF .

Let W ′ ⊆ V be a kΓ-subcomodule and an F -submodule such that V =
W ′ ⊕W . Set D = K(W ′)⊗kA, with algebra structure determined by

(1⊗a)(1⊗b) = 1⊗ab, (x⊗1)(y⊗1) = xy⊗1, (x⊗1)(1⊗a) = x⊗a,

(1⊗ef )(v⊗1) = f · v⊗ef , (1⊗w)(v⊗1) = qh,g(v⊗w),

for any a, b ∈ A, x, y ∈ K(W ′), f ∈ F , h, g ∈ Γ, w ∈ W ′
h, v ∈ Wg. Here

the scalar qh,g ∈ k is determined by the equation in U : wv = qh,g vw, see
Remark 2.2. Let us define λ̃ : D → U⊗kD the coaction by:

λ̃(x⊗a) = x(−1)a(−1)⊗x(0)⊗a(0),
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for all a ∈ A, x ∈ K(W ′). By a direct computation one can see that
λ̃ is an algebra map. It is not difficult to see that D0 = kψF and that
grD(1) = V⊗kkF , thus grD ' K(V, ψ, F ). ¤
Example 4.7. This example is a particular case of a classification result
obtained in [EO1, §4.2] for the representation category of finite supergroups.

Let θ ∈ N, Γ be an Abelian group and u ∈ Γ be an element of order 2.
Set g1 = · · · = gθ = u and for any i = 1, . . . , θ let χi ∈ Γ̂ be characters
such that χi(u) = −1. If V = V (g1, . . . , gθ, χ1, . . . , χθ) then the associated
quantum linear space is the exterior algebra ∧V . In this case U = ∧V #kΓ.

Let F ⊆ Γ be a subgroup and ψ ∈ Z2(F,k×) a 2-cocycle. A compatible
comodule algebra datum in this case is a pair (ξ, α) satisfying

ξi = 0 if χ2
i (f) 6= 1, αij = 0 if χiχj(f) 6= 1, for all f ∈ F.(4.10)

If W ⊆ V is a subspace stable under the action of F the algebraA(W,F, ψ, ξ, α)
is isomorphic to the semidirect product Cl(W,β)#kψF where Cl(W,β) is
the Clifford algebra associated to the symmetric bilinear form β : V ×V → k
invariant under F defined by

β(vi, vj) =

{
αij

2 if i 6= j

ξi if i = j.
(4.11)

Reciprocally, if W ⊆ V is a F -submodule, any symmetric bilinear form
β : W × W → k invariant under F defines a comodule algebra datum
(ξ, α). Indeed, take U ⊆ V a F -submodule such that V = W ⊕ U and
define β̂ : V × V → k such that β̂(w1, w2) = β(w1, w2) if w1, w2 ∈ W and
β̂(v, u) = 0 for any v ∈ V , u ∈ U . Follows that the pair (ξ, α) defined by
equation (4.11) using β̂ gives a compatible comodule algebra datum.

Remark 4.8. It would be interesting to give an explicit description of data
(W,F, ψ, ξ, α) such that the algebra A(W,F, ψ, ξ, α) is simple. This would
give a description of twists over U , i.e. fiber functors for Rep(U).

4.1. Equivariant equivalence classes of algebras A(W,F, ψ, ξ, α). In
this section we shall distinguish equivalence classes of module categories of
Theorem 4.6, that is equivariant Morita equivalence classes of the algebras
A(W,F, ψ, ξ, α).

Let U be the Hopf algebra as in the previous section. Let W,W ′ ⊆
V be subcomodules, F, F ′ ⊆ Γ be two subgroups, ψ ∈ Z2(F,k×), ψ′ ∈
Z2(F ′,k×) 2-cocycles and (ξ, α), (ξ′, α′) compatible comodule algebra datum
with respect to the quantum linear space R, the 2-cocycles ψ, ψ′ and the
groups F, F ′ respectively.

Theorem 4.9. The associated right simple left U -comodule algebras to these
data A(W,F, ψ, ξ, α), A(W ′, F ′, ψ′, ξ′, α′) are equivariantly Morita equiva-
lent if and only if (W,F, ψ, ξ, α) = (W ′, F ′, ψ′, ξ′, α′).

We shall need first the following result.
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Lemma 4.10. The algebras A(W,F, ψ, ξ, α), A(W ′, F ′, ψ′, ξ′, α′) are iso-
morphic as left U -comodule algebras if and only if W = W ′, F = F ′, ψ = ψ′,
ξ = ξ′ and α = α′.

Proof. Let Φ : A(W,F, ψ, ξ, α) → A(W ′, F ′, ψ′, ξ′, α′) be an isomorphism of
U -comodule algebras. The map Φ induces an isomorphism between kψF
and kψ′F

′ that must be the identity, thus F is equal to F ′ and ψ = ψ′ in
H2(F,k×).

Let W̃ ∈ kΓ
kFM be a complement of W in V , that is V = W ⊕ W̃ . Let us

define a map Φ̃ : A(V, F, ψ, ξ, α) → A(V, F, ψ, ξ′, α′) such that Φ̃(a) = Φ(a)
whenever a ∈ A(W,F, ψ, ξ, α).

It is enough to define Φ̃ on V and {ef : f ∈ F} since A(V, F, ψ, ξ, α) is
generated as an algebra by these elements. Set

Φ̃(w) = Φ(w), Φ̃(u) = u, Φ̃(ef ) = Φ(ef ),

for any w ∈ W , u ∈ W̃ , f ∈ F . It is straightforward to prove that Φ̃ is an
U -comodule algebra map, and necessarily Φ̃ is the identity map, whence Φ
is the identity and the Lemma follows. ¤

Proof of Theorem 4.9. Let us assume that A = A(W,F, ψ, ξ, α) and A′ =
A(W ′, F ′, ψ′, ξ′, α′) are equivariantly Morita equivalent. Thus there exists an
equivariant Morita context (P, Q, f, g), see [AM]. That is P ∈ U

A′MA, Q ∈
U
AMA′ and f : P⊗AQ → A′, g : Q⊗A′P → A are bimodule isomorphisms
and A′ ' EndA(P ) as comodule algebras, where the comodule structure on
EndA(P ) is given in (3.1).

Let us denote by δ : P → U⊗kP the coaction. Consider the filtration on P
given by Pi = δ−1(Ui⊗kP ) for any i = 0 . . . m. This filtration is compatible
with the Loewy filtration on A, that is Pi · Aj ⊆ Pi+j for any i, j and for
any n = 0 . . . m, δ(Pn) ⊆ ∑n

i=0 Ui⊗kPn−i.
The space P0 · A is a subobject of P in the category UMA, thus we can

consider the quotient P = P/P0 · A. Let us denote by δ the coaction of P .
Clearly P 0 = 0, therefore P = 0. Indeed, if P 6= 0 there exists an element
q ∈ Pn such that q /∈ Pn−1, but δ(q) ⊆ ∑n

i=0 Ui⊗kPn−i. Since P 0 = 0 then
δ(q) ∈ Un−1⊗kP which contradicts the assumption. Hence P = P0 · A.

Since P0 ∈ kΓMkψF then by Lemma 1.3 there exists an object N ∈ CM,
C = kΓ/kΓ(kF )+ such that P0 ' N⊗kkψF as objects in kΓMkψF . The
right kψF -module structure on N⊗kkψF is the regular action on the second
tensorand and the left kΓ-comodule structure is given by δ : N⊗kkψF →
kΓ⊗kN⊗kkψF , δ(v⊗ef ) = v(−1)f⊗v(0)⊗ef , v ∈ N , f ∈ F . Here we are
identifying the quotient C with kΓ/F . Observe that P = (N⊗1) · A. It
is not difficult to prove that the action (N⊗1)⊗A → P is injective, thus
dimP = dimN dimA. In a similar way one may prove that dimQ =
s dimA′ for some s ∈ N.
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If dimN = 1 then there exists an element g ∈ Γ and a non-zero element
v such that δ(v) = g⊗v and P ' v · A, where the left U -comodule structure
is given by δ(v · a) = ga(−1)⊗v · a(0), for all a ∈ A. In this case the map
ϕ : gAg−1 → EndA(P ) given by

ϕ(gag−1)(v · b) = v · ab,

for all a, b ∈ A is an isomorphism of U -comodule algebras. Hence A′ ' A.
Thus, the proof of the Theorem follows from Lemma 4.10 once we prove
that dimN = 1.

Using Theorem 1.2 there exists t, s ∈ N such that P t is a free right A-
module, i.e. there is a vector space M such that P t ' M⊗kA, hence

t dimN = dim M.(4.12)

Since P⊗AQ ' A′ then P t⊗AQ ' M⊗kQ ' A′t, then dimM dimQ =
sA′ dimM = t dimA′ and using (4.12) we obtain that s dimN = 1 whence
dimN = 1 and the Theorem follows. ¤

5. A correspondence for twist equivalent Hopf algebras

We shall present an explicit correspondence between module categories
over twist equivalent Hopf algebras. For this we shall use the notion of
biGalois extension. A (L,H)-biGalois extension B, for two Hopf algebras
L, H is a right H-Galois structure and a left L-Galois structure on B such
that the coactions make B an (L,H)-bicomodule. For more details on this
subject we refer to [Sch].

Let L, H be finite-dimensional Hopf algebras and B a (L,H)-biGalois
extension. We denote by B̃ the (H, L)-biGalois extension with underlying
algebra Bop, and comodule structure given as in [Sch, Theorem 4.3]. This
new biGalois extension satisfies that B¤HB̃ ' L as (L,L)-biGalois exten-
sions and B̃¤HB ' H as (H, H)-biGalois extensions. Here ¤H denotes the
cotensor product over H.

Let us recall that a Hopf 2-cocycle for H is a map σ : H⊗kH → k,
invertible with respect to convolution, such that for all x, y, z ∈ H

σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2)),(5.1)

σ(x, 1) = ε(x) = σ(1, x).(5.2)

Using this cocycle there is a new Hopf algebra structure constructed over
the same coalgebra H with the product described by

x.[σ]y = σ(x(1), y(1))σ
−1(x(3), y(3)) x(2)y(2), x, y ∈ H.

This new Hopf algebra is denoted by Hσ. If K is a left H-comodule algebra,
then we can define a new product in K by

a.σb = σ(a(−1), b(−1)) a(0).b(0),(5.3)
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a, b ∈ K. We shall denote by Kσ this new left comodule algebra. We
shall say that the cocycle σ is compatible with K if for any a, b ∈ K,
σ(a(2), b(2)) a(1)b(1) ∈ K. In that case we shall denote by σK the left co-
module algebra with underlying space K and algebra structure given by

aσ.b = σ(a(−1), b(−1)) a(0).b(0) a, b ∈ K.(5.4)

The algebra Hσ is a left H-comodule algebra with coaction given by the
coproduct of H and it is a (Hσ,H)-biGalois extension and σH is a (H, Hσ)-
biGalois extension.

If λ : A → H⊗kA is a left H-comodule algebra then B¤HA is a left
L-comodule algebra. The left coaction is the induced by the left coaction
on B with the following algebra structure, if

∑
x⊗a,

∑
y⊗b ∈ B¤HA then

(
∑

x⊗a)(
∑

y⊗b) :=
∑

xy⊗ab.

A direct computation shows that B¤HA is a left L-comodule algebra.

Proposition 5.1. The following assertions hold.

1. If A is right H-simple, then B¤HA is right L-simple.
2. If A ∼M A′ then B¤HA ∼M B¤HA′.
3. If σ : H⊗kH → k is an invertible 2-cocycle and L = Hσ, B = Hσ

then B¤HA ' Aσ.
4. If K ⊆ H is a left coideal subalgebra, τ : H⊗kH → k is an invertible

2-cocycle compatible with K, σ : H⊗kH → k is an invertible 2-
cocycle and B = Hσ then B¤H

(
τK

) ' (
τK

)
σ
.

As a consequence we obtain that the application A → B¤HA gives a ex-
plicit bijective correspondence between indecomposable exact module cate-
gories over Rep(H) and over Rep(L).

Proof. 1. If I ⊆ A is a right ideal H-costable then B¤HI is a right ideal
L-costable of B¤HA.

2. Let P ∈ HMA such that A′ ' EndA(P ) as comodule algebras. The
object B¤HP belongs to the category LMB¤HA. The result follows since
there is a natural isomorphism B¤H EndA(P ) ' EndB¤HA(B¤HP ).

3. and 4. follow by a straightforward computation. ¤

5.1. BiGalois extensions for quantum linear spaces. Let θ ∈ N and Γ
be a finite Abelian group, (g1, . . . , gθ, χ1, . . . , χθ) be a datum of a quantum
linear space, V = V (g1, . . . , gθ, χ1, . . . , χθ) and R the quantum linear space
associated to this data. Let U = R#kΓ.

Let D = (µ, λ) be a compatible datum for R and Γ, and H = A(Γ, R,D)
be the Hopf algebra as described in section 2.2. We shall present a (H, U)-
biGalois object.

The pair (−µ,−λ) is a compatible comodule algebra datum with respect
to R and the trivial 2-cocycle. In this case the left U -comodule algebra
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A(V,Γ, 1,−µ,−λ) is also a right H-comodule algebra with structure ρ :
A(V,Γ, 1,−µ,−λ) → A(V,Γ, 1,−µ,−λ)⊗kH determined by

ρ(eg) = eg⊗g, ρ(vi) = vi⊗1 + egi⊗ai, g ∈ Γ, i = 1, . . . , θ.

The following result seems to be part of the folklore.

Proposition 5.2. The algebra A(V,Γ, 1,−µ,−λ) with the above coactions
is a (H, U)-biGalois object.

Proof. Straightforward. ¤
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[BEK] J. Böckenhauer, D. E. Evans and Y. Kawahigashi, Chiral Structure of Mod-
ular Invariants for Subfactors, Commun. Math. Phys. 210 (2000), 733–784.

[BFRS] T. Barmeier, J. Fuchs, I. Runkel and C. Schweigert, Module categories for
permutation modular invariants, arXiv:0812.0986.

[BO] R. Bezrukavnikov and V. Ostrik, On tensor categories attached to cells in
affine Weyl groups II, math.RT/0102220.

[CS1] R. Coquereaux and G. Schieber, Orders and dimensions for sl2 and sl3 module
categories and boundary conformal field theories on a torus, J. of Mathematical
Physics, 48, 043511 (2007).

[CS2] R. Coquereaux and G. Schieber, From conformal embeddings to quantum
symmetries: an exceptional SU(4) example, Journal of Physics- Conference Series
Volume 103 (2008), 012006.

[EN] P. Etingof and D. Nikshych, Dynamical twists in group algebras, Int. Math.
Res. Not. 13 (2001), 679–701.

[EO1] P. Etingof and V. Ostrik, Finite tensor categories, Mosc. Math. J. 4 (2004),
no. 3, 627–654.

[EO2] P. Etingof and V. Ostrik, Module categories over representations of SLq(2)
and graphs, Math. Res. Lett. (1) 11 (2004) 103–114.

[ENO1] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. Math.
162, 581–642 (2005).

[ENO2] P. Etingof, D. Nikshych and V. Ostrik, Weakly group-theoretical and solvable
fusion categories, preprint arXiv:0809.3031.

[FS] J. Fuchs and C. Schweigert, Category theory for conformal boundary condi-
tions, in Vertex Operator Algebras in Mathematics and Physics, (2000). Preprint
math.CT/0106050.

[Ga] C. Galindo, Clifford theory for tensor categories, preprint arXiv:0902.1088.
[HK] I. Heckenberger and S. Kolb, Right coideal subalgebras of the Borel part of a

quantized enveloping algebra, preprint arXiv:0910.3505.
[HS] I. Heckenberger and H.-J. Schneider, Right coideal subalgebras of Nichols

algebras and the Duflo order on the Weyl groupoid, preprint arXiv:0909.0293.



MODULE CATEGORIES OVER QUANTUM LINEAR SPACES 21

[K] V.K. Kharchenko, Right coideal subalgebras in U+
q (so2n+1), preprint

arxiv:0908.4235.
[KL] V.K. Kharchenko and A.V. Lara Sagahon, Right coideal subalgebras in

Uq(sln+1), J. Algebra 319 (2008) 2571–2625.
[KO] A. Kirillov Jr. and V. Ostrik, On a q-analogue of the McKay correspondence

and the ADE classification of sl2 conformal field theories, Adv. Math. 171 (2002),
no. 2, 183–227.

[Ma] A. Masuoka, Abelian and non-abelian second cohomologies of quantized envelop-
ing algebras, J. Algebra 320 (2008), 1–47.

[M1] M. Mombelli, Dynamical twists in Hopf algebras, Int. Math. Res. Not. (2007)
vol.2007.

[M2] M. Mombelli, Module categories over pointed Hopf algebras, Math. Z. to appear,
preprint arXiv:0811.4090.

[N] D. Nikshych, Non group-theoretical semisimple Hopf algebras from group actions
on fusion categories, Selecta Math. 14 (2008), 145–161.

[Oc] A. Ocneanu, The classification of subgroups of quantum SU(N), in Quantum
symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp.
Math. 294 (2002), 133–159.

[O1] V. Ostrik, Module categories, Weak Hopf Algebras and Modular invariants,
Transform. Groups, 2 8, 177–206 (2003).

[O2] V. Ostrik, Module categories over the Drinfeld double of a Finite Group, Int.
Math. Res. Not. 2003, no. 27, 1507–1520.

[O3] V. Ostrik, Module Categories Over Representations of SLq(2) in the Non-
Semisimple Case, Geom. funct. anal. Vol. 17 (2008), 2005–2017.

[Sch] P. Schauenburg, Hopf Bigalois extensions, Comm. in Algebra 24 (1996) 3797–
3825.

[Sk] S. Skryabin, Projectivity and freeness over comodule algebras, Trans. Am. Math.
Soc. 359, No. 6, 2597-2623 (2007).
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