ON POINTED HOPF ALGEBRAS ASSOCIATED TO SOME
CONJUGACY CLASSES IN S,

NICOLAS ANDRUSKIEWITSCH AND SHOUCHUAN ZHANG

ABSTRACT. We show that any pointed Hopf algebra with infinitesi-
mal braiding associated to the conjugacy class of # € S,, is infinite-
dimensional, if either the order of 7 is odd, or 7 is a product of disjoint

cycles of odd order except for exactly two transpositions.

INTRODUCTION

The purpose of this article is to contribute to the classification of finite-
dimensional complex pointed Hopf algebras H with G(H) = S,,. Although
substantial progress has been done in the classification of finite-dimensional
complex pointed Hopf algebras with abelian group [AS4], not much is known
about the non-abelian case. Our approach fits into the framework of the
Lifting Method [AS1, AS3]; we shall freely use the notation and results
from loc. cit. Given a finite group G, the key step in the classification of
finite-dimensional complex pointed Hopf algebras H with G(H) = G is the
determination of all Yetter-Drinfeld modules V' over the group algebra of
G such that the Nichols algebra is finite-dimensional. If G is abelian, this
reduces to the study of Nichols algebras of diagonal type; general results were
reached in this situation in [AS2, H] for braided vector spaces of Cartan type.
If G is not abelian, then very few examples have been computed explicitly in
the literature, see [FK, MS, G1, AG2|. Our viewpoint in the present paper
is to deduce that some Nichols algebras over non-abelian groups are infinite-
dimensional from those results on Nichols algebras of diagonal type. This
idea appeared first in [G1]. More precisely, recall that an irreducible Yetter-
Drinfeld module over the group algebra of G is determined by a conjugacy
class C of G and an irreducible representation p of the centralizer G° of a
fixed s € C. We seek for conditions on C and p implying that the dimension
of the Nichols algebra B(C, p) is infinite. We concentrate on the central
example G = S,. The main results in this paper are summarized in the
following statement.
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Theorem 1. Let w € S,,. If either one of the following conditions holds
(i) the order of w is odd, or
(ii) all cycles in m have odd order except for exactly two transpositions,

then dim B(Oy, p) = oo for any p € gﬁ

See Theorems 2.4 and 2.7. We also apply our main result to determine
all irreducible Yetter-Drinfeld over S3 or S; whose Nichols algebra is finite-
dimensional. See Theorem 2.8.

1. PRELIMINARIES AND CONVENTIONS

Our references for pointed Hopf algebras are [M], [AS3]. The set of iso-
morphism classes of irreducible representations of a finite group G is denoted
@; thus, the group of characters of a finite abelian group I' is denoted T.
We shall often confuse a representant of a class in G with the class itself. If
V is a I'-module then VX denotes the isotypic component of type x € L. It
is useful to write g>h = ghg™", g,h € G.

1.1. Notation on the groups S,,. Recall that the type of a permutation
m € S, is a symbol (1™,2™2 ... n") meaning that in the decomposition
of m as product of disjoint cycles, there are m; cycles of length j, 1 < j < n.
We may omit j™ when m; = 0. The conjugacy class O of 7 coincides
with the set of all permutations in S,, with the same type as m; we denote
it by O1mi gma . pmn or by O2 23 3. For instance, we denote by O; the
conjugacy class of j-cycles in S,, 2 < j < n. Also, 02 is the conjugacy
class of (12)(34) and so on. If 7 € S,, and n < m then we also denote by 7
the natural extension to S,, that fixes all ¢ > n. If some emphasis is needed,
we add a superscript n to indicate that we are taking conjugacy classes in
Sy, like OF for the conjugacy class of j-cycles in Sy,. It is well-known that
the isotropy subgroup S7 is isomorphic to a product

SZ:Tl...Tn

where T; = T'; X Sy,,, 1 < i < n. Here I'; ~ (Z/i)"™ is generated by the
i-cycles in 7 and S,,, permutes these cycles. Hence any p € ST is of the form

p1® -+ & pn where p; € T.

If X is a subset of {1,...,n} then Sx denotes the subgroup of bijections
in S,, that fix pointwise {1,...,n} — X. We shall use the following notation
for representations of subgroups of S,,. Let w; be a fixed primitive j-th root
of 1,2 <j<n. Let ; = (123...).

€ = trivial character;
sgn = sign character of Sx, X C Sy;

Xj = character of (7;) ~ Z; given by x(7;) = wj.



POINTED HOPF ALGEBRAS WITH CORADICAL CS, 3

1.2. Yetter-Drinfeld modules over the group algebra of a finite
group. A Yetter-Drinfeld module over a finite group G is a left G-module
and left CG-comodule M such that

§(g.m) = ghg™' @ g.m, m € My, g,h € G.

Here M, = {m € M : 6(m) = h ® m}; clearly, M = ®pecM). Yetter-
Drinfeld modules over G are completely reducible. Also, irreducible Yetter-
Drinfeld modules over G are parameterized by pairs (C,p) where C is a
conjugacy class and p is an irreducible representation of the isotropy sub-
group G* of a fixed point s € C. As usual, degp is the dimension of the
vector space V affording p. We denote the corresponding Yetter-Drinfeld
module by M(C, p); see [DPR, W], and also [AG1]. Since s € Z(G?), the
Schur Lemma says that

(1) s acts by a scalar ¢s5 on V.

Here is a precise description of the Yetter-Drinfeld module M(C, p). Let
ty =s, ..., tyr be a numeration of C and let g; € G such that g; > s = t; for
all 1 <i < M. Then M(C,p) = ®1<i<mgi @ V. Let gjv := g; ®v € M(C, p),
1<i<M,veV.IfveVand1l<i< M, then the action of g € G and
the coaction are given by

d(giv) = t; ® g;v, g (giv) = gj(v-v),

where gg; = gj, for some 1 < j < M and v € G*®. The explicit formula for
the braiding is then given by

(2) c(giv @ gjw) = t; - (gjw) ® giv = gn(y - v) ® giv

forany 1 <i,57 < M, v,w € V, where t;g; = gy for unique h, 1 < h < M
and v € G°.

1.3. On Nichols algebras. Let (V,c) be a braided vector space, that is V
is a vector space and ¢: V@V — V ® V is a linear isomorphism satisfying
the braid equation. Then B(V') denotes the Nichols algebra of V, see the
precise definition in [AS3]. Let G be a finite group, C a conjugacy class,

s € C and p € G*. The Nichols algebra of M (C, p) will be denoted simply
by B(C,p). We collect some general facts on Nichols algebras for further
reference.

Remark 1.1. Let (V,c) be a braided vector space. If W is a subspace of V'
such that ¢(W @ W) = W @ W then B(W) C B(V). Thus dimB(W) =
oo = dimB(V) = co. In particular, if there exists v € V' — 0 such that
c(v®wv) = v®ov then dimB(V) = oco. This is the case in B(C, p) when
either the orbit C is trivial or the representation p is trivial, or even if the
scalar gss defined in (1) is 1.
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A braided vector space (V,c) is of diagonal type if there exists a basis
v1,...,09 of V' and non-zero scalars ¢;;, 1 <1,j < 6, such that
c(v; ® vj) = qijv; @ vy, forall 1 <4, <.

A braided vector space (V,¢) is of Cartan type if it is of diagonal type, and
there exists a;; € Z, —ord ¢;; < a;; < 0 such that

%igji = ;"
forall 1 <i# j <#6. Set a; =2 foral 1 <i <86 Then (ai;)i<ij<o is
a generalized Cartan matrix. The following important result was proved in
[H, Th. 4], showing that some hypotheses in [AS2, Th. 1] were unnecessary.

Theorem 1.2. Let (V,c) be a braided vector space of Cartan type. Assume
that q;; # 1 is root of 1 for all 1 < i < 6. Then dimB(V) < oo if and only
if the Cartan matriz is of finite type. O

2. ON NICHOLS ALGEBRAS OVER S,

In this section we state some general results about Nichols algebras over
S;. Our main idea is to find out suitable braided subspaces of a Yetter-
Drinfeld module over CS,, that are diagonal of Cartan type, so that Theorem
1.2 applies. In /vghat follows, G is a finite group, s € G, C is the conjugacy
class of s, p € G5, p: G° — GL(V). Recall the scalar ¢ys defined in (1).

Proposition 2.1. [G1, Lemma 3.1] Assume that dim B(C, p) < co. Then
o degp > 2 implies qss = —1.
e degp = 2 implies qss = —1, ws or w%. [l
2.1. Nichols algebras corresponding to permutations of odd order.

We begin by a general way of finding braided subspaces of rank 2. Assume
that

(3) there exists an involution ¢ € G such that oso = s~ # s.
In particular, s~' € C. Under this hypothesis, we prove the following result

that, unlike Proposition 2.1, does not assume any restriction on deg p.

Lemma 2.2. If dimB(C, p) < oo then qss = —1. In particular s has even
order.

Proof. Let N = ord qs; clearly N > 1. Let t1 = s,to =51 g1 =e, go = 0.
By (1), (2) and (3), we have for any v,w € V

c(giv @ grw) = g1(s - w) ® g10 = @ss GrW @ g1 v,

c(g1v ® gow) = go(s™" - w) ® g1v = g3, gaw ® g,
c(g20 ® grw) = g1 (s w) ® gav = ¢z, 1w ® gov,
c(gav @ gow) = g2(s - W) ® Gov = Gss Gow ® Gov.
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Let v € V, v # 0. Then the subspace of M(C,p) spanned by v; := gjv,

vg = gov is a braided subspace of Cartan type: c(v; ® vj) = qi;v; ® vj,
-1
for 1 < 4,5 < 2, where arodz) qisl Qss , with Cartan matrix
q21 422 dss  Gss
2 a
12 , a2 = a1 = —2 mod N. Now a2 = a1 = 0 or —1, by
a1 2
hypothesis and Theorem 1.2. Thus, necessarily ajo = ao; = 0 and N =
2. O

Lemma 2.3. Let m € S,, ordm > 2, p € gﬁ If dimB(Oy, p) < oo then
Qrnm = —1.

Proof. 1t is well-known that (3) holds for any 7 € S,,. Namely, assume that
m = t; for some j and take

(17—1)(2j—2)---(k—1k+1), if j = 2k is even,

92 =
(1j-1)(2j=2)---(kk+1), ifj=2k+11is odd.

It is easy to see that gotjgs = tj_l. The general case follows using that any

m is a product of disjoint cycles. We conclude from Lemma 2.2. U

Theorem 2.4. If # € S, has odd order then dimB(Oy,p) = oo for any
p € SE. O

If n es even, the Nichols algebras B(O}, p) cannot be treated by similar
arguments as above. For, the isotropy subgroup ST is cyclic of order n and
we can assume that p(7,) = —1. Assume that 7 € O} N ST then 7 = 7
with (n,j) = 1 hence p(7) = —1. But there are Nichols algebras like these
that are finite-dimensional. For instance, the Nichols algebra B(Oy, x%) was
computed in [AG2, Th. 6.12] and has dimension 576.

J

2.2. A reduction argument. We now discuss a general reduction argu-
ment. Let n,p € N and let m =n +p. Let # : S, xS, — S,,, be the group
homomorphism given by

-

T €Sy, TESy. Ifalso g €S, h €Sy then (g#h) > (n#71) = (g>7)#(h>T).
Thus Orxr O Ox#0O;. Let us say that m and 7 are orthogonal, denoted
w L 7, if there is no j such that both m and 7 contain a j-cycle. In other
words, if 7 has type (191,22, ..., n%) and 7 has type (1°1,2%2 ... p%) then
either a; = 0 or b; = 0 for any j. If 7 L 7 then STHT = ST#ST, say by a

p?
/#T
Sm'"

(1), 1<i<my
T(i—n)+n, n+1<i<m,

counting argument. Hence any u € is of the form u = p® A, for unique
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pE gﬁ, A€ gi. Say that V', W are the vector spaces affording p, \. Let ¢,
resp. ¢nr, be the scalar as in (1) for the representation p, resp. .

Lemma 2.5. Letm €S, 7 €5,.
(1) Assume that # L 7 and ord(n#7) > 2. Let i € Si'" of the form
p=p@A, for pe Sy, A €Sy, If dimB(Oryr, pu) < o0 then qergrr = —1.
(2) Assume that the orders of m and T are relatively prime, that ord q,,
is odd and that ord(m#7) > 2. If Aim B(Orpr, 1) < 00 then ¢rr = 1.

Clearly, if the orders of m and 7 are relatively prime then 7 L 7. On the
other hand, if ord(7#7) = 2 and the orders of 7 and 7 are relatively prime,
then we can assume 7 = e, and ¢, = 1 anyway.

Proof. Since Gnstrrptr = GrxGrr, (1) follows from Lemma 2.3. Then (2)
follows from (1). O

Our aim is to obtain information on B(Oryr,u) from B(O,p) and
B(O-, ). For this, we fix g1 =e€,...,9p € Sy, b1 = e,...,hp € Sp, such
that

gi1>T=m7,...,gp>m is a numeration of Oy,
hi>7=r7,...,hp>7 is a numeration of O,.

Then we can extend (g;#h;) > (7#71), 1 < i < P, 1 < j < T toa
numeration of Orx,. Let v,u € V, w,z ¢ W, 1 <4,k <P, 1 l
Then the braiding in M (Or4,, p ® ) has the form

(4)  c((gitthy) (v © w) @ (gr#hi) (u © 2))

= ((ge#h) (v u® B 2) ® (gi#h;) (v @ w))
where g; > g = gr7, hj>h; = hp3 for unique 1 <r < P, 1 <p<T,vy€S]
and 3 € §}. Assume in (4) that j =1 =1; then p=1, 3 = 7 and (4) takes
the form
(5) c((gi#th1)(v @ w) ® (gr#th1)(u @ 2))

= qrr ((ge#th1) (7 - u ® 2) ® (gi#th1 ) (v @ w)) .

Our aim is to spell out some consequences of formula (5).

Proposition 2.6. Let m € S,,, 7 € S,. Assume that the orders of ™ and

T are relatively prime and that ord g is odd. Let p € SmH#T of the form
p=p@A, forpeS;, N€S].
(1) If dim B(Orspr, 1) < 00, then dimB(Oy, p) < oo.

—

(2) If dim*B(Ox, p) = oo for any p € ST, then dim B(Orpr, 1) = 0o for
any p € SEFT.
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In particular, let 7 € S,, with no fixed points. If dimB(O%,p) = oo for
any p € ST, then dim B(OX, p’) = oo for any p’ € ST, m > n.

Proof. Assume that dimB(Or4., ) < co. By Lemma 2.5, ¢- = 1. Let
0 # w =z € W. The linear map ¢ : M(Oxr,p) — M(Orpr, 1) given by
¥(giv) = (¢i#h1)(v @ w) is a morphism of braided vector spaces because of
(5). Now apply Remark 1.1. O

2.3. Nichols algebras of orbits with exactly two transpositions.

Theorem 2.7. Let 7 € S,. If m has type (12,22 B™ ... h™) where
hi,...,hy are odd, then dimB(OL, p) = oo for any p € ST.

For instance, if n > 4 then dim B(0% 5, p) = oo for any p.

Proof. By Proposition 2.6, we can assume that n = 4 and 7 is of type (2, 2).
Let us consider the irreducible Yetter-Drinfeld modules corresponding to
O = {a = (13)(24),b = (12)(34),d = (14)(23)}. The isotropy subgroup
of a is S} = ((1234), (13)) ~ D4. Let A = (1234), B = (13); 022 C S} and
a= A% b= BA, d = BA3. Hence the irreducible representations of S§ are
(1) the characters given by A +— €1, B +— ey where ; € {£1}, 1 < j < 2,
and (2) the 2-dimensional representation p : Dy — GL(2,C) given by

p<A>=<(1) ‘01), p<B>=<‘01 ‘f)

Let 4 be a one-dimensional representation of S§. Then M (Oz2, ;1) has a
basis vg, vp, Vg With §(v,) = a®ug, etc., and ¢(v,QVg) = P(a)vE @V, = Va@Vg.
Hence dimB(O0s 2, ) = oc.

Let gy = 1, g1 = (12), 09 = (23) Then

or>a=d, og>a=b, o>bb=b oo>d=d.

Let us consider the Yetter-Drinfeld module M (O3 2, p). We have

p<a>:<‘01 _01>, p<b>:<‘f ;) p<d>:<_01 ‘01>.

Let ojv := 0; ®@v, v € V, 0 < j < 2. The coaction is given by d(c;v) =
oj>a ® ojv; we need the action of the elements a, b, d, which is

a-ogv = ogp(a)(v), a-ov=o1p(d)(v), a - o9v = oap(b)(v),
b-ogv = ogp(b)(v), b-ov=o1p(b)(v), b-oov = ogp(a)(v),

d - opv = ogp(d)(v), d-ov=o1p(a)(v), d - o9v = o9p(d)(v).
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Orbit Isotropy Representation | dimB(V) | Reference
group

e S any 00 Remark 1.1

O3 Zs3 any % Theorem 2.4

Oy Zs € 00 Remark 1.1

02 Lo sgn 12 [MS]

TABLE 1. Nichols algebras of irreducible Yetter-Drinfeld
modules over Ss3

Hence the braiding is given, for all 0 < j <2 and v,w € V, by
c(ojv@ojw) = (o;>a) - cjw ojv = ojpla)(w) ® ojv = —0;w ojv
and
c(ogv ® oqw) = o1p(d)(w) ® ogv, c(opv @ ogw) = o2p(b)(w) ® ogv,
c(o1v ® ogw) = opp(d)(w) @ oyv, c(o1v ® oaw) = o9p(d)(w) ® o1v,
( )

c(o2v ® ogw) = opp(b)(w) ® oav, clov @ oqw) = o1p(b)(w) ® ogv.

Let v; = <1>, vy = (_11> Then p(b)(v1) = wv1, p(b)(ve) = —wvg,

p(d)(v1) = —v1, p(d)(v2) = va. Hence the braiding is diagonal of Cartan
type in the basis

w1 = ogV1, W2 = OQV2, W3 = 0101, W4 = 01V2, W5 = 02V1, We = 02V2.

The corresponding Dynkin diagram is not connected; its connected com-
ponents are {1,4,6} and {2, 3,5}, each of them supporting the affine Dynkin
diagram Agl). Then dim B(O22, p) = oo by Theorem 1.2. O

2.4. Nichols algebras over S3 and S;. We apply the main result of this
paper to classify finite-dimensional Nichols algebras over Sg or S4 with irre-
ducible module of primitive elements.

Theorem 2.8. Let M(C,\) be an irreducible Yetter-Drinfeld module over
Sy, such that B(C, \) is finite-dimensional.

(i). If S, = Sg then M(C,\) ~ M(Os,sgn).

(ii). If S, = Sy then M(C,\) is isomorphic either to B(Oy4,x3) or to
B(O2,sgn de) or to B(O2,sgn Bsgn).
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Orbit Isotropy Representation | dim B (V) | Reference
group

e Sy any 00 Remark 1.1
02 Dy any 00 Theorem 2.7
Oy Zy € 00 Remark 1.1
Oy 2y X4 O Xi o0 Lemma 2.3
Oy Z4 % 576 [AG2, 6.12]
O3 Zs any o0 Theorem 2.4
Oy Lo D Lo € or € P sgn 00 Remark 1.1
Oy Lo D 7o sgn e 576 [FK]

Oy Zo @ 7o sgn @ sgn 576 [MS]

TABLE 2. Nichols algebras of irreducible Yetter-Drinfeld
modules over Sy

Proof. See tables 1 and 2. O
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