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POINTED HOPF ALGEBRAS WITH STANDARD

BRAIDING ARE GENERATED IN DEGREE ONE

ANGIONO, IVÁN; GARCÍA IGLESIAS, AGUSTÍN

Abstract. We show that any finite-dimensional pointed Hopf alge-
bra over an abelian group Γ such that its infinitesimal braiding is of
standard type is generated by group-like and skew-primitive elements.
This fact agrees with a long-standing conjecture by Andruskiewitsch and
Schneider. We also show that the quantum Serre relations hold in any
coradically graded pointed Hopf algebra over Γ of finite dimension and
determine how these relations are lifted in the standard case.

Introduction

The classification of finite-dimensional pointed Hopf algebras is currently
an active area of research. This class includes group algebras kΓ, Γ a group,
and Frobenius-Luzstig kernels uq(g) [L], associated to a semisimple finite-
dimensional Lie algebra g and a root of unity q.

The main result concerning the classification of finite-dimensional pointed
Hopf algebras with group of group-likes Γ over an algebraically closed field
of characteristic zero has been done by Andruskiewitsch and Schneider in
[AS4], for the case Γ abelian and |Γ| not divisible by 2, 3, 5, 7. This was
achieved using the so-called Lifting method, introduced by the authors in
previous works, see e.g. [AS1], [AS3].

One of the main steps in the Lifting method is to determine when a given
braiding yields a finite-dimensional Nichols algebra. This was solved in the
abelian case by Heckenberger [H]. Another key step of this method is to
prove that all pointed Hopf algebras over Γ are generated by group-like and
skew-primitive elements, or, equivalently, that the associated graded Hopf
algebra with respect to the coradical filtration is generated in degrees 0
and 1. This problem has been solved for a finite-dimensional pointed Hopf
algebra H over a group Γ in the following cases:

• when H is co-triangular [AEG],
• when Γ is abelian and |Γ| is not divisible by 2, 3, 5, 7 [AS4],
• when Γ is (isomorphic to) Sn, n = 3, 4, 5 [AG, GG],
• when the braiding arises from some particular affine racks [AG].
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2 ANGIONO; GARCÍA IGLESIAS

It has been conjectured in [AS2, Conjecture 1.4] that this holds for any H as
above. Our main result, Theorem 2.7 is a positive answer to this conjecture
in the case in which the braiding is of standard type.

The paper is organized as follows. In Section 1 we recall the basic facts
about braided vector spaces and Nichols algebras, including the description
of standard braidings. Also we explicitly recall the steps of the Lifting
method.

In Section 2 we prove Theorem 2.7. To do this, we first prove in Proposi-
tion 2.1 that quantum Serre relations hold in any finite-dimensional graded
braided Hopf algebra in the category of Yetter-Drinfeld modules over an
abelian group Γ, not necessarily of standard type. To complete the proof we
strongly use the presentation of Nichols algebras of standard type by gener-
ators and relations given in [A], which we recall in Theorem 1.1. Along this
part, we repeatedly use the classification of finite arithmetic root systems in
[H] to check that some diagrams that we can associate to the relations are
not of finite type.

In Section 3 we show how the quantum Serre relations are lifted to a gen-
eral pointed Hopf algebra, exploiting the arguments in the proof of Propo-
sition 2.1.

1. Preliminaries

1.1. Conventions. We work over an algebraically closed field k of charac-
teristic 0. For each N > 0, GN denotes the group of primitive N -th roots
of 1 in k. Given n ∈ N and q ∈ k, q /∈ ∪0≤j≤nGj , q 6= 0, we denote(

n

j

)
q

=
(n)q!

(k)q!(n− k)q!
, where (n)q! =

n∏
j=1

(k)q and (k)q =
k−1∑
j=0

qj .

If Γ is an abelian group, we denote Γ̂ = Hom(Γ,k×).

1.2. Nichols algebras and the Lifting method.

1.2.1. Braided vector spaces. A braided vector space is a pair (V, c), where
V is a vector space and c ∈ Aut(V ⊗ V ) is a solution of the braid equation:

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

We extend the braiding to c : T (V ) ⊗ T (V ) → T (V ) ⊗ T (V ) in the usual
way. If x, y ∈ T (V ), then the braided commutator is

[x, y]c := multiplication ◦ (id−c) (x⊗ y) .

1.2.2. Braided vector spaces of diagonal type and hyperwords. A braided
vector space (V, c) is of diagonal type with respect to a basis {xi}i∈I if there
exist qij ∈ k× such that c(xi ⊗ xj) = qijxj ⊗ xi, i, j ∈ I.



GENERATION IN DEGREE ONE 3

Fix a basis {x1, . . . , xθ} of V (we assume dimV < ∞). Denote by X
the set of words in letters x1, . . . , xθ and order them using the lexicographic
order. We identify canonically X with a basis of T (V ).

We say that u ∈ X is a Lyndon word if u is smaller than any of its proper
ends. That is, u = xi for some i or for each v, w ∈ X\{1} such that u = vw,
we have u < w.

Denote by L the set of Lyndon words. It follows that u ∈ L if and only
if there exist v < w ∈ L such that u = vw or u = xi, 1 ≤ i ≤ θ. Given
u ∈ L \ {x1, . . . , xθ} the Shirshov decomposition u = vw with v, w ∈ L is
the one such that w is the smallest end between all possible decompositions.
See [Kh] and references therein.

For each u ∈ L we consider an element [u]c ∈ T (V ), called the hyperletter
[Kh] corresponding to u, defined inductively by

[u]c =

{
u, if u ∈ X;
[[v]c, [w]c]c , if u = vw is the Shirshov decomposition of u.

1.2.3. Braided vector spaces of standard type. Fix θ ∈ N, I = {1, . . . , θ} and
(qij)1≤i,j≤θ as above.

Let E = {e1, . . . , eθ} be the canonical basis of Zθ and χ : Zθ×Zθ → k× the
bilinear form determined by χ(ei, ej) = qij ,1 ≤ i, j ≤ θ. If F = {f1 . . . , fθ}
is another basis of Zθ, then we set qF = (qFij)1≤i,j≤θ, by qFij = χ(fi, fj),

1 ≤ i, j ≤ θ. Thus q = qE . For i 6= j ∈ {1, . . . , θ}, consider the set

MF
ij = {m ∈ N0|(m+ 1)qFii

(qFii
m
qFijq

F
ji − 1) = 0}.

If this set is not empty, let mF
ij denote its minimal element. Also let mF

ii =

2, ∀ i. Let sFi be the pseudo-reflection in Zθ given by

sFi (fj) = fj +mF
ijfi, j = 1, . . . , θ.

Let Ω be the set of all ordered bases of Zθ and let P(χ) ⊆ Ω be the set of
points of the Weyl grupoid W (χ) of the bilinear form χ, see [A, Def. 3.2].

Clearly, sFi (F ) is again a basis of Zθ. The form χ is called standard if
for every F ∈ P(χ), the integers mF

ij are defined, for all 1 ≤ i, j ≤ θ, and

m(sFk (F ))ij = mij for every i, j, k. The corresponding braided vector space
is said to be of standard type [AA].

We are interested in standard braiding whose associated Nichols algebra
is finite-dimensional. In such case, the corresponding Cartan matrix C =
(aij = −mij)i,j∈{1,...,θ} is finite, see [A, Thm. 4.1]. This family includes
properly the braidings of Cartan type considered in [AS2].

Standard braidings with finite-dimensional Nichols algebras are classified
in [A]. In the same paper, the dimension, a presentation by generators and
relations and a PBW basis is given for each Nichols algebras with standard
braiding. We recall next this result, which will be fundamental for our work.
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Theorem 1.1. [A, Thms. 5.14, 5.19, 5.22, 5.25] Let V be a braided vector
space of standard type, of dimension θ, C = (aij = −mij)i,j∈{1,...,θ} the
associated finite Cartan matrix, and ∆+ the corresponding root system.

The Nichols algebra B(V ) is presented by generators xi, 1 ≤ i ≤ θ, and
the following relations

xNαα = 0, α ∈ ∆+;(1)

adc(xk)
1+mkj (xj) = 0, k 6= j, q

mkj+1
kk 6= 1;(2)

if there exist distinct j, k, l satisfying mkj = mkl = 1, qkk = −1, then

(3) [(adxk)xj , (adxk)xl]c = 0;

if there exist k 6= j satisfying mkj = 2,mjk = 1, qkk ∈ G3 or qjj = −1, then

(4)
[
(adxk)

2xj , (adxk)xj
]
c

= 0;

if there exist distinct k, j, l satisfying mkj = 2,mjk = mjl = 1, qkk ∈ G3 or
qjj = −1, then

(5)
[
(adxk)

2(adxj)xl, (adxk)xj
]
c

= 0;

if i, j determines a connected component of the Dynkin diagram of type G2

and qkk ∈ G4 or qjj = −1, then[
(adxk)

3xj , (adxk)
2xj
]
c

=0,(6) [
xk,
[
x2
kxjxkxj

]
c

]
c

=0,(7) [[
x2
kxjxkxj

]
c
, [xkxj ]c

]
c

=0,(8) [[
x2
kxj
]
c
,
[
x2
kxjxkxj

]
c

]
c

=0.(9)

Moreover, a basis of B(V ) is given explicitly by:

xh1β1x
h2
β2
. . . xhPβP , 0 ≤ hj ≤ Nβj − 1, if βj ∈ SI , 1 ≤ j ≤ P. �

1.3. Generalized Dynkin diagrams. Given a braided vector space of di-
agonal type, with matrix (qij)1≤i,j≤θ, there is a generalized Dynkin diagram
[H] associated to it, in such a way that two braided vector spaces of diagonal
type have the same generalized Dynkin diagram if and only if they are twist
equivalent. This diagram is a labeled graph with vertices 1, . . . , θ, each one
labeled with the corresponding scalar qii. There is an edge between two
different vertices i and j if qijqji 6= 1 and it is labeled with this scalar.

The generalized Dynkin diagrams whose associated Nichols algebra is
finite-dimensional were classified in [H]. We explicitly exhibit this classi-
fication for the case A2. Let q ∈ GN , N > 2, then the following are all the
generalized Dynkin diagrams of standard type A2:

D1 = ◦q q−1

◦−1 D2 = ◦−1
q ◦−1

D3 = ◦−1
−1 ◦−1 D4 = ◦q q−1

◦q
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1.3.1. Yetter-Drinfeld modules. We denote by H
HYD the category of Yetter-

Drinfeld modules over H, where H is a Hopf algebra with bijective antipode.
M is an object of HHYD if and only if there exists an action · such that (M, ·)
is a (left) H-module and a coaction δ such that (M, δ) is a (left) H-comodule,
subject to the following compatibility condition:

δ(h ·m) = h1m−1S(h3)⊗ h2 ·m0, ∀m ∈M,h ∈ H,
where δ(m) = m−1 ⊗m0. Any V ∈ H

HYD becomes a braided vector space,
[Mo]. If Γ is a finite abelian group and H = kΓ, we denote Γ

ΓYD instead of
H
HYD. Any V ∈ Γ

ΓYD is a braided vector space of diagonal type. Indeed,
V = ⊕

g∈Γ,χ∈Γ̂
V χ
g , where V χ

g = V χ ∩ Vg, Vg = {v ∈ V | δ(v) = g ⊗ v},
V χ = {v ∈ V | g · v = χ(g)v for all g ∈ Γ}. The braiding is given by

c(x⊗ y) = χ(g)y⊗x, for all x ∈ Vg, g ∈ Γ, y ∈ V χ, χ ∈ Γ̂. Reciprocally, any
braided vector space of diagonal type can be realized as a Yetter-Drinfeld
module over the group algebra of an abelian group.

1.3.2. Nichols algebras. If V ∈ H
HYD, then the tensor algebra T (V ) admits

a unique structure of graded braided Hopf algebra in H
HYD such that V ⊆

P(V ). The Nichols algebra B(V ) [AS2] is the defined as the quotient of
T (V ) by the maximal element I(V ) of the class S of all the homogeneous
two-sided ideals I ⊆ T (V ) such that

• I is generated by homogeneous elements of degree ≥ 2,
• I is a Yetter-Drinfeld submodule of T (V ),
• I is a Hopf ideal: ∆(I) ⊂ I ⊗ T (V ) + T (V )⊗ I.

1.4. Lifting method. Let Γ be a finite group. The main steps of the
Lifting Method [AS2] for the classification of all finite-dimensional pointed
Hopf algebras with group of group-likes (isomorphic to) Γ are:

• determine all V ∈ Γ
ΓYD such that the Nichols algebra B(V ) is finite

dimensional,
• for such V , compute all Hopf algebras H such that grH ' B(V )]kΓ.

We call H a lifting of B(V ) over Γ.
• Prove that any finite-dimensional pointed Hopf algebras with group

Γ is generated by group-likes and skew-primitives.

2. Generation in degree one

Throghout this Section, Γ will denote a finite abelian group and S =⊕
n≥0 S(n) a finite-dimensional graded braided Hopf algebra in kΓ

kΓYD such

that S(0) = k1. We fix a basis {x1, . . . , xθ} of V := S(1), with xi ∈ S(1)χigi
for some gi ∈ Γ and χi ∈ Γ̂, and call qij := χj(gi).

We will show that given such S, if V is a braided vector space of standard
type, then S is the Nichols algebra B(V ) associated to V . In particular, we
will obtain the main result of this work, that is that any finite-dimensional
pointed Hopf algebra over Γ with infinitesimal braiding of standard type is
generated by group-like and skew-primitive elements.
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First, we prove in the next Proposition that the quantum Serre relations
hold in any such S, not necessarily of standard type. This result extends
[AS4, Lemma 5.4].

Proposition 2.1. Let S as above. Then,

(10) adc(xi)
1+mij (xj) = 0, for all i 6= j such that q

mij+1
ii 6= 1.

Proof. Suppose that adc(xi)
1+mij (xj) 6= 0 for some i 6= j such that q

mij+1
ii 6=

1 (so q
mij
ii qijqji = 1 by definition of mij).

To start with, we begin as in [AS4, Lemma 5.4]. Set m = mij , q = qii,
y1 := xi, y2 := xj and y3 := adc(xi)

1+m(xj). Also,

h1 = gi, h2 = gj , h3 = gm+1
i gj ,

η1 = χi, η2 = χj , η3 = χm+1
i χj ,

so yk ∈ Sηkhk , 1 ≤ k ≤ 3. If W = ky1 + ky2 + ky3, then B(W ) is finite-

dimensional, because y3 is a primitive element. Indeed, W ⊂ P(S) hence we
have a monomorphism B(W ) ↪→ S. We compute the corresponding braid-
ing matrix (Qkl = ηl(hk))1≤k,l≤3, and consider the corresponding generalized
Dynkin diagram:

(11) ◦qjj
q−m(m+1)q2jj

JJJJJJJJJ

◦q

q−m
||||||||

qm+2 ◦qm+1qjj .

In consequence, this diagram appears in [H, Table 2]. We consider differ-
ent cases.

Case I: QklQlk 6= 1 for all 1 ≤ k < l ≤ 3.
By [H, Lemma 9(ii)], 1 =

∏
k<lQklQlk = q2−m(m+1)q2

jj , and at least one
of the vertices is labeled with −1. Notice that q 6= −1 because in such case
m = 0 (we assume qm+1 6= 1). Also, qjj 6= qm+1qjj by hypothesis, so exactly
one of the vertices is labeled with −1.

• If qjj = −1, then 1 = (qm+1qjj)(q
−m(m+1)q2

jj) = −q1−m2
and m = 1

by the same Lemma, but this is a contradiction.
• If qm+1qjj = −1, then 1 = qqm+2 = qm+3 and

1 = qjj(q
−m(m+1)q2

jj) = q3
jjq
−m(m+3)+2m = q3

jjq
2m,

by the same Lemma, so

−1 = (−1)3 = q3
jjq

3m+3 = (q3
jjq

2m)qm+3 = qm+3,

which is a contradiction. Therefore (11) does not belong to this case.

Case II : Q12Q21 = q−m = 1.
Here m = 0, so we have

(12) ◦q
q2
◦qqjj

q2jj
◦qjj .
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If qjj = −1 then we have the connected subdiagram ◦q
q2
◦−q . Notice

that this diagram has no vertices labeled with −1 and the labels of the
vertices are different. Also the diagram is not of finite Cartan type and it
does not correspond to the diagrams without −1 at the vertices in rows 5,
9, 11, 12, 15 of [H, Table 1], so we discard all of them.

If qjj 6= −1 but q = −1 we have an analogous situation, so we consider
also q 6= −1 and (12) is a connected diagram of rank 3.

If qqjj 6= −1, [H, Lemma 9(i)] implies that one of the following holds:

• it is of finite Cartan type, so it contains an A2 Cartan subdiagram.
Then 1 = qq2 = (qqjj)q

2 or 1 = qjjq
2
jj = (qqjj)q

2
jj , so q = 1 or

qjj = 1;
• q3 = 1, qjj , qjjq ∈ G6∪G9 and qjjq

2
jj = 1 or q3

jj = 1, q, qjjq ∈ G6∪G9

and qq2 = 1.

But neither of these cases is possible. In consequence, qqjj = −1. Looking
at [H, Table 2] we see that QiiQi3Q3i = 1 for some i ∈ {1, 2} in all the cases.
As both situations are analogous, we assume i = 1: q3 = 1. By [H, Lemma
9(iii)], one of the following is true:

• q3
jj = 1, but q3

jj = −q−3 = −1,

• q4
jj = 1,

• qjj = −q.
We obtain a contradiction, so m 6= 0.

Case III: Q13Q31 = qm+2 = 1.
The corresponding diagram is:

◦q
q2
◦qjj

q−2q2jj
◦q−1qjj .

This diagram is analogous to (12) exchanging qjj with qjjq
−1 so we see that

it does not belong to [H, Table 2]. Therefore qm+2 6= 1.

Case IV: Q23Q32 = 1. That is, q2
jj = qm(m+1). We have the following

diagram:

(13) ◦qjj
q−m

◦q
qm+2◦q

m+1qjj .

By the previous cases, this is a connected diagram of rank 3. As m 6= 0 and
qm+1 6= 1 we have q 6= −1. We analyze the different possibilities for the
values on the vertices:

qjj = qm+1qjj = −1: In such case, qm+1 = 1 and the diagram is

◦−1
q ◦q q ◦−1,

but it does not appear in Heckenberger’s list.
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qjj = −1,qm+1qjj 6= −1: By [H, Table 2], we have 1 = Q22Q23Q32 =
qm+3 and the diagram is

◦−q−2

q−1
◦q

q3
◦−1.

Also, 1 = q2
jj = qm(m+1) = q2m = q−6. Notice that q3 6= 1 because qm 6= 1,

so q ∈ G6. But this diagram does not belong to Heckenberger’s list.

qjj 6= −1,qm+1qjj = −1: As in the previous case, 1 = Q22Q21Q12 =
q1−m. By the definition of m we conclude that m = 1 and the diagram is
the same as in the previous case, where again q ∈ G6 by the initial condition
of case IV, and we have the same contradiction.

qjj,q
m+1qjj 6= −1: By [H, Lemma 9(i)], one of the following holds:

• it is of Cartan type. Therefore q = qjj and m = 1, or q = qm+1qjj =
q−m−2. In both cases we arrive to the same diagram

◦q
q−1

◦q
q3
◦q3 .

It is easy to see that it is not of types A3, C3 because q, q2 6= q3. But
if it were of type C3, q = (q3)2 = q−3, which is a contradiction.
• qjj ∈ G3, q ∈ G6 ∪ G9 and 1 = q1−m = qjjq

2m+3. Then m = 1 and

q5 = q−1
jj , so q15 = 1, but this is a contradiction with q ∈ G6 ∪G9.

• qm+1qjj ∈ G3, q ∈ G6 ∪G9 and 1 = qjjq
−m = qm+3. Again q15 = 1,

which is a contradiction with q ∈ G6 ∪G9.

In consequence (11) is not of finite type, so we conclude the proof. �

The following Lemmata show that if the braiding satisfies certain con-
ditions related with braidings of standard type, then some extra relations
hold in S. We consider the presentation of Nichols algebras of standard type
from Theorem 1.1. As this presentation is not minimal in some cases, we
need first to discard some redundant relations in the next Lemma.

Lemma 2.2. If there exist j 6= k ∈ {1, . . . , θ} such that mkj = 1, mjk = 2,
but qjj /∈ G3 or qkk 6= −1, then

[
(adc xj)

2xk, (adc xj)xk
]
c

= 0.

Proof. To prove this, by [A, Lemma 5.5(ii)] it is enough to consider two
cases: qjj ∈ G3, qkk 6= −1, or qjj /∈ G3, qkk = −1. In the first case we have

x3
j = 0, (adc xk)

2xj = x2
kxj − (1 + qkk)qkjxkxjxk + qkkq

2
kjxjx

2
k = 0.

In consequence we have

x2
jxkxjxk = (1 + qkk)

−1q−1
kj x

2
jx

2
kxj ,

and by [A, Lemma 5.5(i)] we conclude that
[
(adc xj)

2xk, (adc xj)xk
]
c

= 0 (we
can restrict to the Hopf subalgebra generated by xj , xk in order to satisfy the
conditions of such Lemma). The proof for the other case is analogous. �
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Lemma 2.3. Assume that there exist distinct j, k, l ∈ {1, . . . , θ} such that
qkk = −1, qkjqjk = q−1

kl q
−1
lk 6= 1, qjlqlj = 1. Then,

(14) x2
k = 0, [adc xj(adc xk(xl)), xk]c = 0.

Proof. The first equation follows easily because x2
k is primitive and the as-

sociated scalar is 1. This implies that (adc xk)
2xj = (adc xk)

2xl = 0.
For the second equation, we denote u := [adc xj(adc xk(xl)), xk]c, gu :=

gjg
2
kgl ∈ Γ, χu := χjχ

2
kχl ∈ Γ̂, q := qlkqkl. By [A, Lemma 5.8], u is a

primitive element.
We proceed as in the proof of the previous Lemma. Suppose that u 6= 0.

Then the braiding of y1 = xj , y2 = xk, y3 = xl and y4 = u, with the

corresponding elements hi ∈ Γ, ηi ∈ Γ̂, corresponds to one whose associated
Nichols algebra is finite-dimensional. We obtain the following generalized
Dynkin diagram attached to (Qrs = ηs(hr))1≤r,s≤4:

(15) ◦qjj
q−1

q2jjq
−2

◦−1

q

◦qjjqll
q2llq

2
◦qll .

Notice that q = −1 implies that (15) contains (12) as a subdiagram, which
is a contradiction to the finite dimension of the associated Nichols algebra.
Therefore q 6= −1 and as any such diagram contains a 4-cycle, by [H, Lemma
12] we have q2

jjq
−2 = 1 or q2

llq
2 = 1. By the symmetry of the diagram we

can assume qjj = ±q.
If also qll = ±q−1, since Q44 = qjjqll 6= 1, then the diagram is of the

form ◦q
q−1 ◦−1

q ◦−q
−1 . But this is a contradiction with [H, Lemma

9(iii)]. Therefore we have a connected diagram of rank 4:

◦±q
q−1 ◦−1

q ◦qll
q2llq

2
◦qjjqll .

Suppose that qjj = −q. As Q11Q12Q21 6= 1, we deduce from [H, Table 3]
that

0 = (1−Q3
11)(Q2

11Q12Q21 − 1) = (1 + q3)(q − 1),

but we discard this case by [H, Table 3].
Therefore qjj = q. We obtain that there are no diagrams in [H, Table 3]

such that Q22 = −1, Q11 = Q44Q
−1
33 = q 6= ±1, so the above diagram does

not belong to such list. Therefore u = 0. �

Lemma 2.4. Assume that there exist j 6= k ∈ {1, . . . , θ} such that mkj = 1,
mjk = 2.

(a) If qjj ∈ G3 and qkk = −1, then the following relation holds:

(16)
[
(adc xj)

2xk, (adc xj)xk
]
c

= 0.
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(b) If V is standard and there exist l 6= j, k ∈ {1, . . . , θ} such that mjl =
mlj = 0, mkl = 1 and (1 + qkk)(1− q3

jj) = 0, then:

(17)
[
(adc xk)

2(adc xj)xl, (adc xj)xk
]
c

= 0.

Proof. (a) We proceed as in the previous Lemmata. Assume that v :=[
(adc xj)

2xk, (adc xj)xk
]
c
6= 0. By [A, Lemma 5.9], v is a primitive element:

notice that x3
j = 0, or x2

k = 0, or q2
jjqjkqkj = qkkqjkqkj = 1 because S is

finite dimensional.
Call y1 = xj , y2 = xk, y3 = v, and hi ∈ Γ, ηi ∈ Γ̂, i = 1, 2, 3

the corresponding elements. In consequence, the braiding matrix (Qrs =
ηs(hr))1≤r,s≤3 corresponds to one in Heckenberger’s list. The associated
generalized Dynkin diagram is

◦qjj q

q2 CC
CC

CC
CC

◦−1

◦q6
q3

{{{{{{{{

, q := qjkqkj .

As the diagram is finite, Q33 = q6 6= 1, but then this contradicts [H, Lemma
9(iii)]. Therefore, v = 0.

(b) By the previous item, Lemma 2.2 and [A, Lemma 5.9(b)],

w :=
[
(adc xk)

2(adc xj)xl, (adc xj)xk
]
c

is a primitive element. If we suppose that w 6= 0, we work as in previous
cases for each possible diagram calling y1 = xj , y2 = xk, y3 = xl, y4 = w,

and hi ∈ Γ, ηi ∈ Γ̂, i = 1, 2, 3, 4 the corresponding elements: the braiding
matrix (Qrs = ηs(hr))1≤r,s≤3 corresponds to one in Heckenberger’s list.

• qkk = −1, q2
jjqkjqjk = 1 = qkjqjkqklqlk: the corresponding diagram

for (Qrs) is

◦q
q−2

q2 DD
DD

DD
DD

◦−1
q2

q−4

◦qll

q4q2llyyyyyyyy

◦qqll

, q := qjj .

By [H, Lemma 9(ii)] q4 = 1. Then the vertices 1,3,4 determine a
diagram of type (12), which is not in Heckenberger’s list.
• q2

jjqkjqjk = qkjqjk = qkkqklqlk = 1: the diagram for this case is

◦q
q−2

q2 CC
CC

CC
CC ◦q2

q−2

◦qll

q−4q2llzz
zz

zz
zz

z

◦qqll

, q := qjj ∈ G3 ∪G4.

If q4 = 1, again we have (12) as subdiagram. If q ∈ G3 we have
qll = ±q2, because there are no 4-cycles. As Q44 6= 1, we should
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have qll = −q2, but in such case we have a connected diagram of
rank 4 with m32 = 4, because Q33 = −q2 and Q23Q32 = q2 ∈ G3,
which is a contradiction.
• qkk = −1, qjj = −qkjqjk ∈ G3, qkjqjkqklqlk = 1: the diagram is

◦q
−q

q2 DD
DD

DD
DD

◦−1
−q2

q2

◦qll

qq2llyyyyyyyy

◦qqll

, q := qjj ∈ G3.

This is not of finite type by [H, Lemma 9(ii)].
• qjj = −qkjqjk ∈ G3, qkkqkjqjk = qkkqklqlk = 1: now the diagram is

◦q
−q

q2 CC
CC

CC
CC ◦−q2

−q
◦qll

q2q2llyy
yy

yy
yy

y

◦qqll

, q := qjj ∈ G3.

First qll = ±q2 because there are no 4-cycles, and second Q44 6= 1
so qll = −q2. Transforming the diagram by the symmetry at vertex
4, it is Weyl equivalent to

◦−1
q
◦1

−q
◦−q2

−q ◦qll ,

whose associated Nichols algebra is not finite-dimensional, a contra-
diction.

In all the cases we obtain a contradiction, so w = 0. �

We are now able to prove the main results of this Section: Theorems 2.5
and 2.7.

Theorem 2.5. Let S = ⊕n≥0S(n) be a finite-dimensional graded Hopf al-
gebra in kΓ

kΓYD, Γ a finite abelian group, such that S(0) = k1. Fix a basis

x1, . . . , xθ of V := S(1), with xi ∈ S(1)χigi for some gi ∈ Γ and χi ∈ Γ̂, and
call qij := χj(gi). Assume that

• S is generated as an algebra by S(0)⊕ S(1), and
• V is a standard braided vector space.

Then S ∼= B(V ).

Proof. The canonical surjection T (V ) � B(V ) = T (V )/I(V ) induces a
surjection

π : S � B(V ),

of braided graded Hopf algebras, so we can consider S = T (V )/I, for some
graded braided Hopf ideal I of T (V ), generated in degree ≥ 2, I ⊆ I(V ).

Suppose that I(V ) % I. Then at least one generator of I(V ) as in Theo-
rem 1.1 is not in I. Consider a generator x ∈ I(V ) \ I of minimal degree k.
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Then

∆(x) = x⊗ 1 + 1⊗ x +

n∑
j=1

bj ⊗ cj ∈ I(V )⊗ T (V ) + T (V )⊗ I(V ),

for some homogeneous elements bj , cj ∈
⊕k−1

i=1 T
i(V ), satisfying deg(bj) +

deg(cj) = k. We can consider for each j that bj ∈ I(V ) or cj ∈ I(V ). If
bj ∈ I(V ), then it is a linear combination of elements ayb, with a, b ∈ T (V )
and y a generator of I(V), and as

deg(y) = deg(x)− deg(a)− deg(b)− deg(cj) < deg(x) = k,

we have y ∈ I. Therefore bj ∈ I. The same holds if cj ∈ I(V ). In
consequence, x is primitive in S, because π is a morphism of braided Hopf
algebras.

By Proposition 2.1 and Lemmata 2.2, 2.3 and 2.4, we have x = xNαα for
some α ∈ ∆+, or there exist j 6= k ∈ {1, . . . , θ} such that mjk = 3, mkj = 1,

(1− q4
jj)(1 + qkk) = 0,

(
qjj qjk
qkj qkk

)
is a standard braiding of type G2 and

x = [u]c, see 1.2.2, where

u ∈ {x3
jxkxjxk, x3

jxkx
2
jxk, x2

jxkxjxkxjxk, x2
jxkx

2
jxkxjxk}.

Call gx ∈ Γ, χx ∈ Γ̂ the associated elements. We discard easily the case
x = xNαα , because in such case

χx(gx) = qN
2
α

α = 1,

(ord(qα) = Nα) and S is finite-dimensional.
Suppose x = [u]c. Call η1 = χj , η2 = χk, η3 = χx, h1 = gj , h2 = gk,

h3 = gx. As in the proof of previous Lemmata, the braiding corresponding
to the matrix (Qrs = ηs(hr))1≤r,s≤3 appears in Heckenberger’s list. The
possible diagrams for the vertices j, k are

• ◦ζ
ζ

◦ζ3 , ζ ∈ G4;

• ◦ζ
−1
◦−1 , ζ ∈ G6;

• ◦ζ2
ζ

◦ζ7 , ζ ∈ G8;

• ◦ζ2
ζ3

◦−1 , ζ ∈ G8;

• ◦ζ
ζ5

◦−1 , ζ ∈ G8.

With three exceptions we conclude all of possible pairs of braidings and u
give diagrams not in Heckenberger’s list because Q33 = 1 or

Q12Q21 6= 1, Q13Q31 6= 1 and Q23Q32 6= 1

and thus it is a triangle but
∏

1≤r<s≤3QrsQsr 6= 1.
The remaining cases are:
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(1) ◦ζ
ζ

◦ζ3 , u = x3
jxkx

2
jxk,

(2) ◦ζ
−1
◦−1 , u = x3

jxkxjxk,

(3) ◦ζ
−1
◦−1 , u = x2

jxkxjxkxjxk,

and corresponding diagrams of (Qrs) are:

(1) ◦ζ
ζ

◦ζ3
ζ
◦ζ3 ,

(2) ◦ζ4
ζ2

◦ζ
−1
◦−1 ,

(3) ◦ζ
ζ5

◦ζ
−1
◦−1 ,

but they are Cartan braidings associated to non-finite Cartan matrices,
which is a contradiction. �

Remark 2.6. Note that in the proof of Theorem 2.5 we do not use the fact
that the braiding is realized over an abelian group but only that it is a
diagonal braiding of standard type. Thus, the conclusion of theorem still
holds for S ∈ H

HYD with this braiding and H any Hopf algebra.

The following Theorem is in agreement with Conjecture [AS2, Conj. 1.4].
As braidings of standard type properly include those of finite Cartan type,
this result extends [AS4, Thm. 5.5].

Theorem 2.7. Let H be a finite-dimensional pointed Hopf algebra over an
abelian group Γ such that its infinitesimal braiding is of standard type. Then
H is generated by its group-like and skew-primitive elements.

Proof. Let grH = R#kΓ, V = R(1). Then H is generated by its group-like
and skew-primitive elements if and only if R is the Nichols algebra B(V ).
Let S be the graded dual R∗ in Γ

ΓYD. Notice that S(1) = R(1)∗ has the
same braiding as R(1). By [AS2, Lem. 5.5] it is enough to show that S is a
Nichols algebra. This follows by Theorem 2.5. �

3. Liftings of the quantum Serre relations

Let B a finite dimensional Nichols algebra of standard type, with braiding
(qij)1≤i,j≤θ, θ the rank of B. LetH be a pointed Hopf algebra over an abelian
group Γ such that grH = B#kΓ. In this Section we show that quantum
Serre relations in B are lifted in H as elements in kΓ. We include this result
in this work since its proof heavily resembles the one of Proposition 2.1.
Moreover, we distinguish those cases in which these relations can only be
lifted as zero.

Let mij be as in 1.2.3. For 1 ≤ i 6= j ≤ θ, set

χij = ξ
mij+1
i χj , gij = g

mij+1
i gj .

Lemma 3.1. Let 1 ≤ i 6= j ≤ θ. Assume q
mij+1
ii 6= 1. Then

(18) (χij , gij) 6= (χl, gl), ∀ 1 ≤ l ≤ θ.
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Proof. Assume there exists l such that (18) holds. Then it follows as in the
proof of Proposition 2.1 that either l = i or l = j, since otherwise we would
get a subdiagram of the diagram D related to the braiding which would not
be of finite type.

Now, l 6= j, since otherwise χij(gij) = q
mij+1
ii qjj = χj(gj) = qjj and

q
mij+1
ii 6= 1. But if l = i, we would have

q2
ii = χi(gi)

2 = χi(gij)χij(gi) = q
2(mij+1)
ii qjiqij = q

mij+2
ii ,

since, as (qij) is of standard type and q
mij+1
ii 6= 1, q

mij
ii qijqji = 1. Therefore,

by definition of mij , we have mij = 0. In this case, qii = χi(gi) = χij(gij) =
qiiqjj , a contradiction. �

Let ai ∈ Pχi1,gi
(H) such that ai is mapped to xi ∈ B via A1 � A1/A0

∼=
B(1). In particular, it follows that ad(ai)

mij+1(aj) ∈ P
χij
gij (H).

If 1 ≤ i 6= j ≤ θ, denote by Dij the subdiagram of D with vertices i, j
and by Qij the corresponding submatrix of (qkl)1≤k,l≤θ.

Proposition 3.2. Let H, ai as above, 1 ≤ i 6= j ≤ θ. Assume q
mij+1
ii 6= 1.

Then there exists λ ∈ k such that

ad(ai)
mij+1(aj) = λ(1− gmij+1

i gj).

Moreover, λ can be non-zero only in the following cases:

(1) mij = 3 and

(i) Dij = ◦q q−3

◦q3 , q ∈ G7 and Qij =
(
q q3

q q3

)
,

(ii) Dij = ◦ξ ξ−3

◦−1 , ξ ∈ G8 and Qij =
(
ξ −1
ξ −1

)
.

(2) mij = 2 and

(i) Dij = ◦q q−2

◦q2 , q ∈ G5 and Qij =
(
q q2

q q2

)
,

(ii) Dij = ◦q q−2

◦−1 , q ∈ G6 and Qij =
(
q −1
q −1

)
.

(3) mij = 1 implies

(i) Dij = ◦qm q−m ◦q , q ∈ G2m+1 and Qij =
(
qm q
qm q

)
,

(ii) Dij = ◦q −q ◦−1 , q ∈ G4 and Qij =
(
q −1
q −1

)
,

(iii) Dij = ◦−ξ −ξ
−1

◦ξ ξ ∈ G3, and Qij =
(
−ξ ξ
−ξ ξ

)
,

(iv) Dij = ◦q q−1

◦q2 , q ∈ G8 and Qij =
(
q q2

q q2

)
.

(4) mij = 0 implies

(i) Dij = ◦q ◦q−1 , q ∈ GN , N > 1 and Qij =
(
q q−1

q q−1

)
.

Proof. By [AS1, Lemma 5.4] we know that Pεg,1(H) = k(1 − g) and that

if χ 6= ε then Pχg,1(H) 6= 0 if and only if there is 1 ≤ l ≤ θ such that
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(gij , χij) = (gl, χl). As ad(ai)
mij+1(aj) ∈ P

χij
gij (H) then the first part of the

Proposition follows from Lemma 3.1. For the second part, as λ can be chosen

6= 0 only when χ
mij+1
i χj = ε, the Proposition follows by evaluating χij in

gi and gj to determine when q
mij+1
ii qij = q

mij+1
ji qjj = 1, taking into account

that q
mij
ii qijqji = 1. We fully develop the case mij = 3 as an example. As

q
mij+1
ii 6= 1 must hold, two cases are left, namely those corresponding to

the diagrams in (1)(i) and (ii) of the Proposition. Let (qij)1≤i,j≤θ be the
braiding. In the first case, we have qii = q, qjj = q3 and qijqji = q−3. Then

χ4
iχj(gi) = q4qij , χ4

iχj(gj) = q4
jiq

3.

Then, if χij = ε, we have 1 = q4qijq
4
jiq

3 = q4q3
ji and 1 = q4

jiq
3 = qjiq

−1.

Therefore, qji = q, q7 = 1, qij = q−4 = q3.
In the second case, we have qii = ξ, qjj = −1, qijqji = ξ−3, ξ ∈ G8. Then,

if ξij = ε, 1 = ξ4qij = −q4
ji. Then qij = −1 and qji = −ξ−3 = ξ. �
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