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Abstract. We introduce a method to construct multiplicative 2-cocycles for bosonizations of

Nichols algebras over Hopf algebras with bijective antipode. These cocycles arise as liftings

of invariant ε-biderivations defined on the Nichols algebras. Using this construction, we show

that all known finite dimensional pointed Hopf algebras over the dihedral groups Dm with

m = 4t ≥ 12, over the symmetric group S3 and some families over S4 are cocycle deformations

of bosonizations of Nichols algebras, by constructing explicitly the 2-cocycles.

Introduction

Let k be an algebraically closed field of characteristic zero. A Hopf algebra A is said to be
pointed if all simple subcoalgebras are one dimensional; in particular, its coradical A0 coincides
with the group algebra kG(A) over the group of group-like elements. The best method for
classifying finite dimensional pointed Hopf algebras over k was developed by Andruskiewitsch
and Schneider, see [AS]. Shortly, the method consists on finding first all braided vector spaces
V in A0

A0
YD such that its Nichols algebra B(V ) is finite dimensional, then find all pointed Hopf

algebras H such that the graded algebra grH induced by the coradical filtration is isomorphic
to the bosonization B(V )#A0, and finally prove the generation in degree one.

Using this method, they were able to classify in [AS2] all finite dimensional pointed Hopf
algebras A such that G(A) is abelian and whose order is relative prime to 210. When the group
of group-likes is not abelian, the problem is far from being completed. Some hope is present in
the lack of examples: in this situation, Nichols algebras tend to be infinite dimensional, see for
example [AFGV]. Nevertheless, examples on which the Nichols algebras are finite dimensional
do exist. Over the symmetric groups S3 and S4 these algebras were determined in [AHS]. All
of them arise from racks associated to a cocycle, and in loc. cit. and [GG] the classification of
all finite dimensional pointed Hopf algebras over S3 and S4 is completed, respectively. Over the
dihedral groups Dm with m = 4t ≥ 12, the classification of finite dimensional Nichols algebras
and finite dimensional pointed Hopf algebras was done in [FG]. In this case, it turns out that
all Nichols algebras are isomorphic to exterior algebras.

Among others, useful tools for constructing new Hopf algebras are the deformation of the
multiplication using multiplicative 2-cocycles and its dual notion of deforming the coproduct
using twists. With this in mind, it is interesting to ask when two new non-isomorphic Hopf
algebras are cocycle deformations of each other. It was proved that the family of finite dimen-
sional pointed Hopf algebras over abelian groups Γ appearing in [AS2] such that the braided
vector space V is a quantum linear space, can be constructed by deforming the multiplication
in B(V )#kΓ, see [Mk], [GM]. Also, Garćıa Iglesias and Mombelli [GIM] proved using module
category theory the same result for all known finite dimensional pointed Hopf algebras over the
symmetric groups.

In these notes, we prove in Theorem 3.6 and Theorem 3.11 that all finite dimensional pointed
Hopf algebras over the dihedral groups Dm with m = 4t ≥ 12 are cocycle deformations of
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bosonizations of finite dimensional Nichols algebras, by giving explicitly the 2-cocycles. More-
over, using these techniques, we construct the cocycles that give the deformation of the bosoniza-
tions of Nichols algebras over S3 and some families over S4, see Theorem 4.10.

To construct the 2-cocycles we generalized to non-abelian groups the theory developed in
[GM]. Specifically, we first introduce the notion of ε-biderivations in braided graded algebras
and then apply them in the case of Nichols algebras B(V ) over Hopf algebras H with bijec-
tive antipode. In the case an ε-biderivation η is H-invariant, one can lift it to an H-invariant
Hochschild 2-cocycle η̃ on B(V )#H. Applying [GM, Lemma 4.1], it turns out that the exponen-
tiation σ = eη̃ of this cocycle is indeed a multiplicative 2-cocycle, provided two equations in the
convolution algebra hold. A consequence of using H-invariant ε-biderivations is that σ coincides
with η on the elements of V , simplifying in this way the computation of the deformation, see
Lemma 2.3.

Before we apply the construction for the cases of the dihedral and symmetric groups, we first
prove in Lemma 1.1 that these equations are equivalent on bosonizations of Nichols algebras
B(V )#H and then we show in Lemmas 2.5 and 2.6 that they are always satisfied whenever H
is semisimple and the braiding of V is symmetric. As a consequence, the exponentiation of the
Dm-invariant ε-biderivations on the Nichols algebras over the dihedral groups are multiplicative
2-cocycles and these are the ones we use to prove our first main theorems, Theorem 3.6 and
Theorem 3.11.

The paper is organized as follows: in Section 1 we fix the notation, make some definitions and
recall some facts that are used along the paper. In Section 2 we discuss deformations of graded
algebras, define ε-biderivations and prove the preliminary results on invariant ε-biderivations
and lifting of them. In Section 3 we recall the classification of finite dimensional pointed Hopf
algebras over the dihedral groups Dm with m = 4t ≥ 12 and prove that they are cocycle
deformation of bosonizations. Finally in Section 4, we first recall the notion of racks and the
classification of finite dimensional pointed Hopf algebras over S3 and S4, and then prove our last
main result, Theorem 4.10 about cocycle deformations of bosonizations of finite dimensional
Nichols algebras over the symmetric groups.

1. Preliminaries

1.1. Conventions. We work over an algebraically closed field k of characteristic zero. Good
references for Hopf algebra theory are [M] and [Sw1].

If H is a Hopf algebra over k then ∆, ε and S denote respectively the comultiplication,
the counit and the antipode. Comultiplication and coactions are written using the Sweedler-
Heynemann notation with summation sign suppressed, e.g., ∆(h) = h(1) ⊗ h(2) for h ∈ H.

The coradical H0 of H is the sum of all simple sub-coalgebras of H. In particular, if G(H)
denotes the group of group-like elements of H, we have kG(H) ⊆ H0. A Hopf algebra is pointed
if H0 = kG(H).

Let n,m ∈ N. We denote by Sn the symmetric group on n letters and by Dm the dihedral
group of order 2m. The later can be presented by generators and relations as follows

(1) Dm := 〈g, h| g2 = 1 = hm , gh = h−1g〉.

Throughout the paper derivations and derivation-like maps play a very important role. Recall
that if A is an algebra and M is an A-bimodule, then a map δ : A→M is said to be a derivation
if δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ A. In our setting, (A, ε) is an augmented algebra acting on
M = k via ε. To emphasize this distinction, we will refer to such derivations as ε-derivations.

1.2. Yetter-Drinfeld modules and Nichols algebras. Let H be a Hopf algebra. A left
Yetter-Drinfeld module M over H is a left H-module (M, ·) and a left H-comodule (M, δ)
satisfying the compatibility condition δ(h ·m) = h(1)m(−1)S(h(3))⊗h(2) ·m(0) for all m ∈M,h ∈
H. We denote by H

HYD the category of left Yetter-Drinfeld modules over H. It is a braided
monoidal category. If H = kΓ with Γ a finite group, we denote this category simply by Γ

ΓYD.
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It is a semisimple category and the irreducible Yetter-Drinfeld modules are parameterized by
pairs (O, ρ), where O is a conjugacy class and (ρ, V ) is a simple representation of the centralizer
CΓ(σ) of a fixed point σ ∈ O. We denote the corresponding Yetter-Drinfeld module by M(O, ρ).

The notion of Nichols algebras appeared first in the work of Nichols [N] and then it was later
rediscovered by several authors. We follow [AS], see also [N, AG, H]. Let (V, c) be a braided
vector space. Since c satisfies the braid equation, it induces a representation of the braid group
Bn for each n ≥ 2. Consider the morphisms

Qn =
∑
σ∈Sn

(M(σ)) ∈ End(V ⊗n),

where M : Sn → Bn is the Matsumoto section corresponding to the canonical projection Bn �
Sn. Then the Nichols algebra B(V ) is the quotient of the tensor algebra T (V ) by the two-sided
ideal J =

⊕
n≥2 KerQn.

Let Γ be a finite group. We denote by B(O, ρ) the Nichols algebra associated to the irreducible
Yetter-Drinfeld module M(O, ρ) ∈ Γ

ΓYD.

1.3. Deforming cocycles. In this subsection we follow [GM]. Let A be a Hopf algebra and B
an algebra with a twisted action of A, i.e. there is a k-linear map · : A ⊗ B → B such that
a · 1 = ε(a)1 and a · (xy) = (a(1) · x)(a(2) · y) for all a ∈ A, x, y ∈ B. Recall that a convolution
invertible linear map σ in Homk(A⊗A,B) is a normalized multiplicative 2-cocycle if

a(1) · σ(b(1), c(1))σ(a(2), b(2)c(2)) = σ(a(1), b(1))σ(a(2)b(2), c)

and σ(a, 1) = ε(a) = σ(1, a) for all a, b, c ∈ A, see [M, Sec. 7.1]. In particular, if B = k with
the trivial action of A, a normalized multiplicative 2-cocycle σ : A ⊗ A → k is a convolution
invertible linear map such that

(2) (ε⊗ σ) ∗ σ(idA⊗m) = (σ ⊗ ε) ∗ σ(m⊗ idA)

and σ(idA, 1) = ε = σ(1, idA). The deformed multiplication mσ = σ ∗ m ∗ σ−1 : A ⊗ A → A
and antipode Sσ = σ ∗ S ∗ σ−1 : A → A on A, together with the original unit, counit and
comultiplication define a new Hopf algebra structure on A which we denote by Aσ.

1.3.1. Deforming cocycles for graded Hopf algebras. If A = ⊕n≥0An is a graded bialgebra and
f : A→ k is a linear map such that f |A0 = 0, then

ef =
∞∑
i=0

f∗i

i!
: A→ k

is a well-defined convolution invertible map with convolution inverse e−f . When f : A⊗A→ k
is a Hochschild 2-cocycle on A, that is ε(a)f(b, c) + f(a, bc) = f(a, b)ε(c) + f(ab, c) for all
a, b, c ∈ A, such that f |A⊗A0+A0⊗A = 0, then often ef : A ⊗ A → k will be a multiplicative
2-cocycle. For instance, this happens whenever f(id⊗m) and f(m⊗ id) commute (with respect
to the convolution product) with ε⊗ f and f ⊗ ε, respectively. Also note that if f ∗ f = 0, then
ef = ε+ f .

The following result is well-known in the cocommutative setting [Sw2]. It is a generalization
of a result from [GZ], where the cocycle in question is a tensor product of ε-derivations.

Lemma 1.1. [GM, Lemma 4.1] If f : A⊗ A→ k is a Hochschild 2-cocycle such that f(id⊗m)
commutes with ε⊗ f and f(m⊗ id) commutes with f ⊗ ε in the convolution algebra Homk(A⊗
A⊗A,k), then ef is a multiplicative 2-cocycle with graded infinitesimal part equal to f . �
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2. Cocycles on bosonizations of Nichols algebras

In this section we discuss necessary and sufficient conditions for a lifting of an ε-biderivation
(defined below) on a Nichols algebra to satisfy the conditions of Lemma 1.1; and thus give rise
to multiplicative cocycles via the exponential map.

Definition 2.1. Let B be an augmented algebra. An ε-biderivation is a map η : B ⊗ B → k
that is an ε-derivation in each variable; that is, we have η(1,−) = 0 = η(−, 1) and η(xy,−) =
0 = η(−, xy) for all x, y ∈ B such that ε(x) = 0 = ε(y).

From now on we assume that A is a bosonization B(V )#H, where H is Hopf algebra with
bijective antipode, V is a left Yetter-Drinfeld module over H and B(V ) ∈ H

HYD is the Nichols
algebra of V . Since B(V ) is graded, we have that A is also graded with the gradation given by
A0 = H and An = B(V )n#H.

Remark 2.2. (a) Let B = B(V ) and η ∈ Homk(B ⊗ B, k) be an ε-biderivation on B. Then by
definition we have η|B0⊗B+B⊗B0 = 0.

(b) Let B = B(V ) with V finite dimensional. Let (xi)i∈I be a basis for V and (di)i∈I be the
dual basis on V ∗. Then each di induces an ε-derivation given by di(xj) = δij for all i, j ∈ I.
Then any linear combination of the tensor products di⊗dj is an ε-biderivation on B⊗B which is
a Hochschild 2-cocycle. Conversely, if η be an ε-biderivation on B ⊗B then there exists aij ∈ k
such that η =

∑
i,j aijdi ⊗ dj .

Let M ∈ H
HYD. Since H acts on M , we have that H acts on the set of all linear maps

η : M ⊗M → k by ηh(x, y) = η(h(1) · x, h(2) · y) for all h ∈ H,x, y ∈ M . We say that η is
H-invariant if ηh = η for all h ∈ H.

Let η be an H-invariant linear map on V . Then it induces an H-invariant ε-biderivation on
A, η̃ : A⊗A→ k by letting η̃(Am ⊗An) = 0 if (m,n) 6= (1, 1) and

η̃(x#h, y#h′) = η(x, h · y)ε(h′) for all x, y ∈ V and h, h′ ∈ H.

Clearly, by definition we have that η̃|A0⊗A+A⊗A0 = 0.
The following lemma concerning H-invariant Hochschild 2-cocycles on B(V ) will be very

useful in finding liftings.

Lemma 2.3. Let η be an H-invariant Hochschild 2-cocycle on B(V ) such that η̃|A0⊗A+A⊗A0 = 0
and σ = eη̃ is a multiplicative 2-cocycle. Let x1, x2 ∈ V be homogeneous elements with δ(x1) =
h1 ⊗ x1 and δ(x1) = h2 ⊗ x2, h1, h2 ∈ G(H), and denote z1 = x1#1, z2 = x2#1 ∈ A. Then
σ(z1, z2) = η(x1, x2). In particular, in Aσ it holds that

z1 ·σ z2 = η(x1, x2)(1− h1h2) + z1z2.

Proof. First we show that η̃2(z1, z2) = 0. Since x1, x2 are homogeneous we have that ∆(zi) =
zi⊗ 1 +hi⊗ zi, that is, zi is (1, hi)-primitive for i = 1, 2. Since by assumption η̃|A0⊗A+A⊗A0 = 0
it follows that

η̃2(z1, z2) = η̃([z1](1), [z2](1))η̃([z1](2), [z2](2)) =

= η̃(z1, z2)η̃(1, 1) + η̃(z1, h2)η̃(1, z2) + η̃(h1, z2)η̃(z1, 1) + η̃(h1, h2)η̃(z1, z2) = 0.
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Thus, σ(z1, z2) = ε(z1)ε(z2) + η̃(z1, z2) = η(x1, x2); in particular, σ−1(z1, z2) = e−η̃(z1, z2) =
−η(x1, x2). Finally,

z1 ·σ z2 = σ([z1](1), [z2](1))[z1](2)[z2](2)σ
−1([z1](3), [z2](3))

= σ(z1, z2)σ−1(1, 1) + σ(z1, h2)z2σ
−1(1, 1) + σ(z1, h2)h2σ

−1(1, z2) + σ(h1, z2)z1σ
−1(1, 1)+

+ σ(h1, h2)z1z2σ
−1(1, 1) + σ(h1, h2)z1h2σ

−1(1, z2) + σ(h1, z2)h1σ
−1(z1, 1)+

+ σ(h1, h2)h1z2σ
−1(z1, 1) + σ(h1, h2)h1h2σ

−1(z1, z2) =

= σ(z1, z2)σ−1(1, 1) + σ(h1, h2)z1z2σ
−1(1, 1) + σ(h1, h2)h1h2σ

−1(z1, z2) =

= η(x1, x2) + z1z2 − h1h2η(x1, x2) = η(x1, x2)(1− h1h2) + z1z2,

which finish the proof. �

If x ∈ B(V ) and h ∈ H, then we identify x = x#1 ∈ A and h = 1#h ∈ A; in particular we
have xh = x#h and hx = h(1) · x#h(2).

Denote by c the braiding of V . Then c induces an action of the braid group Bn on V ⊗n. If
π ∈ Bn, we denote by cπ : V1 ⊗ . . . ⊗ Vn → Vπ(1) ⊗ . . . ⊗ Vπ(n) the map induced by this action.
In particular we write

c231 = (id⊗c)(c⊗ id), c1324 = (id⊗c⊗ id), c2413 = (id⊗c⊗ id)(c⊗ c),
c1423 = (id⊗c⊗ id)(id⊗ id⊗c) and c2314 = (id⊗c⊗ id)(c⊗ id⊗ id).

Let η be an H-invariant ε-biderivation on B(V ), then we have that

(3) c(id⊗η) = (η ⊗ id)(1⊗ c)(c⊗ 1) = (η ⊗ id)c231,

that is, for all a, b, c ∈ V we have:

(4) η(b, c)⊗ a = η(a(−1)b, c)⊗ a(0) = (η ⊗ id)c231(a⊗ b⊗ c).
Indeed, (η ⊗ id)c231(a ⊗ b ⊗ c) = η(a(−2) · b, a(−1) · c) ⊗ a(0) = ηa(−1)(b, c) ⊗ a(0) = η(b, c) ⊗
ε(a(−1))a(0) = c(id⊗η)(a⊗ b⊗ c) for all a, b, c ∈ V .

Using the definition of η̃ we also have for all a, b ∈ A and c ∈ V that

(5) η̃(a, b)⊗ c = η̃(a, bc(−1))⊗ c(0).

The following lemma shows that both conditions on the commutativity of the maps in Lemma
1.1, (b) and (c) below, are equivalent in the case when A = B(V )#H is a bosonization. Note
that, as a consequence, we need only to verify equalities on V ⊗4.

Lemma 2.4. Let η be an H-invariant ε-biderivation on B(V ). The following are equivalent:

(a) The following conditions hold on V ⊗4:

(η ⊗ η)c1324 = (η ⊗ η)c2413 and(6)

(η ⊗ η)c1423 = (η ⊗ η)c2314.(7)

(b) The following condition holds on A⊗3: (ε⊗ η̃) ∗ η̃(id⊗m) = η̃(id⊗m) ∗ (ε⊗ η̃).
(c) The following condition holds on A⊗3: (η̃ ⊗ ε) ∗ η̃(m⊗ id) = η̃(m⊗ id) ∗ (η̃ ⊗ ε).

Proof. Throughout the proof we use that fact that for v ∈ V ⊆ A we have ∆(v) = v(1) ⊗ v(2) =
v(−1) ⊗ v(0) + v ⊗ 1. We first show that (a) is equivalent to (b). Note that it is both necessary
and sufficient to verify (b) by evaluating at B(V )m ⊗B(V )n ⊗B(V )p for all (m,n, p). Unless
(m,n, p) = (1, 2, 1) or (m,n, p) = (1, 1, 2) both sides trivially give 0. Now evaluation at a⊗b⊗cd
for a, b, c, d ∈ V yields that η̃(b, (cd)(1))η̃(a, (cd)(2)) = η̃(b(0), (cd)(2))η̃(a, b(−1)(cd)(1)). After
expanding ∆(cd) and using the fact that η is H-invariant we get

η(b, c)η(a, d) + η(b, c(−1) · d)η(a, c(0)) = η(b(0), d)η(a, b(−1) · c) + η(b(0), c(0))η(a, (b(−1)c(−1)) · d).
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Since by (b) we have that (η ⊗ η)(a, d, b, c) = (η ⊗ η)c2314(a, b, c, d), this is equivalent to

(8) (η ⊗ η)(c2314 + c2413 − c1324 − c1423) = 0.

We now examine evaluation of (b) at a⊗ bc⊗ d for a, b, c, d ∈ V . Using (5) we get:

η̃((bc)(1), d)η̃(a, (bc)(2)) = η̃((bc)(2), d)η̃(a, (bc)(1)).(9)

Expanding ∆(bc) and using equations (4) and (5) as well as the definition of η̃ we get

η(b, c(−1) · d)η(a, c(0)) + η(c, d)η(a, b) = η(c, d)η(a, b) + η(b(0), d)η(a, b(−1) · c),

which simplifies to η(b, c(−1) · d)η(a, c(0)) = η(a, b(−1) · c)η(b(0), d), or equivalently, (η⊗ η)c2413 =
(η ⊗ η)c1324, which is exactly (6). Hence we have that (b) is equivalent to (8) and (6), and
consequently to (a), since (8) and (6) give (7).

The equivalence of (a) and (c) works almost exactly the same way. For the sake of completeness
we provide some intermediate steps. We verify (c) by evaluating it at a⊗ bc⊗ d and ab⊗ c⊗ d
for a, b, c, d ∈ V . Evaluation at a ⊗ bc ⊗ d yields (9) which is equivalent to (6). Evaluation at
ab⊗ c⊗ d and using that ∆(c) = c⊗ 1 + c(−1) ⊗ c(0) yields

η̃((ab)(1), c)η̃((ab)(2), d) = η̃((ab)(2), c(0))η̃((ab)(1), c(−1) · d).

This simplifies to

η(a, b(−1) · c)η(b(0), d) + η(b, c)η(a, d) = η(b(0), c(0))η(a, b(−1)c(−1) · d) + η(a, c(0))η(b, c(−1) · d),

which by (4) can be written as (η ⊗ η)(c1324 + c2314 − c1423 − c2413) = 0. We conclude the proof
by noting that this equation together with (6) are equivalent to (a). �

For the following lemma, observe that using c1324 = id⊗c⊗ id and c2413 = (id⊗c⊗ id)(c⊗ c),
we get that (6) is equivalent to (η ⊗ η)(id⊗c⊗ id) = (η ⊗ η)(id⊗c⊗ id)(c⊗ c).

The next two results state that the conditions in Lemma 2.4(a) are always fulfilled when H
is semisimple and the braiding is symmetric.

Lemma 2.5. If S2
H = idH , then (6) is equivalent to either of the following equations on V ⊗4:

(η ⊗ η)(id⊗c⊗ id) = (η ⊗ η)(id⊗c−1 ⊗ id),(10)

(η ⊗ η)(id⊗c2 ⊗ id) = η ⊗ η.(11)

In particular, (6) is always satisfied when c2 = idV and H is semisimple.

Proof. Note that in the case S is an involution, and therefore for h ∈ H we have ε(h) =
S(h(2))h(1) (this is used for going from line 8 to line 9 and for going to the last line from the
line above it), we get for all a, b, c, d ∈:

(η ⊗ η)c2413(a, b, c, d) = (η ⊗ η)(id⊗c⊗ id)(a(−1) · b, a(0), c(−1) · d, c(0))

= η(a(−2) · b, a(−1)c(−1) · d)η(a(0), c(0)) = ηa(−1)(b, c(−1) · d)η(a(0), c(0)) = η(b, c(−1) · d)η(a, c(0))

= ηS(c(−1))(b, c(−2) · d)η(a, c(0)) = η(S(c(−1))(1) · b, (S(c(−1))(2)c(−2)) · d)η(a, c(0))

= η(S(c(−1)(2)) · b, (S(c(−1)(1))c(−2)) · d)η(a, c(0)) = η(S(c(−1)) · b, (S(c(−2))c(−3)) · d)η(a, c(0))

= η(S(c(−1)) · b, d)η(a, c(0)) = η(a, c(0))η(S(c(−1)) · b, d) = (η ⊗ η)(id⊗c−1 ⊗ id)(a, b, c, d).

�
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Lemma 2.6. Let η = η1 ⊗ η2. Then (7) is equivalent to the following equations on V ⊗4:

(η ⊗ η)(id⊗c⊗ id)(c⊗ id⊗ id) = (η ⊗ η)(id⊗c⊗ id)(id⊗ id⊗c),(12)

η1 ⊗ η ⊗ η2 = (η ⊗ η)(id⊗c312).(13)

Moreover, if S2
H = idH and c2 = idV , then (7) is always satisfied.

Proof. The first equation is just a translation of (7). The second equation is obtained directly
from the first. The left hand side is obtained by invoking (3); the right hand side by using
c312 = c⊗ id(id⊗c). Now if SH and c are involutions, then by Lemma 2.5 we have that

[(η ⊗ η)(id⊗c⊗ id)(c⊗ id⊗ id)](id⊗ id⊗c) = (η ⊗ η)(id⊗c⊗ id).

On the other hand

[(η⊗η)(id⊗c⊗ id)(id⊗ id⊗c)](id⊗ id⊗c) = (η⊗η)(id⊗c⊗ id)(id⊗ id⊗c2) = (η⊗η)(id⊗c⊗ id).

�

2.1. Cocycles on bosonizations over groups. Let Γ be a finite group and V ∈ Γ
ΓYD such

that B(V ) is finite dimensional. Let {xi}i∈I be homogeneous primitive elements that span
linearly V with δ(xi) = gi ⊗ xi and gi ∈ Γ for all i ∈ I. Since for all h ∈ Γ, h · xi is again a
homogeneous primitive element, from now on we assume that

(14) h · xi = χi(h)xσ(h)(i) for all i ∈ I, h ∈ Γ,

where σ : Γ → SI and χi : Γ → k is a character, see [AG2, Ex. 5.9]. This condition holds for
all finite dimensional pointed Hopf algebras over the symmetric groups and over the dihedral
groups, see Sections 3 and 4. We write σ(gi)(j) = i . j for all i, j ∈ I, see Remark 2.7(c).

Remark 2.7. (a) If V is irreducible, then V ' M(O, ρ) with O a conjugacy class of Γ. In such
a case, I can be identified with O and σ(h) is just the conjugation by h.

(b) If Γ is abelian, then V is a braided space of diagonal type, i. e. h · xi = χi(h)xi for all
i ∈ I and σ(h) = id for all h ∈ Γ.

(c) Let B(V ) with V finite dimensional, (xi)i∈I be a basis for V and (di)i∈I the dual basis
on V ∗. Then by Remark2.2(b), any linear combination of the tensor products di ⊗ dj induces
an ε-biderivation on B ⊗ B which is a Hochschild 2-cocycle. Consider then the ε-biderivation
η =

∑
i,j∈I aijdi ⊗ dj on B(V ). It is Γ-invariant if

ak,` = χk(g)χ`(g)aσ(g)(k),σ(g)(`) for all g ∈ Γ, k, ` ∈ I.

(d) By Remark 2.2(a) and (b), the result above holds for η =
∑

i,j aijdi ⊗ dj a Γ-invariant
ε-biderivation on B(V ), with V finite dimensional.

3. On pointed Hopf algebras over dihedral groups

All pointed Hopf algebras with group of group-likes isomorphic to Dm with m = 4t ≥ 12 were
classified in [FG]. To give the complete list we need first to introduce some terminology. From
now on we assume that m = 4t ≥ 12, n = m

2 = 2t and we fix ω an m-th primitive root of unity.



8 GASTÓN A. GARCÍA, MITJA MASTNAK

3.1. Yetter-Drinfeld modules and Nichols algebras over Dm. Let M` = M(Ohn , ρ`) with
` odd be the irreducible Yetter-Drinfeld module associated to a simple two-dimensional rep-
resentation of Dm. It is spanned linearly by the elements x(`)

1 , x
(`)
2 and its structure is given

by

g · x(`)
1 = x

(`)
2 , h · x(`)

1 = ω`x
(`)
1 , δ(x(`)

1 ) = hn ⊗ x(`)
1 ,

g · x(`)
2 = x

(`)
1 , h · x(`)

2 = ω−`x
(`)
2 , δ(x(`)

2 ) = hn ⊗ x(`)
2 .

Consider now the set

L =

{
L =

r∐
s=1

{`s} : `i is odd ∀1 ≤ `1, . . . , `r < n

}
.

Then for L ∈ L we define ML =
⊕

`∈LM`. By [FG, Prop. 2.8], we have that B(ML) '
∧
ML

and dim B(ML) = 4|L|.
Let M(i,k) = M(Ohi , χ(k)) with 1 ≤ i < n, 0 ≤ k < m and χ(k) the simple representation of

Chi = 〈h〉 ' Z/(m) given by χ(k)(h) = ωk. M(i,k) is spanned linearly by the elements y(i,k)
1 , y

(i,k)
2

and the Yetter-Drinfeld module structure is given by

g · y(i,k)
1 = y

(i,k)
2 , h · y(i,k)

1 = ωky
(i,k)
1 , δ(y(i,k)

1 ) = hi ⊗ y(i,k)
1 ,(15)

g · y(i,k)
2 = y

(i,k)
1 , h · yi,k2 = ω−ky

(i,k)
2 , δ(y(i,k)

2 ) = h−i ⊗ y(i,k)
2 .

Let

I =

{
I =

r∐
s=1

{(is, ks)} : ωisks = −1, ωiskt+itks = 1, 1 ≤ is < n, 1 ≤ ks < m

}
.

For I ∈ I, we define MI =
⊕

(i,k)∈IM(i,k). By [FG, Prop. 2.5], we have that B(MI) '
∧
MI

and dim B(MI) = 4|I|.
Finally, consider the set

K =
{

(I, L) : I ∈ I, L ∈ L and ωi` = −1 for all ` ∈ L, (i, k) ∈ I with k odd
}
.

As before, for (I, L) ∈ K we define MI,L =
(⊕

(i,k)∈IMi,k

)
⊕
(⊕

`∈LM`

)
. By [FG, Prop. 2.12],

we have that B(MI,L) '
∧
MI,L and dim B(MI,L) = 4|I|+|L|.

Theorem 3.1. [FG, Thm. A] Let B(M) be a finite dimensional Nichols algebra in Dm
Dm
YD.

Then B(M) '
∧
M , with M isomorphic either to MI , or to ML, or to MI,L, with I ∈ I, L ∈ L

and (I, L) ∈ K, respectively. �

3.2. Classification of finite dimensional pointed Hopf algebras over Dm. Let I ∈ I
and L ∈ L be as Subsection 3.1 and let λ = (λp,q,i,k)(p,q),(i,k)∈I , γ = (γp,q,i,k)(p,q),(i,k)∈I , θ =
(θp,q,`)(p,q)∈I,`∈L and µ = (µp,q,`)(p,q)∈I,`∈L be families of elements in k satisfying:

(16) λp,m−k,i,k = λi,k,p,m−k and γp,k,i,k = γi,k,p,k.

In particular, θ and µ are families of free parameters in k.

Definition 3.2. For I ∈ I, denote by AI(λ, γ) the algebra generated by g, h, a
(p,q)
1 , a

(p,q)
2 with

(p, q) ∈ I satisfying the relations:

g2 = 1 = hm, ghg = hm−1, ga
(p,q)
1 = a

(p,q)
2 g, ha

(p,q)
1 = ωqa

(p,q)
1 h, ha

(p,q)
2 = ω−qa

(p,q)
1 h,

a
(p,q)
1 a

(i,k)
1 + a

(i,k)
1 a

(p,q)
1 = δq,m−kλp,q,i,k(1− hp+i), a

(p,q)
1 a

(i,k)
2 + a

(i,k)
2 a

(p,q)
1 = δq,kγp,q,i,k(1− hp−i).
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It is a Hopf algebra with its structure determined by g, h being group-likes and

∆(a(p,q)
1 ) = a

(p,q)
1 ⊗ 1 + hp ⊗ a(p,q)

1 , ∆(a(p,q)
2 ) = a

(p,q)
2 ⊗ 1 + h−p ⊗ a(p,q)

2 , for all (p, q) ∈ I.

It turns out that the diagram of AI(λ, γ) is exactly B(MI), thus we call the pair (λ, γ) a lifting
datum for B(MI). Set γ = 0 if |I| = 1.

Definition 3.3. For (I, L) ∈ K, denote by BI,L(λ, γ, θ, µ) the algebra generated by g, h, a(p,q)
1 ,

a
(p,q)
2 , b

(`)
1 , b

(`)
2 satisfying the relations:

g2 = 1 = hm, ghg = hm−1, ga
(p,q)
1 = a

(p,q)
2 g,

ha
(p,q)
1 = ωqa

(p,q)
1 h, gb

(`)
1 = b

(`)
2 g, hb

(`)
1 = ω`b

(`)
1 h,

[a(p,q)
1 ]2 = 0 = [a(p,q)

2 ]2, b
(`)
1 b

(`′)
2 + b

(`′)
2 b

(`)
1 = 0, b

(`)
1 b

(`′)
1 + b

(`′)
1 b

(`)
1 = 0,

a
(p,q)
1 a

(i,k)
1 + a

(i,k)
1 a

(p,q)
1 = δq,m−kλp,q,i,k(1− hp+i), a

(p,q)
1 a

(i,k)
2 + a

(i,k)
2 a

(p,q)
1 = δq,kγp,q,i,k(1− hp−i),

a
(p,q)
1 b

(`)
1 + b

(`)
1 a

(p,q)
1 = δq,m−`θp,q,`(1− hn+p), a(p,q)

1 b
(`)
2 + b

(`)
2 a

(p,q)
1 = δq,`µp,q,`(1− hn+p).

It is a Hopf algebra with its structure determined by g, h being group-likes and

∆(a(p,q)
1 ) = a

(p,q)
1 ⊗ 1 + hp ⊗ a(p,q)

1 , ∆(a(p,q)
2 ) = a

(p,q)
2 ⊗ 1 + h−p ⊗ a(p,q)

2 ,

∆(b(`)1 ) = b
(`)
1 ⊗ 1 + hn ⊗ b(`)1 , ∆(b(`)2 ) = b

(`)
2 ⊗ 1 + hn ⊗ b(`)2 ,

for all (p, q) ∈ I, ` ∈ L. It turns out that the diagram of BI,L(λ, γ, θ, µ) is B(MI,L), thus we call
the 4-tuple (λ, γ, θ, µ) a lifting datum for B(MI,L).

3.3. Cocycle deformations and finite dimensional pointed Hopf algebras over Dm.
In this subsection we prove that all pointed Hopf algebras AI(λ, γ) and BI,L(λ, γ, θ, µ) can
be obtained by deforming the multiplication of a bosonization of a Nichols algebra using a
multiplicative 2-cocycle.

3.3.1. Cocycle deformations and the algebras AI(λ, γ). Let I ∈ I and consider the Nichols
algebra B(MI). Define the ε-derivations d(p,q)

1 , d
(p,q)
2 for all (p, q) ∈ I by the rule d(p,q)

r (y(i,k)
s ) =

δr,sδp,iδq,k for all r, s = 1, 2, (p, q), (i, k) ∈ I and consider the ε-biderivation

η =
∑

(p,q),(i,k)∈I,
1≤r,s≤2

αr,sp,q,i,kd
(p,q)
r ⊗ d(i,k)

s .

Lemma 3.4. η is Dm-invariant if and only if the following conditions hold:

αr,sp,q,i,k = αs,rp,q,i,k ∀(p, q), (i, k) ∈ I, r, s = 1, 2,(17)

α1,1
p,q,i,k = α2,2

p,q,i,k ∀(p, q), (i, k) ∈ I,(18)

αr,rp,q,i,k = δq,m−kα
r,r
p,m−k,i,k ∀(p, q), (i, k) ∈ I, r = 1, 2,(19)

αr,sp,q,i,k = δq,kα
r,s
p,k,i,k ∀(p, q), (i, k) ∈ I, 1 ≤ r 6= s ≤ 2.(20)

Proof. To prove that η is Dm-invariant it is enough to show that ηg = ηh = η. Since [d(p,q)
1 ]g =

d
(p,q)
2 and [d(p,q)

2 ]g = d
(p,q)
1 for all (p, q) ∈ I, and η is a linear combination of tensor products

of ε-derivations, we have that ηg = η if and only if (17) and (18) hold. Analogously, since
[d(p,q)
i ]h = ω(−1)i−1qd

(p,q)
i for all (p, q) ∈ I and i = 1, 2 we have that ηh = η if and only if

η =
∑

(p,q),(i,k)∈I,
1≤r,s≤2

αr,sp,q,i,kω
(−1)r−1q+(−1)s−1kd(p,q)

r ⊗ d(i,k)
s ,
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which holds if and only if αr,sp,q,i,k = αr,sp,q,i,kω
(−1)r−1q+(−1)s−1k for all (p, q), (i, k) ∈ I and r, s = 1, 2.

Thus, if r = s we must have that αr,rp,q,i,k = 0 or q ≡ −k mod m which gives (19) and if r 6= s

then αr,sp,q,i,k = 0 or q ≡ k mod m which gives (20). �

Lemma 3.5. Assume η satisfies conditions (17) – (20). Then σ = eη̃ is a multiplicative 2-
cocycle for B(MI)#kDm.

Proof. By assumption, we know that η is Dm-invariant. Since by Theorem 3.1, the braiding in
Dm
Dm
YD is symmetric, then by Lemmata 2.4, 2.5 and 2.6, we get that η̃ fulfills the conditions in

Lemma 1.1, and consequently σ = eη̃ is a multiplicative 2-cocycle for B(MI)#kDm. �

Theorem 3.6. Let H = B(MI)#kDm and σ = eη̃ be the multiplicative 2 − cocycle given by
Lemma 3.5. Then Hσ ' AI(λ, γ) with λp,q,i,k = αr,rp,q,i,k+αr,ri,k,p,q and γp,q,i,k = αr,sp,q,i,k+αr,si,k,p,q for
all (p, q), (i, k) ∈ I. In particular, AI(λ, γ) is a cocycle deformation of H for all lifting datum.

Proof. To show that Hσ is isomorphic to AI(λ, γ) it suffices to prove that the generators of Hσ

satisfy the relations given in Definition 3.2, for this would imply that there exists a Hopf algebra
surjection Hσ � AI and since both algebras have the same dimension they must be isomorphic.

For (p, q) ∈ I and 1 ≤ r ≤ 2, denote a(p,q)
r = y

(p,q)
r #1 ∈ B(MI)#kDm. Then by Lemma 2.3

we have for all (p, q), (i, k) ∈ I and r, s = 1, 2 that

a(p,q)
r ·σ a(i,k)

s = η(y(p,q)
r , y(i,k)

s )(1− hp(−1)r−1
hi(−1)s−1

) + a(p,q)
r a(i,k)

s

= αr,sp,q,i,k(1− h
p(−1)r−1+i(−1)s−1

) + a(p,q)
r a(i,k)

s .

Using Lemma 3.4 we obtain that

a
(p,q)
1 ·σ a(i,k)

1 + a
(i,k)
1 ·σ a(p,q)

1 = a
(p,q)
1 a

(i,k)
1 + a

(i,k)
1 a

(p,q)
1 + δq,m−k(α

1,1
p,q,i,k + α1,1

i,k,p,q)(1− h
p+i)

= δq,m−k(α
1,1
p,q,i,k + α1,1

i,k,p,q)(1− h
p+i) and

a
(p,q)
1 ·σ a(i,k)

2 + a
(i,k)
2 ·σ a(p,q)

1 = a
(p,q)
1 a

(i,k)
2 + a

(i,k)
2 a

(p,q)
1 + δq,k(α

1,2
p,q,i,k + α2,1

i,k,p,q)(1− h
p−i)

= δq,k(α
1,2
p,q,i,k + α1,2

i,k,p,q)(1− h
p−i).

Thus, defining λp,q,i,k = αr,rp,q,i,k + αr,ri,k,p,q and γp,q,i,k = αr,sp,q,i,k + αr,si,k,p,q with 1 ≤ r 6= s ≤ 2 we
get that condition (16) is satisfied. Since the other relations follows from the Yetter-Drinfeld
structure of MI , the theorem is proved. �

Remark 3.7. Note that given a lifting datum (λ, γ), using Lemma 3.4 and Theorem 3.6 one is
able to construct a multiplicative 2-cocycle that gives the desired deformation of B(MI)#kDm.

3.3.2. Cocycle deformations and the algebras BI,L(λ, γ, θ, µ). Let (I, L) ∈ K and consider the
Nichols algebra B(MI,L). Define the ε-derivations d(p,q)

1 , d
(p,q)
2 and d(`)

1 , d
(`)
2 for all (p, q) ∈ I, ` ∈ L

by the rules

d(p,q)
r (y(i,k)

s ) = δr,sδp,iδq,k, d(p,q)
r (x(`)

s ) = 0, d(`)
r (x(`′)

s ) = δr,sδ`,`′ , d(`)
r (y(i,k)

s ) = 0.

for all r, s = 1, 2, (p, q), (i, k) ∈ I, ` ∈ L, and consider the ε-biderivation

η =
∑

(p,q),(i,k)∈I,
1≤r,s≤2

αr,sp,q,i,kd
(p,q)
r ⊗ d(i,k)

s +
∑

(p,q)∈I,`∈L
1≤r,s≤2

[βr,sp,q,`d
(p,q)
r ⊗ d(`)

s + ζr,sp,q,`d
(`)
s ⊗ d(p,q)

r ]+

+
∑
`,`′∈L

1≤r,s≤2

ξr,s`,`′d
(`)
r ⊗ d(`′)

s .
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Lemma 3.8. η is Dm-invariant if and only if the following conditions hold: (17)–(20) from
Lemma 3.4,

βr,sp,q,` = βs,rp,q,` ∀(p, q) ∈ I, ` ∈ L, r, s = 1, 2,(21)

β1,1
p,q,` = β2,2

p,q,` ∀(p, q) ∈ I, ` ∈ L,(22)

βr,rp,q,` = δq,m−`β
r,r
p,m−`,` ∀(p, q) ∈ I, ` ∈ L, r = 1, 2,(23)

βr,sp,q,` = δq,`β
r,s
p,`,` ∀(p, q) ∈ I, ` ∈ L, 1 ≤ r 6= s ≤ 2,(24)

ξr,s`,`′ = ξs,r`,`′ ∀`, `′ ∈ L, r, s = 1, 2,(25)

ξr,r`,`′ = 0 ∀`, `′ ∈ L, r = 1, 2,(26)

ξr,s`,`′ = δ`,`′ξ
r,s
`,`′ ∀`, `′ ∈ L, 1 ≤ r 6= s ≤ 2,(27)

and the coefficients ζr,sp,q,` satisfy the same conditions as the coefficients βr,sp,q,`, for all (p, q) ∈
I, ` ∈ L, r, s = 1, 2.

Remark 3.9. Note that in this case, equation (19) implies that αr,rp,q,p,q = 0 for all (p, q), (i, k) ∈ I,
since m = 4t, q is odd for all (p, q) ∈ I, (I, L) ∈ K and m− q ≡ q mod m if and only if m = 2q.

Proof. To prove that η is Dm-invariant it is enough to show that ηg = ηh = η. Thus the first four
conditions follows directly from Lemma 3.4. The proof of the remaining conditions goes along
the same lines. Only note that condition (26) is different because it never holds that `′ ≡ m− `
mod m since 1 ≤ `, `′ < n and m = 2n. �

The proof of the following lemma is completely analogous to the proof of Lemma 3.5.

Lemma 3.10. Assume η satisfies conditions (17) – (27). Then σ = eη̃ is a multiplicative
2-cocycle for B(MI,L)#kDm. �

Theorem 3.11. Let H = B(MI,L)#kDm and σ = eη̃ be the multiplicative 2 − cocycle given
by Lemma 3.10. Then Hσ ' BI,L(λ, γ, θ, µ) with λp,q,i,k = αr,rp,q,i,k + αr,ri,k,p,q, γp,q,i,k = αr,sp,q,i,k +
αr,si,k,p,q, θp,q,` = β1,1

p,q,` + ζ1,1
p,q,`, and µp,q,` = β1,2

p,q,` + ζ1,2
p,q,`, for all (p, q) ∈ I, ` ∈ L. In particular,

BI,L(λ, γ, θ, µ) is a cocycle deformation of H for all lifting datum.

Proof. As in the proof of Theorem 3.6, it suffices to show that the generators of Hσ satisfy the
relations given in Definition 3.3. For (p, q) ∈ I, ` ∈ L and 1 ≤ r ≤ 2, denote a(p,q)

r = y
(p,q)
r #1

and b
(`)
r = x

(`)
r #1 ∈ B(MI,L)#kDm.

Since η̃ coincides with the multiplicative cocycle given by Lemma 3.5 when it takes values in
{a(p,q)

r : (p, q) ∈ I, r = 1, 2}, by the proof of Theorem 3.6 we have that the equations involving
the generators a(p,q)

r are satisfied. In particular, since q is odd for all (p, q) we have that q 6≡ m−q
mod m for all (p, q) ∈ I and by Lemma 2.3

a(p,q)
r ·σ a(p,q)

r = [a(p,q)
r ]2 + δq,m−qα

r,r
p,q,p,q(1− h2p(−1)r−1

) = 0.

Moreover, again by Lemma 2.3 we get that

b(`)r ·σ b(`
′)

s = η(x(`)
r , x(`′)

s )(1− hnhn) + b(`)r b(`
′)

s = b(`)r b(`
′)

s for all `, `′ ∈ L, r, s = 1, 2.

Hence, using the relations of the Nichols algebra B(MI,L) we have that

b(`)r ·σ b(`
′)

s + b(`
′)

s ·σ b(`)r = b(`)r b(`
′)

s + b(`
′)

s b(`)r = 0 for all `, `′ ∈ L, r, s = 1, 2.
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Besides, by (23) we get

a
(p,q)
1 ·σ b(`)1 = η(y(p,q)

1 , x
(`)
1 )(1− hphn) + a

(p,q)
1 b

(`)
1 = δq,m−`β

1,1
p,q,`(1− h

p+n) + a
(p,q)
1 b

(`)
1 and

b
(`)
1 ·σ a

(p,q)
1 = η(x(`)

1 , y
(p,q)
1 )(1− hnhp) + b

(`)
1 a

(p,q)
1 = δq,m−`ζ

1,1
p,q,`(1− h

p+n) + b
(`)
1 a

(p,q)
1 ,

for all (p, q) ∈ I, ` ∈ L. Hence, using again the relations of the Nichols algebra B(MI,L) we have

a
(p,q)
1 ·σ b(`)1 + b

(`)
1 ·σ a

(p,q)
1 = δq,m−`(β

1,1
p,q,` + ζ1,1

p,q,`)(1− h
p+n).

If we set θp,q,` = β1,1
p,q,` + ζ1,1

p,q,` with (p, q) ∈ I, ` ∈ L, then the condition involving the generators

a
(p,q)
1 , b

(`)
1 is satisfied. Finally, by (24) we have that

a
(p,q)
1 ·σ b(`)2 = η(y(p,q)

1 , x
(`)
2 )(1− hphn) + a

(p,q)
1 b

(`)
2 = δq,`β

1,2
p,q,`(1− h

p+n) + a
(p,q)
1 b

(`)
2 and

b
(`)
2 ·σ a

(p,q)
1 = η(x(`)

2 , y
(p,q)
1 )(1− hnhp) + b

(`)
2 a

(p,q)
1 = δq,`ζ

1,2
p,q,`(1− h

p+n) + b
(`)
2 a

(p,q)
1 ,

for all (p, q) ∈ I, ` ∈ L. Thus

a
(p,q)
1 ·σ b(`)2 + b

(`)
2 ·σ a

(p,q)
1 = δq,`(β

1,2
p,q,` + ζ1,2

p,q,`)(1− h
p+n).

Defining µp,q,` = β1,2
p,q,` + ζ1,2

p,q,` with (p, q) ∈ I, ` ∈ L, it follows that the condition involving

the generators a(p,q)
1 , b

(`)
2 is satisfied. Since the other relations follows from the Yetter-Drinfeld

structure of MI,L, the theorem is proved. �

Remark 3.12. Note that given a lifting datum (λ, γ, θ, µ), using Lemma 3.8 and Theorem 3.11
one is able to construct a multiplicative 2-cocycle that give the desired deformation.

4. On pointed Hopf algebras over symmetric groups

Finite dimensional pointed Hopf algebras whose coradical is the group algebra of the groups
S3 and S4 were classified in [AHS] and [GG], respectively. In this section, we prove that some
of them are cocycle deformations by giving, as in Section 3.2, explicitly the cocycles.

4.1. Racks, Yetter-Drinfeld modules and Nichols algebras over Sn. To present finite
dimensional Nichols algebras over Sn we need first to introduce the notion of racks, see [AG2,
Def. 1.1] for more details.

A rack is a pair (X,B), where X is a non-empty set and B : X × X → X is a function,
such that φi = i B (·) : X → X is a bijection for all i ∈ X satisfying that i B (j B k) =
(i B j) B (i B k) for all i, j, k ∈ X. A group G is a rack with x . y = xyx−1 for all x, y ∈ G. If
G = Sn, then we denote by Onj the conjugacy class of all j-cycles in Sn.

Let (X,B) be a rack. A rack 2-cocycle q : X ×X → k×, (i, j) 7→ qij is a function such that
qi,jBk qj,k = qiBj,iBk qi,k, for all i, j, k ∈ X. It determines a braiding cq on the vector space kX
with basis {xi}i∈X by cq(xi ⊗ xj) = qijxiBj ⊗ xi for all i, j ∈ X. We denote by B(X, q) the
Nichols algebra of this braided vector space (kX, cq).

Let X = On2 with n ≥ 3 or X = O4
4 and consider the cocycles:

−1 : X ×X → k×, (j, i) 7→ sg(j) = −1, i, j ∈ X;

χ : On2 ×On2 → k×, (j, i) 7→ χi(j) =

{
1, if i = (a, b) and j(a) < j(b),
−1, if i = (a, b) and j(a) > j(b).

i, j ∈ On2 .

By [MS, Ex. 6.4], [Gr], [AG2, Thm. 6.12], [GG, Prop. 2.5], the Nichols algebras are given by
(a) B(On2 ,−1); generated by the elements {x(`m)}1≤`<m≤n satisfying for all 1 ≤ a < b <

c ≤ n, 1 ≤ e < f ≤ n, {a, b} ∩ {e, f} = ∅ that

0 = x2
(ab) = x(ab)x(ef) + x(ef)x(ab) = x(ab)x(bc) + x(bc)x(ac) + x(ac)x(ab).
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(b) B(On2 , χ); generated by the elements {x(`m)}1≤`<m≤n satisfying for all 1 ≤ a < b < c ≤
n, 1 ≤ e < f ≤ n, {a, b} ∩ {e, f} = ∅ that

0 = x2
(ab) = x(ab)x(ef) − x(ef)x(ab) = x(ab)x(bc) − x(bc)x(ac) − x(ac)x(ab),

0 = x(bc)x(ab) − x(ac)x(bc) − x(ab)x(ac).

(c) B(O4
4,−1); generated by the elements xi, i ∈ O4

4 satisfying for ij = ki and j 6= i 6= k ∈ O4
4

that

0 = x2
i = xixi−1 + xi−1xi = xixj + xkxi + xjxk.

Remark 4.1. These Nichols algebras can be seen as Nichols algebras over Sn by a principal YD-
realization (see [AG2, Def. 3.2], [MS, Sec. 5]) of (On2 ,−1), (On2 , χ) over Sn or (X, q) = (O4

4,−1)
over S4. In particular, if we denote the elements of Sn by hτ and the elements of X by xσ with
σ ∈ Onk , k = 2, 4, then the action and coaction of Sn are determined by:

(28) δ(xτ ) = hτ ⊗ xτ , hθ · xτ = χτ (hθ)xθ.τ for all τ ∈ X, θ ∈ Sn.

4.2. Classification of finite dimensional pointed Hopf algebras over S3 and S4. We
follow [AG2, Def. 3.7] and [GG, 3.9, 3.10]. Let Λ,Γ, λ ∈ k and t = (Λ,Γ). For θ, τ ∈ Sn denote
θ . τ = θτθ−1 the conjugation in Sn.

Definition 4.2. H(Q−1
n [t]) is the algebra generated by {ai, hr : i ∈ On2 , r ∈ Sn} satisfying the

following relations for r, s, j ∈ Sn and i ∈ On2 :

he = 1, hrhs = hrs, hjai = −aj.ihj , a2
(12) = 0,

a(12)a(34) + a(34)a(12) = Λ(1− h(12)h(34)),

a(12)a(23) + a(23)a(13) + a(13)a(12) = Γ(1− h(12)h(23)).

Definition 4.3. H(Qχn[λ]) is the algebra generated by {ai, hr : i ∈ On2 , r ∈ Sn} satisfying the
following relations for r, s, j ∈ Sn and i ∈ On2 :

he = 1, hrhs = hrs, hjai = χi(j) aj.ihj , a2
(12) = 0,

a(12)a(34) − a(34)a(12) = 0

a(12)a(23) − a(23)a(13) − a(13)a(12) = λ(1− h(12)h(23)).

Definition 4.4. H(D[t]) is the algebra generated by {ai, hr : i ∈ O4
4, r ∈ S4} satisfying the

following relations for r, s, j ∈ Sn and i ∈ O4
4:

he = 1, hrhs = hrs, hjai = −aj.ihj , a2
(1234) = Λ(1− h(13)h(24)),

a(1234)a(1432) + a(1432)a(1234) = 0,

a(1234)a(1243) + a(1243)a(1423) + a(1423)a(1234) = Γ(1− h(12)h(13)).

Remark 4.5. For each quadratic lifting datum Q = Q−1
n [t],Qχn[λ],D[t], the algebra H(Q) has a

structure of a pointed Hopf algebra setting

(29) ∆(ht) = ht ⊗ ht and ∆(ai) = ai ⊗ 1 + hi ⊗ ai, t ∈ Sn, i ∈ X.

Moreover, they satisfy that grH(Q) = B(X, q)#kSn, with n as appropiate see [GG].

The following theorem summarizes the classification of finite dimensional pointed Hopf alge-
bras over S3 and S4, see [AHS], [GG].

Theorem 4.6. Let H be a nontrivial finite dimensional pointed Hopf algebra with G(H) = Sn.
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(i) If n = 3, then either H ' B(O3
2,−1)#kS3 or H ' H(Q−1

3 [(0, 1)]).
(ii) If n = 4, then either H ' B(X, q)#kS4 with (X, q) = (O4

2,−1), (O4
4,−1) or (O4

2, χ), or
H ' H(Q−1

4 [t]), or H ' H(Qχ4 [1]), or H ' H(D[t]) with t ∈ P1
k. �

4.3. Cocycle deformations and pointed Hopf algebras over Sn. In the following we
construct multiplicative 2-cocycles and show that some families of the pointed Hopf algebras
H(Q−1

n [t]) and H(D[t]) are cocycle deformations of bosonizations of Nichols algebras in Sn
Sn
YD.

As a consequence, we provide the family of cocycles needed to construct all finite dimensional
pointed Hopf algebras over S3 up to isomorphism.

Let X = On2 or O4
4 and denote the generators of B(X,−1) by xτ with τ ∈ X. Define the

ε-derivations dτ by dτ (xµ) = δτ,µ for all σ, τ ∈ X and consider the ε-biderivation

η =
∑
µ,τ∈X

ατ,µdτ ⊗ dµ.

The proof of the following lemma follows by a direct computation.

Lemma 4.7. η is Sn-invariant if and only if ατ,µ = αθ.τ,θ.µ for all τ, µ ∈ X and θ ∈ Sn. �

Remark 4.8. Consider the set T = X ×X. Then Sn, and in particular X, acts by conjugation
on T by θ · (τ, µ) = (θ . τ, θ . µ). If we set α : T → k with α(τ, µ) = ατ,µ, then the coefficients
of η are given by the function α and by Lemma 4.7, η is Sn-invariant if and only if α is a class
function, i.e. it is constant on each conjugacy class. Since (τ, µ) is conjugate to (τ ′, µ′) if and
only if τµ is conjugate to τ ′µ′ in Sn, if η is Sn-invariant, we may write in the case X = On2
(30) η = βid

∑
τ∈On

2

dτ ⊗ dτ + β(123)

∑
τ,µ∈On

2
τµ∈On

3

dτ ⊗ dµ + β(12)(34)

∑
τ,µ∈On

2
τµ∈On

2,2

dτ ⊗ dµ,

with βid, β(123), β(12)(34) ∈ k, and in the case X = O4
4

(31) η = γid

∑
τ∈O4

4

dτ ⊗ dτ−1 + γ(123)

∑
τ,µ∈O4

4

τµ∈O4
3

dτ ⊗ dµ + γ(12)(34)

∑
τ∈O4

4

dτ ⊗ dτ ,

with γid, γ(123), γ(12)(34) ∈ k.

Assume η satisfies (30) or (31). The next lemma states that the exponentiation of the lifting
of η is a multiplicative 2-cocycle if all coefficients β or γ are equal.

Lemma 4.9. Assume η =
∑

µ,τ∈X ατ,µdτ⊗dµ is an Sn-invariant ε-biderivation. Then η satisfies
equations (6) and (7) if and only if ατ,µ = ατ ′,µ′ for all τ, τ ′, µ, µ′ ∈ X. In such a case, σ = eη̃

is a multiplicative 2-cocycle for B(X,−1)#kSn.

Proof. By Lemma 2.4, we need only to verify equations (6) and (7) on V = kX. Since χτ (hµ) =
sg(µ) = −1 for all τ, µ ∈ On2 and χτ (hµ) = 1 for all τ, µ ∈ O4

4 these equations on xr, xs, xt, xu
with r, s, t, u ∈ X equal:

(6) η(xr, xs.t)η(xs, xu) = η(xr.s, xr.(t.u))η(xr, xt),

(7) η(xr, xs.(t.u))η(xs, xt) = η(xr.s, xr.t)η(xr, xu).

It is clear that if η = λ
∑

µ,τ∈X dτ ⊗ dµ for some λ ∈ k, then both equations are satisfied.
Conversely, assume η satisfies (6) and (7). Since t .− is a bijection for all t ∈ X, by (7) we have
that αr,s.(t.u)αs,t = αs,tαr,u for all r, s, t, u ∈ X. If αs,t 6= 0 for some s, t ∈ X, then αr,u = αr,s.u

for all r, s, u ∈ X. Since η must satisfy (30) or (31), it follows that η = λ
∑

µ,τ∈X dτ ⊗ dµ for
some λ ∈ k. The rest of the claim follows now by Lemma 2.4. �
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Theorem 4.10. Let H = B(X,−1)#kSn and σ = eη̃ be the multiplicative 2− cocycle given by
Lemma 4.9 with η = λ

3

∑
µ,τ∈On

2
dτ ⊗ dµ and λ ∈ k.

(i) If X = On2 then Hσ ' H(Q−1
3 [(0, λ)]) for n = 3 and Hσ ' H(Q−1

n [(2λ, 3λ)]) for n ≥ 4.
(ii) If X = O4

4 then Hσ ' H(D[(λ, 3λ)]).

In particular, H(Q−1
3 [(0, λ)]) is a cocycle deformation of H for all λ ∈ k.

Proof. As in the proof of Theorems 3.6 and 3.11, it suffices to show that the generators of Hσ

satisfy the relations given in Definitions 4.2 and 4.4, respectively. For τ ∈ X, let aτ = xτ#1 ∈ H.
Then by Lemma 2.3 we have for all τ, µ ∈ On2 that

aτ ·σ aµ = η(xτ , xµ)(1− hτhµ) + aτaµ = λ(1− hτµ) + aτaµ.

Hence, if X = On2 we get that a(12) ·σ a(12) = a2
(12) + λ

3 (1− h(12)(12)) = λ
3 (1− he) = 0 and

a(12) ·σ a(23) + a(23) ·σ a(13) + a(13) ·σ a(12) =

= a(12)a(23) + a(23)a(13) + a(13)a(12) +
λ

3
(1− h(12)(23)) +

λ

3
(1− h(23)(13)) +

λ

3
(1− h(13)(12))

= λ(1− h(123)) = λ(1− h(12)(23)).

Taking Γ = λ, this implies that Hσ ' H(Q−1
3 [(0, λ)]) if n = 3, since both algebras have the same

dimension. For n ≥ 4 we need to verify the extra relation involving the product of two disjoint
transpositions:

a(12) ·σ a(34) + a(34) ·σ a(12) = a(12)a(34) + a(34)a(12) +
λ

3
(1− h(12)(34)) +

λ

3
(1− h(34)(12)) =

=
2λ
3

(1− h(12)(34)).

Thus taking t = (Λ,Γ) = (2λ
3 , λ), we have that Hσ ' H(Q−1

n [(2λ, 3λ)]). Assume X = O4
4, then

a(1234) ·σ a(1234) = a2
(1234) +

λ

3
(1− h(1234)(1234)) =

λ

3
(1− h(13)(24)),

a(1234) ·σ a(1432) + a(1432) ·σ a(1234) = a(1234)a(1432) + a(1432)a(1234)+

+
λ

3
(1− h(1234)(1432)) +

λ

3
(1− h(1432)(1234)) =

2λ
3

(1− he) = 0,

a(1234) ·σ a(1243) + a(1243) ·σ a(1423) + a(1423) ·σ a(1234) =

= a(1234)a(1243) + a(1243)a(1423) + a(1423)a(1234)+

+
λ

3
(1− h(1234)(1243)) +

λ

3
(1− h(1243)(1423)) +

λ

3
(1− h(1423)(1234)) = λ(1− h(12)(13)).

Therefore, taking t = (Λ,Γ) = (λ3 , λ), we have that Hσ ' H(D[(λ, 3λ)])). �

Remark 4.11. Cocycle deformations and the algebras H(Qχn[λ]). As shown in [GIM], the pointed
Hopf algebras H(Qχn[λ]) are cocycle deformations of the bosonizations B(On2 , χ)#kSn. Regret-
tably, our construction using Sn-invariant ε-bideriations in B(On2 , χ) only provides the trivial
deformation.
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