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EXTENSIONS OF FINITE QUANTUM GROUPS BY
FINITE GROUPS

NICOLAS ANDRUSKIEWITSCH AND GASTON ANDRES GARCIA

ABSTRACT. Let G be a connected, simply connected complex semi-
simple Lie group with Lie algebra g, Cartan matrix C' and symmetrized
Cartan matrix CD. Let £ > 3 be an odd integer, relatively prime
to det CD. Given an embedding o of a finite group I' on G and a
primitive ¢-th root of unity €, we construct a central extension A, of
the function algebra CU by the dual of the Frobenius-Lusztig kernel
u.(g); Ao is a quotient of the quantized coordinate algebra O.(G) and
dim A, = |T|¢*™9. If G is simple and o(T') is not central in G, then
we obtain an infinite family of pairwise non-isomorphic Hopf algebras
which are non-semisimple, non-pointed and their duals are also non-
pointed. This generalizes the result obtained by E. Miiller [M3] for
SL2(C). Nevertheless, it follows from results in [Mk] that these Hopf
algebras are cocycle deformations of each other.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic zero. In 1975,
I. Kaplansky conjectured that there are finitely many Hopf algebras of a
given dimension, up to isomorphism. In 1998, this conjecture was denied
by several authors who constructed, by different methods, infinite families
of non-isomorphic Hopf algebras of the same dimension. In this direction,
the examples given by E. Miiller [M3] look quite different from the others.
These are non-trivial central extensions of function algebras CU of finite
subgroups I' of SL2(C) of odd order ¢, by the dual of the Frobenius-Lusztig
kernel u.(slz), where € is an ¢-th root of unity. These Hopf algebras are non-
semisimple, non-pointed and their duals are non-pointed; they are quotients
of the quantized coordinate algebra O.(SLy) and their dimensions are ¢4

In this paper, we generalize the construction given by E. Miiller to every
connected, simply connected complex simple Lie group G. That is, we
construct finite-dimensional Hopf algebras A, which are central extensions
of the function algebra CI of a suitable finite subgroup I' of G by the dual
of the Frobenius-Lusztig kernel u.(g) of g, where g is the Lie algebra of G.
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2 N. ANDRUSKIEWITSCH AND G. A. GARCIA

From this follows the title of the present work, since as usual, we consider
the category of quantum groups as the category opposite to the category
of Hopf algebras. We stress that non-abelian extensions of Hopf algebras
are difficult to find, except for easy examples like the tensor product. The
extensions here are not built in terms of weak actions and cocycles, but arise
from the quantum Frobenius morphism.

We begin in Section 2 by studying some general facts about central ex-
tensions of Hopf algebras. Specifically, we describe how to construct central
extensions of finite-dimensional Hopf algebras from an exact sequence of
Hopf algebras 1 — B - A 5 H — 1, with B central in A, and two Hopf
algebras epimorphisms p : B — K and r : H — L. We do this in two
steps. In the first step we just consider the epimorphism p : B — K. Let
J = Kerp and (J) = AJ. Then (J) is a Hopf ideal of A and the Hopf
algebra A, = A/(J) is given by a pushout and fits into the following com-
mutative diagram, whose rows are exact sequences of Hopf algebras and B
and K are central in A and A, respectively.

L ™

1 B A H 1
T
1 K—1=A, "> H 1.

For the second step, we refer to Proposition 2.2.7. In this paper, we
perform the first construction in a family of concrete examples, leaving the
second construction for future research. Let G be a connected, simply con-
nected complex semisimple Lie group and g its Lie algebra. Let £ > 3 be an
odd integer, prime to 3 if g contains a GG component and let € be a primi-
tive £-th root of unity. In Section 3, we recall the definition of the quantized
coordinate algebra O.(G) of G at e. It is well-known that O.(G) is a central
extension of O(G), the coordinate algebra of functions on G, by the Hopf
algebra H = O (G)/O(G)TO(G); see [DL] and [BG]. Furthermore, this
Hopf algebra H is isomorphic to the dual of the Frobenius-Lusztig kernel
u.(g) of g at e and O(G) fits into the exact sequence of Hopf algebras

1— O(G) L OE(G) N ue(g)* — 1.

In Section 4, we apply the first general construction to the case in which
A = 0O.(G), B=0(G) and H = u.(g)*. Then given a finite group I', in
Theorem 4.1.7 we construct for every embedding o : I' — G, a Hopf algebra
A, of dimension ||, Tt is a finite-dimensional quotient of O(G) and
it is central extension of C!' by u.(g)*, which fits into an exact sequence

1-Cl— A, »u(g) — 1.

This Hopf algebra A, is non-semisimple and non-pointed. If moreover
o(I') ¢ T, where T is a maximal torus of G determined by the inclusion of
O(G) in O.(G), then its dual is also non-pointed.



EXTENSIONS OF FINITE QUANTUM GROUPS 3

Finally we study the isomorphism classes of this type of extensions. As-
suming that G is simple and that /¢ is relatively prime to the determinant
of the symmetrized Cartan matrix CD, we show in Theorem 4.3.2 that the
isomorphisms of the Hopf algebras extensions A, induce an equivalence re-
lation on the set Emb(I',G) of embeddings of I' in G. This equivalence
is given by a triple (7, f,v), where 7 € Aut(I'), f belongs to a subgroup
qAut(G) of Aut(G) and v is a 1-cocycle of I with coefficients in a subgroup
T/% of the fixed maximal torus T of G. Let ¢ € Emb(T,G) and assume
that o(I") is not central in G. We show in Theorem 4.3.5 that o gives rise
to an infinite family of non-semisimple and non-pointed Hopf algebras of
dimension |T'[¢4m9 whose duals are also non-pointed. We notice that the
proof requires some technical preparations on the cohomology of T' in T/,
and the inequality

dim G > rk G + dim M

for any maximal reductive subgroup M of G. As the maximal subalgebras
of the simple Lie algebras were classified by Dynkin, we have proved this by
inspection in the lists of [D1, D2]. See [G2] for details.

We end the paper discussing several explicit examples where the criterium
applies.

1.1. Conventions. Our references for the theory of Hopf algebras are
[Mo] and [Sw], for Lie algebras [Hu| and for quantum groups [J] and [BG].
The antipode of a Hopf algebra H is denoted by S. The Sweedler notation
is used for the comultiplication of H but dropping the summation symbol.
The set of group-like elements of a coalgebra C' is denoted by G(C). We
also denote by Ct = Kere the augmentation ideal of C, where € : C — k
is the counit of C. Let A and H be Hopf algebras and let A = H be a
Hopf algebra map. Then A®°™ = {a € A| (id®7)A(a) = a®1}, denotes the
subalgebra of right coinvariants and “°"A = {a € A| (r®id)A(a) =1®a},
denotes the subalgebra of left coinvariants.

A Hopf algebra H is called semisimple, respectively cosemisimple, if it is
semisimple as an algebra, respectively if it is cosemisimple as a coalgebra.
The sum of all simple subcoalgebras is called the coradical of H and it is

denoted by Hy. If all simple subcoalgebras of H are one-dimensional, then
H is called pointed and Hy = k[G(H)].

2. CENTRAL EXTENSIONS OF HOPF ALGEBRAS

2.1. Preliminaries. In the following we recall some results on quotients
and extensions of Hopf algebras, see e. g. [A, AD, Hf, MS, Mo, Sch2].

Definition 2.1.1. [AD] A sequence of Hopf algebras maps
1-B5 AL H—1,

where 1 denotes the Hopf algebra k, is exact if
() ¢ is injective,
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(ii) m is surjective,

(i7i) Kerm = ABT,

(iv) B= “TA.
In such a case, A is called an extension of the Hopf algebra B by the Hopf
algebra H. We usually identify B with its image in A and we simply say
that A is a H-extension of B, if no confusion arises. If the image of B is
central in A, we say that A is a central extension of B.

Let A and B be two Hopf algebras. Denote by Reg(B, A) the group of
linear homomorphisms from B to A which are invertible with respect to the
convolution and define

Regl(BvA) :{Oé € Reg(BvA) : Oé(l) = 1}7
Reg.(B,A) ={av € Reg(B,A) : ca =¢},
Regl,s(Bv A) = Regl(B’ A) N Regs(Bv A)

Clearly, the sets Reg; (B, A), Reg.(B, A) and Reg; (B, A) are subgroups of
Reg(B, A).

An A-comodule algebra is an algebra C' that is simultaneously an A-
comodule whose structural morphism p : ¢ — C ® A is a morphism of
algebras. If R = {c € C': p(c) = c®1} is the subalgebra of right coinvariants
of C, we say that C' is an A-extension of R. An extension of algebras is cleft
if there exists v in Reg; (A, C) such that py = (7 ® id)A; such 7 is called a
section.

An A-module coalgebra is a coalgebra C that is simultaneously an A-
module whose structural morphism p : A® C — C' is a morphism of coalge-
bras. If D = C'//ATC denotes the coalgebra of coinvariants, we say that C
is an A-extension of D. An extension of coalgebras is cleft if there exists £
in Reg_(C, A) such that (ac) = a&(c) for all a € A, ¢ € C; such ¢ is called

a retraction.

The following definition was given by several authors; see for example [A,
Def. 3.1.14].

Definition 2.1.2. Let 1 — B 5 A 5 H — 1 be an exact sequence
of Hopf algebras. We say that A is a cleft extension of the Hopf algebra
B by the Hopf algebra H, if there exist a section v € Reg,(H, A) of the
algebra extension and a retraction & € Reg.(A, B) of the coalgebra extension
satisfying one of the following equivalent conditions for all a € A:

(1) v~ (7 (a)) = Sa@))&(ae));
(i) v(7(a)) = € Hag))ag);
(ii1) € (a) = v(m(aq)))S(ag);
(iv) &(a) = aqyy 1(7T(a(2)));
(v) &y =emls.

The following result is a consequence of [Sch2, Thm. 2.2].
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Theorem 2.1.3. A finite-dimensional Hopf algebra extension is always
cleft. O

Recall that a Hopf subalgebra B of a Hopf algebra A is called normal
if both a(1)bS(a(2)) € B and S(a(y))bay € B, for all a € A, b € B. The
following proposition was obtained independently in [AD] and [Sch2]|; for a
proof see loc. cit. or [Mo, Prop. 3.4.3].

Proposition 2.1.4. Let A be a Hopf algebra and let B be a Hopf subal-
gebra of A such that A is left or right faithfully flat over B, and such that
ABT = BYA. Let A = A/AB" and consider A as a right and left A co-
module via p = (Id@T)A and p = (7 @ id)A respectively, where m: A — A
denotes the canonical projection. Then

(a) B — ACOTI' — C07TA'
(b) B is a normal Hopf subalgebra of A. O

Here is our first basic result.

Proposition 2.1.5. Let A and K be Hopf algebras, B a central Hopf
subalgebra of A such that A is left or right faithfully flat over B and p :
B — K a Hopf algebra epimorphism. Then H = AJABY is a Hopf algebra
and A fits into the exact sequence 1 — B = A 5 H — 1. If we set
J = Kerp C B, then (J) = AJ is a Hopf ideal of A and A/(J) is the
pushout given by the following diagram:

B——=A
pr{(?A/(;)-

Moreover, K can be identified with a central Hopf subalgebra of A/(J) and
A/(T) fits into the exact sequence

(2.1.5) 1—>K—>A/(j)—>H—>l.

Proof. The first assertion follows directly from Proposition 2.1.4. Since
B is central in A, (J) is a two-sided ideal of A. Moreover, from the fact
that ¢ and A are algebra maps and S(J) C 7, it follows that (J) is indeed
a Hopf ideal. Identify K with B/J. Then the map j : K — A/(J) given
by j(b+ J) = ¢(b) + (J) defines a morphism of Hopf algebras because ¢
is a Hopf algebra map. Since A is faithfully flat over B, by [Sch2, Cor.
1.8] B a direct summand in A as a B-module, say A = B @& M. Then
JI)NB=JANB=(JBeIJM)NB =(J&JIJM)NB = J. Thus, if
Jj(b+ J) =0 then ¢(b) € (J) and this implies that b € (J) N B = J by the
equality above. Hence, j is injective.

Let us see now that A/(J) is a pushout: let C be a Hopf algebra and
suppose that there exist Hopf algebra maps ¢1 : K — C and p3 : A — C
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such that p1p = pot. We have to show that there exists a unique Hopf
algebra map ¢ : A/(J) — C such that ¢q = w2 and ¢j = ;.

B A
| lq\
K —=A/(J)
o1 \ E%\S

Since ¢3((7)) = 92(AT) = 2(A)a(t(T)) = @2(A)p1 (P(T)) = 0, there
exists a unique Hopf algebra map ¢ : A/(J) — C such that ¢g = o.
Moreover, let x € K and b € B such that p(b) = x. Then ¢j(z) = ¢jp(b)
= ¢qu(b) = pai(b) = ¢1p(b) = p1(x), from which follows that ¢j = ;.

Denote also by K the image of K under j. To see that K is central in
A/(J) we have to verify that j(c)a = aj(c) foralla € A/(J), c € K. Since p
is surjective, for all ¢ € K there exists b € B such that p(b) = ¢ and since q is
an algebra map, it follows that aj(c) = q(a)j(p(b)) = q(a)q(c(b)) = g(ac(b))
= q(¢(b)a) = q(u(b))g(a) = j(c)a, because B is central in A. In particular,
the quotient H = [A/(J)]/[KT(A/(J))] is a Hopf algebra. To sce that
A/(J) is a central extension of K by H, by Proposition 2.1.4 it is enough
to show that A/(7) is flat over K and K is a direct summand of A/(J) as
K-modules, since by [Sch2, Cor. 1.8] this implies that A/(J) is faithfully
flat over K.

First we show that A/(J) is flat over K. Let M; and Mj be two right K-
modules and let f : M; — M> be an injective homomorphism. In particular,
they admit a B-module structure via the map p: B — K, which we denote
by M, for i = 1,2; thus f is an injective homomorphism of B-modules. Since
A is faithfully flat over B, the homomorphism of A-modules f ®id : M| ®p
A — M, ®p A is also injective. As J is central in A, we have for i = 1,2
that (M; ®p A)(J) = 0. Then the A-modules are also A/(J)-modules
and M; ®p A ~ M; @k A/(J) as A/(J)-modules by the construction of
M;. Hence the homomorphism of A/(J)-modules f®id: My @k A/(JT) —
M; @k A/(J) is injective and A/(J) is flat over K.

As A = B&M as B-modules, we have that (7) = AT = J®MJT, where
MJ is a B-submodule of M and J = BN (J & MJ). Hence A/(J) =
BeM)/(TJeMJ)=K® (M/MJ) as K-modules, which implies that K
is a direct summand of A/(J).

In conclusion, A/(J) fits into an exact sequence of Hopf algebras
1-KL A/ H— 1.

Since the map ¥ : K*(A/(J)) — (B*A)/(J) defined by ¥(ba) =
is a k-linear isomorphism, it follows that H = (A/(J))/[K+(4/(J))]

R
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(A/(T)/[(BTA)/(T)] ~ A/BTA = H and therefore A/(J) fits into an
exact sequence (2.1.5). O

We shall also need the following result.

Proposition 2.1.6. [M3, Prop. 3.4 (¢)] Let 1 — B 5% A 5 H — 1
be an exact sequence of Hopf algebras. Let J be a Hopf ideal of A of finite
codimension and let 7 = BN J. Then the sequence

1-B/J—A/J—H/n(J)—1
1s also exact. O

2.2. From quotients to extensions. Let A, B be Hopf algebras such
that B is a central Hopf subalgebra of A and A is faithfully flat over B. By
Proposition 2.1.4, A fits into the exact sequence

(2.2.1) 1-BL AL H -1,

where H = A/BTA. Let p: B — K and r : H — L be Hopf algebras
epimorphisms. In what follows we construct from the data given by p and
r, Hopf algebras which are again central extensions.

L ™

| —> B> A" ——1.
| |
K L

We do this in two steps. In the first step we begin with data associated
with the epimorphism p : B — K. Let J = Kerp and (J) = AJ. By
Proposition 2.1.5, (J) is a Hopf ideal of A and the Hopf algebra A, = A/(J)
fits into the following commutative diagram, whose rows are exact sequences
of Hopf algebras and B and K are central in A and A, respectively.

(2.2.2) 1 B——=A—"+H 1
L,k
1 K—1s4,"">q 1.

Suppose from now on that K and H are finite-dimensional.

Then dim A, is also finite, because of the next lemma.

Lemma 2.2.3. Let K and H be finite-dimensional Hopf algebras and
suppose that they fit into an exact sequence of Hopf algebras

1-K—-A—H—1,

such that K is central in A. Then A is also finite-dimensional, the extension

is cleft and dim A = dim K dim H.
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Proof. Since K is commutative and finite-dimensional, it is semisimple.
Thus A is projective. If A is infinite-dimensional, by a generalization of [NZ]
given in [Schl, Thm. 2.4], A is a free K-module and A ~ K for some
index set I. But then H ~ A/KTA~ A®y (K/Kt) ~ KD @y (K/KT) ~
(K/K+){ because A is flat over K. Thus card I, and a fortiori dim A must
be finite, a contradiction. The rest follows from Theorem 2.1.3. O

Remark 2.2.4. Let H and K be finite-dimensional Hopf algebras. It seems
to be an open question whether a Hopf algebra A which is an extension of
K by H in the sense of Definition 2.1.1, is finite-dimensional.

If S is a subset of A,, we denote by (5) = A,SA, the two-sided ideal of
A, generated by S.

Now we let the epimorphism r : H — L enter into the picture. Let
M, = g(Kerrm) = Kerrm,. Since by Lemma 2.2.3 and Theorem 2.1.3 the
H-extension A, of K given by the exact sequence

(2.2.5) 1-KL 4, H -1

is cleft, there exists a retraction £ : A, — K in Reg.(A,, K) which by
Definition 2.1.2 (i) defines a section v : H — A, in Reg,(H, 4,).

Define I, ¢ to be the minimal Hopf ideal of A, which contains the set

(2.26) (1d —j)(My) = {z — j€(@)| = € My},
Note that I, ¢ C M, and 7y(I¢) = mp(M,).

Proposition 2.2.7. In the situation above, I, ¢ := I, ¢NK is a Hopf ideal
of K and Ay, ¢ := Ap/I¢ fits into an exact sequence of finite-dimensional
Hopf algebras

(2.2.8) 1= Kpe 25 Appe — L— 1,

where K, ¢ = K/, ¢ is central in Ap,¢.

Proof. By Proposition 2.1.6, the exact sequence (2.2.5) induces an exact
sequence of finite-dimensional Hopf algebras

1= Kpg — Apre — H/mp(Lrg) — 1,

where K, ¢ is central in A, ¢. Since M, = Ker(rm,) and , is surjective, it
follows that 7,(M,) = Kerr. Then L ~ H/Kerr = H/mp(M,) = H/mp(I,¢)
and we get (2.2.8). O

After these two steps, we obtain a finite-dimensional Hopf algebra A, ¢
associated to the epimorphisms p : B — K and r : H — L, and the
retraction £ : A, — K, that is, to a triple (p,r, &) which makes the following
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diagram commutative

™

(2.2.9) 1 B———=A H 1
j AN
1 Ke—=4%—F—=H 1 (2.2.5)
p{l ¢ \L‘k lr
1 Kpg —"> Apre ——> L 1. (2.2.8)

By Proposition 2.1.3, we know that the extension given by the sequence
(2.2.8) is cleft, for some section ¥ and some retraction £&. The next proposi-
tion shows how we can choose ¥ and ¢ related to the ones given by the cleft
extension A, from (2.2.5).

Proposition 2.2.10. If the ewxtension A, given by the exact sequence
(2.2.5) is cleft via v : H — A,, then the extension Ap ¢ given by (2.2.8) is
cleft via 7 : L — Ay, ¢, where ¥(r(h)) = qey(h).

Proof. First we have to prove that % is well-defined. For this, it is enough
to show that y(Kerr) C Kerge. Let t € Kerr and let m € M, = Ker(rm,)
such that m,(m) = t. Since m € M,, we have that g¢(m) = pe&(m) and
from Definition 2.1.2 (ii), it follows that m = {(m))y(mp(m(a))). Then

qe(§(m)))ae(v(mp(m2)))) = ge(m) = pe&(m), which implies that pe§(m) =
(pe€ - geymp)(m). Since £ is convolution invertible and pe : K — K, ¢ is
a Hopf algebra map, it follows that p¢§ is also convolution invertible and
therefore 0 = e(m) = geymp(m) = qey(1).

Recall that A, ¢ is a right L- Comodule algebra via p = (id @m¢)A. We
show now that 7 is an L-comodule map, i. e. py(t) = (7 ® id)A(t) for all
te L. Let t € L and h € H such that 7(h) = t. Since g¢ and r are Hopf
algebra maps, v is right H-colinear and the equality m¢qe = rm, we obtain

py(t) = py(r(h)) = (id@me) A(Y(r(h)))
(id ®@me) Age(v(h))) = (id @7¢) (g ® ge) A(y(R))
(Q£®7T5Q£) (v(h))) = (g¢ @ rmp) A(y(h))
= (ge @ r)(id®@mp) A(y(h)) = (g¢ ® r)(y ® id)A(h)

= qe(v(h())) @ 1(heg) =F(r(hw)) @ (k)

=3(r(h)qy) @r(h) @) = (¥ @id)A(r(h)) = (¥ @ id)A(?).

Finally we prove that 4 € Reg(L, Ay . ¢). It is clear that 7(1) = 7(r(1)) =
qey(1) = ge(1) = 1, then we have only to show that 7 is convolution invert-
ible. Let ¢ € L and h € H such that r(h) = t and define 7 (¢) = gev 1 (h).
As before, one can see that 7! is a well-defined function and it is the inverse
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of 4 with respect to the convolution. Indeed,
Ty ) =77 () = A(r() )7 (r(h) )
= 3(r(h@))7 (r(h@)) = gev(ha)aer (b))
(v (b () = ge(e(h)) = e(2).
The proof of y7* x5y = erly,, . is similar. If we set for all a € Ay,
£(a) = aqyy '(me(ag))), then by [A, Lemma 3.1.14] we have that & €

Reg.(Ap,r¢, Kr¢) and satisfies Definition 2.1.2 (iv), which implies that the
extension is cleft via 7. O

1

Remark 2.2.11. Since the extension A, given by (2.2.5) is cleft via { and
v, Ap ~ K T#,H as a Hopf algebra, where 7: H — K ® K is a two-cocycle
induced by £ and 0 : H ® H — K is a two-cocycle induced by ~, see [DT,
Thm. 11] and [AD, 3.2.9]. Analogously, the quotient A, , ¢ is isomorphic
to the crossed product K,¢ "#5L. If we compose these isomorphisms with
the quotient g¢ : A, — A,,¢, we get a Hopf algebra epimorphism ¢ :
K "#,H — K, ¢ "#5L, given by @(b#h) = pe(b)#r(h), be K, h e H.

Our next goal is to find conditions which help us to describe the ideal I,. ¢
and the retraction { more explicitly. Let (A,)o denote the coradical of A,.
By [Mo, Thm. 5.4.2] there exists a coideal N of A, such that A, = (A,)o®N
as k-vector spaces. Let E be the subgroup of G(A) given by

E={xz e GA)| rr(x) =1}

and let F' = ¢(F). Clearly G(B) C E. Since B is commutative, K is
commutative, hence semisimple. Then K F' is a semisimple Hopf subalgebra
of A,, because S?|kr = idgp. Thus KF C (Ap)o, and there exists a
coalgebra C such that (A,)o = KF @ C. In particular,

(2.2.12) A,=KF D,

where D = C@ N is a coideal. Furthermore, we can assume that S(D) C D,
because of the next lemma.

Lemma 2.2.13. Let A be a Hopf algebra whose antipode S has finite
order, K a subcoalgebra of A such that S(K) = K and 7 : A — K a coalgebra

projection, i.e. w° = w. Then there exists a coideal D of A such that

S(D)=D and A=K @ D.
Proof. Let m = ordS and 7 : A — K be the k-linear map given by

#(a) = %Zs%(sm—i(a)) for all a € A.
=0

We claim that 7 is a coalgebra map and S7 = #S. Clearly, the second
assertion follows directly from the definition of 7. If the order m of § is odd,
then A is commutative and cocommutative. Hence § and consequently 7
are coalgebra maps. Thus we can assume that m is even. Since the even
powers of the antipode are coalgebra maps and 7 is a coalgebra map, it is
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enough to prove the first assertion for the maps S‘rS™ " where 1 < i < m
is odd. In this case, m — i is also odd and the result follows because S* and
S™~% are anticoalgebra maps. Since by hypothesis S(K) = K, we have that
Im7 C Im7m = K. Let € Im7. Then S™ %(x) € Im7 for all 1 < i < m,
and therefore (8™ %(z)) = S™ %(x). This implies that 7(z) = x = ()
for all z € Imm, and hence Im7m C Im7. As usual, 72(z) = 7(z) and 7
is a coalgebra projection. Let D = Ker#. Then D is a coideal of A which
satisfies that A = L @& D and S(D) = D since ™ commutes S. O

We show now that in some special cases the two-sided ideal ((id —j&)(M,))
of A, is a Hopf ideal.

Proposition 2.2.14. Let D be as in (2.2.12). Suppose that {(a) = 0, for
alla € DNM, and the map {|p : F — G(K) defines a group homomorphism.
Then I,¢ = ((id—j€)(M,)).

Proof. Since S(D) = D, we have that S(D N M,) C DN M,, because M,
is already a Hopf ideal. Therefore, the two-sided ideal I, := (D N M,) is
a Hopf ideal and coincides with ((id —j&)(D N M;)). On the other hand, if
KF7 denotes the Hopf ideal of KF' given by K (k[F|'), then KF N M, =
(KF)" =K*F+ KF* and

((id —j&)(K'F N M,)) = ((id —j&)(KF ")) = ((id —jé)(F)),

since € is a K-module map such that {x = idx. Thus, if £|p defines a
group homomorphism it follows that I¢ := ((id —j&)(F')) is a Hopf ideal and
Lre = I + I = ((id —j&) (My)). O

The next proposition shows that under certain conditions, there exist
retractions £ which satisfy the hypothesis of Proposition 2.2.14.

Proposition 2.2.15. Assume that A, = KF ® D, with D a K-module
coideal. Let 3: F — G(K) be a group homomorphism such that 8q|,c(p)) =
plap)- Then there is a retraction § : A, — K such that &|p = 0 and

{lr = .

Proof. Since A, = KF @ D as K-modules, it is enough to define { on
D and KF. Since dimKF < oo, KF is a free K-module of rank m =
|F'|/|G(K)| by Nichols-Zoeller. Let {ej,...,en} be a basis of KF which

consists of the a set of representatives of the left cosets F'//G(K) such that
e1 = 1. Define 3 to be the unique K-map given by [(e;) = ((e;). Then

set &|p = 0 and define {|xr = . Clearly, ¢ is a K-module map such that
€(1) = B(1) = B(1) = L and £(a) = &(a-1) = Bla- 1) = aB(1) = a for all
a€ K.

Hence, to prove that £ is a section we have to show that £ is a convolution
invertible map. Since A, admits a decomposition A, = KF @& D, where
D is a coideal and a K-module, it suffices to define the inverse for £ on
KF. Thus define ¢ Y gp = B‘l, where B‘l is the k-linear map given by
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B (ae) = S(a)B~(e) for all a € K and e € {e;}1<j<m. Then for all a € K
and e € {e; }1<i<m we have

B 37 ae) = Blagye) B awye) = amyBle)S(aw) B (e) = <(ae).
Similarly 1% = e1; thus B is a convolution invertible K-module map. [

2.3. On the isomorphisms of the obtained extensions. In this sec-
tion we study some properties of the extensions constructed in Subsection
2.2 which will be needed later in Section 4. We define first the Hopf center
of a Hopf algebra, which always exists by [A, Cor. 2.2.2].

Definition 2.3.1. [A, Def. 2.2.3] The Hopf center of a Hopf algebra A
is the maximal central Hopf subalgebra Z(A) of A.

Proposition 2.3.2. Fori=1,21let1 - K; — A; — L; — 1 be an exact
sequence of Hopf algebras such that K; = Z(A;). Suppose that w : A1 — Ay
is a Hopf algebra isomorphism. Then there exist isomorphisms w : K1 — Ko
and @ : L1 — Lo such that the following diagram commutes

L1 T

1 K Ay 14 1
W\L lw lu)
1 Ky 2 AQ T Lo 1.

Proof. As K} = Z(A;) and w is surjective, w(K) is a central Hopf subal-
gebra of As. Then w(K7) C Z(As) = Ky. Analogously w™1(K3) C K7 and
therefore w(K1) = Ko. Hence, the Hopf algebra map w : K1 — Ko given by
w = w|k, is an isomorphism. Since L; = A/K;Ai forl1 <i<2andw(K;) =
K>, w induces an isomorphism of Hopf algebras w : L1 — Lo given by the
formula w(m(a)) = ma(w(a)) for all a € A. Indeed, if @W(mi(a)) = 0, then
w(a) € Ki Ay = Kerm. But since Ky Ay = w(K1)Tw(A1) = w(KA),
there exists b € K" Ay such that w(a) = w(b). Since w is injective, a = b €
K f‘ A; = Kerm and w is injective. The surjectivity of @ follows from that
of w. Finally, the diagram is commutative by definition of w and . O

Here is a condition that implies the hypothesis of Proposition 2.3.2.

Lemma 2.3.3. [A,3.3.9) Let1 - K 5 AL L — 1 be an exact sequence
of finite-dimensional Hopf algebras, with K central in A. If Z(L) = k, then
Z(A) =K.

Proof. Since K is central in A, we have that K C Z(A). As  is surjective,
m(Z(A)) is central in L and therefore contained in Z(L) = k. Hence 7| z(4) =
€lz(a), which implies that Z(A) C “"A = K. 0

We give now a sufficient condition for two Hopf algebras constructed via
the pushout to be isomorphic. Consider the exact sequence (2.2.1) and let
p1: B — Kj and py : B — K5 be two Hopf algebras epimorphisms. Then by
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Proposition 2.1.5, we can build two Hopf algebras A; := A,, and Ay := A,,,
such that K; is central in A; and they fit into a commutative diagram:

(2.3.4) 1 B——=A—"+H 1
1 K245 H 1.

Lemma 2.3.5. Let f : K1 — Ky be a Hopf algebra isomorphism such
that fp1 = pa. Then the Hopf algebras Ay and Aa are isomorphic.

Proof. Since fp1 = pa, gat = jopa = jofp1. Since A; is a pushout, there is
a unique Hopf algebra map w : A1 — A such that wq; = g2 and wj; = jof.

Similarly, there is a unique Hopf algebra map w™"! : Ay — A; with analogous
properties, which must be the inverse of w. ([l

We end this section with the following theorem which gives under certain
hypothesis a characterization of the isomorphism classes of these type of
extensions. First, we need some definitions: We say that the central H-
extension A of B satisfies

(L) if every automorphism f of H can be lifted to an automorphism
F of A such that 7F = fm, and
(2) if Z(H) = k.

Let f € Aut(H). If (L) and (Z) are satisfied, then by Lemma 2.3.3,
B = Z(A) and g = F|p is an automorphism of B. We denote by qAut(B)
the subgroup of the group Aut(B) of Hopf algebra automorphisms generated
by these automorphisms.

Theorem 2.3.6. Suppose that (L) and (Z) hold. If two Hopf algebras
Ay and Az as in (2.3.4) are isomorphic then there is a triple (w, g,u) with

(a) w: K1 — Ka is an isomorphism,
(b) g € qAut(B),
(c) u € Regy (A, Ka) is an algebra map such that
(2.3.7) w(pi(b)) = p2(g(ba)))ul(be))),
(2.3.8) Au(a)) = ula) @ (F(S(an))ag)))u(agw)),
forallb € B and a € A, where F' € Aut(A) is induced by @ with Fv = 1g.

Conversely, if dim K1 and dim H are finite and there exists such a triple,
then A1 and As are isomorphic.
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Proof. Let w : Ay — A be an isomorphism of Hopf algebras. Since by
assumption Z(H) = k, from Lemma 2.3.3 it follows that Z(A4;) = K; for 1 <
1 < 2. Thus by Proposition 2.3.2, w induces an isomorphism w : K1 — Ky
and an automorphism w € Aut(H). Then there exists an automorphism F'
of A such that 7F = wr and the map given by g = F|p is an automorphism
of B such that F't = 1g. Define u: A — As to be the k-linear map given by

u(a) = ga(F(S(am))wlgi(a@)) for all a € A,

that is, ©u = ¢ F'S * wqy, the convolution product between the maps g F'S
and wq. Since these maps are convolution invertible with inverses g2 F’ and
wq1S respectively, u is also convolution invertible with inverse wq; S * go F'.

We claim that u € Reg; (A, K2), it is an algebra map and satisfies (2.3.7)
and (2.3.8). Indeed, it is clear that u(1) = 1 and e(u(a)) = e(a) for all a € A.
To prove that Imu C Ky = ™ Ay, let a € A; then

(m @ 1d)A(u(a)) = (m2 ® id)A(g2(F(S(aq))))wlqi(a)))

= ma(q2(F(S(a2)))w(qi(ae))) ® ¢2(F(S(aq)))w(a1((aw))))

= ma(q2(F(S(a(2)))ma(w(qi(ags)) @ 2(F(S(aw)))w(a((aw))))
= 7(F(S(a))wm(a(as)) © @(F(S(aw))))wlq((aw))))
=wn(S(ag)))wm(ag) ® @(F(S(an))))w(q((am))))

= £(ag)) @ ¢2(F(S(aq))))w(qi((ags))))

=18 @(F(S(ew)))w(an((az)))) =1 u(a).

We prove now v is an algebra map. Let a, b € A, then

u(ab) = q2(F(S((ab)())))w(q1((ab)(2)))
= @(F(S(amb))))w(qi(a@)be)))
= @(F(S(b))S(aq))))w(qi(ae)))w(qi(bw)))
= @(F(S())))a2(F(S(an))))w(qi(ae)))w(qi (b))
= @(F(S(b))))u(a)w(qi (b))
= u(a)(q2(F(S(bw))))w(qi (b)) = u(a)u(b),

since u(a) € Ko and Ky is central in As. This implies that u is an algebra
map. Finally, let us prove that u satisfies equations (2.3.7) and (2.3.8): Let
b € B, then u(1(b)) = q2(F(S(¢(b1y))))w(q1(t(be2y))) and therefore

w(p1(0)) = w(q1(¢(b))) = ga(F(e(ber))))u(e(bezy)) = p2(g(bay))ule(bey))-
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For the second equation, let a € A, then

A(u(a)) = (g2(F(S(a))))w(a(ae)))q) © ((F(S(am))))wgi(a)))e)
= @(F(S(a)))wlqi(ag)) © 2(F(S(aq))))w(qi((a)))

= u(a(z)) ® 2(F(S(a@))))w(q(as)))
= u(ag)) ® @2(F(S(an))))q2(F(aes)))u(aay)
= u(a(z)) ® 2(F(S(a@))ag)))ulawy)).

Let us prove the converse. Let (w, g,u) be a triple that satisfies (a), (b)
and (c) and let F' € Aut(A), w € Aut(H) such that F|p = g and F'r = wn.
Define ¢ : A — As to be the k-linear map given by

¢(a) = g2(F(aq)))u(ag)) for all a € A.

As K is central in Ay and u € Reg; (4, K3) is an algebra map which
satisfies equation (2.3.8), it follows that ¢ is a Hopf algebra map. Moreover,
by equation (2.3.7) we have that

p(u(b)) = J2(p2(9(br)))ule(bz)))) = ja(w(p1(b))) for all b € B.

Since A; is given by a pushout, there exists a unique Hopf algebra map
w : A; — As such that the following diagram commutes:

L

B A
pll lhl \\
Kl " Al \\@
J1 N
\\ é!%\
w \
K2 AQ.

J2
In particular, jow = wj; and wm; = mow, since for all a € A:
mow(q1(a)) = map(a) = ma(g2(F (a)))ulag))) = m2(g2(F(ag))))m2(ulac)))
= m(F(am)))e(ag) = w(m(a)) = w(mi(qi(a))).
Thus, both exact sequences fit into a commutative diagram

Ji T

(2.3.9) 1 K, A, it 1
1 Ky 2o 4y | 1.

If dim K7 and dim H are finite, then dim A; = dim A, are also finite by
Proposition 2.2.3. Since the diagram (2.3.9) is commutative, it follows that

dimw(A;) = dim w(K;) dim(w(A;)/w(K1)Tw(A)) = dimw(K7) dim ©(H)
= dim K5 dim H = dim Ao,
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which implies that w is an isomorphism. O

3. QUANTIZED COORDINATE ALGEBRAS

Let G be a connected, simply connected complex semisimple Lie group
with Lie algebra g. In this section we recall the definition of the quantized
coordinate algebra of G and that it is a central extension of O(G), the
coordinate algebra of functions on G. Let R = Q[q, ¢~'], ¢ an indeterminate.
In [DL], De Concini and Lyubashenko construct an integral form I'(g) of the
quantized enveloping algebra U,(g), which is a Hopf R-algebra. Using the
representation theory of I'(g), they define an R-subalgebra of the Hopf dual
of I'(g), obtaining a Hopf R-algebra R4[G].

3.1. Definitions. Let £ > 3 be an odd integer, prime to 3 if g contains a
Go-component, and let € be a complex primitive ¢-th root of 1. If py(q) € R
denotes the ¢-th cyclotomic polynomial, then R/[p/(q)R] ~ Q(¢). We start
with the data associated with g. Let n be the rank of g and C' = (a;;) be the
Cartan matrix of g corresponding to some choice of a Cartan subalgebra b
and simple roots A = {a1,...,a,}. Let ® denote the root system and W the
Weyl group. The root lattice of g is defined by Q = Z® = ;.| Za; C h*.
The fundamental weights wi,...,w, € h* are defined by the conditions
(wi, o) = d;d;; for all 1 < i,j < n, where (—,—) is the positive definite
symmetric bilinear form on h* induced by the Killing form of g and d; =
w € {1,2,3}. The weight lattice is P = @], Zw; C h*. It can be seen
that a; = > ;" | aijo; for 1 < j <n, so that Q C P.

Definition 3.1.1. Let L be a lattice with Q C L C P. The quantized en-
veloping algebra Uy(g, L) of g is the Q(g)-algebra with generators E1, ..., E,,
Fi,...,F, and {K)| A € M}, satistying the following relations for \, p € M
and 1 <1¢,5 <n:

Ko=1 KK, =K,

K\E;K_\=qME;,  K\F;K_\=q MF

Ko, — K1
E;F; — FjB; = §;;———2
qi — g,
l—aij
S ] BT EE =0 G4,
=0 qi
1—a;;
—a; 1—a;;—l .,
> (_1)l[1 la“Lﬂ WURF =0 (i#)).
1=0 !

When M = @, the algebra U,(g, L) = U,(g, Q) is called the adjoint form
of the quantized enveloping algebra and it is usually denote by U,(g). At
the other extreme, when M = P, the resulting quantized enveloping algebra
is called the simply connected form and is denoted Uq (9).
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For ¢, m € Ng and u € Q(¢) ~ {0,£1} we denote:

! T] o [ml!

o= S o= [fult — a1, [ = e

u—u-1’
ut — 1

B =221 Ouimut =D W (V) = gt

Definition 3.1.2. [DL, Section 3.4] The algebra I'(g) is the R-subalgebra
of Uy(g) generated by the elements

—
3

~—

Q—

K1 (1<i<n),
¢ —s+1
Koc 0 ) <Ka_qz $ 1)
07 = d (t>1,1<i<n),
(5" )=
(1) ;
E' = (t>1, 1<i<n),
' [t]4;!
Ft
FO .= (t>1,1<i<n),

where ¢; = ¢% for 1 <i < n.

Let C be the strictly full subcategory of I'(g)-mod whose objets are I'(g)-
modules M such that M is a free R-module of finite rank with a basis
in which the operators K; and (Kyo) act by diagonal matrices with the
eigenvalues ¢;" and (}'),. respectively.

Definition 3.1.3. [DL, Section 4.1] Let R,[G] denote the R-submodule
of Homp(I'(g), R) spanned by the coordinate functions t{ of representations
M from C 4

< g,t] >=<g-my,m! >,
where (m;) is a R-basis of M, (m?) is the dual basis of the dual module and
g € I'(g). Since the subcategory C is a tensor one, R4[G] is a Hopf algebra.

Definition 3.1.4. [DL, Section 6] The algebra Ry[G]/[pe(q)Rq[G]] is de-
noted by Oc(G)q(e) and is called the quantized coordinate algebra of G' over
Q(e) at the root of unity e. In the same way as for Oc(G)q(e), we can form
the Q(e)-Hopf algebra I'c(g) := I'(g) /[pe(¢)T'(g)].

Using the following definition, we can relate the Hopf algebras O(G)q(e)
and I'¢(g).

Definition 3.1.5. Let U and H be two Hopf algebras over a ring A. A
Hopf pairing between them is a bilinear form (—, —) : H x U — A such that,
forall u, ve U and f, h € H,

(@) (h,uv) = (hqay,u)(h),v);
(@) (fhou) = (f,u@)(hue));
(7ii) (1,u) = e(u) and (h, 1) = e(h);
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(i) (h,S(w)) = (S(h), u).

Given a Hopf pairing, the induced maps U — H* and H — U* actually
map U — H° and H — U° and the later are Hopf algebra homomorphisms,
where H° and U° are the Sweedler duals of H and U respectively. The pair-
ing is called perfect or non-degenerate if the above maps are both injections.
In our case, we have the following.

Proposition 3.1.6. [DL, Lemmas 4.1 and 6.1]. There exists a perfect
Hopf pairing Ry[G] ®r I'(g) — R, which induces a perfect Hopf pairing
OC(G)Q(E)®Q(E)FE(9) — Q(e). In particular, Oe(G)Q(e) CT(g)° andT(g) C

OG- O

If k is any field containing Q(¢), one can obtain a k-form of O.(G)qe),
namely Oc(G)i, := Oc(G)g(e) @q(e) k- When k = C we simply write Oc(G)
for O.(G)c. The following two results imply by Proposition 2.1.4 that O.(G)
is a central extension of O(G) by a finite-dimensional Hopf algebra.

Theorem 3.1.7. [DL, Prop. 6.4 and Thm. 7.2].

(a) Oc(G) contains a central Hopf subalgebra isomorphic to the coor-
dinate algebra of functions O(G) on G.

(b) O(G) is a projective O(G)-module of rank (™G, 0
Theorem 3.1.8. [BG, Section II1.7.11]. O.(G) is a free O(G)-module of
rank (3m G, 0

3.2. A maximal torus. We show now that the inclusion given by The-
orem 3.1.7 (a) determines a maximal torus T of G.

Let k = C. In [DL, Section 9.2], De Concini and Lyubashenko define an
action of C" on T'c(g): Let ¢ : I'(g) — T'c(g) be the canonical projection
and consider the primitive elements given by

(KL —1 .
Hi=¢ | —/——= ] €Tl(g), forall 1 <i<n.
(¢t —1)

Then for any n-tuple (p1,...,p,) € C" and for any finite-dimensional
I'c(g)-module M the elements exp()_, p;H;) defines operators which com-
mute with every I'c(g)-module homomorphism. Hence, they define char-
acters on O,(G). Obviously, the elements exp()_, piH;) € O(G)* form a
group and the map given by

¢ : C" — Alg(Oc(G), k), (p1,---,pn) — exp (szHz) ;

(2

defines a group homomorphism whose kernel is the subgroup 2milZ"™.

Lemma 3.2.1. The map (C/2milZ)" — Alg(O(G),k) is an isomor-
phism.

Proof. See [DL, Thm. 10.8]. O
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L

Furthermore, the inclusion O(G) — O(G) given by Theorem 3.1.7 (a) in-

duces by restriction a group homomorphism Alg(O.(G), k) MR Alg(O(G), k).
The composition of this group map with ¢ defines a group homomorphism

p:C" % Alg(0.(G), k) 5 Alg(O(G), k) = G,

whose kernel is the subgroup 2miZ™, by [DL, Prop. 9.3 (c)]. Let T be the
subgroup of G given by the image of ¢. Clearly T is a maximal torus of G.

3.3. An exact sequence. We end this section by spelling out explicitly
the quotient of O.(G) by its central Hopf subalgebra O(G).

Let O (G) = O(Q)/[O(G)TO(G)] and denote by 7 : O(G) — O(G)
the quotient map. By Theorems 3.1.7 and 3.1.8, O.(G) is a Hopf algebra
of dimension (4™ Since O.(G) is a free O(G)-module, it is in particular
faithfully flat and by Proposition 2.1.4 it follows that O(G) = O(G)*°™ =
©7TO(G). This implies that O.(G) fits into the exact sequence

1 — O(G) = O(G) — O(G) — 1.

We want now to determined the Hopf algebra quotient O.(G). Consider
the quantized enveloping algebra U,(g) with associated root system ® and
Weyl group W. The braid group By of type ® associated to the Weyl
group W is the group generated by the elements t1,..., t, satisfying the
relations t;t;--- = t;t;---, for i # j with m;; factors on both sides, where
m;; is the order of the product sq, Sa; of the simple reflections s,, and Say
in W. Lusztig, and independently Levendorskii and Soibelman, proved that
the generators t¢; satisfy the braid relations and that By, acts via algebra
automorphisms on U,(g). For a detailed discussion see [J, Section 8§].

Consider now the Hopf algebra U, (g), which by a result due to De Concini,
Kac and Procesi, has the same generators and the same relations as Uq(g)
but with ¢ replaced by € and admits an action of By, see [DK] and [DKP].
Let Zy be the smallest By/-invariant subalgebra of Ug(g) containing the
elements

Ko =K., El, /' forac Pand1<i<n.

Then by [BG, Thm. II1.6.2], Z, is a central Hopf subalgebra of U.(g) and
Uc(g) is a free Zp-module of rank ¢9™9, The Hopf algebra of dimension
(4mY given by the quotient uc(g) := U(g)/[Z4 Uc(g)] is called the restricted
quantized enveloping algebra (or the Frobenius-Lusztig kernel) of g at e.

Although it is well-known that the Hopf algebra O.(G) is isomorphic to
the dual of the restricted quantized enveloping algebra u.(g), we could only
find the following reference.

Theorem 3.3.1. The Hopf algebras O(G) and u.(g)* are isomorphic.
Proof. See [BG, Thm. II1.7.10]. O
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Remark 3.3.2. Many authors define the Frobenius-Lusztig kernel u.(g) as
the subalgebra of I'c(g) generated by the elements E;, F; and K, for 1 <i <
n, which is indeed a Hopf subalgebra of I'.(g). Nevertheless, this definition
coincides with the one given here, see [BG] for details. By Proposition 3.1.6,
we know that there exists a perfect pairing Oc(G) ®q(¢) ['e(g) — Q(€), which
induces a perfect pairing O (G) @q(e) U.(g) — Q(¢), where Uc(g) is the Hopf
subalgebra of I'c(g) generated by the elements E;, F; and K,, for 1 <i <n.
This therefore yields a Hopf algebra homomorphism from O(G) to ﬁe(g)*
which is an isomorphism by [BG, Proof of Thm. III1.7.10]. Hence, u.(g) is
isomorphic to ﬁe(g) and the epimorphism 7 : O(G) — O(G) corresponds
to an injection ‘7 : u.(g) — Te(g) C O(G)°.

Summarizing, the quantized coordinate algebra O.(G) of G at € is a cen-
tral extension of O(G), O((G) is faithfully flat over O(G) and fits into the
exact sequence

™

(3.3.3) 1 - 0(G) 5 0/G) 5 ug)* — 1.

4. FINITE-DIMENSIONAL QUOTIENTS OF O(G)

We keep the notation of Section 3; in particular, we have a fixed torus
T of G, see Subsection 3.2. In what follows we construct new examples of
finite-dimensional Hopf algebras which are extensions of functions algebras
of suitable finite subgroups I' of a connected, simply connected complex
semisimple Lie group G by the dual of the Frobenius-Lusztig kernel u.(g).

4.1. Constructions. We begin by explicitly stating the following classi-
cal fact.

Lemma 4.1.1. Let I’ be a finite subgroup of G. Then there exists a Hopf
algebra epimorphism o : O(G) — kY. Conversely, if o : O(G) — H is
a Hopf algebra epimorphism with H finite-dimensional, then there exist a
finite subgroup T' of G such that H ~ k" U

Now we perform the general constructions from Subsection 2.2 in the
setting of O(G).

Construction 1. Let I' be a finite group and let o : I' — G be an embed-
ding in G. Let ¢ : O(G) — k' be the epimorphism of Hopf algebras given by
Lemma 4.1.1. Then the exact sequence of Hopf algebras (3.3.3) gives rise by
Proposition 2.1.5 to an exact sequence of finite-dimensional Hopf algebras

(4.1.2) 1k L oG /(T) D u(e) — 1,

where J = Ker g, (J) = O(G)J and k' is central in O.(G)/(J). Thus,
the Hopf algebra O.(G)/(J) is given by a pushout and by Lemma 2.2.3,
dim O.(G)/(J) = |['|¢4™m9 is finite. From now on we write A, = O(G)/(T).
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Construction 2. Let o be as in Construction 1 and r : u.(g)* — L be an

epimorphism of Hopf algebras. Since by Theorem 2.1.3 the central extension
A, is cleft, there exists a retraction ¢ : A, — k' in Reg.(Ay,k"). Hence,
by Proposition 2.2.7 we get an exact sequence of Hopf algebras associated
with the triple (o,7,¢):

1 - KT,E - AU7T7£ - L - 17
where K, ¢ = k' /(I NE") is central in A re and dim A, ¢ is finite.

Remark 4.1.3. In [M2, Thm. 6.3], using the coradical filtration of uc(g),
Miiller classified all possible Hopf subalgebras of uc(g). Hence, all possible
Hopf algebras epimorphisms r : u.(g)* — L are known.

Although both constructions seem to be of interest, we concentrate on the
first one to give new results concerning infinite families of finite-dimensional
Hopf algebras. The study of the second one is left for future research.

The following lemma generalizes [M3, Prop 5.3].

Lemma 4.1.4. Consider the following commutative diagram of exact se-
quences of Hopf algebras

1 O(G) —1= O(G) — "> u(g) — =1
pl iq rl
1 or—tn— . 1,

where I' is a finite group and the Hopf maps p, q and v are surjective. Let
o:1I'— G be the group monomorphism induced by p. Then

: ‘s

(a) The map C* L A induces a group homomorphism G(A*) -5 T
and Im o(*j) C TNo(T).

(b) If A* is pointed, then o(I") is a subgroup of the mazximal torus T.

Proof. (a) Since L is a quotient of uc(g)*, which is finite-dimensional,
dim L is finite. Moreover, as I' is finite by assumption, by Lemma 2.2.3 A

is also finite-dimensional. Then, the exact sequence 1 — CI LAS L1

t t;
induces an exact sequence of Hopf algebras 1 — L* - A* -, C[l'] — 1 and
this, an exact sequence of groups

(4.1.5) 1 - QL") & g Lo,

which fits into the commutative diagram of groups

| — G(u.(g)) ——> Alg(O.(G),C) —— Alg(O(G),C) = G

T T
| ——G(I?) G(A%) I

Since q is surjective, it follows that tq : G(A*) — Alg(O.(G),C) is injec-
tive. But by Lemma 3.2.1, we know that Alg(O(G),C) ~ (C/2milZ)" and




22 N. ANDRUSKIEWITSCH AND G. A. GARCIA

by Subsection 3.2, the image of the restriction map % : Alg(O.(G),C) — G
is the maximal torus T of G. Hence the subgroup o(*j)(G(A*)) of o(T)
must be a subgroup of T.

(b) Since 'j : A* — C[I'] is surjective, by [Mo, Cor. 5.3.5] the image of
the coradical of A* is the coradical of C[I']. Hence, if A* is pointed then
tj(G(A*)) =T. Thus by (a), o(T') must be a subgroup of T. O

Using the following lemma we deduce properties of the L-extension A of
CT from the properties of I' and L and conversely.

Lemma 4.1.6. Let 1 — C' — A — L — 1 be an ezact sequence of
finite-dimensional Hopf algebras. Then
(a) A is semisimple if and only if L is semisimple.
(b) If A is pointed, then L is pointed. Moreover, let p be an odd prime
number and suppose that |I'| = p and |G(L)| < p. If L is pointed,
then A is pointed.

Proof. (a) It is well-known that A is semisimple if and only if C'" and L
are semisimple. Then the claim follows, since C!' is semisimple. (b) Since L
is a quotient of A, it follows from [Mo, Cor. 5.3.5] that it is pointed if A is
pointed. The converse follows from [G1, Thm. 2.1]. O

Here is our first important result.

Theorem 4.1.7. Let G be a connected, simply connected complex semi-
simple Lie group. Let I' be a finite group and let o : I' — G be an embedding
of T in G such that o(T') € T. Then the Hopf algebra A, constructed above
is non-semisimple, mon-pointed and its dual is also mon-pointed. It is a
quotient of Oc(G) of dimension |T[£Y™9 and fits into the exact sequence

1-Cl' - 4, — u(g)" — 1,
where CT is central in A,.

Proof. We know that O(G) fits into the exact sequence (3.3.3) and it is a
central u.(g)*-extension of O(G). Since o(T") is a subgroup of G, by Lemma
4.1.1 there exists a Hopf algebra epimorphism o : O(G) — C'. If we denote
J = Kerg and (J) = JO(G), then C' ~ O(G)/J and by Proposition
2.1.5 the Hopf algebra A, = O(G)/(J) is given by a pushout diagram
and fits into the exact sequence 1 — C!' — A, — u.(g)* — 1, where C"
is central in A,. By Lemma 4.1.6, A, is non-semisimple and non-pointed
since, as it is well-known, u.(g) is non-semisimple and non-pointed. The
fact that A’ is non-pointed follows from Lemma 4.1.4. O

4.2. Group cohomology. To describe the isomorphism classes of this
type of extensions we shall need some basic facts from cohomology of groups.
Let G, I be two groups and suppose that there exists an action of I' on G,
say G x I' = @, such that for all g, h € G and z € T’ we have that

(4.2.1) (gh) —z=(9+—z)(h—=z)and 1 — xz = 1.
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Given two groups K and L, denote by Map(K, L) the set of maps from K
to L. For n = 0,1 we define differential maps 0,, by

do :Map(l,G) - Map(F,G), 80(9)(‘T) = (g — x)gila
01 :Map(I', G) — Map(I' x I', G),  91(v)(z,y) = (v(z) < y)o(y)v(zy)

forall z, y € I',g € G and v € Map(T', G). Note that Map(1,G) = G. As
usual, we have that 0% = 1.

Definition 4.2.2. (i) A map u € Map(T', G) is called a 1-coboundary if
u € Im 0y, that is, if there exists g € G such that u(x) = dy(g)(x) = (g —
r)g ! forall x €T,
(i) A map v € Map([',G) is called a 1-cocycle if 01(v) = 1, that is, if
v(zy) = (v(z) — y)v(y) for all x, y € T.

Clearly, every 1-coboundary is a 1-cocycle. Denote by Z!(T", ) the subset
of 1-cocycles in Map(I', G). Then G = Map(1, G) acts on Z}(T', G) via

(4.2.3) (9-v)(x) = (g = )v(z)g ™",

for all g € G, v € ZY(I',G) and x € I'. We say that two 1-cocycles v and u
are equivalent, denoted by v ~ wu, if there exists ¢ € G such that v = g - u.
Then we define:

HYT,G) :=Z'(T,G)/G.
In particular, ¥ = 1 in H!(T', G) if and only if v is a 1-coboundary.
Now we apply these notions in our setting. Let G be a connected, simply

connected, semisimple complex Lie group as in Section 3 and let o : I' = G
be an embedding of a finite group I'.

From now on we assume that G is simple.

We begin by showing that the uc(g)*-extension O.(G) of O(G) satisfies
the property (L) of Subsection 2.3.

Lemma 4.2.4. Every automorphism of ue(g) induces an automorphism
of G, which leaves invariant the torus T.

Proof. By Remark 3.3.2, we can view u.(g) as a Hopf subalgebra of T'.(g)
via the inclusion ‘7 : u.(g) — Tc(g). Let F be an automorphism of u.(g).
By [M1, Cor. 5.10], there exists a unique automorphism F' of I'c(g) such
that Fly ) = F, that is F'n = 'zF.

Consider now the quantum Frobenius map 7 : T'e(g) — U(g)q(e), defined
on the generators of I'c(g) by

(m/0) .
m e; if flm m
77(EZ( )) = { ? | , n(Fi( )) = {

0 otherwise

FO it pm

7
0 otherwise

hO .
K. 0 (hai0) if £|m . ,
g = , K, )=1, f N11<43<n.
77(( >) { 0 otherwise g ’ ) ora r=n
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Then by [DL, Thm. 6.3],  is a well-defined Hopf algebra map and its kernel
is the two-sided ideal generated by the set

(E™ FT (Kai0) Ko —1,pe(q)| m > 0,01 m}.

Using the explicit description of the automorphism group of u.(g) given
in [AS2, Thm. 7.2], one can see that F'Kern = Kern. Hence F factorizes
through a Hopf algebra automorphism F : U(g)q() — U(8)g()- But by [H,
Thm. 3.1], we have that U(g)° ~ O(G) (since g is simple), and therefore the
transpose 'F of F induces an automorphism of O(G), obtaining in this way
an automorphism f of G which comes from an automorphism F of uc(g).

Finally, we show that f(T) = T = (G,), where G. = Alg(O.(G),C).
Since by Proposition 3.1.6, there exists a perfect pairing between O,(G) and
I'(g), the automorphism F induces an automorphism !F of O.(G). Since
F factorizes through F' we have that {Fv = ¢ 'F and hence,

F(T) = f(UGe)) = (e 'E)(Ge) = "("Fu)(Ge) = "(F(Ge)) = "(Ge) € T.
Thus f(T) =T, because f is an automorphism. O
Corollary 4.2.5. The u(g)*-extension O(G) of O(G) satisfies (L).

Proof. Since dim u,(g) < oo, every automorphism a of u.(g)* corresponds
to an automorphism F' of uc(g). Thus, from the proof of the lemma above,
F induces an automorphism F of ['.(g) such that Fir = ‘rF. Hence

tF € Aut O(G) and ar = 7 'F, which implies the claim. O

Definition 4.2.6. Denote by qAut(G) the subgroup of Aut(G) generated
by the automorphisms of G coming from automorphisms of u.(g).

We fix now a Borel subgroup B of G which contains T, which amounts
to fixing a base A of the root system ® determined by T. Let D be the
subgroup of Aut(G) given by

D = {f € Aut(G)| f(T) =T and f(B) = B}.

Each f € D induces an automorphism f of ®, since f (T) = T. Moreover,
since f(B) = B, f preserves A. Therefore, f belongs to the group of diagram
automorphisms of ®. Furthermore, if Int(G) denotes the subgroup of inner
automorphisms of G, then by [Hu2, Thm 27.4], Int(G) is normal in Aut(G)
and Aut(G) = Int(G) x D, and Int(G) has finite index in Aut(G). Since
for all t € T, the inner automorphism Int(¢) of G given by the conjugation
fixes T and B, see [Hu2, Lemma 24.1], we see that the image Int(T) of T
in Aut(G) is a subgroup of D.

On the other hand, it follows from [M1, Cor. 5.7] that D C qAut(G).
Denote by Int(Ng(T)) the subgroup of inner automorphisms of Aut(G)
given by the conjugation of elements in the normalizer Ng(T) of T in G.

Lemma 4.2.7. (a) qAut(G) is a subgroup of Int(Ng(T)) x D.
(b) T acts on qAut(G) by left multiplication of Int(T).
(¢) The set qAut(G)/T of orbits of the preceding action is finite.
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Proof. Let f € qAut(G). Then there exist o € Int(G), § € D uch that
f =ap. Since f(T) =T and (T) = T, it follows that «(T) = T. Hence
a = Int(g), for some g € Ng(T) and the claim (a) follows.

Since Int(T) € D C qAut(G), the left multiplication by elements of
Int(T) defines an action of T on qAut(G).

Since by (a), qAut(G) C Int(Ng(T)) x D, it follows that

| qAut(G)/T| < |[Int(Ng(T)) » D]/T| < [No(T)/T||D| = [Wxl| D],

where W = Ng(T)/Cq(T) = Ng(T)/T is the Weyl group associated to
T. The claim follows since the orders of W and D are finite. O

Let 0 : I' — G be an embedding of the finite group I'. For any f € Aut(G)
we define an action of I' on GG, depending on ¢ and f, via the conjugation:
(4.2.8) GxT =G, g«a=(fo(x)  g(fo(z)),

for all g € G, z € I'. Clearly, both conditions in (4.2.1) are satisfied. Hence,
u € Map(I', G) is a 1-coboundary if and only if there exists g € GG such that

(4.2.9) u(@) = do(g)(z) = (9 = x)g~" = (fo(z))'g(fo(x))g™",

for all x € ', and a map v € Map(I', G) is a 1-cocycle if and only if

(4.2.10) v(zy) = (v(z) = y)o(y) = (fo(y)) " v(@)(fo(y))v(y),
for all z, y € I". As the action depends on o and f, we denote by Zl’g(f‘, G)
the set of 1-cocycles associated to this action.

Denote by Emb(I', G) the set of embeddings of I" in G.

Definition 4.2.11. Let I' be a finite group and o1, o2 € Emb(I',G). We

say that o1 is equivalent to o2, denoted by o1 ~ o9, if there exist T € Aut(T),
f € qAut(G) and v € Map(I', G) such that

(4.2.11) o1(r(x)) = f(oz2(x))v(z) for all z € T.

Note that the map v is uniquely determined by foy and o7 with v(z) =
floa(z))"tor(r(x)) for all z € T. A straightforward computation shows
that v € Z; , (T, G).

Remark 4.2.12. If the 1-cocycle v is a 1- coboundary, then there exists

g € G such that v(z) = 9(g)(z) = (g~ 2)g~" = f(o2(2)) 'gf(02(x))g ™"
for all z € I and this implies that

o1(r(z)) = gf(o2(z))g "

That is, o1 can be obtained by the automorphism 7, f and the conjugation
by an element of G.

Lemma 4.2.13. ~ is an equivalence relation in Emb(T', G).

Proof. We show that ~ is (a) reflexive, (b) symmetric and (¢) transitive.
(a) follows taking f =id, 7 = id and v = 1.
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(b) Suppose that o1 ~ g9. Then there exist 7 € Aut(I'), f € qAut(G)
and v € Z}m(F7 G) such that (4.2.11) holds. Hence

oa(r7 () = fH o1 (@) f (T (=2)Th) = T (o1(2)o (),
for all x € T, where 9 is given by 9(x) = f~(v(r7(z))~!). Thus o9 ~ 0.
(¢) Let 01, 02, o3 € Emb(I',G) and suppose that o1 ~ o9 and oy ~ 03,
that is, there exist f, g € qAut(G), 7, t € Aut(I") and v € fUQ(F G),
u € Z!_ (T,Q) such that o1 (7(x)) = foa(x)v(z) and oo(t(x)) = goz(z)u(z),

9,03

for all € I'. Using both equations we get that
a1(r(x)) = fg(os(t™ (2)))u(t™ (x)))v(z)
= fg(os(t™(@)))) f(ult™! ()))o(x),

and hence o1 (74(z)) = F(g(o3()) ((@))(t(x)) = F(9(08(2)))o(x), where
0(x) = f(u(x))v(t(z)) for all z € T. It follows that o1 ~ 3. O

Definition 4.2.14. Let 0 € Emb(I',G) and f € qAut(G). Then define
T/ to be the subgroup of T given by

T/ = () fo()Tfo(y™).

yel’

For any 0 € Emb(I',G) and f € qAut(G), the subgroup T/ is stable
under the action of I' on G defined by g — = = fo(z !)gfo(x) for all
x €I and g € G. We will see in Theorem 4.3.2 that the cocycle v arising in
(4.2.11) actually belongs to Z}J(F, T/).

Lemma 4.2.15. Z; (I, T/%) = 7z, . (D, ")) for all t € T,

(t'f)7
Proof. We first claim that Tt = T/7 for all t € T. Indeed,

Ttfo — ﬂ(t-f)a(y)T(t-f)a(y*I) — ﬂ tfo(y)t ' Ttfo(y 1

yel yel’
= (tfoly)Tioly )t = eT/7t! =77,
yel’

since T/ ¢ T and t € T. Suppose that v € Z(lt_f)U(F,T(t'f)"). Then

v(z) € THH? = T/ for all 2 € T. Now we show that v is a 1-cocycle with
respect to f and o:

v(zy) = (t- f)( (v~
-1

= flo(y ) ( ) (@()v(y)-

The last equality follows from the fact that f(o(y~1))v(z)f(o(y))v(y) € T
for all z, y € I', by Definition 4.2.14. The other inclusion follows directly
from similar computations. O
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A key step in the proof of our main result is the next lemma.

Lemma 4.2.16. Fiz 0 € Emb(I',G), 7 € Aut(I") and f € qAut(G).
Define

Copr = {n € Emb(I', G)| 0 ~ n via the triple (7, f,v), v € Z}J(I’,ng)}.
Then T acts on Copr by t-n=1Int(t)n for alln € Cq . Moreover, there
exists an injective map

Cofr/TI7 — Hi (D TI7) ] = [y,
where vy(z) = f(o(z))"n(r(z)) for all x € T, is the unique 1-cocycle such
that n(t(x)) = f(o(x))vy(x) for all x € T.
Proof. Let n € €, ¢-. By definition there exists v = v, € Z}J(I’,Tf")
such that n(7(z)) = f(o(z))v(z) for all z € T'. Then for all t € T/ we have
t-n(r(z)) = t(r()t™" = tf(o(x))v()t

= f(o())f(o(x)) " tf(o(z))v(z)t™

= f(o(2))[f(o(x)) " tf (o (2)]v(z)t™

= f(o(@))(t « z)v(2)t™!

= f(o(x))(t - v)(x),
which implies that ¢t -7 € &, ¢, and that v =t -7 if and only if v, =t - v,
for all t € T/°. Hence the map (t,n) — t -7 defines an action of T/? on
¢y fr- Let [] denote the class of i in €, ;,/T/?. Then [y] = [v] if and only
if there exists t € T such that ¢ - = v. Thus, the map defined by

Q:U,faT/TfU - H},O’(F’ ng)’ [77] = [Un]v
is well-defined and injective. O

Recall that an algebraic group G is a d-group if the coordinate ring O(G)
has a basis consisting of characters. Clearly any torus T is a d-group.

Lemma 4.2.17. [Hu, Prop. 16.1 and Thm. 16.2]
(a) If H is a closed subgroup of a d-group G, then H is also a d-group.
(b) A connected d-group is a torus. O

The following lemma is also crucial for the proof of our last theorem.

Lemma 4.2.18. The group H}J(F,Tf") is finite.

Proof. Let Tg” be the connected component of T/ which contains the
identity and let T = T/ /T!%: in particular |T| is finite. Since T is closed,
it follows that f(o(x))Tf(o(z™1)) is closed for all 2 € T'. Thus T/ is also
closed. Then by Lemma 4.2.17 (a), T/% and consequently Tgo are d-groups.
Since ng is connected, it follows from Lemma 4.2.17 (b) that Tgo is a torus

fo . o
and consequently Tp" is a divisible group.
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As the action of T on T/ is given by the conjugation via fo, every z € I’
acts on T/ by a continuous automorphism. Hence, Tgo is stable under the
action of I' and whence the action of T on T/ induces an action of " on .
Thus we have an exact sequence of I'-modules

T 4

which by [Br, Prop. I11.6.1] induces the long exact sequence

0 0
0— HY_ (T, T{") > 1) (1, T/7) = B9 (1, 7) —

o &
—— H} (T, T}") > H} (U, T/7) Z s H} (0, %) —> -

Since T and ¥ are finite groups, the order of H 17U(F,T) is finite. Hence,

it is enough to show that \H} ., T{;U)| is finite, because in such a case
|H} (D, T7)| = | Tm o || Tm 3] is also finite.

By [Br, Cor. I11.10.2], we know that Hﬁa(F,Tga) is annihilated by m =
|| for all n > 0. Then, for all a € Z}U(T,ng) there exists t € T(Jjg such

that a™ = A(t). Since T} is divisible, there exists s € T{” such that
t = s™ Let B = 9(s ), then ™ = 1 and therefore 3 € Z}yU(F,Dm),
where D,, = {t € ngl t™ = 1}. Moreover, [a] = [(] and the inclusion of
the set of 1-cocycles defines a surjective map H}J(F, D,,) — H}J(F, Tga).
As Tgo is a torus, D, is a finite group and consequently |H 1’U(F, D,,)| is
finite, which implies that |H} (T, T/?)| is also finite. O

4.3. Isomorphisms. In this subsection we study the isomorphisms be-
tween the Hopf algebras A, for a fixed finite group I'. In particular, we prove
in Theorem 4.3.5 that under certain conditions, there exists an infinite fam-
ily of pairwise non-isomorphic finite-dimensional Hopf algebras which are
non-semisimple, non-pointed and their duals are also non-pointed.

Fix I" a finite group; let o1, o2 € Emb(I',G) and denote A; = A,,. By
Corollary 4.2.5 we know that every automorphism of u.(g)* can be lifted
to an automorphism of O(G), that is, the u.(g)*-extension O.(G) of O(G)
satisfies the property (L). Moreover, the Frobenius-Lusztig kernels u.(g) are
simple Hopf algebras, i.e. they have no non-trivial normal Hopf subalgebras,
if the order ¢ of the root of unity € and the determinant of the matrix DC
are relatively prime, by [AS1, Prop. A.3]. Here C' = (a;;) is the Cartan
matrix of g and D is an invertible diagonal matrix such that DC' = C'D and
its non-zero entries are 1, 2 or 3. If g is not of type A,, this is always the
case. Thus, in this situation Z(u.(g)*) = C, since otherwise u.(g)* would
contain a central proper Hopf subalgebra v and thus u.(g)* is an extension
of v by u.(g)*/vTuc(g)*, implying by duality that u.(g) contains a proper
normal Hopf subalgebra dual to uc(g)*/v*tuc(g)*.
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*

Hence, uc(g)* satisfies the property (Z) if ¢ and det DC' are relatively
prime. For this reason, we assume from now on that

(4.3.1) ¢ and det DC' are relatively prime.

Recall that the equivalence ~ (Definition 4.2.11) is given by (7, f,v) where
(1) T € Aut(T),
(73) f € qAut(G) and
(iti) v € Z} (T, G) with v(1) = 1.

Now we are able to apply Theorem 2.3.6, which in this case gives:

Theorem 4.3.2. If Ay and As are isomorphic then o1 ~ o9 via a triple
(1, f,v) withv € Z}JQ(F,Tf(’?).

Proof. By Theorem 2.3.6, we know that the Hopf algebras A; and As
are isomorphic if and only if there exists a triple (w, g, u) such that w €
Aut(Ch), g € qAut(O(Q)), and u € Regl,a((’)e(G),(CF) is an algebra map
which satisfies properties (2.3.7) and (2.3.8). The transposes of these maps
induce the maps '‘w = 7 € Aut('), ‘g = f € qAut(G) and ‘u = p €
Map(T', G¢), where G, = Alg(O.(G),C) and u(1) = 1.

Let v = uu, then v is a 1-cocycle which satisfies (iii): By Subsection 3.2,
the image of % : G, — G is the maximal torus T, thus v = % is a map
v:I'— T C G, which by equations (2.3.7) and (2.3.8) satisfies that

o1((x)) = f(o2(x))v(z), and
v(zy) = f(o2(y)) " v(@)o(7(y))
= f(o2(y)) " o(x) f(o2(y))o(y)
= (v(z) — y)v(y).
for all g, h € I'. Moreover, from the equalities above it follows that
v(zy)o(y)~t = floa(y) to(@) f(oa(y)) for all w, y €T,

which implies that f(o2(y)) *v(z)f(02(y)) € T for all z, y € T, that is,
v(r) € T/72 for all 2 € T, and thus v € Z}m (T, T/72). By definition,
both equalities above hold if and only if o7 ~ o9 via the maps 7 € Aut(T"),
f € qAut(G) and v € Z}’@(F,Tf‘”). O

Observe that Aut(G) acts on Emb(I', G) by f oo for all f € Aut(G) and
o € Emb(I',G). In particular, G and T act on Emb(I',G) by Int(G) and
Int(T) respectively. Denote Int(g) oo = g - o, for all 0 € Emb([',G), g € G
and G - o the orbit of ¢ in Emb(T', G) under the action of G. Clearly, if
C = Cg(o(I")) is the centralizer of ¢(T') in G, then G - 0 ~ G/C; and the
set of T-orbits in G - o is T\G/C.

Lemma 4.3.3. If o(I") is not central in G, then T\G/C' is infinite.

Proof. To prove that the set T\G/C is infinite it is enough to show that
dim G > dim T + dim C' = rk G + dim C, since if m = #T\G/C were finite,
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then G = |J;", T¢;C and this would imply that dimG < dim T + dim C.
Since o(I") is not central in G, there exists g € o(I') non-central; then the
centralizer of g is a proper reductive subgroup of G by [R]. Hence C is
contained in a maximal reductive subgroup M of G. Let g and m be the Lie
algebras of G and M respectively. As the maximal subalgebras of the simple
Lie algebras were classified by Dynkin, by inspection in [D1, D2] one can
see that dimg > rk g 4+ dimm for any maximal reductive m and the lemma
follows. O

Lemma 4.3.4. If o(T") is not central in G, then there exists an infinite
family {g;}ier of elements of G such that (g; - o)(I') € T.

Proof. Let {g;}jes be a set of representatives of T\G/C. Then, J is
infinite by Lemma 4.3.3. We will prove that there can only be finitely many
g;j such that (g; - o)(I') C T.

Suppose that there exists g; € G such that (g; - 0)(I') € T. Without loss
of generality we can assume that I' C T. Consider the sets

L={heG|hlh~t C T} and A=Y hral.
hel
Then clearly T C £ and A C T. We show that T\L/C is finite. Let N = |T'|,
then NA = 0, which implies that A C (G )", where G is the group of N-th
roots of unity. Thus A is a finite subgroup of T. In particular, it contains

only finitely many subgroups which are pairwise distinct and isomorphic to
I'. Let I'y,...,I's be these subgroups and h; € £ such that hJ‘h;l =I,. If
h € L, then hTh™! = h;Th;* for some 1 < i < s. Hence h; 'hTh™'h; =T
and hi_lh € Ng(I'), the normalizer of " in G. Thus £ = [[;_; hi Ng(T).

On the other hand, there is a homomorphism Ng(I') — Aut(I') which
factorizes through the monomorphism Ng(I')/C — Aut(I'). Since I' is
finite, the order of N¢(I")/C is finite and consequently £/C is finite. Since by
assumption I' C T, there exists an injection T\L/C — L£/C, which implies
that {g;};cs contains only finitely many elements such that ngg;1 cT. O

Now we are able to prove our main theorem.

Theorem 4.3.5. Let 0 € Emb(I',G) such that o(T') is not central in
G. Then there exists an infinite family {o;}je; C Emb(I',G) such that the
Hopf algebras { Ay, }jes of dimension IT[¢4™9 gre pairwise non-isomorphic,
non-semisimple, non-pointed and their duals are also non-pointed.

Proof. Since o(I') is not central in G, from Lemma 4.3.3 it follows that
there exists an infinite set {g; }ics of elements in G such that (tg;)-0 # g¢;-0
for all i # j and t € T. Denote o; = g; - o for all i € I. By Lemma 4.2.13
we know that

Emb(T,G) = [] ¢,
nek
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where €, = {¢x € Emb(I',G)| n ~ pu} and E is a set of representatives of
Emb(I", G) under the equivalence relation ~. We prove now that there can
not be infinite embeddings o; included in only one &,.

Suppose on the contrary, that there exists n € Emb(I', G) such that &,
contains infinitely many ;. By definition and Theorem 4.3.2, we know that

¢, = U & fors
reAut('), fEqAut(G)

where €, ;- = {¢r € Emb(I', G)| n ~ p via (7, f,v), some v € Z}m(l“, T/},

By Lemma 4.2.7, T and T/7 act on qAut(G) by t - f(z) = tf(z)t™" for
all f € qAut(G), t € T. We claim that if ¢t € TS, then Coifr =y rore

Indeed, p € &, 1.r; if and only if there exists v € Z(lt'f) 77(1“, T(t'f)”) such
that u(7(z)) = (t- f)(n(z))v(z), x € I'. But in such a case

u(r(@) = (t- fn(@)o(x) = tf(n(x))t o(@) = tfn(a))v(z)t™
= fm(@)[f () tf ()o@t~ = f(n(@)(t-v)(),

which implies that 1 € &, r;, since by Lemma 4.2.15, Z(lt e (T, Tty =

Zi (T, T/7) for all t € T, and by Lemma 4.2.16, t - v € Z, (T, T/7). Thus,
¢ t.r.r € €, 57 and similarly for the other inclusion. Hence we can write

¢, = H HHQ:ntf,ra

TeAut(T") fed tet

where J is a set of representatives of qAut(G)/T and t is a set of repre-
sentatives of T/T/". Since Aut(T) is finite and by Lemma 4.2.7 (c), J is
also finite, if ¢, contains infinitely many o; then there exist 7 € Aut(I') and
f € J such that [[,.; &, s, contains infinite many o;. If oy € &, 4.5, for
some t € t, then t~1.0; € ¢, fr- By Lemmas 4.2.16 and 4.2.18, we know
that the set an’fJ/Tf" is finite, hence there must exists o, i # j and s € T
such that [t=!-o;] = [s7! - 0;]. But this contradicts our assumption on the
family {o;}icr since in such a case, there would exist r € T/7 such that
tto=r-(st0j)= (rs7!)-oj, thatiso; = (trs~!)-o; with trs~! € T.

In conclusion, there can be only finite elements of the set {o;};cr in each
¢,, for any n € E. Thus by Theorems 4.1.7 and 4.3.2 and Lemma 4.3.4,
there exists an infinite subset J C I such that the Hopf algebras {A,; }jes
are pairwise non-isomorphic, non-semisimple, non-pointed, and with non-
pointed duals. O

Remark 4.3.6. We now show that all the Hopf algebras in the preced-
ing theorem are cocycle deformations of each other, using the method of
Masuoka [Mk]. The proof relays on the fact that the Hopf algebras A,
are constructed via a pushout from the inclusions ¢ : O(G) — O.(G) and
gj -0 :I'— G and that the subgroups (g - o)(I') of G are all conjugated.
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Let B be a Hopf algebra. We say that two Hopf ideals I, J of B are
conjugated if there exists g € Alg(B, k) such that

J=g—=T+—g " ={g"(zq)z@9(zp) v €I}

Theorem 4.3.7. [Mk, Thm. 2] Let B be a central Hopf subalgebra of a
Hopf algebra A. If the Hopf ideals I and J are conjugated, then the Hopf
algebras A/(I) and A/(J) given by the pushout are cocycle deformation of
each other.

The following proposition follows directly from the proof of a result of
Masuoka on SL,(C). Let T" and T' be two finite subgroups of G and denote
by Ar and Ag the Hopf algebras given by the pushout construction.

Proposition 4.3.8. IfT" and T are conjugate in G, then the Hopf algebras
Ar and Ag are cocycle deformations of each other.

Compare with [Mk, Prop. 4].
Proof. Denote by p; : O(G) — CI' and ps : O(G) — C® the Hopf algebra

surjections given by the inclusions of I' and I in G. Then, the subgroups
I’ and T are conjugated by g € Alg(O(G),C) = G if and only if the ideals
I = Kerp; and J = Kerps are conjugated by g. Thus, the proposition

follows from the theorem above. O

Example 4.3.9. Let n > 2 and let I be a finite subgroup of SL(2). Let us
consider o : I' — SL,(C) given by o(z) = (§ IRO_Q), x € I'. If T is not central,
that is ' ¢ {+id}, we get an infinite family of pairwise non-isomorphic Hopf
algebras non-semisimple, non-pointed with non-pointed duals, of dimension

IT[¢"*~1. An analogous example can be described for any simple G.

Example 4.3.10. The examples given by Miiller in [M3, Thm. 5.13]
fits into the situation above for g = sly and I' = Gy. He shows there by a
different technique that the embedding given in the previous example gives

an infinite family of pairwise non-isomorphic Hopf algebras as in Theorem
4.1.7.

Example 4.3.11. The finite subgroups of a simple affine algebraic group
G are not known. However, some positive results for subgroups of prime
order were proved by several authors.

Theorem 4.3.12. [S, Thm. 1] Let G be a connected linear algebraic
simple group over an algebraically closed field k. Let h be its Coxeter number
and let p be a prime number.

(a) If p = h+ 1, the group G(k) contains a subgroup isomorphic to
PGLy(F)y), with exception to chark =2 and to G ~ PGLs.
(b) If p=2h+1, G(k) contains a subgroup isomorphic to PSLy(F)).

The following results state when G contains a cyclic subgroup of order p.
By Theorem 4.1.7 we obtain Hopf algebras of dimension p - £4™9,
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Proposition 4.3.13. [S, Prop. 4] Assume that G(k) is simple and let h
be the Coxeter number associated to G. If p = mh + 1, for m > 1, then G
contains a reqular element of order p.

Let G be a compact connected simple Lie group. If z € G has order
N, then the character values try (p(z)), as (p, V') varies over all finite di-
mensional representations of G, generate a subfield A(x) of Q(&), where

¢ = e2™/N_ The degree of Q(¢)/A(x) is called the depth of x.

Theorem 4.3.14. [PW, Thm. 3] Let p be a prime number not dividing
|W| and let d be a positive integer. Then G has an element of order p and
depth d if and only if the following all hold:

(a) d divides p — 1.

(b) d divides m + 1 for some exponent m of W.

(c) If d is odd then G is either of type A; or Eg or Dy, with | an odd
multiple of d.
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