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1 Introduction.

In this paper we consider a free boundary problem arising from a model for sorption of
solvents into glassy polymers.
This model was proposed in by Astarita and Sarti ([1]). They assumed that the sorption
process can be described using a free boundary model to simulate a sharp morphological
discontinuity observed in the material between a penetrated zone, with a relatively high
solvent content, and an glassy region where the solvent concentration is negligibly small
(and actually taken to be zero in the model).
The solvent is supposed to diffuse in the penetrated zone according to Fick’s law. More-
over the penetrating zone moves into the glassy zone driven by chemical and mechanical
effects that are taken into account by an empirical law relating the speed of penetration
to the concentration of solvent near the front. This law must account for two main facts
observed in the penetration experiences: (i) there exists a threshold value for the solvent
concentration under which no penetration occurs; (ii) above such value the speed of the
front increases with the concentration near the front itself. A typical form is v = α|u−q|m
where v is the front speed, u is the value of the concentration at the front, q > 0 is the
threshold value and α and m are positive constants ([1]).
An additional condition on the free boundary is obtained imposing mass conservation,
i.e., equating the mass density current to the product of solvent concentration and the
velocity of the free boundary.
This model has been the object of a number of papers. The problem has been studied
with the condition of constant concentration at the boundary by Fasano et al ([2]). Com-
parini & Ricci investigated the problem assuming that the polymer is in perfect contact
with a well-stirred bath ([3]). Comparini et al were interested in the case of a slab of
non-homogeneous polymer ([4]). Andreucci & Ricci studied the problem assuming a flux
condition at the fixed boundary ([5]). Here we are interested in a convective case, where
it is supposed that there is a flux of solvent through the left side of a slab proportional
to the difference between the solvent concentration at x = 0 and a given function of the
time which represents an external solvent concentration (h > 0 is the proportionality
constant). Denoting by c(x, t) the normalized concentration and by x = s(t) the location
of the front in the slab the mathematical problem can be stated as follows:

Problem PS
Find a triple (T, s, c) such that: T > 0, s ∈ C1[0, T ], c ∈ C2,1(DT ) ∩ C(D̄T ), where

DT = {(x, t) : 0 < t < T, 0 < x < s(t)}, and satisfying

cxx − ct = 0 in DT , (1.1)

cx(0, t) = h [c(0, t)− g(t)] , g(0) = 1, 0 ≤ t ≤ T (1.2)

ṡ(t) = f(c(s(t), t)), 0 ≤ t ≤ T (1.3)

cx(s(t), t) = −ṡ(t) [c(s(t), t) + q] , 0 ≤ t ≤ T (1.4)

s(0) = 0. (1.5)

The function g(t) is positive and the quantity q + g(t) represents the external con-
centration. In order to assure a stable process we suppose that g ∈ C1+α[0, T ], ∀T > 0,
g′(t) ≤ 0 and G ≡ ∫∞

0 g(t) dt < ∞. Throughout the paper the function f will be supposed
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to satisfy f ∈ C1+α(τ, 1], ∀τ > 0, f ′(c) > 0 for c ∈ (0, 1] and f(0) = 0. We note that
there exists Φ = f−1 which has the same properties as f .

2 An auxiliary problem.

Equating (1.2) to (1.4) for t = 0, we have that c∗ .
= c(0, 0) is the unique solution of

f(c∗)(c∗ + q) = −h(c∗ − 1). The solution satisfies 0 < c∗ < 1.
Let r ∈ C1[0, T ] ∩ C2(0, T ) be such that

r(0) = 0, (2.6)

ṙ(0) = f(c∗), (2.7)

0 ≤ ṙ(t) ≤ f(c∗) in [0, T ], (2.8)

|r̈(t)| ≤ K in (0, T ), (2.9)

and consider the problem (PA) of finding c ∈ C2,1(D) ∩ C(D̄), cx continuous up to
x = r(t), t ∈ (0, T ), such that

cxx − ct = 0 in D = {(x, t) : 0 < t < T, 0 < x < r(t)}, (2.10)

cx(0, t) = h [c(0, t)− g(t)] , g(0) = 1, 0 ≤ t ≤ T , (2.11)

cx(r(t), t) = −ṙ(t) [Φ(ṙ(t)) + q] , 0 ≤ t ≤ T . (2.12)

Theorem 2.1 Problem PA has a unique solution.

Proof. It follows from [6] and [7, Thm. 5.1., p. 561].

Proposition 2.2 For small T, the solution of PA satisfies:

c0 ≤ c(x, t) < 1 0 < x ≤ r(t), 0 < t ≤ T, (2.13)

h(c∗ − 1) ≤ cx(x, t) < h (1− g(t)) 0 < t ≤ T, 0 < x < r(t). (2.14)

where c0 is positive and it only depends on T .

Proof. Using the Hopf’s lemma we can assume that c attains its maximum value on
x = 0 since cx ≤ 0 on x = r(t). Let be

max
D̄

c = c(0, t0)

If t0 = 0, then max
D̄

c = c∗ < 1. Otherwise we have 0 > cx(0, t0) = h(c(0, t0) − g(t0)),

which implies max
D̄

c < g(t0) ≤ 1. Thus we obtain the right side of (2.13). Now suppose

that
min

D̄
cx = cx(0, t0),

for some t0 > 0, then
0 ≥ cxt(0, t0) = h (ct(0, t0)− g′(t0)) ,
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and cxx(0, t0) ≤ g′(t0) ≤ 0 which contradicts the Hopf’s lemma. Thus we
have min

D̄
cx = cx(0, 0) = h(c∗ − 1). Finally,

c(x, t) = c(0, t) +
∫ x

0
cx(ξ, t) dξ =

1

h
cx(0, t) + g(t) +

∫ x

0
cx(ξ, t) dξ

≥ c∗ − 1 + g(t) + h(c∗ − 1)f(c∗)t

≥ c∗ − 1 + g(T ) + h(c∗ − 1)f(c∗)T > 0,

for small T .

Proposition 2.3 Under assumptions (2.6)− (2.9) c ∈ C2,1(D̄), cxt ∈ C(D̄ − (0, 0)) and
there exists a constant B depending on T , and on K such that

|ct(x, t)| ≤ B, ∀(x, t) ∈ D. (2.15)

Proof. We note that we can reduce T , if necessary in order to have ṙ(t) ≥ f(1)−KT > 0
∀t ∈ [0, T ]. Note that w = ct is the solution of

wxx − wt = 0 in D, (2.16)

wx(0, t) = h (w(0, t)− g′(t)) 0 < t < T, (2.17)

wx(r, t) + ṙ(t)w(r(t), t) = F (t) 0 < t < T, (2.18)

with F (t) = d
dt

cx(r, t).
Now suppose that w attains its maximum value at (x0, t0). If t0 > 0 and x0 = r(t0) then

0 < wx(x0, t0) = F (t0)− ṙ(t0)w(x0, t0)

w(x0, t0) ≤ sup |F |
f(c∗)−KT

≤ K

f(c∗)−KT
(c∗ + q + f(c∗) + sup Φ′) .

= β1

If x0 = 0 and t0 > 0 we have

h (w(x0, t0)− g′(t0)) = wx(x0, t0) < 0

w(x0, t0) < g′(t0) ≤ sup |g′| .
= β2

Finally, if x0 = 0 = t0 there are t1, t2 and t3 in (0, t) such that

cx(r(t), t)− cx(0, t)

r(t)
=

−ṙ(t)(Φ(ṙ(t)) + q)− h(c(0, t)− g(t))

r(t)

cxx(r(t1), t) =
−r̈(t2) [q + Φ(ṙ(t2)) + ṙ(t2)Φ

′(ṙ(t2))]− h [ct(0, t2)− g′(t2)]
ṙ(t3)∣∣∣∣∣ct(r(t1), t) +

h

ṙ(t3)
ct(0, t2)

∣∣∣∣∣ ≤ K [q + sup Φ + f(c∗) sup Φ′] + h sup |g′|
ṙ(t3)

(2.19)

taking t → 0:

|ct(0, 0)| ≤ K[q + sup Φ + f(c∗) sup Φ′] + h sup |g′|
h + f(c∗)

.
= β3.
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Similarly, we get min
D̄

w ≥ −max(β1, β2, β3).

Now we investigate how the solution of PA depends on r(t). Let r1(t), r2(t) satisfy
(2.6)− (2.9) and let c1(x, t), c2(x, t) be the corresponding solutions of (2.10)− (2.12). We
have

Proposition 2.4 Under the assumptions above, constants T0 > 0 and N > 0 can be
found such that for any T ∈ (0, T0)

|c1(r1(t), t)− c2(r2(t), t)| ≤ N ||r1 − r2||C1[0,T ], 0 < t < T. (2.20)

Proof. Let us define λ = min(r1, r2) and D∗ = {(x, t) : 0 < x < λ(t), 0 < t < T}.
Let be M > 0 and

W± = c1 − c2 ± xMR, in D∗,

with R = ||r1 − r2||C1[0,T ]. Those functions satisfy

W±
x (0, t) = hW±(0, t)±MR (2.21)

Let be t > 0 and suppose that λ(t) = r1(t). Then

|(c1 − c2)x(λ, t)| ≤ |c1x(r1, t)− c2x(r2, t)|+ |c2x(r2, t)− c2x(r1, t)|
≤ | − ṙ1(Φ(ṙ1) + q) + ṙ2(Φ(ṙ2) + q)|+ |c2xx(ξ12, t)||(r1 − r2)(t)|
< MR (2.22)

if M > (c∗ + q) + f(c∗) max Φ′ + B is taken (note that M is the same if λ(t) = r2(t)).
Thus we get W+

x (λ, t) > 0 and W−
x (λ, t) < 0 ∀t. So, there are t± ≥ 0 such that min W+ =

W+(0, t+) and max W− = W−(0, t−). Using Hopf’s lemma and (2.21) we have:

W+(0, t+) > −M

h
R

W−(0, t−) <
M

h
R

which implies

(c1 − c2)(x, t) + MRx ≥ W+(0, t+) ≥ −M

h
R

(c1 − c2)(x, t)−MRx ≤ W−(0, t−) ≤ M

h
R

or

|(c1 − c2)(x, t)| ≤
(
Mf(c∗)T +

M

h

)
R. (2.23)

3 Local existence and uniqueness.

Let γ(t) be a positive nonincreasing function defined for t > 0 and possibly diverging for
t → 0+. Denote by X(K, T, γ) the set of functions r(t) satisfying (2.6) − (2.9) and such
that, for some α ∈ (0, 1]

|r̈(t1)− r̈(t2)| ≤ γ(τ)(t1 − t2)
α/2, 0 < τ ≤ t2 ≤ t1 ≤ T. (3.24)
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Note that the set X is convex and compact in C1[0, T ].
For any r ∈ X let c be the solution of (2.10) − (2.12). Then, define the transformation
r̃ = Cr as follows

r̃(0) = 0, ˙̃r(t) = f(c(r(t), t)), 0 < t < T. (3.25)

(Remember 0 < c0 ≤ c < 1 by (2.13).)
Now we prove

Theorem 3.1 There exist K, T and γ such that the transformation r̃ = Cr is a contin-
uous mapping of X(K,T, γ) ⊂ C1[0, T ] into itself.

Proof. Since (2.6)− (2.8) are satisfied by contruction, to prove that C maps X into itself,
we only need to prove that r̃ satisfies (2.9) y (3.24) for suitable K, T , γ. We have

¨̃r(t) = [cx(r(t), t)ṙ(t) + ct(r(t), t)] f
′(c(r(t), t)), 0 < t < T. (3.26)

Using (2.13) and (2.14), we find (2.9) yields taking K = (hf(c∗)T + B) max
[c0,1]

f ′. To esti-

mate the Hölder norm of ¨̃r(t) we need to estimate the norm of cx(x, t) in the space C1+α.
This is accomplished as follows. Define z(x, t) = cx(x, t) + ṙ(t) [q + Φ(ṙ(t))], which solves

zxx − zt = −r̈(t) [q + Φ(ṙ(t)) + Φ′(ṙ(t))ṙ(t)] in D,

hzx(0, t)− zt(0, t) = hg′(t)− r̈(t) [q + Φ(ṙ(t)) + Φ′(ṙ(t))ṙ(t)] , 0 < t < T,

z(r(t), t) = 0, 0 < t < T.

For any τ ∈ (0, T ) transform the domain 0 < x < r(t), τ/2 < t < T into the rectangle
(0, 1) × (τ/2, T ) by the transformation y = x/r(t) and apply the standard Schauder
estimates (e.g. [7, Thm. 5.1., p. 561]) to the transformed function ẑ(y, t), in the rectangle
(1/2, 1)× (τ/2, T ). We find

||z||Cα ≤ γ̄(τ), (1/2, 1)× (τ, T ), (3.27)

where γ̄ depends on K, on f , on T , and on τ (and α). Thus defining γ(t) as suggested
by (3.27), r̃ will satisfy (3.24). The final step in proving Theorem 3.1 is to prove that
the transformation C is continuous. But this is an immediate consequence of (2.20) and
(3.25) because

||r̃1 − r̃2||C1[0,T ] ≤ (T + 1)max
[c0,1]

f ′N ||r1 − r2||C1[0,T ].

Hence a T0 > 0 can be found such that the following theorem holds

Theorem 3.2 Problem PS admits a solution for T ≤ T0. Moreover, c ∈ C2,1(D̄T ),
s ∈ C2[0, T ].

Proof. This is a straightforward consequence of Theorem 3.1 and of Schauder’s fixed
point theorem. The regularity properties of c and s follow from Proposition 2.3 and the
definition of X.
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A monotone dependence lemma will be useful in proving the uniqueness theorem. Let
ci, si, i = 1, 2, solve the problems

cixx − cit = 0, 0 < x < si(t), ti < t < T, (3.28)

with initial conditions si(ti) = 0 and satisfying boundary conditions (1.2) − (1.4) in the
time intervals (ti, T ). We have

Lemma 3.1 If t1 < t2, then

s1(t) > s2(t), t2 < t < T. (3.29)

Proof. Note that the transformation

u(x, t) = −
∫ s(t)

x
[c(y, t) + q] dy, (3.30)

carries (1.1)− (1.5) into the following problem:

uxx − ut = 0, in DT , (3.31)

ut(0, t) = h [ux(0, t)− q − g(t)] , 0 < t < T, (3.32)

u(s(t), t) = 0, 0 < t < T, (3.33)

ux(s(t), t) = Φ(ṡ(t)) + q, 0 < t < T, (3.34)

s(0) = 0. (3.35)

Consider the function ui(x, t) obtained from ci(x, t) by means of (3.30). Assume that
there exists a first time t0 such that s1(t0) = s2(t0) ≡ s0 and hence

ṡ1(t0) ≤ ṡ2(t0), (3.36)

and so

(u1 − u2)(s0, t0) = 0, (3.37)

(u1 − u2)x(s0, t0) = Φ(ṡ1(t0))− Φ(ṡ2(t0)) ≤ 0. (3.38)

The Hopf’s lemma and (3.32) assure that u1−u2 cannot attain its maximum value at
x = 0. But, for t2 ≤ t < t0 we have

(u1 − u2)(λ(t), t) = (u1 − u2)(s2(t), t) = u1(s2(t), t) < 0,

thus (3.37) implies that (u1 − u2)x(s0, t0) > 0 which contradicts (3.38).

Now we can prove uniqueness.

Theorem 3.3 Problem PS cannot have two distinct solutions with the same T .

Proof. As in [2].
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4 Global existence.

Before proving global existence, let us perform an a priori analysis on the solutions of
problem PS.

Proposition 4.1 Assume s, c solve problem PS for a given T < +∞. Then

0 < c(x, t) < 1 0 ≤ x ≤ s(t), t ≥ 0, (4.39)

h(c∗ − 1) < cx(x, t) < h(1− g(t)) 0 ≤ x ≤ s(t), t > 0, (4.40)

Proof. Using the Hopf’s lemma we can assume that c attains its maximum value at
x = 0 since cx = −f(c)(Φ(ṡ) + q) ≤ 0 on x = s(t). Let be

c(0, t0) = max
DT

c.

If t0 = 0, then max
DT

c = c∗ < 1. Otherwise we have 0 > cx(0, t0) = h(c(0, t0) − g(t0)),

which implies max
DT

c < g(t0) ≤ 1. Let be

c(x1, t1) = min
DT

c.

If x1 = 0 then there occurs either min
DT

c = c∗ > 0 or

min
DT

c = g(t1) +
1

h
cx(0, t1) ≥ g(t1) > 0.

Moreover, if min
DT

c = c(s(t1), t1) = 0 (with t1 > 0) then cx(s(t1), t1) = 0, contradicting the

boundary point principle. Thus, (2.6) holds and cx(0, t) < h(1 − g(t)) for all t. Finally,
let us suppose that

min
DT

cx = cx(s(t2), t2) with t2 ≥ 0.

If t2 > 0 then 0 ≥ d
dt

cx(s(t), t)|t=t2 , i.e.

0 ≤ −[f ′(c(s(t2), t2))(c(s(t2), t2)+q)+f(c(s(t2, t2)))][cx(s(t2), t2)ṡ(t2)+cxx(s(t2), t2)] > 0,

which is a contradiction. Then min
DT

cx = cx(0, 0) = h(c∗ − 1).

Proposition 4.2 Under the assumptions above, the following estimate holds

|ct(x, t)| ≤ BT , ∀(x, t) ∈ DT , (4.41)

with

BT = max

{
max
[0,T ]

|g′|, f(1)2(1 + q), |ct(0, 0)|
}

. (4.42)

Proof. Note from (1.2) that

ct(0, t) = g′(t) +
1

h
ctx(0, t), 0 < t ≤ T. (4.43)

Moreover, from (1.3) and (1.4) we have cx = −f(c)(c + q) at x = s(t) and deriving with
respect to t we get

ctf(c) + ctx = − [f ′(c)(c + q) + f(c)] (cxf(c) + ct) at x = r(t) (4.44)

ct(s(t), t) =

(
[f ′(c)(c + q) + f(c)] f 2(c)(c + q)− ctx

2f(c) + f ′(c)(c + q)

)

x=r(t)

(4.45)

The proposition follows by using the Hopf’s lemma.
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Theorem 4.3 Problem PS admits a solution for arbitrary T > 0.

Proof. Let us assume that

T ∗ = sup{T > 0 : there exists a solution of PS for T} (4.46)

is finite. Note from Thm. 3.3 and props. 4.1 and 4.2 that there exist the limits
s∗ ≡ limt→T ∗ s(t), c∗0 ≡ limt→T ∗ c(s(t), t)), ṡ∗ ≡ limt→T ∗ ṡ(t) and c∗0(x) ≡ limt→T ∗ c(x, t) for
0 ≤ x < s∗. Moreover, c ∈ C2,1(D̄T ∗ −DT ∗/2) (see, e.g. [8]) and from (4.39) we have that

ṡ∗ > 0. Thus, for T̂ > T ∗, consider the set of functions r ∈ C1[T ∗, T̂ ] ∩ C2(T ∗, T̂ ) such
that

r(T ∗) = s∗, (4.47)

ṙ(T ∗) = ṡ∗, (4.48)

0 ≤ ṙ(t) ≤ ṡ∗ in [T ∗, T̂ ], (4.49)

|r̈(t)| ≤ K in (T ∗, T̂ ). (4.50)

There exists a unique solution for the problem of finding a function c ∈ C2,1(D̄T̂ −DT ∗)

satisfying (2.10) − (2.12) for t ∈ [T ∗, T̂ ] and initial data c(x, T ∗) = c∗0(x) (see, e.g. [8]).
Similarly, as in section 3, there exists a function s(t) which satisfies (4.47) − (4.50) and
(1.3) for T ∗ ≤ t ≤ T̂ for suitable T̂ > T ∗, contradicting (4.46).

5 Asymptotic behavior.

In this section we show some results about the behavior of the free boundary s(t) when t
goes to infinity.
Let s(t), c(x, t) solve problem PS. Using Green’s identity we get:

0 =
∮

∂Dt

c(x, t)v(x, t) dx + (v(x, t)cx(x, t)− c(x, t)vx(x, t)) dt t > 0, (5.51)

which holds for every solution v = v(x, t) of vxx + vt = 0 in Dt. Thus, taking v(x, t) = 1
we obtain

0 =
∮

∂Dt

c(x, t) dx + cx(x, t) dt t > 0,

which gives

0 =
∫ t

0
c(s(τ), τ)ṡ(τ) dτ −

∫ t

0
ṡ(τ) (c(s(τ), τ) + q) dτ −

∫ s(t)

0
c(x, t) dx−

∫ t

0
cx(0, τ) dτ

and then

qs(t) = −
∫ s(t)

0
c(x, t) dx−

∫ t

0
cx(0, τ) dτ (5.52)

= −
∫ s(t)

0
c(x, t) dx− h

∫ t

0
c(0, τ) dτ + h

∫ t

0
g(τ) dτ (5.53)

so

s(t) ≤ h

q

∫ t

0
g(τ) dτ ≤ h

q
G. (5.54)

This upper bound is independent of f , and since ṡ(t) = f(c(s(t), t)) > 0 there exists

s∞
.
= lim

t→∞ s(t). (5.55)

The following numerical result (see section 6) shows these facts for the case q = 0.3,
h = 10, g(t) = e−2t and several functions f (h

q
G = 16.7).
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Figure 1: Plot of the free boundaries and their asymptotic behaviors for several function
f(c) = αcm, α > 0,m > 0.

The figure 1 shows that all the free boundaries are bounded by a constant closed to
1.6, so h

q
G appears to be a very large bound, and we can look for a better one. In order

to do it, we will obtain two additional equations for s and c ((5.56) and (5.57) below).
First, taking v(x, t) = x in (5.51) we have

0 =
∮

∂Dt

c(x, t)x dx + (xcx(x, t)− c(x, t)) dt,

it gives

0 =
∫ t

0
c(s(τ), τ)s(τ)ṡ(τ) dτ +

∫ t

0
[−(q + c(s(τ), τ))ṡ(τ)s(τ)− c(s(τ), τ)] dτ −

−
∫ s(t)

0
c(x, t)x dx +

∫ t

0
c(0, τ) dτ,

q

2
s2(t) +

∫ t

0
c(s(τ), τ) dτ = −

∫ s(t)

0
c(x, t)x dx +

∫ t

0
c(0, τ) dτ. (5.56)

Similarly, taking v(x, t) = t− x2

2
we get:

0 =
∮

∂Dt

c(x, t)

(
t− x2

2

)
dx +

[(
t− x2

2

)
cx(x, t) + xc(x, t)

]
dt,

thus

0 =
∫ 0

t
τcx(0, τ) dτ +

+
∫ t

0

[
c(s(τ), τ)

(
τ − s2(τ)

2

)
ṡ(τ) +

(
τ − s2(τ)

2

)
cx(s(τ), τ) + c(s(τ), τ)s(τ)

]
dτ +

+
∫ 0

s(t)
c(x, t)

(
t− x2

2

)
dx,
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and so

0 = −
∫ t

0
τcx(0, τ) dτ − q

6
s3(t)− q

∫ t

0
τ ṡ(τ) dτ +

+
∫ t

0
c(s(τ), τ)s(τ) dτ +

1

2

∫ s(t)

0
x2c(x, t) dx− t

∫ s(t)

0
c(x, t) dx. (5.57)

Lemma 5.1 The following equation holds:

lim
t→∞

∫ s(t)

0
c(x, t) dx = 0. (5.58)

Proof. From (5.57) we have

∫ s(t)

0
c(x, t) dx = −1

t

∫ t

0
τcx(0, τ) dτ − q

6t
s3(t)− q

t

∫ t

0
τ ṡ(τ) dτ +

+
1

t

∫ t

0
c(s(τ), τ)s(τ) dτ +

1

2t

∫ s(t)

0
x2c(x, t) dx

≤ −1

t

∫ t

0
τcx(0, τ) dτ +

1

t

∫ t

0
c(s(τ), τ)s(τ) dτ +

s3
∞
2t

.

To prove the lemma it is enough that all these terms go to zero as t → ∞. In order
to do it, note that from (5.53),

∫ t

0
c(0, τ) dτ ≤

∫ t

0
g(τ) dτ ≤ G,

then, using (5.56)

∫ t

0
c(s(τ), τ)s(τ) dτ ≤ s∞

∫ t

0
c(s(τ), τ) dτ ≤ s∞G,

thus

lim
t→∞

1

t

∫ t

0
c(s(τ), τ)s(τ) dτ = 0.

On the other hand, from (5.52)

−
∫ t

0
cx(0, τ) dτ =

∫ s(t)

0
[q + c(x, t)] dx > 0 (5.59)

and from (1.2) we have

−
∫ ∞

0
cx(0, τ) dτ = h

(
G−

∫ ∞

0
c(0, τ) dτ

)
< ∞. (5.60)

By using integration by parts, (5.59), 5.60 and the L’Hôpital’s rule we obtain

lim
t→∞

1

t

∫ t

0
τcx(0, τ) dτ = lim

t→∞

[∫ t

0
cx(0, τ) dτ − 1

t

∫ t

0

(∫ τ

0
cx(0, τ

′) dτ ′
)

dτ
]

= 0.
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Lemma 5.2 Assume that f(c) = αc, α > 0. Then the explicit formula holds:

s∞ =

√√√√
(

1

h
+

1

αq

)2

+
2

q
G−

(
1

h
+

1

αq

)
. (5.61)

Proof. Cancelling
∫ t
0 c(0, τ) dτ from (5.53) and (5.56) we obtain

q

2
s2(t) +

q

h
s(t) = −

∫ s(t)

0

(
1

h
+ x

)
c(x, t) dx +

∫ t

0
g(τ) dτ −

∫ t

0
c(s(τ), τ) dτ, (5.62)

and since c(s(τ), τ) = 1
α
ṡ(τ), we get

q

2
s2(t) +

(
1

α
+

q

h

)
s(t) =

∫ t

0
g(τ) dτ −

∫ s(t)

0

(
1

h
+ x

)
c(x, t) dx,

observe that
∫ s(t)
0

(
1
h

+ x
)
c(x, t) dx ≤

(
1
h

+ s∞
) ∫ s(t)

0 c(x, t) dx, and then by (5.58) we
get

q

2
s2
∞ +

(
1

α
+

q

h

)
s∞ = G.

Theorem 5.1 The following statement is true

sup
f

s∞ =

√
1

h2
+

2

q
G− 1

h
. (5.63)

The supremum is taken on the set of the functions f belonging to C1+α(τ, 1] ∀τ > 0
satisfying f ′(c) > 0 in (0, 1] and f(0) = 0.

Proof. Proceeding as in (5.62), we have

s2(t) +
2

h
s(t)− 2

q

∫ t

0
g(τ) dτ = −2

q

∫ s(t)

0

(
1

h
+ x

)
c(x, t) dx−

∫ t

0
c(s(τ), τ) dτ ≤ 0,

as t →∞ we get

s2
∞ +

2

h
s∞ − 2

q
G ≤ 0

thus

s∞ ≤
√

1

h2
+

2

q
G− 1

h
,

and (5.63) follows taking α →∞ in (5.61).
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6 The numerical method.

In this section will be shown a numerical scheme based on the method introduced in [9]
for one-dimensional parabolic free boundary problems with arbitrary implicit or explicit
free boundary conditions.
In this method the continuous problem is time discretized and solved at successive time
levels as a sequence of free boundary problems for ordinary differential equations. Specif-
ically, at time level t = tn with tn − tn−1 = ∆t the solution {Cn(x), Sn} is computed as
the exact solution of the discretized equations

C ′′
n −

Cn − Cn−1

∆t
= 0 0 < x < Sn, (6.64)

C ′
n(0) = h (Cn(0)− g(tn)) , (6.65)

Sn − Sn−1

∆t
= f(Cn(Sn)), S0 = 0, (6.66)

C ′
n(Sn) = −Sn − Sn−1

∆t
(q + Cn(Sn)). (6.67)

In (6.64) the function Cn−1(x) is supposed to be defined over [0, +∞), and Sn−1

supposed to be known as well. We write (6.64) as a first order system over (0, Sn)

C ′
n = Vn, (6.68)

V ′
n =

1

∆t
(Cn − Cn−1) (6.69)

and exploit the observation that Cn and Vn are related through the Riccati transfor-
mation

Cn(x) = R(x)Vn(x) + Wn(x), (6.70)

where

R(x) =

√
∆t

tanh
(

x+K√
∆t

) , K =
√

∆t tanh−1(h
√

∆t) (6.71)

W ′
n = −R(x)

∆t
(Wn − Cn−1(x)) , Wn(0) = g(tn). (6.72)

The function Wn is solution of well defined initial value problem and may be considered
available. The free boundary Sn is determined such that the triple Cn, Vn, Sn simultane-
ously satisfies (6.66), (6.67) and (6.70). Elimination of Cn and Vn from (6.67) and (6.70)
shows that Sn must be a root of the scalar equation

σn(x)
.
= (x− Sn−1)/∆t− f

(
Wn(x)− qR(x)(x− Sn−1)/∆t

1 + R(x)(x− Sn−1)/∆t

)
= 0. (6.73)

Given Sn, we set

Cn(Sn) =
Wn(Sn)−R(Sn)Ṡnq

1 + R(Sn)Ṡn

, (6.74)

so that

Ṡn
.
=

Sn − Sn−1

∆t
= f(Cn(Sn)), (6.75)
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and

C ′
n(Sn) = Vn(Sn) = −Ṡn

Wn(Sn) + q

1 + R(Sn)Ṡn

. (6.76)

Thus, the triple {Cn(Sn), Vn(Sn), Sn} is an exact solution of (6.66), (6.67) and (6.70).
We remark that depending on ∆t the functional σn(x) may have a root smaller than Sn−1.
Such a root would correspond to a negative concentration Cn(Sn) and is not admissible.
We shall therefore agree to choose for Sn the smallest root of σn(x) = 0 on (Sn−1,∞).
Such a root will be soon to exist.
Once Sn has been determined, one can find Vn by integrating backward over [0, Sn) the
equation

V ′
n =

1

∆t
(R(x)Vn + Wn(x)− Cn−1(x)), (6.77)

with Vn(Sn) given by (6.76). The concentration Cn(x) at time level tn is obtained from
(6.71). Finally, Cn(x) is extended over [Sn,∞) as C1 linear function. For the initial
concentration we shall use

C0(x) = −h(1− c∗)x + c∗.

Lemma 6.1 There exists a solution Sn of (6.73) on (Sn−1,∞) and Sn − Sn−1 < f(1)∆t.
The function Cn satisfies 0 < Cn < 1 on [0, Sn] and C ′

n < 0 on [Sn,∞).

Proof. We note that C0(S0) = c∗ ∈ (0, 1) and C ′
0 = −h(1 − c∗) < 0. Let us proceed

by induction and assume the result valid for n− 1. Integrating (6.72) we have

Wn(x) =
1

sinh
(

x+K√
∆t

)
[
g(tn) sinh

(
K√
∆t

)
+

1√
∆t

∫ x

0
cosh

(
r + K√

∆t

)
Cn−1(r) dr

]
,

since Cn−1 < 1 by assumption, we get

Wn(x) ≤ 1

sinh
(

x+K√
∆t

)
[
g(tn) sinh

(
K√
∆t

)
+

1√
∆t

∫ x

0
cosh

(
r + K√

∆t

)
dr

]
,

=
1

sinh
(

x+K√
∆t

)
[
g(tn) sinh

(
K√
∆t

)
+

(
sinh

(
x + K√

∆t

)
− sinh

(
K√
∆t

))]

≤ 1

moreover Wn(Sn−1) > 0. Hence the function

Wn(x)− qR(x)(x− Sn−1)/∆t

1 + R(x)(x− Sn−1)/∆t

is less than one and positive on some interval (Sn−1, x0), vanishing on x0 . Then,

σn(x0) =
x0 − Sn−1

∆t
− f(0) > 0,

what is more
σn(Sn−1) = −f(Wn(Sn−1)) < 0,
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thus there must be a point Sn ∈ (Sn−1, x0) where σn(Sn) = 0, 0 < Cn(Sn) < 1 and
C ′

n(Sn) < 0. Integrating (6.70) we obtain:

0 < Cn(x) = cosh

(
x + K√

∆t

) 
 Cn(Sn)

cosh
(

Sn+K√
∆t

) − 1√
∆t

∫ x

Sn

sinh
(

r+K√
∆t

)

cosh2
(

r+K√
∆t

)Wn(r) dr




≤ cosh

(
x + K√

∆t

) 
 Cn(Sn)

cosh
(

Sn+K√
∆t

) − 1√
∆t

∫ x

Sn

sinh
(

r+K√
∆t

)

cosh2
(

r+K√
∆t

) dr




= Cn(Sn)
cosh

(
x+K√

∆t

)

cosh
(

Sn+K√
∆t

) + 1−
cosh

(
x+K√

∆t

)

cosh
(

Sn+K√
∆t

) < 1 ∀x ∈ [0, Sn].

Finally, from (6.74) and (6.75) we conclude that Sn − Sn−1 = f(Cn(Sn))∆t < f(1)∆t.

7 Conclusions.

In this paper the main result is the asymptotic behavior of the free boundary. We remark
that the upper bound (5.63) should be very useful for real applications, where the function
f is a priori unknown and a estimate of s∞ is needed, this is a remarkable fact because
we can control s(t) for large t whatever be the physical process that the movement of the
free boundary obeys.
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